usenix
.’ THE ADVANCED
COMPUTING SYSTEMS

ASSOCIATION

Digtool: A Virtualization-Based Framework for
Detecting Kernel Vulnerabilities

Jianfeng Pan, Guanglu Yan, and Xiaocao Fan, IceSword Lab, 360 Internet Security Center

https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/pan

This paper is included in the Proceedings of the

26th USENIX Security Symposium
August 16-18, 2017 « Vancouver, BC, Canada
ISBN 978-1-931971-40-9

Open access to the Proceedings of the
26th USENIX Security Symposium
is sponsored by USENIX




Digtool: A Virtualization-Based Framework for Detecting
Kernel Vulnerabilities

Jianfeng Pan, Guanglu Yan, Xiaocao Fan
IceSword Lab, 360 Internet Security Center

Abstract

Discovering vulnerabilities in operating system (OS) ker-
nels and patching them is crucial for OS security. How-
ever, there is a lack of effective kernel vulnerability de-
tection tools, especially for closed-source OSes such as
Microsoft Windows. In this paper, we present Digtool,
an effective, binary-code-only, kernel vulnerability de-
tection framework. Built atop a virtualization monitor
we designed, Digtool successfully captures various dy-
namic behaviors of kernel execution, such as kernel ob-
ject allocation, kernel memory access, thread scheduling,
and function invoking. With these behaviors, Digtool
has identified 45 zero-day vulnerabilities such as out-
of-bounds access, use-after-free, and time-of-check-to-
time-of-use among both kernel code and device drivers
of recent versions of Microsoft Windows, including Win-
dows 7 and Windows 10.

1 Introduction

Software vulnerabilities have been well studied over
the years, but they still remain a significant threat to
computer security today. For instance, improper use
of parameters or memory data can lead to program
bugs, some of which can become vulnerabilities, such
as time-of-check-to-time-of-use (TOCTTOU), use-after-
free (UAF), and out-of-bounds (OOB) vulnerabilities.
These vulnerabilities are often the root cause of suc-
cessful cyberattacks. However, symptoms resulting
from these vulnerabilities tend to be delayed and non-
deterministic, which makes them difficult to discover by
regular testing. Therefore, dedicated vulnerability iden-
tification tools that can systematically find software vul-
nerabilities are urgently needed.

There are usually two aspects in detecting vulnerabil-
ities: path exploration and vulnerability identification.
Combining path exploration with vulnerability identi-
fication tools is an effective way to detect vulnerabil-

ities. Most fuzzing tools, such as AFLFast [12] and
SYMFUZZ [16], only adopt path exploration to probe
code branches. As a typical example of a path explorer,
S2E [17], based on virtualization technology, combines
virtual machine monitoring with symbolic execution to
automatically explore paths. Vulnerability identification
tools are used for recording exceptions (e.g., the abuse
of parameters or illegal memory access) in the paths that
have been probed. While we could have also investigated
path exploration, the main focus of Digtool is vulnerabil-
ity detection.

Depending on the detection targets, vulnerability iden-
tification tools can be classified into two categories: (1)
tools for checking applications in user mode, and (2)
tools for detecting programs in kernel mode. However,
most of the current vulnerability identification tools,
such as DESERVE [29], Boundless [15], and LBC [21],
have been designed for applications in user mode. They
cannot be directly used to detect kernel vulnerabilities.
However, vulnerabilities in OS kernels or third-party
drivers have a far more severe threat than user-level vul-
nerabilities. Thus, there is still a need for effective detec-
tion of kernel vulnerabilities.

Several Linux kernel vulnerability identification
tools, such as Kmemcheck [32], Kmemleak [6], and
KEDR [35], have been developed. They can effectively
capture kernel vulnerabilities. However, since they rely
on the implementation details and the source code of the
0S8, it is difficult to port these tools to other OSes, espe-
cially to a closed-source OS such as Windows.

In Windows OS, a notable tool for checking kernel
vulnerabilities is Driver Verifier [28], which is used to
detect illegal function calls or actions that might corrupt
the system. While Driver Verifier is able to detect many
potential bugs, it is an integrated system, but not a ded-
icated tool for detecting kernel vulnerabilities. For in-
stance, it cannot be used to identify certain vulnerabili-
ties, such as TOCTTOU vulnerabilities.

USENIX Association

26th USENIX Security Symposium 149



Vulnerability identification tools based on virtualiza-
tion are much more portable to support different OSes,
including closed-source ones. However, the current vul-
nerability identification tools based on virtualization,
such as VirtualVAE [18] and PHUKO [38], are dedi-
cated to detecting a single, specific type of vulnerabili-
ties. Moreover, they have not been evaluated in detecting
zero-day kernel vulnerabilities. It is worth noting that the
virtualization-based tool Xenpwn [41] makes use of Lib-
vmi [34] to discover vulnerabilities in para-virtualized
devices of Xen (not for the Windows OS). It traces guest
physical addresses through extended page tables (EPTs).
However, it is not appropriate for monitoring guest vir-
tual addresses.

For closed-source OSes such as Windows, it is even
more difficult to build a vulnerability identification tool.
We are neither able to insert detection code at compile-
time to detect program errors like those tools for Linux,
nor able to rewrite or modify the OS source code like
Driver Verifier. Under these constraints, we adopt virtu-
alization to hide the internal details of the Windows OS,
and carry out the detection at a lower level, i.e., at the hy-
pervisor. Therefore, a novel vulnerability identification
framework named Digtool is proposed, which captures
dynamic behavior characteristics to discover kernel vul-
nerabilities in the Windows OS by using virtualization
technology.

Contributions. In short, we make the following contri-
butions in this paper:

e A virtualization-based vulnerability identification
framework, Digtool, is proposed to detect different
types of kernel-level vulnerabilities in the Windows
OS. It does not need to crash the OS, and thus it can
capture multiple vulnerabilities and provide the ex-
act context of kernel execution. It is designed to be
independent of kernel source code, which enlarges
its applicable scope. In addition, it does not depend
on any current virtualization platform (e.g., Xen) or
emulator (e.g., bochs).

e Based on the framework, virtualization-based de-
tection algorithms are designed to discover four
types of vulnerabilities, including UNPROBE (no
probe, i.e., no checking on the user pointer to the
input buffer), TOCTTOU, UAF, and OOB. These
algorithms can effectively detect kernel vulnerabil-
ities by accurately capturing their dynamic charac-
teristics.

e With Digtool, we found 45 zero-day kernel vulner-
abilities from both Windows kernel code and third-
party device driver code. These vulnerabilities had
never been published before. We have made respon-
sible disclosure and have helped the corresponding

vendors fix the vulnerabilities. The root cause of
some of the vulnerabilities is also analyzed in this

paper.

The rest of this paper is organized as follows. In Sec-
tion 2, we describe the background. In Section 3, we
provide the overall design of the framework. In Section
4, we detail the implementation of Digtool, and, in Sec-
tion 5, evaluate its effectiveness and efficiency. In Sec-
tion 6, we discuss its limitations and directions for future
research. In Section 7, we review the related work, and
in Section 8 we conclude.

2 Background

UNPROBE, TOCTTOU, UAF, and OOB vulnerabilities
have widely appeared in various programs including OS
kernels. They can lead to denial-of-service attacks, lo-
cal privilege escalation, and even remote code execution,
which directly affect the stability and security of the vic-
tim program.

No checking of a user pointer to an input buffer could
lead to a vulnerability that is denoted UNPROBE in this
paper. Many kernel modules omit the checking for user
pointers (especially when the user pointers are nested in
a complex structure). According to the historical data
of common vulnerabilities and exposures (CVEs), there
have been many UNPROBE vulnerabilities in the Win-
dows kernels, and there are also many such vulnerabili-
ties in third-party drivers (e.g., the vulnerabilities in the
experiment described herein). An UNPROBE vulnera-
bility could result in an invalid memory reference, an ar-
bitrary memory read, or even an arbitrary memory over-
write. Therefore, detection of UNPROBE is necessary.
While fuzzing based on path exploration can help solve
some problems, it is difficult to test all pointer arguments
nested in complicated structures.

A TOCTTOU vulnerability stems from fetching a
value from user memory more than once. Usually, a
brittle system-call handler fetches a parameter for the
first time to check it and for the second time to use it.
Thus, an attacker has a chance to tamper with the pa-
rameter in the user space between the two steps. Con-
sequently, the system-call handler will fetch and use the
compromised parameter, which will lead to a TOCTTOU
vulnerability. Similar to UNPROBE above, TOCTTOU
could also result in an invalid memory reference, an ar-
bitrary memory read, or an arbitrary memory overwrite.
It is difficult to detect this type of vulnerability through
fuzzing based only on path exploration. Bochspwn [24]
was developed to identify many TOCTTOU vulnerabil-
ities in the Windows kernel. However, its application is
extremely restricted by the disappointing performance of
the bochs emulator [25]. In addition, the bochs emulator

150 26th USENIX Security Symposium

USENIX Association



User Space

e Lo At

Kernel Space

’ Middleware

Guest OS

VMM Infrastructure

Hypervisor

| Hard (CPU + virtualizati ions)

Figure 1: Digtool architecture.

cannot simulate all actual operations and functionalities
of a real-world machine (e.g., inability to emulate certain
real, hardware-specific kernel modules, such as modern
video card drivers). As a result, Bochspwn cannot cover
all of the kernel modules.

A UAF vulnerability stems from reuse of freed mem-
ory. An OOB vulnerability results from accessing mem-
ory that is beyond the bounds of allocated heaps or mem-
ory objects. In many cases, these vulnerabilities could
lead to local privilege escalation. For the Linux OS, tools
such as AddressSanitizer [36] have been released to de-
tect these vulnerabilities. For the closed-source Windows
08, it is difficult for a third party to build such detection
tools. Driver Verifier [28] proposed by Microsoft can be
used to discover these types of vulnerabilities. However,
it is much more likely to miss a vulnerability in some
scenarios (e.g., the UAF detection scenario described in
Section 4.3.1).

Digtool adopts virtualization technology to detect the
above four types of vulnerabilities in Windows kernels
and device drivers with better detection results. As a
framework, it could also be used to detect some other
types of vulnerabilities, such as double-free and infor-
mation leakage, by expanding its detection algorithms.

3 Overview

The overall architecture of Digtool is illustrated in Figure
1. The subsystems and logic modules of the Digtool are
distributed across user space, kernel space, and the hy-
pervisor. The thin arrows in the figure indicate that there
are direct invoking relationships or direct channels for
passing messages between modules. The thick arrows il-
luminate that two modules act on each other indirectly
via some event-triggering mechanisms.

One of the most important tasks for the hypervisor is to
monitor virtual memory access. This is the basis for in-
terface detection and memory detection. However, the
memory monitor methods in current vulnerability iden-

tification tools are unsuitable for our scenario. Without
source code, we cannot monitor memory access through
patching source code like Driver Verifier [28], or through
configuring compile-time instrumentation like Address-
Sanitizer [36]. Patching the system exception handler to
intercept memory references by using page access rights
is an alternative, but it will introduce significant, internal
modifications in the kernel that may impact the stabil-
ity of the OS and be the least portable. Binary rewrit-
ing could help to solve part of the problem. However,
tools such as Pin [27] and DynamoRIO [13] work well
in user mode, but it is difficult for these tools to work in
kernel mode. Drk [5] tried to port the DynamoRIO to
the kernel space for Linux, but it has not been updated
for years, and there are few special tools for the Win-
dows kernel. As an alternative, QEMU [11] or the recent
extension PEMU [42] could be used to implement ker-
nel program instrumentation for the Windows OS, but it
is complicated and has a heavier effect on performance
even without monitoring memory access.

Therefore, there is a clear need to develop an effi-
cient alternative mechanism for tracing memory access
outside a guest OS. As most programs run in virtual ad-
dress space, we should focus more on the virtual address
than on the physical address. Thus, the method of us-
ing EPT to trace physical addresses, like Xenpwn [41],
cannot be directly used in our scenario, especially for the
Windows OS, whose memory mapping between virtual
and physical addresses is nonlinear. In view of the poor
performance of Bochspwn [24], we did not adopt a full-
stack emulator. In order to build a practical framework
that focuses on the virtual address space, a shadow page
table (SPT) based on hardware virtualization technology
is employed to monitor virtual memory access, which is
very different from Xenpwn and Bochspwn in both de-
sign and implementation.

In kernel space, the major work includes setting the
monitored memory area, communicating with the hyper-
visor, and intercepting specified kernel functions. The
monitored memory area depends on the type of vulner-
ability to be detected. It will be changed along with the
occurrence of some kernel events (e.g., allocating or re-
leasing memory). Hence, it is necessary to trace these
events in kernel space. For communication, the service
interfaces are exported by Digtool. Kernel code invokes
these interfaces to request services from the hypervisor.
In addition, some kernel functions of the OS should be
hooked to trace some particular events. All of these tasks
that should be reserved in kernel space make up the mid-
dleware.

The loader, fuzzer, and log analyzer are placed in user
space to simplify the code and make the entire system
more stable. The loader activates the hypervisor and
loads the fuzzer that is used to probe program paths.

USENIX Association

26th USENIX Security Symposium 151



Thus, the behavior characteristics in the probed paths can
be recorded for the log analyzer.

Unlike emulator-based tools (e.g., Bochspwn [24]),
Digtool is able to run in a physical machine with this
architecture design. It is widely applicable to almost all
main kernels and third-party drivers.

3.1 Hypervisor Components

Digtool does not rely on any current hypervisor such as
Xen or KVM, and we implemented our own hypervi-
sor that contains three important components, including
VMM infrastructure (VMM, i.e., virtual machine moni-
tor, which is equivalent to a hypervisor), interface detec-
tion, and memory detection.

To begin with, VMM infrastructure checks the hard-
ware environment and the OS version to ensure compat-
ibility. It then initializes the hypervisor and loads the
original OS into a VM. The initialization of the hyper-
visor mainly consists of the following tasks: (1) build-
ing SPTs to monitor virtual memory access in the guest
0OS, (2) initializing modules for tracing thread schedul-
ing, and (3) establishing communication between the OS
kernel and the hypervisor. As such, the interface detec-
tion and memory detection components can monitor and
handle some special events.

Interface detection monitors the parameters passed
from user-mode programs during the system-call execu-
tion. It traces the use and the check of these parameters to
discover potential vulnerabilities. The SPTs are needed
to monitor the user memory space during the system-call
execution. As system calls are always invoked in kernel
mode, we do not need to monitor user memory when the
processor runs in user mode. Otherwise, many VMEXIT
events will be triggered, which will bring a substantial
decrease in performance. In order to focus on vulnera-
bilities in a limited scope of system calls, interface de-
tection is able to configure the detection scope of sys-
tem calls through correlative service interfaces. Thus, it
can obtain the potential vulnerabilities in specified sys-
tem calls.

Memory detection monitors the use of kernel mem-
ory in the guest OS to detect illegal memory access. The
SPTs are used to monitor the kernel memory. To detect
some specified types of vulnerabilities in different detec-
tion targets (e.g., the multi-user Win32 driver: Win32k),
memory detection is able to set monitored memory area
and configure detection targets. It also dynamically cali-
brates the monitored memory area when capturing events
of memory allocation or deallocation. All of these are
implemented through corresponding service interfaces.
Thus, it will obtain the exact characteristics of potential
vulnerabilities during the memory access process.

3.2 Kernel-Space Components

The middleware locates in the kernel space of the guest
OS. It is used to connect the subsystems in the hyper-
visor and the programs in the user space. For example,
before loading the fuzzer, we can set the detection scope
of system calls through the configuration file. Then, the
middleware transfers the configuration information and
the fuzzer process information from the loader to the hy-
pervisor. Thus, the hypervisor can detect vulnerabilities
in the environment of the fuzzer process.

For interface detection, the middleware records all be-
havior events in log files through a work thread. The
recorded data include system call number, event type,
event time, instruction address, and accessed memory
of the event. Thus, the log analyzer can detect poten-
tial UNPROBE and TOCTTOU vulnerabilities from the
log files. Note that only the system calls in the detec-
tion scope are recorded, which is meaningful when the
system calls are invoked frequently. The number of fre-
quent system calls could be limited to reduce the perfor-
mance cost and alleviate the stress on the log analyzer.
We can then obtain more effective data with less perfor-
mance overhead.

For memory detection, the middleware helps dynam-
ically calibrate the monitored memory by hooking some
specified memory functions. In order to obtain more rel-
evant data and reduce performance cost, it also limits
the areas of monitored memory and the scope of kernel
code (e.g., the code segment of Win32k) through invok-
ing the service interfaces. If a potential vulnerability is
found, the middleware records it and interrupts the guest
OS through single-step mode or a software interruption.
Thus, the guest OS is able to be connected with a debug
tool such as Windbg, and the exact context is obtained to
analyze the vulnerability.

3.3 User-Space Components

There are three modules in the user space: loader, fuzzer,
and log analyzer. The loader is used for loading the tar-
get process, after which Digtool provides a process en-
vironment for detecting vulnerabilities. The loader can
also limit the detection scope of system calls and set the
virtual addresses of the boundary for ProbeAccess events
(which will be described in Section 4.2) through the con-
figuration file.

The fuzzer is responsible for discovering code
branches. It is loaded by the loader. In Digtool, the
fuzzer needs to invoke the system calls in the detection
scope, and discovers as many branches as possible in the
code of a system call by adjusting the corresponding pa-
rameters. A higher path-coverage rate can certainly help
achieve a more comprehensive test. However, as this

152 26th USENIX Security Symposium

USENIX Association



paper mainly focuses on the vulnerability identification
tool, not path exploration, we will not go into much de-
tail regarding the fuzzer or the path coverage.

The log analyzer is designed to discover potential
vulnerabilities from log files. It extracts valuable in-
formation from the large amount of recorded data ac-
cording to the characteristics of vulnerabilities. The log
analyzer's vulnerability detection algorithm needs to be
changed depending on the types of vulnerabilities (e.g.,
UNPROBE or TOCTTOU) to be detected, since we use
different policy to detect them.

4 Implementation

In this section, we provide the implementation details
of how we implement Digtool, especially its hypervisor
components, including VMM infrastructure, interface
detection, and memory detection. The implementation
of other components, such as the middleware, loader,
fuzzer, and log analyzer, is also described in this section.

4.1 VMM Infrastructure

The main task of VMM infrastructure is to initialize
the hypervisor and provide some basic facilities. After
initializing the hypervisor, it loads the original OS into
a VM. Then, the hypervisor is able to monitor the OS
through the facilities.

The initialization process runs as follows. In the be-
ginning, Digtool is loaded into the OS kernel space as a
driver that checks whether processors support hardware
virtualization through CPUID instruction. If they support
it, VMM infrastructure builds some facilities for the hy-
pervisor. Then, it starts the hypervisor for every proces-
sor by initializing some data structures (e.g., VMCS) and
registers (e.g., CR4). Finally, it sets the state of guest
CPUs according to the state of the original OS. Thus, the
original OS becomes a guest OS running in a VM.

The Intel developer’s manual [23] can be referenced
to obtain the implementation details of hardware virtual-
ization. This paper mainly focuses on the modules that
help to identify vulnerabilities. These modules include
the virtual page monitor, thread scheduling monitor,
CPU emulator, communication between kernel and hy-
pervisor, and the events monitor. Among these, the CPU
emulator and events monitor are associated with partic-
ular types of vulnerabilities, so these two parts will be
described in corresponding subsections.

4.1.1 Virtual Page Monitor

Digtool adopts SPTs to monitor virtual memory ac-
cess. To reduce performance cost, SPTs are only

employed for the monitored threads (i.e., the fuzzer
threads). For non-monitored threads, the original page
tables in the guest OS are used. When thread scheduling
occurs, the virtual page monitor needs to judge whether
the new thread that will get control is a monitored thread.
Only when it is a monitored thread, will a SPT be built
for it. Thus, performance is optimized.

Figure 2 shows the workflow of the virtual page mon-
itor for a monitored thread. Digtool adopts a sparse
BitMap that traces virtual pages in a process space. Each
bit in the BitMap represents a virtual page. If a bit is set
to 1, the corresponding page needs to be monitored, and
the P flag in its page table entry (PTE) of the SPT should
be clear [note that the SPT is constructed according to the
guest page table (GPT)]. Thus, access to the monitored
virtual page will trigger a #PF (i.e., page fault) exception
that will be captured by the hypervisor.

When the #PF exception is captured, the page-fault
handler in the hypervisor will search for the BitMap.
If the bit for the page that causes the #PF exception is
0, the page is not monitored. The SPT will be updated
through GPT. Then, the instruction that causes the ex-
ception will re-execute successfully. If the bitis 1, itis a
monitored page. Then, the Handle module will be used
to handle this exception. It will (1) record the exception,
or (2) inject a private interrupt (Ox 1c interrupt, which has
not been used) into the guest OS. The recording process
for the exception is described in the following (i.e., the
part of shared memory described in Section 4.1.3). The
private interrupt handler stores some information (e.g.,
the memory address that is accessed, and the instruction
that causes the #PF) about the #PF exception, and then
it connects to a debug tool by triggering another excep-
tion, such as software interruption, in the guest OS. After
that, Digtool “single steps” the instructions in the guest
OS by setting a MTF (monitor trap flag, which can be
used in new version of processors) or TF (trap flag, which
is used in old versions of processors) in the hypervisor.
Meanwhile, the SPT is updated through GPT to make the
instruction that causes the exception re-execute success-
fully. Because of MTF or TF, a VMEXIT will be triggered
after executing one instruction in the guest OS, and then
the hypervisor will get control again. Thus, the handler
of MTF or TF in the hypervisor has a chance to clear the P
flag, and the page will be monitored once again. Finally,
it disables the MTF or TF to cancel the single-stepping
operation.

We have noticed that, in most cases, we need to mon-
itor a memory region rather than an entire memory page.
A memory region covers only one part of a memory
page or contains several pages. All of the memory pages
owned by a monitored memory region should be traced.
When a #PF exception is triggered, its handler needs to

USENIX Association

26th USENIX Security Symposium 153



Not{match
GPT ‘ VA ‘ PA ‘ ‘ Log ‘ ‘ Inject Interruption ‘
Propagatei
SPT MA Clear® ' \irg/rF Handler
/ A
CR3 HVMEXIT
Update

Set MTF/TF }4—

Figure 2: Workflow of virtual page monitor.

further recognize whether the address causing the #PF
exception is in the monitored memory region.

4.1.2 Thread Scheduling Monitor

As discussed above, Digtool only focuses on the mon-
itored threads. It needs to trace thread scheduling to en-
able detection for monitored threads and disable detec-
tion for non-monitored threads. Thus, it achieves better
performance with more effective data. The method of the
thread scheduling monitor is shown below.

In the Windows OS, the _KPRCB structure contains the
running thread information for its corresponding proces-
sor. The _KPRCB is referenced by the _KPCR structure
whose address can be obtained through the FS regis-
ter (for x64 architecture, the GS register). The running
thread of the current processor can be obtained through
the following relationship:

FS->_KPCR->_KPRCB->CurrentThread.

With respect to how to acquire _KPRCB, the methods
described in ARGOS [43] could be leveraged to uncover
this data structure, though currently we use manual re-
verse engineering and internal Windows kernel knowl-
edge to get it. Note that there are also other data struc-
ture agnostics approaches to detect kernel threads, such
as using kernel stack pointer (e.g., [20]). After obtain-
ing the _KPRCB structure, the CurrentThread member
in the _KPRCB is monitored. Any write operation to the
CurrentThread means a new thread will become the
running state, and this will be captured by the hypervi-
sor. If the new thread is a monitored thread, the virtual
page monitor will be activated to detect vulnerabilities.

4.1.3 Communication Between Kernel and Hyper-
visor

The communication between kernel and hypervisor in-
cludes two main aspects. One is that the kernel compo-
nent makes a request to the hypervisor, and the hyper-
visor provides service. The other is that the hypervisor

User Space

Kernel Space

Target Module

Hypervisor \J
1 Hypervisor Components

Figure 3: Communication between kernel and hypervi-
sor via shared memory.

sends messages to the kernel component, and the kernel
component handles the messages. The former is mainly
implemented by the service interfaces, and the latter is
carried out through the shared memory.

Digtool exports some service interfaces for the kernel-
space components. They can be directly invoked by
kernel code. The service interfaces are implemented
through a VMCALL instruction, which will trigger a
VMEXIT to trap into the hypervisor. Thus, the service
routines in the hypervisor can handle the requests.

The shared memory is applied to exchange data be-
tween the hypervisor and kernel code. The hypervisor
writes the captured behavior information to the shared
memory and notifies the kernel space components. Then,
the kernel space components read and deal with the data
in the shared memory. The workflow of the shared mem-
ory is shown in Figure 3.

The main data flow is represented by the thick arrows
in the figure. When the hypervisor captures some behav-
ior characteristics, it records them into shared memory.
The middleware in the kernel space uses a work thread
to read the data in the shared memory. It also records
characteristic information into log files.

The following stream of instructions is shown by the
thin arrows in Figure 3: (1) When the target module
(which is being detected) triggers an event monitored by
the hypervisor, a VMEXIT will be captured by the hyper-
visor. (2) The hypervisor records the event information
into shared memory. If the shared memory is full, it will
inject a piece of code into the guest OS. The code will
notify the work thread to handle the data in shared mem-
ory (i.e., read them from shared memory and write them
into log files). If the shared memory is not full, it will
jump back to the target module (the arrow represented
by 2’). (3) After notifying the work thread, the injected
code will return to the target module and re-execute the
instruction that causes the VMEXIT.

154  26th USENIX Security Symposium

USENIX Association



——
' i ' '
'on V] \nt2 n+3 | n+d
| 1 | | |
v v v v v
’ Syscall ‘ ’ ProbeRead ‘ ’ MemAccess ’ RetUser

’ MemAccess

(Check M;) (Access M;) (Access M)

Figure 4: Example of recorded events during a system call.

4.2 Detecting Vulnerabilities at System
Call Interface

Interface detection traces the execution process of sys-
tem calls and monitors their parameters passed from
user-mode programs. It then decides whether the check
or the use of these parameters will create potential haz-
ards.

Interface detection monitors the entire execution pro-
cess of system calls from the point of entering into kernel
mode to the point of returning to user mode. During this
process, it monitors how the kernel code handles the user
memory. Then, it records the behavior characteristics to
analyze potential vulnerabilities. Interface detection is
implemented by defining and intercepting different be-
havior events during the execution of system calls. These
behavior events and their interception methods make up
the events monitor.

Ten types of behavior events are defined in the event
monitor: Syscall, Trap2b, Trap2e, RetUser, MemAc-
cess, ProbeAccess, ProbeRead, ProbeWrite, GetPebTeb,
and AllocVirtualMemory events. Particular combina-
tions of these events can help locate potential vulnera-
bilities in the large amount of log data (e.g., two contin-
uous MemAccess events suggest a potential TOCTTOU
vulnerability). The behavior events recorded in the exe-
cution of a system call are shown in Figure 4. The boxes
denote recorded events. The values (e.g., n and n+ 1)
above the boxes are the event time (which only records
order but not the actual intervals). The M; and M; under
the boxes represent the user memory addresses accessed
by the event.

In the Windows OS, fast system call, interruption of
0x2b, and interruption of 0x2e are the three entry points
that allow user-mode code to invoke kernel functions.
The fast system call adopts the sysenter/syscall in-
struction to go into kernel mode. The interruption of
0x2b is used to return from a user-mode callout to the
kernel-mode caller of a callback function. The inter-
ruption of 0x2e is responsible for entering into kernel
mode in older Windows OSes. In Digtool, the three en-
try points are traced by intercepting corresponding en-
tries in the interrupt descriptor table (IDT) or MSR reg-
ister. They are defined as three types of behavior events,
which are marked as Syscall event, Trap2b event, and
Trap2e event, respectively.

The return point is obtained by another way. When
the control flow returns to the user mode, the processor
will prefetch the user-mode instructions. Thus, Digtool
obtains the point of returning to user mode by monitor-
ing the user-mode pages access. This behavior event is
marked as RetUser event.

After obtaining the two key points (i.e., the Syscall/-
Trap2b/Trap2e event and RetUser event), interface de-
tection will record the instructions that manipulate user
memory between the two points. To achieve this, one
important function is to monitor access to the user mem-
ory through SPTs. This behavior event is marked as
a MemAccess event. It is noticed that, the user-mode
pages are monitored only if the processor runs in kernel
mode, and this will significantly reduce the performance
cost.

To improve the efficiency of discovering and ana-
lyzing vulnerabilities, interface detection also defines
and intercepts some other behavior events, including
ProbeAccess, ProbeRead, ProbeWrite, GetPebTeb, and
AllocVirtualMemory. Among the five events, the first
three are used to record whether the user memory ad-
dress has been checked by the kernel code, while the last
two events suggest that the user memory address is legal;
that is, there is no need to check it again and thus false
positives can be reduced. These events are intercepted
by hooking corresponding kernel functions, except for
the ProbeAccess event.

GetPebTeb and AllocVirtualMemory events are used
to reduce false positives. In order to improve the de-
tection accuracy, we should focus on the user memory
that is passed as parameters from the user-mode program,
rather than on the memory that has been checked or that
will be deliberately accessed by kernel code. For ex-
ample, kernel code sometimes accesses a user memory
region returned by a PsGetProcessPeb function or al-
located by a NtAllocateVirtualMemory function dur-
ing a system call. In these cases, the user memory is
not a parameter passed from a user-mode program, and
it has less of a chance of causing a vulnerability. Dig-
tool defines GetPebTeb and AllocVirtualMemory events,
respectively, to handle these cases. These events inform
the log analyzer that the access to user memory is legal
and that no bug exists.

In addition to invoking the ProbeForRead (i.e.,
ProbeRead event) or ProbeForWrite (i.e., Probe-
Write event) function, kernel code can also adopt
direct comparison to check the legitimacy of the user
memory address; for example, “cmp esi, dword
ptr [nt!MmUserProbeAddress (83fa271c)]”
where the esi register stores the user memory
address to be checked, and the exported variable
nt!MmUserProbeAddress stores the boundary of the
user memory space. This kind of behavior event is

USENIX Association

26th USENIX Security Symposium 155



marked as a ProbeAccess event. We cannot intercept it
by hooking a kernel function as this event is not handled
by any kernel function. Moreover, there is no access
to user memory space. Hence, we cannot intercept it
through monitoring a MemAccess event either. For this
particular type of event, the CPU emulator is proposed.

The CPU emulator is placed in the hypervisor to help
obtain behavior characteristics that are difficult to obtain
through regular methods. The CPU emulator is imple-
mented by interpreting and executing a piece of code of
the guest OS. Its workflow is shown in Figure 5. The DR
registers are used to monitor the target memory. For the
ProbeAccess event, the target memory stores the bound-
ary that is used for checking the user-mode address. Usu-
ally, the exported variable, nt ! MmUserProbeAddress,
is one of the target memory. Kernel code can reference
this variable directly or restore its value into another vari-
able, such as win32k!W32UserProbeAddress. All of
these variables are target memory. The address of tar-
get memory can be set by the configuration file of the
loader, and then the hypervisor obtains the target mem-
ory through the middleware and monitor the memory ac-
cess through DR registers. When the guest OS accesses
target memory, the debug exception handler (DR han-
dler) in the hypervisor will capture it. The handler up-
dates the processor state of the CPU emulator (i.e., Vir-
tual CPU) through that of the VM (i.e., Guest CPU).
Thus, the CPU emulator is activated to interpret and ex-
ecute the code of the guest OS around the instruction that
causes the debug exception. Since the debug exception
is a trap event, the start address for the CPU emulator is
the instruction directly before the guest EIP register.

As the ProbeAccess event adopts direct comparison to
check pointer parameters for a system call, the CPU em-
ulator should focus on cmp instructions when it interprets
and executes the code of the guest OS. The user-mode
virtual address (UVA) for a pointer passed from a user-
mode program is obtained by analyzing cmp instructions.
Then, the ProbeAccess event is recorded in log files via
shared memory.

There may be more than one UVA to be checked in a
system call. The device driver may restore the value from
target memory to a register and then check the UVAs by
comparing them to the register separately. The maximum
number of UVAs (represented by the letter N in Figure 5)
could be set through the configuration file. After finish-
ing N cmp instructions or a fixed number of instructions,
the hypervisor will stop interpreting and executing, and
return to the guest OS to continue executing the follow-
ing instructions.

#DR 4’{ Memory H DR Handler

EAX EAX

EBX Update EBX

»»»»»» >

EIP EP | |
Guest CPU Virtual CPU

Figure 5: Workflow of CPU emulator.

4.2.1 Detecting UNPROBE Vulnerabilities

For the Windows kernel and device drivers, user mem-
ory (pointed by a user pointer) can be accessed under
the protection of structured exception handling (SEH) at
any time. It is safe to de-reference a user pointer if it
points into the user space. Otherwise, it will bring on a
serious vulnerability that is called UNPROBE in this pa-
per. Theoretically, before using a pointer passed from a
user-mode program, a system-call handler should check
it to ensure that it points into the user-mode space. As a
consequence, it will cause a ProbeAccess, ProbeRead, or
ProbeWrite event before a MemAccess event under nor-
mal circumstances. If there is no such type of checking
event before a MemAccess event, there may be an UN-
PROBE vulnerability in the kernel code.

To detect an UNPROBE vulnerability, we focus on
whether there is a checking event before a MemAccess
event, and whether the virtual addresses in the two events
are the same. As discussed above, the ProbeRead and
ProbeWrite events are directly obtained by hooking the
checking functions in the kernel. The difficulty lies in
the ProbeAccess event. In the Windows kernel, there is
much code that checks parameters via direct comparison.
Only intercepting ProbeRead and ProbeWrite events will
result in a large number of false positives. A signifi-
cant number of false positives will create more workload
and make it more complicated to perform reverse analy-
sis. Hence, monitoring a ProbeAccess event through the
CPU emulator is of significant importance. We therefore
propose the use of CPU emulator to detect UNPROBE
vulnerabilities.

Take Figure 4 as an example, at the event time of
“n+ 37, the kernel code triggers a MemAccess event
by accessing user memory. If there is no ProbeAc-
cess/ProbeRead/ProbeWrite event to check the user ad-
dress beforehand, or no AllocVirtualMemory/GetPebTeb
event to imply the legitimacy of the address, an UN-
PROBE vulnerability may exist in the kernel code. In
contrast, if there is a ProbeAccess/ProbeRead/Probe-
Write event or GetPebTeb/AllocVirtualMemory event to
suggest that the user address is legal, and the event is trig-

156 26th USENIX Security Symposium

USENIX Association



gered in the same system call as the MemAccess event,
the code is safe.

To detect an UNPROBE vulnerability, the fuzzer in-
vokes the test system calls and tries to discover as many
branches as possible by adjusting their parameters. Fur-
thermore, the log analyzer looks for MemAccess events
in which the user addresses have not been verified by a
ProbeAccess/ProbeRead/ProbeWrite or GetPebTeb/Al-
locVirtualMemory event during a system-call execution.

4.2.2 Detecting TOCTTOU Vulnerabilities

There are two key factors in a TOCTTOU vulnerability.
One is that the parameter passed from a user-mode pro-
gram should be a pointer. The other is that the system-
call handler fetches the parameter from user memory
more than once. Thus, the user-mode code has a chance
to change the parameter referenced by the pointer.

Take Figure 4 again for instance, if a piece of ker-
nel code accesses the same user memory at the time of
“n+2” and “n+ 3, there may be a TOCTTOU vul-
nerability in the kernel code. To discover this type of
vulnerability, the key point is to look for the user mem-
ory that has been accessed more than once in the log
files. The event time could help to improve the accu-
racy. If there are two MemAccess events that fetch from
the same user memory, we can judge whether they are
triggered in the same system call by comparing the two
events’ times with the Syscall/Trap2b/Trap2e event time
and the RetUser event time. Only when they are in the
same system-call execution, may a TOCTTOU vulnera-
bility exist.

The fuzzer needs to invoke the test system calls, and it
should discover as many branches as possible by adjust-
ing parameters. At the same time, interface detection
records the dynamic characteristics via the middleware.
Then, the log analyzer is used to look for the user mem-
ory addresses that have been accessed more than once
during a system-call execution.

4.3 Detecting Vulnerabilities via Memory
Footprints

Memory-footprint-based detection is used to detect il-
legal use of kernel memory by tracing the behavior of
memory allocation, release, and access. In this paper, we
will focus on two aspects of illegal memory use: access-
ing beyond the bounds of allocated heaps and referenc-
ing to freed memory. These can lead to OOB and UAF
vulnerabilities.

To capture the dynamic characteristics of vulnerabili-
ties, we need to monitor the allocated, unallocated, and
freed memory. Accessing allocated memory is allowed,
but using unallocated or freed memory is illegal. Digtool

monitors the kernel memory through the virtual page
monitor. Illegal memory access will be captured by its
page-fault handler in the hypervisor. Then, it records the
memory access error or submits it to a kernel debug tool
like Windbg [8]. Thus, the exact context of kernel exe-
cution can be provided for the vulnerability detection.

In order to obtain more relevant data and reduce per-
formance overhead, the monitored memory pages can be
restricted. The middleware helps to limit the scope of
monitored pages, and passes the scope to the memory
detection by invoking our exported service interfaces of
Digtool. For instance, when detecting UAF vulnerabil-
ities, we are only concerned with freed memory, so we
need to limit the scope to freed pages. Furthermore, to
put more emphasis on the kernel code under test, Digtool
can also specify target modules to define a scope of ker-
nel code. Only the instructions in the target modules that
cause illegal memory access are recorded. Thus, we can
concentrate on the target code tested by the fuzzer.

For tracing the allocated and freed mem-
ory, Digtool hooks memory functions such as
ExAllocatePoolWithTag and ExFreePoolWithTag.
These functions are used to allocate or free kernel
memory in the guest OS. Thus, we can determine which
memory region is allocated and which is freed. As
the size of freed memory cannot be directly obtained
through the arguments of the free functions, Digtool
records the memory address and the memory size via the
parameters of allocation functions. Thus, when a free
function is called, the memory size can be obtained by
searching for the record.

Memory allocations before Digtool is loaded cannot
be captured. Therefore, Digtool should be loaded as
early as possible to achieve more precise detection. It
is feasible to load Digtool during boot time by setting
the registry. Thus, there are only a few modules loaded
before Digtool and the unmonitored memory allocations
are few, which largely limits the attack surfaces. To
summarize, the memory allocations before loading Dig-
tool have a negligible impact on precision. Built atop
virtualization technology, our memory-footprint-based
approach can be applied to various kernels and device
drivers without any compile-time requirements.

4.3.1 Detecting UAF Vulnerabilities

UAF results from reusing the freed memory. To detect
it, memory detection needs to trace the freed memory
pages until they are allocated again. Any access to the
freed memory will be marked as a UAF vulnerability.

In order to trace freed memory, memory
functions such as ExAllocatePoolWithTag,
ExFreePoolWithTag, RtlAllocateHeap, and
RtlFreeHeap (as discussed above, hooking mem-

USENIX Association

26th USENIX Security Symposium 157



ory allocation functions is done to record the size
of freed memory) need to be hooked. Note that
the Windows OS implements some wrapper func-
tions for these. For instance, both ExAllocatePool
and ExAllocatePoolEx are the wrapper func-
tions for ExAllocatePoolWithTag. To avoid
multiple monitoring and repetitive records, Digtool
only hooks underlying memory functions such as
ExAllocatePoolWithTag rather than wrapper func-
tions. Inappropriate use of lookaside lists will also cause
UAF vulnerabilities. Digtool hooks the corresponding
functions, including InterlockedPushEntrySList
and InterlockedPopEntrySList, to monitor the
freed memory blocks in the lookaside lists.

Any instruction operating on the freed memory (or
blocks) is regarded as the “use” instruction of a UAF vul-
nerability. It is obtained through the virtual page moni-
tor. The “free” instruction of a UAF vulnerability is ob-
tained by recording the free function when it is invoked,
and its call-stack information is recorded through a back-
trace of the stack to facilitate analysis.

A UAF vulnerability may be missed in some scenar-
i0s. Considering such situations, there is a memory block
A referenced by pointer P. After freeing block A, another
program allocates a memory block B that covers the en-
tire memory of block A. Then, the first program tries
to manipulate block A through the pointer P. Obviously,
there is a UAF vulnerability in the first program. How-
ever, as the memory region of block A is allocated again,
it is difficult to detect the vulnerability. This is the rea-
son that Driver Verifier may miss a UAF vulnerability.
In order to solve this problem, Digtool delays the release
of the freed memory to extend the detection time win-
dow. The freed memory will be released until it reaches
a certain size.

4.3.2 Detecting OOB Vulnerabilities

An OOB vulnerability can be caused by accessing mem-
ory that is beyond the bounds of allocated heaps. To de-
tect it, the monitored memory space should be limited to
the unallocated memory areas. Any access to the unallo-
cated memory areas will prompt an OOB vulnerability.
Digtool calibrates the unallocated memory areas
through the help of the middleware. In general, except
for the memory areas occupied by kernel modules and
stacks, the rest of the memory pools are defined as ini-
tial unallocated memory areas. As the kernel memory
state keeps changing, memory functions that allocate or
free memory need to be hooked. Thus, it can adjust the
unallocated memory areas dynamically. During the de-
tection process, Digtool needs to search the records of al-
located or unallocated memory areas. An AVL tree (i.e.,
a self-balancing binary search tree) is employed to im-

prove the performance of the memory search. It adds a
node when a memory area is allocated, and deletes the
node if the memory is freed. Thus, when a monitored
page (not a memory area) is accessed (note that the mon-
itoring granularity of memory virtualization is a page,
but the size of a memory area may be less than a page;
the monitored pages are recorded via the BitMap, while
the monitored memory areas are stored in the AVL tree.),
Digtool searches the AVL tree for the accessed memory
area. If no related node is found, an OOB vulnerability
may exist.

Note that, as unallocated memory contains freed mem-
ory in the detection, an “OOB” may be caused by ac-
cessing a freed memory area. Some reverse-engineering
effort is needed to further distinguish between OOB and
UAF vulnerabilities.

An OOB vulnerability may be missed in some scenar-
ios. Considering such situations, two memory blocks A
and B are allocated and they are adjacent. A brittle pro-
gram tries to access block A with a pointer and an offset,
but the offset is so large that the accessed address locates
in block B. This is an obvious OOB vulnerability. How-
ever, block B is also in the AVL tree, so it is difficult to
detect this error. To solve this problem, Digtool will al-
locate an extra memory area with M bytes when a hooked
memory allocation function is invoked. As a result, the
total size of block A is sizeof (A)+M, and the start ad-
dress of block B will be backward for M bytes. However,
the size of block A recorded in the AVL tree is still de-
fined as sizeof (A) bytes. As a consequence, the extra
memory area with M bytes is not in the AVL tree. Thus,
instead of block B, the brittle program will access the ex-
tra memory area, and an OOB vulnerability will be then
captured by Digtool.

5 Evaluation

5.1 Effectiveness

We checked the detection capability of Digtool by testing
the programs of different products, including the Win-
dows OS and some anti-virus software (all of the prod-
ucts were the latest version at the time of the experi-
ments). The experimental environments included Win-
dows 7 and Windows 10. (Digtool can support Windows
XP/Vista/7/8/10, etc.) We chose some zero-day vulner-
abilities that had been responded to and fixed by the re-
sponsible vendors as examples to illustrate the experi-
mental results. All of the vulnerabilities discussed below
were first discovered by Digtool (all have been reported
to the corresponding vendors, among which Microsoft,
Avast, and Dr. Web have confirmed and fixed their vul-
nerabilities).

158 26th USENIX Security Symposium

USENIX Association



Table 1: List of UNPROBE vulnerabilities.

Software products Unsafe system calls
Avast Free Antivirus NtAllocateVirtualMemory
11.2.2262 NtCreateSection
Dr. Web 11.0 NONE
NtQuery ValueKey
NtCreateKey
NtDeleteValueKey
NtLoadKey
NtOpenKey
NtSetValueKey
NtUnloadKey
NtCreateMutant
Norman Security Suite NtCreateEvent
11.0.0 NtCreateFile
NtCreateSemaphore
NtCreateFile
NtCreateKey
NtDeleteFile
NtDelete ValueKey
NtOpenFile
NtOpenKey
NtOpenSection
NtSetInformationFile
NtSetValueKey
NtWriteVirtualMemory

AhnLab 8.0

Spyware Detector
2.0.0.3

5.1.1 Detecting Vulnerabilities via Interface

We chose five anti-virus software products as test tar-
gets since they intercept many system calls that could
be invoked by user-mode applications. The test was
mainly carried out on Avast for its strength of complex-
ity. The other four anti-virus software products included
Dr. Web, Ahnlab, Norman, and Spyware Detector. We
used some zero-day vulnerabilities discovered through
Digtool to verify its ability to detect UNPROBE and
TOCTTOU vulnerabilities. The middleware recorded the
behavior characteristics into log files to help locate vul-
nerabilities.

Detecting UNPROBE. Taking a vulnerability in Avast
11.2.2262 as an example, through the log analyzer, the
following data were obtained from the Digtool’s log file
for Avast 11.2.2262:

ProbeForRead and ProbeForWrite functions to check
a user pointer (this is a common scenario in third-party
drivers), no human effort is needed for further confirma-
tion as the detection is precise due to the facts that the
start address and length information of the input buffer
can be obtained through the corresponding kernel func-
tion. If the driver uses direct comparison to check a user
pointer, Digtool may produce false positives or false neg-
atives. This results from a lack of accurate address ranges
in the ProbeAccess event as we cannot obtain the “size”
of the input buffer. We must assume the length for the
input user-mode buffer. If the assumed length is larger
then the real one, false negatives may be produced. Oth-
erwise, false positives may be generated.

In the case of ProbeAccess, Digtool only helps point
out a potential vulnerability. Human effort is still
needed to obtain the exact length of the input user-mode
buffer through reverse analysis so that we can determine
whether the instruction (given by the log analyzer) could
really cause an UNPROBE vulnerability.

Detecting TOCTTOU. Taking a vulnerability in Dr.
Web 11.0 as an example, through the log analyzer
the following dynamic characteristics were distilled from
Digtool’s log file for Dr. Web 11.0:

NtCreateSection:

Count :3 ==============

Eip: 83f0907f Address:3b963c Sequence:398 rw:
Eip: 89370d54 Address:3b963c Sequence:399 rw:
Eip: 89370d7b Address:3b963c Sequence:401 rw:
KiFastSystemCallRet

o o T

NtAllocateVirtualMemory:

Eip: 89993f3d, Address: 0023f304, rw: R
Eip: 84082ed9, Address: 0023f304, PROBE!
KiFastSystemCallRet

aswSP.sys, the Avast driver program, used the in-
struction at the address 0x89993f3d to fetch the
value from the user address (i.e., 0x23f304) with-
out checking. The subsequent checking instruc-
tion at the address 0x84082ed9 belonged to the
NtAllocateVirtualMemory function. Therefore, there
was a typical UNPROBE vulnerability in aswSP. sys.
Using Digtool, 23 similar vulnerabilities were found
in the five anti-virus software programs tested. The re-
sults are shown in Table 1. For security reasons, we only
give the system calls for which vulnerabilities exist.
When the log analyzer points out a potential UN-
PROBE vulnerability, and the tested driver only uses the

The user address 0x3b963c was accessed by the ker-
nel instructions more than once, so there may be a TOCT-
TOU vulnerability. dwprot.sys, the Dr. Web driver
program, used the instruction at the address 0x89370d54
to fetch the value from the user address (i.e., 0x3b963c),
and then it invoked the ProbeForRead function to check
it. At the address 0x89370d7b, the dwprot . sys fetched
the value again to use it. Therefore, there was a typical
TOCTTOU vulnerability in dwprot.sys.

With the help of Digtool, 18 kernel-level TOCTTOU
vulnerabilities were found in the five anti-virus software
programs tested. The results are shown in Table 2. For
security reasons, we only give the system calls for which
vulnerabilities exist.

Digtool may produce false positives that originate
from the fact that it detects TOCTTOU vulnerabilities
through double-fetch. Further manual analysis is needed
to confirm that double-fetch is a TOCTTOU vulnerabil-

1ty.
5.1.2 Detecting Vulnerabilities via Memory Foot-
prints

We chose 32-bit Windows 10 as a test target. Some zero-
day vulnerabilities discovered by Digtool were selected

USENIX Association

26th USENIX Security Symposium 159




Table 2: List of TOCTTOU vulnerabilities.

Software products

Unsafe system calls

Avast Free Antivirus
11.2.2262

NtUserOpenDesktop
NtQueryObject
NtUserBuildNameList
NtOpenSection
NtCreateEvent
NtCreateEventPair
NtCreateIoCompletion
NtCreateMutant
NtCreateSection

Single step exception - code 80000004
win32kbase ! RGNMEMOBJ :: bFastFill+0x385:
93e34bf9 895304 mov dword ptr [ebx+4],edx

NtCreateSemaphore
NtCreateTimer
NtOpenEvent
NtOpenEventPair
NtOpenloCompletion
NtOpenMutant
NtOpenSemaphore
NtOpenTimer
Dr. Web 11.0 NtCreateSection
AhnLab 8.0 NONE
Norman Security Suite
11.0.0 NONE
Spyware Detector
2003 NONE

to verify its effectiveness in detecting UAF and OOB vul-
nerabilities. Instead of logging, the middleware was set
to interrupt the guest OS and connect to Windbg when a
program error was captured. Thus, an exact context can
be provided for analysis.

Detecting UAF. The following content is
shown by Windbg when the UAF vulnerability
(MS16-123/CVE-2016-7211 [3]) is captured in
win32kfull.sys; this vulnerability was first discov-
ered through Digtool:

Single step exception - code 80000004
win32k!_ScrollDC+0x21:
96b50f3e 83ff01 cmp edi,l

The “Single-step exception” is triggered by Digtool.
As it is a trap event, the instruction that triggers the ex-
ception has already been finished, and the guest OS is
interrupted at the address of the next instruction to be ex-
ecuted. The instruction just before 0x96b50£f3e is the
exact instruction that tries to access a freed memory area
and causes the UAF vulnerability. We can obtain it by
Windbg as follows and its address is 0x96b50£3b. The
esi register (at the address of 0x96b50£3b) stores the
address of the freed heap:

96b50f3b 8b7e68 mov edi,dword ptr [esi+68h]
96b50f3e 83ff01 cmp edi,1//win32k!_ScrollDC+0x21

Detecting 0OB. Vulnerabilities includ-
ing MS16-090/CVE-2016-3252 [2],
MS16-034/CVE-2016-0096 [1], and

MS16-151/CVE-2016-7260 [4] were first discov-
ered by Digtool. Taking MS16-090/CVE-2016-3252
as an example to illustrate the detection result, the
following content was shown when the vulnerability was
captured in win32kbase:

This is similar to the content of the above UAF, and
0x93e34bf9 is the address of the next instruction to be
executed. The instruction just before 0x93e34bf9 is the
exact instruction that tries to access an unallocated mem-
ory area and causes the OOB vulnerability.

Note that there is no false positive in the UAF/OOB
detection, and no human effort is needed for locating or
confirming the vulnerability. Whenever an exception is
captured, it is always a vulnerability.

5.2 Efficiency

Owing to the fact that Bochspwn [24], which is based on
the bochs emulator [25], only detects TOCTTOU vulner-
abilities among the four types of vulnerabilities by now,
we tested Digtool’s performance cost in detecting TOCT-
TOU vulnerabilities, and compared its performance with
that of the bochs emulator in the same environment (i.e.,
the same hardware platform, OS version, parameters of
system calls, and arguments of the test program). We
chose ten common system calls that are the most widely
used and hooked by anti-virus software to test the ef-
ficiency. In order to obtain a more comprehensive re-
sult, we also chose a frequently used program, WinRAR
5.40 [7], for an efficiency test. The performance cost is
shown in Figure 6 (the result may be affected by some
factors, such as the parameters of system calls and the
WinRAR input file).

The performance cost of Digtool is divided into two
categories: “unrecorded” and “recorded.” “Unrecorded”
means that the system calls are not included in the config-
uration file, and thus no page is monitored and no log is
recorded for them. However, the other modules in inter-
face detection are activated. This class of performance
cost can provide a comprehensive comparison with the
bochs emulator since the bochs emulator records noth-
ing. In addition, it also reflects the state of the entire
system since most of system calls and threads are un-
monitored when detecting TOCTTOU. “Recorded” indi-
cates that the system calls are put into the configuration
file and their behaviors are recorded. It describes the per-
formance cost of the related system calls in the specified
monitored thread, but has nothing to do with the perfor-
mance of the other system calls and threads. “Windows”
denotes the performance of a clean OS without any tools,
and “bochs” represents the performance cost of the OS
running into bochs emulator.

In the case of “unrecorded,” the result of system calls
showed that Digtool is from 2.18 to 5.03 times slower
than “Windows,” but 45.4 to 156.5 times faster than
“bochs.” From the WinRAR result, Digtool is 2.25

160 26th USENIX Security Symposium

USENIX Association




1000000
° 100000 o —
=3 I i - - R Y N
S 10000 \/ \(
el 1000
: D - S e o s —— I
= 100 -4 o g ¢ 4
£
10
! NtMapVi NtWriteVi | NtFreeVi
NtCreate | NtCreateS tMap !e NtLoadDri tWriteVi| NtFreeVir NtAlpcCo | NtOpenEv | NtCreateT | NtCreate .
. wOfSectio rtualMem | tualMem X WinRAR
Mutant ection ver nnectPort ent imer Key
n ory ory
== Windows 112.4 109.5 128.2 125 156 469 719 115.4 112.4 300.2 147
== Digtool(unrecorded) | 565.4 547 584.4 575.2 609.4 1578 1565.4 562.6 565.6 750 3314
== Digtool(recorded) 9893.2 9226.7 20398.3 2052 16771 10101.7 24969 8987 8187.2 22997.7 1977.8
bochs 34398.3 | 31844.2 | 48943.6 | 36572.5 | 53940.2 71573 | 244921.8 | 33296.8 32573 | 103036.5 | 142104.3

Figure 6: Performance overhead.

times slower than “Windows,” but 428.8 times faster than
“bochs.” In the case of “recorded,” most of the moni-
tored system calls are from 70 to 90 times (which de-
pends on the arguments and system calls) slower than
“Windows,” but still much faster than ‘“bochs.” From the
WinRAR result (all of the system calls in the NT kernel
are recorded), the “recorded” case is 13.45 times slower
than “Windows.” This finding offers another perspective
on the average performance cost of an application un-
der the situation of monitoring all system calls. In this
extreme case, Digtool is still 71.8 times faster than the
bochs emulator. Thus, Digtool achieves an acceptable
level of performance.

5.3 Comparison and Analysis

Next, we illustrate Digtool’s advantages by comparison
with Driver Verifier [28], which is a notable tool for
checking Windows kernels.

Crash resilient. Digtool is able to capture dynamic char-
acteristics of potential vulnerabilities without needing a
“Blue Screen of Death” (BSOD). As the analysis pro-
cess only requires the recorded data containing accessed
memory address, event type, and event time, there is no
need for triggering a BSOD to locate a program error.
The fuzzer only needs to discover as many code branches
as possible, and it does not have to crash the OS. During
this process, Digtool will record all dynamic character-
istics. Without a BSOD, it keeps recording, which will
help find more vulnerabilities.

However, it is inevitable that Driver Verifier will cause
a BSOD to locate and analyze a vulnerability. It does not
stop crashing the OS at the address of the same program
error until the error is fixed. This will make it difficult
to test other vulnerabilities. For example, when we test
Avast with Driver Verifier, the cause of a BSOD is always
the same:

Argl:f6,
Arg2:0c,

Referencing user handle as KernelMode.
Handle value being referenced.

The BSOD results from using a user-mode handle un-
der the KernelMode flag. If the problem is not solved,
Driver Verifier cannot further test Avast.

Interrupting the OS with an exact context. Through
the middleware, Digtool can be set to interrupt the guest
OS when a program error happens. Thus, it can provide
an exact context for the vulnerability by connecting to a
debug tool.

Driver Verifier has to crash the OS to locate and an-
alyze a program error. However, the context has been
changed since the OS is not stopped at the moment the
program error occurs (usually, the OS will keep running
for a moment to trigger the program error). Much more
human effort is needed to locate the error.

Taking MS16-090/CVE-2016-3252 [2] as an exam-
ple, Digtool exactly locates the instruction (just before
0x93e34bf9) that causes the vulnerability:

win32kbase ! RGNMEMOBJ :: bFastFill+0x385:
93e34bf9 895304 mov dword ptr[ebx+4],edx

However, from Driver Verifier, the captured context is
as follows:

BAD_POOL_HEADER (19)

FOLLOWUP_IP:
win32kfull!NSInstrumentation::PlatformFree+10
al0efaade 5d pop ebp

Driver Verifier only points out a “bad pool” (OOB) er-
ror, but does not provide an exact context for the vulner-
ability. Much more reverse-engineering effort is required
to locate the vulnerability from the above information.

Capturing more vulnerabilities. Digtool can effec-
tively detect UNPROBE and TOCTTOU vulnerabilities.
However, as no similar detection rule is designed, Driver
Verifier cannot be used to detect them. Moreover, Driver

USENIX Association

26th USENIX Security Symposium 161




Verifier may sometimes miss a UAF or OOB vulnera-
bility because the vulnerability may happen to access a
valid memory page, and does not cause a BSOD. Thus,
Driver Verifier cannot find it.

The above UAF vulnerability
(MS16-123/CVE-2016-7211) discovered by Dig-
tool is an example. It accesses a freed memory block
that is almost immediately reallocated again under
normal circumstances. As a consequence, the physical
page of the freed memory block is valid, and it does not
violate the rule of Driver Verifier, no BSOD is caused,
and no bug is found. However, the vulnerability can
be captured by Digtool due to the fact that it delays
the release of freed memory. Thus, Digtool is more
powerful in this regard.

To summarize, Digtool discovers 45 zero-day ker-
nel vulnerabilities, and effectively detects the four types
of program errors: UNPROBE, TOCTTOU, UAF, and
OOB. In terms of efficiency, it achieves significantly bet-
ter performance than Bochspwn. Compared to Driver
Verifier, it can capture multiple vulnerabilitie with an ex-
act execution context. As such, Digtool can be consid-
ered a complement to Driver Verifier.

6 Discussion

Digtool has a number of limitations. First, the perfor-
mance cost could be optimized. Although it is much
faster than an emulator, the performance overhead is still
costly in the monitored threads. The performance cost
mainly comes from the frequent switches between the
hypervisor and guest OS. How to reduce the switches and
the performance cost could be a research topic.

Second, the supported platforms could be extended.
Digtool currently only supports the Windows OS. Via
virtualization technology, the hypervisor runs outside of
the guest OS, which tends to be more portable and has the
potential of supporting other OSes. However, the middle-
ware in the kernel space is platform-specific. The main
work of supporting various platforms (e.g., MacOS) is
adapting the middleware.

Third, there is still room for extension in the detec-
tion algorithms. Currently, Digtool is able to detect UN-
PROBE, TOCTTOU, UAF, and OOB vulnerabilities. As
it can almost monitor any memory page, it could be used
to detect some other types of vulnerabilities, such as race
conditions, by extending the detection algorithms.

7 Related Work

7.1 Static Analysis

Static analysis is to detect potential vulnerabilities from
programming language literature. Unlike other detec-

tion methods, it does not depend on executable binary
files. Wagner et al. [39] proposed an automated detec-
tion method of finding program bugs in C code that can
discover potential buffer overrun vulnerabilities by an-
alyzing source code. Grosso et al. [19] also presented a
method of detecting buffer overflows for C code that does
not need human intervention to define and tune genetic
algorithm weights, and therefore it becomes completely
automated.

Static analysis achieves a high rate of code coverage,
but its precision may be insufficient when dealing with
difficult language constructs and concepts. In addition, it
cannot detect program bugs without source code.

7.2 Source Instrumentation

Source instrumentation is also called compile-time in-
strumentation; it inserts detection code at compile-time
to detect program bugs. CCured [30] is used to detect
unsafe pointers for C programs. It combines instrumen-
tation with static analysis to eliminate redundant checks.
AddressSanitizer [36] creates poisoned redzones around
heaps, stacks, and global objects to detect overflows and
underflows. Compared to other methods, it can detect
errors not only in heaps, but also in stacks and global
variables.

Source instrumentation has higher precision, but its
code coverage may be less comprehensive than static
analysis. In addition, it has the same limitation as static
analysis; that is, it cannot detect program bugs without
source code.

7.3 Binary Instrumentation

Binary instrumentation inserts detection code into exe-
cutable binary files and detects program bugs at runtime.
Purify [22] is an older tool for checking program bugs
based on binary instrumentation that can detect mem-
ory leaks and memory access errors. Valgrind [31] is
a dynamic binary instrumentation framework designed
to build heavyweight binary analysis tools like Mem-
check [37]. Dr. Memory [14] is a memory-checking tool
that operates on applications under both Windows and
Linux environments.

These tools do not rely on source code, and exhibit
an ability to effectively detect program errors. However,
many of them only detect bugs for applications in user
mode and cannot operate on programs in kernel mode,
especially on the Windows kernel. Some Qemu-based
tools support the instrumentation of Windows OS kernel,
but these tools cannot be used to detect vulnerabilities in
a physical machine and their average performance over-
head is quite high.

162 26th USENIX Security Symposium

USENIX Association



7.4 Specialized Memory Allocator

Another class of vulnerability identification tool uses a
specialized memory allocator and does not change the
rest of the executable binary files. It analyzes the legal-
ity of memory access by replacing or patching memory
functions.

Some tools make use of the page-protection mecha-
nism of processors. Each allocated region is placed into
a dedicated page (or a set of pages). One extra page
at the right (or/and the left) is allocated and marked as
inaccessible. A page fault will be reported as an OOB
error when instructions access the inaccessible page.
Duma [9] and GuardMalloc [26] are in this category.

Some other tools add redzones around the allocated
memory. In addition to the redzones, they also popu-
late the newly allocated memory or freed memory with
special “magic” values. If a magic value is read, the pro-
gram may have accessed an out-of-bounds or uninitial-
ized memory. If a magic value in a redzone is overwrit-
ten, it will be detected later, when the redzone is exam-
ined for freed memory. Therefore, there is no immediate
detection of the memory access error. Tools in this cate-
gory include DieHarder [33] and Dmalloc [40].

These tools do not depend on source code either and
are well suited for discovering memory errors, but they
share the limitation encountered in other tools, namely
that many of them cannot operate on the Windows ker-
nel. Moreover, it is difficult for them to check for UN-
PROBE or TOCTTOU vulnerabilities.

7.5 Kernel-Level Analysis Tools

There are only a few vulnerability identification tools
for programs in kernel mode, and most of them are
aimed at Linux. Kmemcheck [32] and Kmemleak [6]
are memory-checking tools for the Linux kernel. Kmem-
check monitors the legality of memory access by tracing
read and write operations. Kmemleak is used to detect
memory leaks by checking allocated memory blocks and
their pointers. Both tools can help discover memory er-
rors in the Linux kernel. However, all of the similar tools
need to expand the source code of Linux or insert detec-
tion code at compile-time, and thus it is difficult to port
them to a closed-source OS like Windows.

Driver Verifier [28] is the major tool for detecting bugs
in the Windows kernel. It can find program bugs that are
difficult to discover during regular testing. These bugs
include illegal function calls, memory corruption, bad
I/O packets, deadlocks, and so on. Driver Verifier is an
integrated system for detecting illegal actions that might
corrupt the OS, but not a dedicated tool for detecting vul-
nerabilities (see Section 5.3 for a discussion of Driver
Verifier’s ability to detect vulnerabilities). As part of the

kernel, in fact, Driver Verifier also relies on the source
code of the OS.

Although the above tools can be applied to detect ker-
nel vulnerabilities, they are too tightly coupled with im-
plementation details and the source code of OSes, so they
cannot work when no source code is available. More-
over, it is difficult to port them to another type of OS.

7.6 Virtualization/Emulator-Based Meth-
ods

Virtualization/emulator-based vulnerability identifica-
tion tools detect potential vulnerabilities by tracing func-
tion calls and monitoring memory access. Through vir-
tualization or emulator technology, they can overcome
most OS differences and easily support various OSes.

Among the more common virtualization-based tools
and methods are the following. VirtualVAE [18] is
a vulnerability analysis environment that is based on
QEMU [11]. In [18], it is claimed that it can detect
bugs for programs in both kernel mode and user mode.
PHUKO [38], based on Xen [10], detects buffer overflow
attack, and it checks return addresses for dangerous func-
tions to determine vulnerabilities. These virtualization-
based methods only focus on a single type of program er-
ror. They are not built as a framework for detecting var-
ious vulnerabilities. Moreover, the implementation de-
tails for some of them are not exhaustive, and the detec-
tion effects have not been illustrated through detection of
vulnerabilities in the real world. Their performance may
be influenced by a full-stack virtualization framework.

Bochspwn [24] is a notable emulator-based vulnera-
bility identification tool. Dozens of TOCTTOU vulner-
abilities have been found in the Windows kernel using
Bochspwn. However, its scope of application is limited
by the bochs emulator.

8 Conclusions

In this paper, a virtualization-based vulnerability iden-
tification framework called Digtool is proposed. It can
detect different types of kernel vulnerabilities including
UNPROBE, TOCTTOU, UAF, and OOB in the Windows
OS. It successfully captures various dynamic behaviors
of kernel execution such as kernel object allocation, ker-
nel memory access, thread scheduling, and function in-
voking. With these behaviors, Digtool has identified 45
zero-day vulnerabilities among both kernel code and de-
vice drivers. It can help effectively improve the security
of kernel code in the Windows OS.

USENIX Association

26th USENIX Security Symposium 163



Acknowledgement

We are grateful to the anonymous reviewers for their in-
sightful comments, which have significantly improved
our paper. We also would like to thank Ella Yu and Yao
Wang for their invaluable feedback on earlier drafts of
this paper.

References

[1] Cve-2016-0096. http://cve.mitre.org/
cgi-bin/cvename.cgi?name=CVE-2016-0096.

[2] Cve-2016-3252. http://cve.mitre.org/
cgi-bin/cvename.cgi?name=CVE-2016-3252.

[3] Cve-2016-7211. https://cve.mitre.org/
cgi-bin/cvename.cgi?name=CVE-2016-7211.

[4] Cve-2016-7260. http://cve.mitre.org/
cgi-bin/cvename.cgi?name=CVE-2016-7260.

[5] drk. https://github.com/DynamoRI0/drk.

[6] Kernel memory leak detector.  http://www.
mjmwired.net/kernel/Documentation/
kmemleak.txt.

[7] Rarlab. http://www.rarlab.com/.
[8] Windbg. http://www.windbg.org/.

[9] Hayati Aygiin and M Eddington. Duma-detect un-
intended memory access, 2013.

[10] Paul Barham, Boris Dragovic, Keir Fraser, Steven
Hand, Tim Harris, Alex Ho, Rolf Neugebauer, Ian
Pratt, and Andrew Warfield. Xen and the art of vir-
tualization. In ACM SIGOPS operating systems re-
view, volume 37, pages 164—177. ACM, 2003.

[11] Fabrice Bellard. Qemu, a fast and portable dynamic
translator. In USENIX Annual Technical Confer-
ence, FREENIX Track, pages 41-46, 2005.

[12] Marcel Bohme, Van-Thuan Pham, and Abhik Roy-
choudhury. Coverage-based greybox fuzzing as
markov chain. In Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communi-
cations Security, pages 1032-1043. ACM, 2016.

[13] Derek Bruening, Timothy Garnett, and Saman
Amarasinghe. An infrastructure for adaptive dy-
namic optimization. In Code Generation and Op-
timization, 2003. CGO 2003. International Sympo-
sium on, pages 265-275. IEEE, 2003.

[14] Derek Bruening and Qin Zhao. Practical mem-
ory checking with dr. memory. In Proceedings of
the 9th Annual IEEE/ACM International Sympo-
sium on Code Generation and Optimization, pages
213-223. IEEE Computer Society, 2011.

[15] Marc Briinink, Martin SiiBkraut, and Christof Fet-
zer. Boundless memory allocations for memory
safety and high availability. In Dependable Systems
& Networks (DSN), 2011 IEEE/IFIP 41st Interna-
tional Conference on, pages 13-24. IEEE, 2011.

[16] Sang Kil Cha, Maverick Woo, and David Brumley.
Program-adaptive mutational fuzzing. In Security
and Privacy (SP), 2015 IEEE Symposium on, pages
725-741. 1IEEE, 2015.

[17] Vitaly Chipounov, Volodymyr Kuznetsov, and
George Candea. S2e: A platform for in-vivo multi-
path analysis of software systems. ACM SIGPLAN
Notices, 46(3):265-278, 2011.

[18] Wang Chunlei, Wen Yan, and Dai Yiqgi. A soft-
ware vulnerability analysis environment based on
virtualization technology. In Wireless Commu-
nications, Networking and Information Security
(WCNIS), 2010 IEEE International Conference on,
pages 620-624. IEEE, 2010.

[19] Concettina Del Grosso, Giuliano Antoniol, Ettore
Merlo, and Philippe Galinier. Detecting buffer
overflow via automatic test input data generation.
Computers & Operations Research, 35(10):3125—
3143, 2008.

[20] Yangchun Fu and Zhiqiang Lin. Exterior: Using a
dual-vm based external shell for guest-os introspec-
tion, configuration, and recovery. In Proceedings of
the Ninth Annual International Conference on Vir-
tual Execution Environments, Houston, TX, March
2013.

[21] Niranjan Hasabnis, Ashish Misra, and R Sekar.
Light-weight bounds checking. In Proceedings of
the Tenth International Symposium on Code Gen-
eration and Optimization, pages 135-144. ACM,
2012.

[22] Reed Hastings and Bob Joyce. Purify: Fast de-
tection of memory leaks and access errors. In In
proc. of the winter 1992 usenix conference. Cite-
seer, 1991.

[23] Intel. Intel 64 and ia-32 architectures software de-
veloper’s manuals. 2016.

[24] Mateusz Jurczyk, Gynvael Coldwind, et al. Iden-
tifying and exploiting windows kernel race condi-
tions via memory access patterns. 2013.

164 26th USENIX Security Symposium

USENIX Association



[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

Kevin P Lawton. Bochs: A portable pc emulator
for unix/x. Linux Journal, 1996(29es):7, 1996.

Mac OS X Developer Library. Mem-
ory usage performance guidelines: En-
abling the malloc debugging features.

http://developer.apple.com/library/
mac/#documentation/darwin/reference/
manpages/man3/libgmalloc.3.html.

Chi-Keung Luk, Robert Cohn, Robert Muth, Har-
ish Patil, Artur Klauser, Geoff Lowney, Steven Wal-
lace, Vijay Janapa Reddi, and Kim Hazelwood. Pin:
building customized program analysis tools with

dynamic instrumentation. In Acm sigplan notices,
volume 40, pages 190-200. ACM, 2005.

Daniel Mihai, Gerald Maffeo, and Silviu Calinoiu.
Driver verifier, February 23 2006. US Patent App.
11/360,153.

Amatul Mohosina and Mohammad Zulkernine. De-
serve: a framework for detecting program security
vulnerability exploitations. In Software Security
and Reliability (SERE), 2012 IEEE Sixth Interna-
tional Conference on, pages 98—107. IEEE, 2012.

George C Necula, Scott McPeak, and Westley
Weimer. Ccured: Type-safe retrofitting of legacy
code. In ACM SIGPLAN Notices, volume 37, pages
128-139. ACM, 2002.

Nicholas Nethercote and Julian Seward. Valgrind:
a framework for heavyweight dynamic binary in-
strumentation. In ACM Sigplan notices, volume 42,
pages 89-100. ACM, 2007.

Vegard Nossum. Getting started with kmemcheck,
2012. http://www.mjmwired.net/kernel/
Documentation/kmemcheck.txt.

Gene Novark and Emery D Berger. Dieharder: se-
curing the heap. In Proceedings of the 17th ACM
conference on Computer and communications se-
curity, pages 573-584. ACM, 2010.

Bryan D Payne. Libvmi. Technical report, Sandia
National Laboratories, 2011.

Vladimir V Rubanov and Eugene A Shatokhin.
Runtime verification of linux kernel modules based
on call interception. In Software Testing, Verifica-
tion and Validation (ICST), 2011 IEEE Fourth In-
ternational Conference on, pages 180-189. IEEE,
2011.

(36]

[37]

(38]

(39]

[40]
[41]

[42]

[43]

Konstantin Serebryany, Derek Bruening, Alexan-
der Potapenko, and Dmitriy Vyukov. Addresssani-
tizer: A fast address sanity checker. In USENIX An-
nual Technical Conference, pages 309-318, 2012.

Julian Seward and Nicholas Nethercote. Using
valgrind to detect undefined value errors with bit-
precision. In USENIX Annual Technical Confer-
ence, General Track, pages 17-30, 2005.

Donghai Tian, Xi Xiong, Changzhen Hu, and Peng
Liu. Defeating buffer overflow attacks via virtu-
alization. Computers & Electrical Engineering,
40(6):1940-1950, 2014.

David Wagner, Jeffrey S Foster, Eric A Brewer,
and Alexander Aiken. A first step towards auto-
mated detection of buffer overrun vulnerabilities. In
NDSS, 2000.

Gray Watson. Dmalloc—debug malloc library, 2004.

Felix Wilhelm. Tracing privileged memory ac-
cesses to discover software vulnerabilities. 2015.

Junyuan Zeng, Yangchun Fu, and Zhigiang Lin.
Pemu: A pin highly compatible out-of-vm dynamic
binary instrumentation framework. In Proceedings
of the 11th Annual International Conference on
Virtual Execution Environments, Istanbul, Turkey,
March 2015.

Junyuan Zeng and Zhigiang Lin. Towards auto-
matic inference of kernel object semantics from bi-
nary code. In International Symposium on Recent
Advances in Intrusion Detection, pages 538-561.
Springer, 2015.

USENIX Association

26th USENIX Security Symposium 165






