
This paper is included in the Proceedings of the
26th USENIX Security Symposium
August 16–18, 2017 • Vancouver, BC, Canada

ISBN 978-1-931971-40-9

Open access to the Proceedings of the
26th USENIX Security Symposium

is sponsored by USENIX

MPI: Multiple Perspective Attack Investigation
with Semantics Aware Execution Partitioning

Shiqing Ma, Purdue University; Juan Zhai, Nanjing University; Fei Wang, Purdue University;
Kyu Hyung Lee, University of Georgia; Xiangyu Zhang and Dongyan Xu, Purdue University

https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/ma

MPI: Multiple Perspective Attack Investigation with Semantics Aware
Execution Partitioning

Shiqing Ma
Purdue University

Juan Zhai
Nanjing University

Fei Wang
Purdue University

Kyu Hyung Lee
University of Georgia

Xiangyu Zhang
Purdue University

Dongyan Xu
Purdue University

Abstract

Traditional auditing techniques generate large and inac-
curate causal graphs. To overcome such limitations, re-
searchers proposed to leverage execution partitioning to
improve analysis granularity and hence precision. How-
ever, these techniques rely on a low level programming
paradigm (i.e., event handling loops) to partition execu-
tion, which often results in low level graphs with a lot of
redundancy. This not only leads to space inefficiency and
noises in causal graphs, but also makes it difficult to un-
derstand attack provenance. Moreover, these techniques
require training to detect low level memory dependencies
across partitions. Achieving correctness and complete-
ness in the training is highly challenging. In this paper,
we propose a semantics aware program annotation and
instrumentation technique to partition execution based
on the application specific high level task structures. It
avoids training, generates execution partitions with rich
semantic information and provides multiple perspectives
of an attack. We develop a prototype and integrate it with
three different provenance systems: the Linux Audit sys-
tem, ProTracer and the LPM-HiFi system. The evaluation
results show that our technique generates cleaner attack
graphs with rich high-level semantics and has much lower
space and time overheads, when compared with the event
loop based partitioning techniques BEEP and ProTracer.

1 Introduction

Provenance tracking is critical for attack investigation,
especially for Advanced Persistent Threats (APTs) that
are backed by organizations such as alien governments
and terrorists. APT attacks often span a long duration
of time with a low profile, and hence are difficult to
detect and investigate. A provenance tracking system
records the causality of system objects (e.g. files) and
subjects (e.g. processes). Once an attack symptom is
detected, the analyst can utilize the provenance data to

understand the attack including its root cause and ramifi-
cations. Such inspection is critical for timely response to
attacks and the protection of target systems. Most existing
techniques [38, 46, 49, 50, 59] entail hooking and record-
ing important system level events (e.g. file operations),
and then correlating these events during an offline inves-
tigation process. The correlations have multiple types:
between two processes such as a process creating a child
process through sys_clone(); between a process and a sys-
tem object, e.g., a process reads a file through sys_read().
However, these techniques suffer from the dependence
explosion problem, especially for long running processes.
The reason is that a long running process may have de-
pendencies with many objects and other processes during
its lifetime although only a small subset is attack related.
For instance, a Firefox process may visit numerous pages
over its lifetime while only one page is related to a drive-
by-download attack.

Researchers proposed to partition execution to units so
that only the events within a unit are considered causally
related [43, 46]. For instance, the execution of a long
running server is partitioned to individual units, each han-
dling a request. Although existing execution partitioning
based systems such as BEEP [43] and ProTracer [46] have
demonstrated great potential, they partitioned execution
based on event handling loops. That is, each iteration of
an event handling loop is considered a unit. Despite its
generality, such a partitioning scheme has inherent lim-
itations. (1) Event loop iterations are too low level and
cannot denote high level task structure. For instance, in UI
programs, an event loop iteration may be to handle some
user interaction. (2) There are often inter-dependencies
across units. Therefore, BEEP and ProTracer rely on a
training phase to detect such dependencies in the form
of low level memory reads and writes. Achieving com-
pleteness in training is highly challenging. Note that the
problem could not be addressed even when source code
is provided because there are typically a lot of program
dependencies across event loop iterations and only a sub-

USENIX Association 26th USENIX Security Symposium 1111

set of them are important. (3) A high level task is often
composed of many units (e.g., those denoting event loop
iterations in multiple worker threads that serve the same
high level task). Ideally, we would like to partition execu-
tion based on the high level task structure.

Note that high level task structure is application specific.
Therefore, developers’ input on what denotes a task/unit
is necessary. We observe that a high level task/unit has
its corresponding data structure in the software. Our pro-
posal is hence to allow the developer/user to inform our
system what task/unit structure they desire by annotating
a small number of data structures (e.g., the tab data struc-
ture in Firefox). Our system MPI1 takes the annotations
and automatically instruments (a large number of) pro-
gram locations that denote unit boundaries through static
program analysis. The analysis handles complex thread-
ing models in which the executions of multiple tasks/units
interleave. The instrumentation emits special syscalls
upon unit context switches so that the application specific
task/unit semantics is exposed to the underlying prove-
nance tracking systems. MPI allows annotating multiple
task/unit structures simultaneously so that the forensic an-
alyst can inspect an execution from multiple perspectives
(e.g., tab and domain perspectives for Firefox). This is
highly desirable for attack investigation as we will show
later in the paper. Asking for developers/users input in au-
dit logging is a strategy adopted in practice. For example,
the audit system on Windows, Event Tracing for Windows
(ETW) requires the developers to explicitly plant audit-
ing API calls in their source code if they would like to
perform any customized logging. Nonetheless, reducing
manual efforts is critical to the real world deployment of
the technique. MPI is highly automated as the user only
needs to annotate a few data structures and then the invo-
cations to logging commands are automatically inserted
through program analysis. Most of the programs we use
in our experiment require only 2-3 annotations for each
perspective. In addition, MPI provides a data structure
profiler, called the annotation miner, to recommend the
potential data structures to annotate. As shown in §4.2, it
makes the correct recommendations in most cases.

MPI is a general execution partitioning scheme or-
thogonal to the underlying OS-level provenance collec-
tion system. We integrate it with three different prove-
nance collection systems: the widely adopted Linux audit
framework, and two state-of-the-art research projects, Pro-
Tracer [46]2 and the LPM [23] enabled HiFi [55] system
(LPM-HiFi) which features secure audit logging.

In summary, we make the following contributions:

• We propose the novel idea of partitioning execution
based on data structures to support different granu-

1MPI is short for “Multiple Perspective attack Investigation”
2ProTracer is based on BEEP, we replace the BEEP with MPI.

larities and facilitate multi-perspective, application-
semantics-aware attack investigation.
• We develop program analysis and runtime tech-

niques to enable such partitioning. Given a small
number of annotations on data structure definitions,
program analysis is conducted to identify places that
need to be instrumented to emit events at runtime
that denote unit boundaries and unit inheritance. The
number of such places may be very large, rendering
manual instrumentation infeasible.
• We develop an annotation miner that can recommend

the data structures to annotate with high accuracy,
substantially alleviating the manual efforts.
• We develop a prototype based on LLVM. The evalu-

ation on a set of commonly used Linux applications
and three different provenance systems shows that
our approach can effectively partition program execu-
tion in different granularities. We also use a number
of case studies that simulate real-world attacks to
demonstrate the strength of the proposed technique,
in comparison with BEEP [43] and ProTracer [46].

2 Motivation

In this section, we use an example to illustrate the dif-
ferences between the classic provenance tracking sys-
tems [23, 49, 50, 55], the existing event loop based exe-
cution partitioning approaches [43, 46], and the proposed
approach. This example simulates an important kind of
real-world attacks, watering hole attack [18, 19],

2.1 Motivating Example

Watering hole is a popular attack strategy targeting large
enterprises such as Apple [11] and Google [12]. The ad-
versaries do not directly attack the enterprise networks or
websites, which are well protected. Instead, they aim to
compromise the websites that are frequently visited by
the employees of the target enterprise, which are usually
much less protected. Recently, there have been a number
of real incidents of watering hole attacks, e.g., by compro-
mising Github [8] and CSDN [3]. There are exploit kits
(e.g., BeEF [2]) to make it easy to conduct such attacks.

In our example case, a developer in an enterprise opens
Firefox, and then uses Bing to look for a utility program
for file copying. The search engine returns a number of
relevant links to technical forums, blogs, wikis and online
articles. Some of these links further lead to other rele-
vant resources such as pages comparing similar programs.
Some pages host software for download. In many cases,
the software was uploaded by other developers. After
intensive browsing and researching, the developer settles
down on a forum that hosts not only the wanted software,

1112 26th USENIX Security Symposium USENIX Association

but also many other interesting resources, including tor-
rents for a few tutorial videos. The developer downloads
the program and also a few torrents from the forum. Af-
ter the download, he starts to use the program. He also
uses a p2p software Transmission to download the videos
described by the torrents.

Unfortunately, the forum website was compromised,
targeting enterprises whose developers tend to use the
forum for technical discussion and information sharing.
The program downloaded, fcopy, is malicious. In addition
to the expected functionality, the malware creates a re-
verse TCP connection and provides a shell to the remote
attacker. The malware causes unusual network bandwidth
consumption and is eventually noticed by the administra-
tor of the enterprise. To understand the attack and prepare
for response, the administrator performs forensic analysis,
trying to identify the root cause and assess the potential
damage to the system. At the very beginning, the binary
file fcopy is the only evidence. Hence, the creation of the
file is used as the symptom event.

2.2 Traditional Solutions

Traditional techniques such as backtrackers [38, 39], audit
systems [10] and provenance-aware file systems [50, 55]
track the lineage of system objects or subjects without
being aware by the applications. These techniques col-
lect system subjects (e.g. processes and threads) and
objects (e.g. files, network sockets and pipes) information
at run time with system call hooking or Linux Security
Modules (LSM) [62], and construct dependency graph or
causal graph for inspection. Note that these two terms
are interchangeable in this paper. While they use differ-
ent approaches to trace system information, the graphs
generated by these systems are similar.

A general workflow for these techniques is as follows.
Starting from the given symptom subject or object, they
identify all the subjects and objects that the symptom di-
rectly and indirectly depends on using backtracking. They
also allow identifying all the effects induced by the root
cause using forward tracking. For the case mentioned
in §2.1, the administrator identifies the Firefox process
and all its data sources by backtracking, and then dis-
closes the downloaded files and the operations on these
files with forward tracking. Figure 1 shows the simpli-
fied graph generated. In this graph and also the rest of
the paper, we use diamonds to represent sockets, oval
nodes to represent files, and boxes to represent processes
or execution units. In Figure 1, many network sockets
point to the Firefox process, and the process points to a
large number of files including the torrent files and others
like fcopy, which reflect the browsing and downloading
behaviors of Firefox.

While we only show part of the original graph in Fig-

ure 1 for readability, the original graph contains more than
500 nodes in total, with most files and network socket
accesses being (undesirably) associated with the Firefox
and Transmission nodes. These bogus dependencies make
manual inspection extremely difficult.

2.3 Loop Based Partitioning Solutions
It was observed in [43] that the inaccuracy of traditional
approaches is mainly caused by long running processes,
which interact with many other subjects and objects dur-
ing their lifetime. Traditional approaches consider the en-
tire process execution as a node so that all the input/output
interactions become edges to/from the process node, re-
sulting in considerably large and inaccurate graphs. Take
the Transmission process as an example. It has depen-
dencies with many torrent files and network sockets, ob-
fuscating the true causalities (e.g., a torrent file and the
corresponding downloaded file).

Event loop based partitioning techniques [43, 45, 46]
leverage the observation that long running processes are
usually event driven and the whole process execution
can be partitioned by the event handling loops (through
binary instrumentation). They proposed the concept of
execution unit, which denotes one iteration of an event
handling loop. This fine-grained execution abstraction en-
ables accurate tracing of dependency relationship. It was
shown that these techniques can generate much smaller
and more accurate dependency graphs. However, these
techniques still have the following limitations that hinder
their application in the real-world.

Units Are Too Low Level. Assume the administrator
applies BEEP/ProTracer to the motivation case in §2.1.
He constructs the causal graph starting from the file fcopy.
He acquires the download event in Firefox, which is asso-
ciated with the web socket a.a.a.a. Then, he traces back
to the forum website, and eventually the search engine.
As part of the investigation, the administrator applies for-
ward tracking from the search engine page to understand
if other (potentially malicious) pages were accessed and if
other (potentially malicious) programs were downloaded
and used. Since the developer visited many links returned
by the search engine, the forward tracking includes many
web pages and their follow-ups in the resulting graph.
The simplified graph is shown in Figure 2.

In this case, Firefox is used for 5 minutes with 11 tabs
containing 7 websites. There are thousands of nodes
in the graph. This is because all user interactions like
scrolling the web pages, moving mouse pointer over a
link and clicking links are processed by unique event loop
iterations, each leading to a unit/node. Moreover, Fire-
fox has internal events including timer events to refresh
pages. As these events operate on DOM elements, they
are connected in the dependency graph due to memory

USENIX Association 26th USENIX Security Symposium 1113

Firefox

t0.torrent t1.torrent t2.torrent t3.torrent t4.torrent obama.mp4.torrent fedora.iso.torrent ubuntu.torrent fcopy

Tranmission

m0.mp4 m1.mp4 m2.mp4 m3.mp4 m4.mp4 obama.mp4 Fedora.iso ubuntu.iso

a.a.a.a

Figure 1: Simplified causal graph for the case in §2.1 generated by traditional solutions (Tool in [16]).

dependencies, making the graph excessive.
The root cause of the limitation lies in that BEEP ex-

poses very low level semantics (i.e., event loop iterations)
in partitioning. The onus is on the user to chain low
level units to form high level tasks. Unfortunately, BEEP
graphs have little information to facilitate this process as
they lack high level semantic information such as which
high level task (e.g., tab) a low level unit belongs to.

Depending on Training. BEEP and ProTracer are train-
ing based due to the difficulty of binary analysis. It re-
quires intensive training to identify the event handling
loops and memory accesses that disclose dependencies
across units (e.g., one event loop inserts a task to the
queue which is later loaded and processed by another
event loop). The completeness of the training inputs is
hence critical. Otherwise, there may be missing or even
wrong causal relations. Note that providing source code
does not address this problem as identifying event han-
dling loops and cross-unit dependencies requires in-depth
understanding of low level program semantics, which is
much easier through dynamic analysis by observing con-
crete states than static analysis, in which everything is
abstract. Specifically, there are a large number of loops in
a program. Statically determining which ones are event
handling loops is difficult. Furthermore, while static anal-
ysis can identify memory dependencies, a lot of cross-unit
dependencies should be ignored as they have nothing to
do with the high level work flow (e.g., those caused by
memory management or statistics collection).

In our motivating example, we did not use the “Go
back" button in the initial training of Firefox. As a result,
we were not able to get the full causal chain in Figure 2,
which was broken at one web page that contains a lot of
clicking-link and going-back actions. We had to enhance
our training set by providing a going-back case.

Excessive Units. Partitioning based on event handling
loops works nicely for server programs, in which one
event loop iteration handles an external request and hence
corresponds to a high level task. However, in many com-
plex programs, especially those that heavily use threads
to distribute workloads or involve intensive UI operations,
event loop iterations do not align well with the high level
tasks. As a result, it generates excessive small units that
do not have much meaning. For example, in GUI pro-
grams, units are generated to denote the large number
of GUI events (e.g., key strokes), even though all these

events may serve the same high level task.
Consider the p2p program Transmission. Figure 3

shows its event handling loop in the main function of the
daemon process. After parsing options, loading settings
and torrent files (line 2-3), the daemon goes to a loop
which exits only when the user closes the program (i.e.,
set closing to TRUE). In each iteration of the loop, it
waits for 1 second (line 6), updates the torrent status and
logs some information (line 7). Due to the nature of p2p
protocol, downloading a single file requires thousands of
loop iterations, leading to thousands of units in BEEP.

In many situations, there may not be any system events
within these small units. For example, GUI programs
monitor and handle frequent events such as page scroll.
However, not all of them lead to system calls. Thus BEEP
ends up with many “UNIT_ENTER” and “UNIT_EXIT”
events without any system calls in between. These useless
units waste a lot of space and CPU cycles. While existing
techniques [22, 44, 46, 67] can remove redundant events,
they cannot prevent these events from being generated in
the first place.

These limitations are rooted at the misalignment be-
tween the rigid and low level execution partitioning
scheme based on event loops. Ideally, the units gener-
ated by a partitioning scheme would precisely match with
the high level logic tasks. MPI aims to achieve this goal.

2.4 Our Approach

The overarching idea of this paper is that high level tasks
are reflected as data structures. MPI allows the user to
annotate the data structures that correspond to such tasks.
It then leverages program analysis to instrument a set of
places that indicate switches and inheritances of tasks to
achieve execution partitioning. Note that there may be
multiple perspectives of the high level tasks involved in
an execution, denoted by different data structures. Hence,
MPI allows annotating multiple data structures, each de-
noting an independent perspective. To reduce the annota-
tion efforts, MPI provides a profiler that can automatically
identify the critical data structures (Figure 3.2). Note
that allowing developers/users to insert logging related
annotations/commands to software source code is a practi-
cal approach for system auditing. The Windows auditing
system, Event Tracing for Windows (ETW), requires the
developers to explicitly plan customized events to their

1114 26th USENIX Security Symposium USENIX Association

Figure 2: Simplified backtracking causal graph for the case in §2.1 with event loop based partitioning technique. It only shows the
causal relationship within the Firefox process (runs for 5 minutes with 11 tabs and 7 websites). The tool used can be found in [16].

1 int main(int argc, char ** argv) {
2 // parse options and session, load torrents
3 torrents = tr_sessionLoadTorrents(mySession, ctor, NULL);
4 // event loop
5 while(!closing) {
6 tr_wait_msec(1000); /* sleep one second */
7 // update and log and so on
8 }
9 // close program and sessions

10 return 0;
11 }

Figure 3: Event handling loop of Transmission (version 2.6)

software before deployment [5, 20]. These commands
generate system events at runtime. In our design, we only
require the developer to annotate (a few) task oriented
data structures, MPI automatically instruments a much
larger number of code places based on the annotations.

7: Process

6: Window

One Tab

3: Website Instance

1: Same Source

ElementElement

Page

Website Instance

PagePage

5: One Tab

Website Instance

PagePage

4: Website

Element

2: Page

6:
Window

Figure 4: Firefox Partitioning perspectives

Figure 4 presents a few possible perspectives of Firefox
execution. By annotating the appropriate data structures,
we can partition a Firefox execution into sub-executions
of various windows (perspective 6), tabs (perspective 5),
websites/domains (perspective 4), website instances (per-
spective 3), individual pages (perspective 2), and even
the sources of individual DOM elements (perspective 1).
Observe that some of the perspectives are cross-cutting.
For instance, a tab may show pages from multiple do-
mains whereas pages from the same domain may appear
in multiple tabs. A prominent benefit of such partitioning
is to expose the high level semantics of the application to
the underlying provenance tracking system.

forum

fcopy

Transmission

forum

ubuntu.iso.torrent

forum

t0.torrent

ubuntu.iso

Transmission

m0.mp4

Transmission

forum

Fedora.iso.torrent

Fedora.iso

Transmission

forum

t1.torrent

t1.mp4

Github

Bing

toptenreviewes

wordpress, forum

CNET

file:a

Digitaltrends

AddressBar

Figure 5: Simplified MPI causal graph for the case in §2.1 with
Firefox partitioned by tabs

fcopy

forum

wordpress

Bing

Transmission

ubuntu.iso.torrent t0.torrent

ubuntu.iso

Transmission

m0.mp4

Transmission

Fedora.iso.torrent

Fedora.iso

Transmission

t1.torrent

t1.mp4

CNET Digitaltrends toptenreviewes

file:a

Github

Figure 6: Simplified MPI causal graph for the case in §2.1 with
Firefox partitioned by web sites

Figure 5 shows the causal graph for the attack example
when we partition the execution of Firefox by its tabs
and Transmission by the files being downloaded. Each
rectangle represents the life time of a tab. Observe that the
Bing tab leads to the wordpress tab, which also shows the
forum main page. A number of forum pages are displayed
on separate tabs, each of which leads to the download of
a torrent file through a Transmission unit. In contrast
Figure 6 shows the causal graph when we partition the
execution of Firefox by the websites/domains it visits.
Observe that all the forum tabs are now collapsed to a
single forum node. It clearly indicates that fcopy and
the torrent files are downloaded from the same domain.
Compared to the BEEP graph in Figure 1, these graphs
are much smaller and cleaner, precisely capturing the high
level workflow of the execution. Note that these graphs
cannot be generated by directly querying/operating-on
the BEEP log, which has only very low level semantic
information (i.e., event loop iterations).
Advantages Over Event Loop Based Partitioning. We
can clearly see data structure based partitioning system
MPI addresses the limitations of event loop based parti-
tioning. 1 Units are no longer based on low level loop
iterations. The inspector does not need to manually chain
many such low level units to form a high level view of
the execution. 2 Dependency identification is made easy.
Training is no longer needed. The memory dependencies
that are needed to chain the low level event loop units
are no longer necessary because these low level units are
automatically classified to a high level unit in MPI. The
incidents of missing causality due to incomplete train-
ing can be avoided. For instance, Firefox uses multiple
threads to load and render the many elements on a page,
which induces lots of memory dependencies across event
loop units. But if we look at the execution from the tab
perspective, these memory dependencies are no longer
inter-unit dependencies that need to be explicitly cap-

USENIX Association 26th USENIX Security Symposium 1115

tured. 3 Excessive (small and non-informative) units are
prevented from being generated. All nodes representing
timer event for Transmission will be merged into one
node. Moreover, MPI provides great flexibility for attack
investigation by supporting multiple perspectives. En-
abling these perspectives is impossible if the appropriate
semantic information is not exposed through MPI.

One may argue that event loop based partitioning can
be enhanced by annotating event loops and cross-unit
memory dependencies. However, such annotations are so
low-level that (1) they require a lot of human efforts due to
the large number of places that need to be annotated (e.g.,
the memory dependencies), and (2) they expose low-level
and sometimes non-informative semantics such as mouse
moves and timer events. In addition, the partitioning is
solely based on event handling and hence cannot provide
multiple perspectives.

3 Design

3.1 Overview

The overall process of analysis and instrumentation is
shown in Figure 7. The user first annotates the program
source code to indicate unit related data structures under
the help of the annotation miner, which is essentially a
data structure profiler. The analysis component, imple-
mented as a LLVM pass, takes the annotations and ana-
lyzes the program to determine the places to instrument
(e.g., data structure accesses denoting unit boundaries).
The graph construction is using a standard algorithm, and
details can be found in Appendix B.

Source code

Programmer

LLVM PASS

Compiler Chain

Executable

Miner

Figure 7: MPI workflow

3.2 Annotations

Basic Annotations. Let us review how the Linux kernel
conducts context switching internally, which inspires our
approach to unit switching. Specifically, 1 a task_struct
with a unique pid identifies an individual process; 2 a
variable current is used to indicate the current active pro-
cess. Processes can communicate through inter-process
communication (IPC) channels like pipes. In order to
perform unit switching, we need to identify the unit data
structure that is analogous to task_struct and used to store
per-unit information, a field/expression that can be used to
differentiate unit instances as the identifier, and a variable
that stores the current active unit. Note that there may
not be an explicit task data structure in a program. Any

data structure that allows us to partition an execution to
disjoint autonomous units can serve as a unit data struc-
ture. Also, we need to know the variables that serve as
communication channels between different unit instances.
Thus we need the following types of annotations.
1 @indicator annotates the variable/field that is used
to indicate the possible switches between different unit
data structure instances (similar to the variable current in
Linux kernel). The user can choose to annotate multiple
indicator variables/fields, one for each perspective. A
unique id is assigned to each type of indicator.
2 @identifier is an expression used to differentiate the
instances of a unit data structure (similar to the data field
pid). This expression can be a field in the data structure
or a compound operation over multiple fields. Since an
identifier must be paired up with the corresponding indi-
cator, we allow providing an indicator id as part of the
identifier annotation.
3 @channel annotates the variables/fields that serve as

“IPC channels” between two different unit data structure
instances (similar to pipes). It contains a unique id num-
ber, and a parameter indicating which field stores the data
that induces inter-unit dependencies.

1 // in file src/globals.h
2 @indicator=1
3 EXTERN buf_T*curbuf INIT(= NULL);
4

5 // in file src/structs.h
6 typedef struct file_buffer buf_T;
7 // buffer: structure that holds information about one file
8 @identifier=b_ffname, indicator=1
9 struct file_buffer{

10 // associated memline
11 memline_T b_ml;
12 // buffers are orgnized as a linked list
13 buf_T *b_next;
14 buf_T *b_prev;
15 char_u *b_ffname; // full path file name
16 // TRUE if the file has been changed and not written out
17 int b_changed;
18 // variables for specific commands or local options
19 char_u *b_u_line_ptr; // for ’U’ command
20 int b_p_ai; // ’autoindent’, local opts
21 // other data field like change time or so
22 }; /* file_buffer */
23

24 // in file src/ops.c
25 @channel=channelID, data=(y_current->array)
26 static struct yankreg *y_current;

Figure 8: Vim data structure and our annotation

□ Example. Vim is a tabbed editor with each tab contain-
ing one or multiple windows. Each window is a viewpoint
of a buffer, with each buffer containing the in-memory text
of a file [17]. A file buffer can be shared by multiple win-
dows in the backend, and buffers are organized as a linked
list. A natural way to partition its execution is to partition
according to the file it is working on, each represented
by a file_buffer data structure. Figure 8 shows a piece
of code which demonstrates our annotations. Vim uses
the variable curbuf to represent the current active buffer.
Consequently, we use curbuf as our indicator variable.

1116 26th USENIX Security Symposium USENIX Association

Line 2 shows the indicator annotation. The annotation
has an id to distinguish different indicators for various
granularities/perspectives. The id is used to match with
the corresponding @identifier annotation. Vim creates a
buffer for each file. We can hence use the absolute file
path in the OS to identify each file buffer instance. Line
8 shows the @identifier annotation. It has two parts: 1
an expression used to differentiate instances; and 2 an
indicator id used to match with the corresponding @in-
dicator annotation. In this case, field b_ffname is the
identifier with id 1. Vim maintains its own clip board to
support internal copy(cut)-and-paste operations. When
the user cuts or copies data from a file_buffer, it sets the
field y_current→array. When the user performs a paste
operation, it reads data from the variable and puts the data
to the expected position. In this case, y_current→array
can be considered as the IPC channel between the two
different file_buffer instances. Line 25 shows the channel
annotation. It contains a unique id for the channel (anal-
ogous to a file descriptor), and the reference path to the
field. Note that this is to support communication using
the Vim clip board. Our system also supports inter- or
intra-process operations through the system clip board by
tracking system level events.

Threading Support. In order to improve responsiveness,
modern complex applications heavily rely on threads to
perform asynchronous sub-tasks. More specifically, the
main thread divides a task into multiple subtasks that can
proceed asynchronously and dispatches them to various
(background) worker threads. A worker thread receives
sub-tasks from the main thread and also other threads
and processes them in the order of reception. It can also
further break a sub-task to many smaller sub-tasks and
dispatch them to other threads, including itself. This ad-
vanced execution model makes partitioning challenging
because we need to attribute the interleaved sub-tasks
to the appropriate top level units. In event loop based
partitioning techniques [43, 46], all the event handling
loops from various threads need to be recognized during
training. More importantly, multiple event loop iterations
(across multiple threads but within an application) may be
causally related as they belong to the same task. The cor-
relations are reflected by memory dependencies. As such,
the training process needs to discover all such dependen-
cies. Otherwise, the provenance may be broken. Unfor-
tunately, memory dependencies are often path-sensitive
and it is very difficult to achieve good path coverage. It
is hence highly desirable to directly recognize the logic
tasks, which are disclosed by corresponding data struc-
tures, instead of chaining low level event loop based units
belonging to a logic task through memory dependencies.
□ Example. Figure 9 illustrates a substantially simplified
example of the Firefox execution model. It corresponds
to an execution that loads two pages (in two respective

……..

Main Thread

DNS

Thread
Tab1: DNS(http://a.com)

Tab2: DNS(http://b.com)

Tab1: load(ImageA)
...

Tab1: JS snippet

Tab1: AsmJS-1

……

DNS(http://a.com)

DNS(https://b.com)

ImgDecode

Thread……

Decode(ImageA)

Socket

Thread
……

get(a.com)

get(b.com)

JS Helper

Thread……

DO(AsmJS-1)

Tab1: Fetch(ImgA, JS, CSS)

Tab2: Fetch(ImgB, JS, CSS)

...

...

...

1

2
3

4

5

6

7

...

Tab1: CSS Animation CA1
Compositor

Thread……

Draw(CA1)
8

Figure 9: Simplified Firefox execution model

tabs). Specifically, each box represents a thread and each
colored bar (inside a box) denotes an iteration of the event
handling loop (and hence a unit in BEEP/ProTracer). Ob-
serve that at step 1 , the loading of tab1 first dispatches
a Domain Name Server (DNS) query to a DNS thread,
and then (step 3) posts a connection request to the socket
thread to download the page. At step 4 , the socket thread
informs the main thread that the data is ready. The main
thread leverages other threads such as the image decode
thread, JS helper thread, and compositor thread to de-
code/execute/render the individual page elements. Note
that every thread has interleaved sub-tasks belonging to
various tabs. Edges denote memory dependencies across
sub-tasks that need to be disclosed during training and
instrumented at runtime in BEEP/ProTracer. □

Different from BEEP/ProTracer, our solution is to lever-
age annotations and static analysis to partition directly ac-
cording to the logic tasks (e.g. tabs). In order to precisely
determine the membership of a sub-task. We introduce
the @delegator annotation. This annotation is associated
with a data structure to denote a sub-task (e.g., the HTTP
connection request posted to the socket thread). Intu-
itively, it is a delegator of a top level task (e.g., the HTTP
connection request delegates the unit of its owner tab). At
runtime, upon the dispatching of a delegator data structure
instance (e.g., adding a sub-task to a worker thread event
queue), it inherits the current (top level) unit identification.
Later when the delegator is used (in a worker thread), the
system knows which top level unit the current execution
belongs to. There could be multiple layers of delegation.
Similar to a unit, a delegator data structure also has an
indicator, which is a variable like current whose updates
may indicate delegation switches. More details can be
found in Section 3.3.
□ Example. Consider the Firefox execution model. The
user can annotate a tab, a window, and/or an iframe as
a top level unit. Internally, these are all represented by
the same nsPIDOMWindow class. They are differentiated
by the internal field values. Hence, we provide multiple
perspectives by annotating the nsPIDOMWindow data
structure and using different expressions in the identifier
annotations to distinguish the perspectives. Figure 10

USENIX Association 26th USENIX Security Symposium 1117

1 @identifier=this->GetOuterWindow(2)->mWindowID, indicator=1

2 @identifier=this->GetTop()->mWindowID, indicator=2
3 class nsPIDOMWindow {
4 @indicator=1

5 @indicator=2
6 nsCOMPtr<nsIDocument> mDoc;
7 // Tracks activation state
8 bool mIsActive;
9 virtual already_AddRefed<nsPIDOMWindow> GetTop() = 0;

10 nsPIDOMWindow *GetOuterWindow()
11 { return mIsInnerWindow ? mOuterWindow.get() ? this; }
12 // The references between inner and outer windows
13 nsPIDOMWindow *mInnerWindow;
14 nsPIDOMWindow *mOuterWindow;
15 // A unique (64-bit counter)
16 // id for this window.
17 uint64_t mWindowID;
18 /* other methods and data fields */
19 };

Figure 10: Tab and window annotations in Firefox

shows the annotations for tabs and windows. The indica-
tor id 1 is for tabs and 2 for windows. Any tab or window
changes must entail the change of the mDoc field, which
is used as the indicator. The expressions in the correspond-
ing identifier annotations mean that we can acquire the
tab of any given window by getting the second layer outer
window, and the top level window by calling GetTop().

Main Thread Socket Thread

nsDocShell::LoadURI(string)

nsHttpConnectionMgr::PostEvent

nsresult nsHttpConnectionMgr::PostEvent(...) {
 …

 nsCOMPtr<nsIRunnable> event =
 new nsConnEvent(this, handler, iparam, vparam);
 rv = mSocketThreadTarget->Dispatch(event,
 NS_DISPATCH_NORMAL);

 …
}

class nsConnEvent: public nsRunnable {};

ProcessNextEvent

B

C

1

2

@delegator

class nsRunnable {};

A

@delegator.indicator
workQueue.size;

D

3

Figure 11: Firefox main thread posts events to the socket thread

The connection request data structure (in the Socket-
Thread), the image data structure (in the image decoder
thread), etc. are annotated as delegators. As such, when a
connection request is created in the main thread, the re-
quest inherits the current tab/window id. When the request
is used/handled in a SocketThread, the execution duration
corresponding to the request belongs to the owner tab/win-
dow of the request. An example is shown in Figure 11.
In Firefox, all delegator data structure classes have the
same base class nsRunnable. As such, we only need to
annotate nsRunnable as the delegator class (box A). When
the main thread tries to load a new URI (step 1), it posts
an nsConnEvent to the SocketThread (step 2) by calling
the PostEvent method (box C). Since nsConnEvent is a
sub-class of nsRunnable (box B), the delegator class, the
newly created nsConnEvent inherits the tab/window id.
The nsRunnable class provides a function Run(), which is
implemented by its child classes to perform specific tasks.
And each thread maintains its own work queue containing

all such class instances. Thus the size of the worker queue
is annotated as the indicator of the delegator. Whenever it
changes, there may be a unit context switch. □

Annotation Miner. We develop an annotation miner to
recommend unit and delegator data structures to annotate.
The miner works as follows. The user provides a pair
of executions to denote an intended unit task, one exe-
cution containing one unit and the other containing two
units. Then, differential trace analysis is performed to
prune data structures that are common in both traces and
hence irrelevant to the unit (e.g., global data structures).
The miner leverages the points-to relations between data
structures to narrow down to the top data structures (i.e.,
those that are not pointed-to by other data structures).
PageRank is further used to determine the significance
of individual top data structures. A ranked list of data
structures is returned to the user. Note that this mining
stage is much less demanding than the training process
in BEEP/ProTracer, which requires extracting code loca-
tions that induce low level memory dependencies. Since
we focus on identifying high level data structures, which
are covered by the provided inputs, completeness is not
an issue for us in practice.

Test 1: Google

Test 2: GDrive

Test 3: LocalFile

TA TB=2TA ΔT: { e | TB.numberOf(e) = 2*TA.numberOf(e) }

T1 T1’ ΔT1: { SocketIO, Tabs, ScrollPos, LogItem… }

T2 T2’ ΔT2: { SocketIO, DiskIO, Tabs, ScrollPos, LogItem… }

T3 T3’ ΔT3: { DiskIO, Tabs, ScrollPos, LogItem… }

Intersection(ΔT)

{ Tabs,
ScrollPos,
LogItem,

… }

Figure 12: Annotation Miner

Next, we show how to mine the tab data structure in
Firefox (Figure 12). We first use a pair of runs to visit the
Google main page. T1 has one tab and T1’ has two tabs.
∆T shows the data structures in the trace differences. Note
that there are data structures specific to the page content
but irrelevant to the intended unit, such as SocketIO. To
further prune those, we use another two pairs of execu-
tions that visit Google Drive and a local file, respectively.
The miner then takes the intersection of the trace differ-
ences to prune out SocketIO and DiskIO. The resulting
set contains the top level data structures and their sup-
porting meta data structures (e.g., the ScrollPos data
structure to support scrolling in a tab). The trace-based
points-to analysis then filters out the low level support-
ing data structures. There may be multiple top level data
structures remained, many not related to units (e.g., for
logging). Hence in the last step, PageRank is used to rank
the several top data structures. In our case, the tab data
structure is correctly ranked the top.

3.3 Runtime

Unit Context. At runtime, each thread maintains a vector
called the unit context. Each element of the vector denotes

1118 26th USENIX Security Symposium USENIX Association

the current unit instance for each unit type (or each per-
spective). Note that MPI allows partitioning an execution
in different ways by annotating multiple unit data struc-
tures. If the user has annotated n unit data structures (with
n indicators and n identifiers), there are n elements in the
vector. Each time the indicator of a unit data structure is
updated, the identifier of the data structure is copied to
the corresponding vector element.

Delegation. MPI runtime provides a global hash map
that is shared across all threads, called the delegation
table. The delegation table projects a delegator data struc-
ture instance to a unit context vector value, denoting the
membership of the delegator. Upon the creation/initial-
ization of a delegator data structure instance, MPI inserts
a key-value pair into the delegation table associating the
delegator to the current unit context. Upon an update of
the indicator of a delegator data structure (in a worker
thread that handles the subtask represented by the dele-
gator), the unit context of the current thread is set to the
unit context of the delegator, which is looked up from
the delegation table. Intuitively, it means the following
execution belongs to the unit of the delegator until a dif-
ferent delegator is loaded to the indicator variable. The
optimization of this process can be found in Appendix A.
□ Example. Let us revisit the Firefox example in Figure 9.
We want to attribute all subtasks to their corresponding
tabs (shown in different colors). In Figure 11, we show
a detailed workflow of the main thread posting the con-
nection event to the socket thread. The main thread first
calls the LoadURI method (step 1), which invokes the
PostEvent method. Within PostEvent (box C), it creates
an nsConnEvnet and posts it to the socket thread. Since
data structure nsRunnable (box A) is annotated as a del-
egator and the HTTP connection request nsConnEvent
(box B) is a subclass of nsRunnable, MPI propagates the
current unit id in the main thread to the worker thread,
namely, the socket thread. Specifically, the request is asso-
ciated with the current unit context of the main thread in
the delegation table. Inside the socket thread that receives
and processes the request (i.e., step 3), loading the request
from the task queue causes the change of the queue size
indicating a possible unit context switch. As a result, the
current unit context of the socket thread is set to that of
the request, namely, tab1. With a chain of delegations,
MPI is able to recognize all the tab1 subtasks performed
by different threads, namely, all the red bars in Figure 9
belong to the same tab1 unit. □

3.4 Analysis
The analysis component of MPI is a pass in LLVM re-
sponsible for adding instrumentation to realize the run-
time semantics mentioned earlier. It takes a program with
the four kinds of annotations mentioned in §3.2, and pro-

duces an instrumented version of the program that emits
additional syscall events denoting unit context switches
and channel operations.

MPI needs to identify the following a few kinds of code
locations: (1) all the updates (i.e., definitions) to indicator
variables, including unit indicators and delegator indica-
tors, to add instrumentation for unit context updates; (2)
all the creation/initialization locations of delegator data
structures to add instrumentation for the inheritance of
unit context; (3) reads/writes of channel variables/fields to
add instrumentation for channel event emission and redun-
dancy detection; (4) all the system/library calls that may
lead to system calls to add instrumentation for unit event
emission and redundancy detection. We use a type based
analysis to identify (2) and (3). For (4), we pre-define
a list of library functions (e.g., libc functions) that may
lead to system calls of interest and then scan the LLVM
bitcode to identify all the system calls and the library calls
on the list. Details are elided. A naive solution to (1) is
to perform a walk-through of the LLVM bitcode to iden-
tify all definitions to indicator variables or to their aliases
(using the default alias analysis in LLVM). However, this
may lead to redundant instrumentation. Specifically, an
indicator may be defined multiple times and there may
not be any system calls (or library calls that can lead to
system calls) in between. As such, the unit context switch
instrumentations for those definitions are redundant.

1 /* Match a regexp against multiple lines. */
2 long im_regexec_multi(...) {
3 buf_T *save_curbuf = curbuf;
4 // initilize local variables
5 // switch to buffer "buf" to make vim_iswordc() work
6 curbuf = buf;
7 r = vim_regexec_both(NULL, col, tm);
8 curbuf = save_curbuf;
9 return r;

10 }

Figure 13: Instrumentation example (VIM, op_yank function)

□ Example. The function im_regexec_multi() in Figure 13
searches for a regular expression in Vim. The indicator
variable is updated at line 6, and then again at line 8. The
operations inside function vim_regexec_both() are all on
memory. In other words, it does not make any system
calls directly or indirectly. As such, the instrumentation
for line 6 is redundant. □

The problem is formulated as a reaching-definition
problem, which determines the set of definitions (of a
variable) that can reach a program point. We say a defini-
tion of variable x can reach a program point ℓ, if x is not
redefined along any paths from the definition to ℓ. In our
context, we only instrument the definitions that can reach
a system call or a library call that can lead to a system
call. In Figure 13, the definition at line 6 cannot reach
any point beyond line 8. Since line 7 does not denote
any system call, line 6 is not instrumented. Appendix B
discusses how to construct attack graphs from MPI logs.

USENIX Association 26th USENIX Security Symposium 1119

4 Evaluation

In this section, we present the evaluation results includ-
ing the annotation efforts needed, the runtime and space
overheads of the prototype, and a number of attack cases
to show the advantages of MPI compared to the event
loop based partitioning technique in BEEP [43] and Pro-
Tracer [46]. For comprehensive comparison, we integrate
both MPI and event loop based partitioning with three
underlying provenance tracking systems, the Linux Audit
system, ProTracer and LPM-HiFi.

4.1 Overhead

Space overhead: We measure the space overhead of
MPI and compare it with the overhead of event loop
based partitioning, on the aforementioned three prove-
nance tracking systems. We measure the overhead of
MPI and BEEP on Linux Audit and LPM-HiFi by com-
paring the logs generated by the original binaries and the
instrumented binaries. ProTracer requires unit informa-
tion to eliminate redundant system events (e.g., multiple
reads of a file within a unit). Therefore, it needs to work
with an execution partitioning scheme. We hence com-
pare the ProTracer logs by BEEP and by MPI. Note that
BEEP+ProTracer is equivalent to the original ProTracer
system [46] and in MPI+ProTracer we retain the efficient
runtime of the original ProTracer but replace the partition-
ing component with MPI. Since BEEP supports only one
low-level perspective, we only annotate one perspective
in MPI during comparison. The overhead of multiple
perspectives is in Appendix D.

The results are shown in Table 1. The table contains
the following information (column by column): 1) Ap-
plication. 2) Perspective for partitioning. 3) Overhead of
BEEP on Linux Audit, i.e., comparing the Linux Audit
log sizes with and without BEEP. 4) Overhead of BEEP on
LPM-HiFi with the raw log format. 5) Overhead of BEEP
on LPM-HiFi with its Gzip enabled user space reporter
tool. 6-8) Overhead of MPI on BEEP and LPM-HiFi. 9)
Log size of BEEP on (original) ProTracer. 10) Log size
of MPI on ProTracer. Note that Linux Audit and LPM-
HiFi have different provenance collection mechanisms,
i.e. system call interception for Linux Audit and LSM
for LPM-HiFi. This leads to different space overheads.
LPM-HiFi provides different user space reporters, and the
Gzip enabled reporter has less space overhead.

Observe that for most programs our approach has less
overhead on all the three platforms. For programs like
document readers and video players, both approaches
show very little overhead. These programs do not need to
switch between different tasks frequently, which means
they rarely trigger the instrumented code. Our approach
shows significant better results for many programs like

web browsers, P2P clients, HTTP and FTP programs in-
cluding servers and clients due to a few reasons. Firstly, in
these programs, the events handled by the event handling
loop are at a very low level, whereas MPI can partition ex-
ecution at a much higher level. Thus there are fewer unit
context switches in our system, and multiple execution
units in BEEP are grouped into one in our system without
losing precision. For example in Apache, a remote HTTP
request can lead to redirection, and the Apache server
needs a few BEEP execution units to handle it. This trig-
gers the instrumented code several times. But in MPI,
multiple requests, including their redirections, of a same
connection are grouped together. Thus, the instrumenta-
tion (for unit context switch) is triggered less frequently.
Another reason is that we avoid meaningless execution
units. For example in benchmark Transmission, BEEP
execution units are based on time events, leading to many
redundant units. This is avoided in MPI. Firefox has
high overhead in both systems. When multiple tabs are
opened, Firefox processes them in the background with
threads. Since most of the requests involve network or file
I/O, a lot of system/unit context switches are triggered,
leading to the overhead. Despite this, the overhead of
our system is about one third of that of BEEP. Note that
there is another advantage of MPI that cannot be quan-
tified –MPI does not require extensive training to detect
low level memory dependencies. During our experiments,
we had to add test inputs to the training sets of BEEP to
ensure the provenance was not broken for a number of
applications (e.g., Firefox).

We want to point out that with MPI, we can even re-
duce space overhead for the highly efficient ProTracer
system and the reduction is substantial for a few cases.
This is because MPI produces higher level execution units
(compared to BEEP/ProTracer), leading to fewer units,
more events in each unit and hence more redundancies
eliminated by the ProTracer runtime. Also note that all
the advantages of MPI over BEEP (e.g., without requir-
ing extensive training and rich high-level semantics) are
also advantages over ProTracer as the original ProTracer
system relies on BEEP. We have ran MPI for 24 hours
with a regular workload. The generated audit log has
680MB with 80MB by MPI. Details can be found in
Appendix D.

Run time overhead: We measure the run time overhead
caused by our instrumentation. For server programs, we
use standard benchmarks. For example, for the Apache
web server, we use the ab [1] benchmark. For programs
that do not have standard test benchmarks, but support
batch mode (e.g., Vim), we translate a number of typi-
cal use cases to test scripts to drive the executions. We
preclude highly interactive programs.

For each application, we choose the same perspectives
as the previous experiment, and the results are shown

1120 26th USENIX Security Symposium USENIX Association

Table 1: Space Overhead

Application Level BEEP Space Overhead MPI Space Overhead BEEP MPI

Linux Audit LPM-HiFi (Raw - Gzip) Linux Audit LPM-HiFi (Raw - Gzip) ProTracer (MB)

Apache HTTP Connection 15.38% 12.87% 0.64% 5.37% 3.75% 0.16% 22.12 20.08
Bash Command 0.45% 0.34% 0.01% 0.41% 0.34% 0.01% 1.01 0.78

Evince Document File 3.72% 4.98% 0.25% 0.04% 0.04% 0.00% 0.22 0.21
Firefox Tab 42.16% 38.23% 1.01% 18.20% 13.24% 0.52% 593.23 228.54

Krusader Command 26.54% 24.53% 0.09% 5.71% 4.89% 0.24% 2.31 2.31
Wget Request 0.43% 0.33% 0.01% 0.42% 0.33% 0.01% 4.33 4.33
Most File 0.05% 0.04% 0.00% 0.05% 0.04% 0.00% 1.78 1.78
MC Command 0.93% 0.75% 0.01% 0.90% 0.75% 0.01% 3.43 1.89

Mplayer Video File 0.04% 0.04% 0.00% 0.04% 0.04% 0.00% 0.34 0.34
MPV Video File 0.09% 0.03% 0.00% 0.09% 0.03% 0.00% 0.58 0.58
Nano File 0.29% 0.11% 0.01% 0.01% 0.01% 0.00% 8.23 2.46
Pine Command 8.11% 6.09% 0.27% 7.28% 4.09% 0.13% 34.23 14.32

ProFTPd FTP Connection 4.61% 3.45% 0.17% 2.11% 1.27% 0.06% 24.98 20.35
SKOD FTP Connection 5.99% 3.89% 0.17% 2.68% 1.99% 0.10% 25.35 22.73

TinyHTTPd HTTP Connection 8.94% 5.32% 0.32% 2.72% 1.08% 0.04% 43.24 37.48
Transmission Torrent File 18.41% 18.33% 1.03% 0.12% 0.12% 0.01% 8.34 8.23

Vim File 2.23% 2.32% 0.12% 0.13% 0.13% 0.01% 17.23 9.48
W3M Tab 38.74% 30.45% 1.07% 24.67% 18.23% 0.19% 145.26 73.26
Xpdf Document File 0.03% 0.07% 0.00% 0.03% 0.07% 0.00% 0.45 0.45
Yafc FTP Connection 3.44% 1.78% 0.09% 2.60% 0.87% 0.04% 26.34 18.27

Figure 14: Run time overhead for each applications (Overhead percentage v.s. applications)

in Figure 14. For each program, we have eight bars.
1 MPI-Native: the overhead of MPI without any prove-
nance system over native run. 2 MPI-ProTracer: the
overhead of MPI over ProTracer. 3 MPI-LPM: the over-
head of MPI over LPM-HiFi. 4 MPI-Audit: the overhead
of MPI over Linux Audit. The other four bars denote the
overhead of BEEP. As we can see from the graph, most
applications have less than 1% run time overhead for all
situations, which is acceptable. Comparing with BEEP,
MPI shows less overhead in all cases. The low run time
overhead is due to the following factors. Firstly, compared
with the original program, the number of instrumented
instructions is quite small. Secondly, most of the instruc-
tions are rarely triggered. Thirdly, our instrumentation
mainly contains memory operations like comparing the
newly assigned identifier value with the cached value.

4.2 Annotation Efforts
Table 2: Annotation Efforts

Application LOC Annotation Inst
ID IND Chann DEL

Vim 313,283 3 3 2 0 878
Yafc 22,823 2 3 0 1 111

Firefox 8,073,181 3 32 0 1 6,867
TuxPaint 41,682 2 2 0 0 121

Pine 353,665 2 2 2 0 746
Apache 168,801 2 2 0 1 2,437

MC 135,668 2 2 1 0 3,332
ProFTPd 307,050 3 3 0 1 4,905

Transmission 111,903 2 4 0 1 66
W3M 67,291 2 2 0 1 3,718

In this experiment, we measure the effectiveness of the
annotation miner and the number of annotations even-
tually added. The annotation results are shown in Ta-
ble 2. We only show some representative programs as
the others have similar results. We present the applica-
tions in the first column, and their sizes (measured by
SLOCCount [13]) in the second column. In the next four
columns, we show the number of annotations needed for
@identifier, @indicator, @channel, and @delegator. For
each program, we provide two or more perspectives, as
denoted by the number of @identifier annotations. In the
last column, we show the instrumentation places automat-
ically identified by our compiler pass. Less than 20% of
these places were covered by our profiling runs. In other
words, a training based method like that in BEEP/Pro-
Tracer would not be able to cover all these places.

Vim
: F

ile

file_buffe
r

memfile

xfilemark

……

Vim
:W

indow

window_S

wininfo_S

winopt_T

……

Vim
:fr

ame

fra
me_S

…

window_S

……

Fire
fox: T

ab

nsG
lobal…

nsP
ID

om…

nsD
om…

……

Fire
fox: E

le

nsP
ID

om…

nsD
OM…

nsD
om…

……

Fx: W
indow

nsP
IW

indow

nsG
lobalW

…

nsD
om…

……

HTTP: R
eq

request_
rec

…req_info…

conn_red

……

HTTP: C
onn

conn_rec

……

request_
rec

……

Figure 15: Annotation miner results

To evaluate the annotation miner, we use the 20 pro-
grams in Table 1. For each program, we report the rank-
ing of the unit/delegator data structures that we eventually
choose to annotate. There are totally 52 of them. All the
6 delegator data structures are correctly ranked the top.
That is because they are mainly used in worker threads,

USENIX Association 26th USENIX Security Symposium 1121

which have relatively fewer data structures. For the 46
unit data structures that we eventually annotate, 36 of
them are ranked at the first place, 8 at the second place,
and the remaining 2 at the third place. Figure 15 shows
the reported data structures for Vim, Firefox and HTTPd.
Each plane denotes the results for a perspective. The
highlighted data structures are the ones that we eventually
choose to annotate. The reason why we do not always
annotate the top data structures is that they are typically
the shadow data structures of the real unit data structures.
They usually store meta-data related to units, causing
them to have higher ranks than the real unit data structure.
With the help of the miner, we spent minutes to hours to
finalize the annotations. We argue that such efforts are
manageable. More importantly, they are one-time efforts.

4.3 Attack Investigation

To evaluate MPI’s effectiveness in attack investigation,
we apply it on 13 realistic attack cases used in previous
works [32, 43, 44, 46]. The results show that MPI is able
to correctly identify the root causes with very succinct
causal graphs for all cases. Moreover, MPI generates
fewer execution units using the perspectives in Table 1,
when compared to BEEP/ProTracer. On average, the
number of units generated by MPI is only 25% of that
by BEEP/ProTracer. For attacks involving GUI programs
(e.g., Firefox), the number is 8%, and in an extreme at-
tack case involving Transmission, it is less than 1%. In
terms of the generated attack graphs, MPI can reduce
the number of nodes to 92% and the number of edges
to 83% on average. Note that it is because these attacks
have simple propagation paths such that the BEEP/Pro-
Tracer graphs are quite succinct. For complicated cases,
MPI can reduce the graphs to 76%(nodes)/62%(edges).
In addition, we evaluate it on a few other realistic attack
cases. Next, we show one such case. Two more cases are
presented in Appendix C to demonstrate the advantages
of MPI over BEEP/ProTracer in an insider threat and in
tracking complex browsing behaviors in Firefox.
Case: FTP Data Leak. Exploiting system misconfigura-
tion to acquire valuable sensitive information is a common
attack vector [9, 14]. It is important to assess and control
damages once the problem is noticed. In the following in-
cident, an FTP administrator accidentally configured the
root directory of many users to a folder containing clas-
sified files, and gave them read accesses. After noticing
the problem, he shut down the server and then conducted
investigation to figure out the significance of the potential
information leak. In the duration of the misconfiguration,
there are thousands of connections from a large number
of users. The number of classified files is also large.

In Figure 16, we show a number of possible investiga-
tion perspectives for the FTP server application. Event

3: FTP Process

2: Session Session

4: Directory

download 1: CommandHelp download

 Session

5: User

Figure 16: FTP server partitioning perspectives

loop based partitioning techniques are based on each com-
mand or user request (box 1), and traditional auditing
approaches are based on the whole process (box 3). MPI
provides choices that align better with the logical struc-
tures of the application, such as the session perspective
(box 2), i.e., all the commands/requests from a session
belong to a unit, the directory perspective (box 4), i.e., all
the commands on a given directory are considered a unit,
and the user perspective (box 5), i.e., all commands/re-
quests from a user (not limited to an IP address) belong to
a unit. Note that all FTP commands are associated with
some file or directory as part of its context, and hence we
can partition FTP execution based on this information.

MF2

C1

MF0

C1

F0

C1

MF4

C0

F4

C2

MF1

C1

F1

C0

F7

C2

MF4

C0

Figure 17: FTP server partitioned by BEEP

MF2 MF0

C1

F0 F7

C2

F4 F0

C3

MF4

C0

MF0 MF1

C1

F2

C2

F2

C0

F1F2

C2

F3

Figure 18: FTP server partitioned by each connection

Part of the BEEP graph is shown in Figure 17. Ob-
serve that each user command is captured as a unit. The
simplified graph by MPI with connection based partition-
ing is shown in Figure 18, and user based partitioning
in Figure 19. The connection perspective alleviates the
inspector from going through the individual commands.
The user perspective can aggregate all the behaviors from
a specific user over multiple sessions so that the inspector
can hold individual users for responsibilities. Note that a
user can use various IP addresses to connect to the server.
Without MPI, such semantic information cannot be ex-
posed to the provenance tracking system. The number of
nodes in the BEEP, connection (MPI), and user (MPI)
graphs are 962, 224, and 78, respectively. We want to
point out that the MPI graphs cannot be generated from
the BEEP graph by post-processing because of the subtask
delegation in this program, i.e., it is difficult to attribute a
sub-task to the top level unit that it belongs to with only
the low level semantic information in the BEEP graph.

5 Discussion

Similar to many existing works [23, 43, 44, 46, 55], MPI
trusts the Linux kernel and the components associated
with the audit logging system. Attacks that can bypass the

1122 26th USENIX Security Symposium USENIX Association

Alice

MF0

C0

MF1

C2

F0

C3

Bob

MF2 MF3

C1

F4

C2

Carol

F7 F1

C2

Dan

F2 F3

C0

Figure 19: FTP server partitioned by users

security mechanisms of these systems may cause prob-
lems for MPI. Moreover, attacks that target the underly-
ing audit system, such as audit log blurring and log filling,
may inject noise to logs, making log inspection difficult.
As our system is built on top of existing provenance and
operating systems, MPI leverages existing features pro-
vided by these systems to mitigate some of the problems.
For example, operating systems like Ubuntu now lever-
ages Ubuntu Software Center to deliver trustworthy soft-
ware which can be used to protect the MPI binaries for
benign software. Provenance systems like Hi-Fi uses ref-
erence monitor guarantees to protect audit logs, and LPM
provides a general framework for trustworthy provenance
collection. We argue these are orthogonal challenges to
all existing provenance tracking techniques and a com-
plete solution to all these challenges is not the focus of
our paper. Instead, the emphasis of MPI is to address
dependence explosion caused by long running processes
with accuracy and flexibility.

MPI is essentially an add-on service to the OS-level
provenance collection system (e.g. the Linux Audit sys-
tem, LPM-HiFi, and ProTracer). System calls can be too
coarse-grained. Fine-grained events, such as library calls
or even instruction level dependencies, may need to be
captured for some sophisticated attacks. We argue that the
multiple perspective partitioning enabled by MPI is or-
thogonal. It is independent of the granularity of the events
captured by the underlying provenance system. It can be
easily integrated with systems of various granularities.

MPI requires program source code. We believe that
the semantic information needed to enable multiple per-
spective partitioning is difficult to acquire through binary
analysis for complex programs such as Firefox. If it is
necessary to partition the execution of a binary, training
and event loop based approaches such as BEEP could
be used together with MPI. In the worst cases, MPI
treats the entire process execution as a unit. Note that
this approximation is only problematic for long running
processes. Many malware executables are likely not long
running such that treating a whole process as a unit does
not introduce a lot of bogus dependencies. Also note that
such approximation does not miss provenance so that the
attack path is still captured. It is just that more efforts
may be needed to go through the causal graph.

MPI relies on source code annotations, which are
widely used in practice. Windows developers explicitly
plant logging commands in their software source code to
customize ETW auditing. Both GCC and LLVM provide
advanced language features [4, 6, 7] that are triggered by

annotations. For example, Firefox has 926 different types
of annotations. The stack-only class annotation “NS_-
STACK_CLASS” has 406 uses through out the code base.
In contrast, we only introduce 36 annotations (of 4 types)
in Firefox. As MPI is based on source code level anno-
tation and compiler instrumentation, it cannot find units
within dynamic code. However, in practice, we find that
unit boundaries mostly lie in static code. For example,
JavaScript code can be grouped into different tabs. Thus,
dynamic code can be attributed to tab units.

6 Related work

Many approaches have been proposed for system level
provenance tracking. Detailed comparison of MPI with
existing audit systems [10, 31, 43–45] can be found in §2.
Another important approach is to monitor the internal ker-
nel objects (e.g., the file system [27, 49, 50, 59–61, 69],
or LSM objects [23, 32, 55]) to track lineages. The ca-
pabilities of these techniques are similar to those of the
audit systems. Thus MPI is complementary to such sys-
tems. For example in §4, we showed the integration
of MPI and LPM-HiFi. System wide record-and-replay
techniques [30, 37–39] can also track provenance. These
systems record the inputs for all programs, and replay the
whole system execution when needed. Such systems re-
quire deterministic record-and-replay techniques, which
are open research problems, and cause more space over-
head. Whole system tainting [28, 35, 52, 68] is another
method of tracking provenance. By tainting all inputs
to a system and tracking their propagation, such systems
can record the needed provenance data. These techniques
need to deal with the granularity problem as the taint set
may be explosive for a long living system objects/sub-
jects. MPI can be applied to such systems to overcome
the dependency explosion problem and enable multiple
perspective inspection.

In [48], researchers propose to develop provenance
aware applications. Muniswamy-Reddy et. al. [49] pro-
vide a library with provenance tracking APIs so that pro-
grammers can develop provenance aware applications.
Such an approach relies on the programmers to inten-
sively modify their code to leverage the APIs. In contrast,
MPI aims to address the partitioning problem. Prove-
nance tracking is through the underlying audit system.

Many works [22, 27, 44, 67] are proposed to reduce the
space overhead of provenance tracking based on reachabil-
ity analysis, Mandatory Access Control (MAC) policies
and so on. Provenance visualization [25, 26, 47, 53, 57]
and graph compression [34, 54, 58, 63–65] are also pro-
posed to correlate events and reduce graph size to fa-
cilitate investigation. These approaches work on gen-
erated graphs to compress them for better visualiza-
tion. As such, they are complementary to MPI, and

USENIX Association 26th USENIX Security Symposium 1123

can be directly applied to MPI, its provenance logs and
graphs. Researchers proposed many machine learning
methods [21, 24, 33, 40, 41, 51, 66] to investigate prove-
nance data to find abnormal behaviors. We envision that
the multiple perspectives provided by MPI may substan-
tially improve their effectiveness.

7 Conclusion

Execution partitioning is important for addressing de-
pendency explosion in audit logging. However, existing
techniques are event loop based. They generate too many
small units, require training to detect dependencies across
units, and lack information about high level logic tasks.
We propose MPI, a technique that partitions based on
high level tasks. It allows the user to annotate the data
structures corresponding to these task, and leverages com-
piler to instrument operations of the data structures in
order to capture unit context switches and delegations.
We implemented a prototype and evaluated it on three
existing systems: Linux Audit, ProTracer and LPM-HiFi.
The results show that MPI generates much smaller graphs
with lower overhead comparing to the state-of-the-art, and
avoids broken provenance due to incomplete training.

References
[1] Apache benchmark. https://goo.gl/L7bGOK.
[2] The browser exploitation framework. http://beefproject.
com/.

[3] Chinese hacker arrested for leaking 6 million logins. https:
//goo.gl/AO2Qlz.

[4] Clang language extensions. https://goo.gl/UpniZC.
[5] Event tracing for windows (etw). http://msdn.microsoft.
com/en-us/library/windows/desktop/aa363668(v=vs.
85).aspx.

[6] Extensions to the c++ language. https://goo.gl/pn19Np.
[7] Extensions to the c language family. https://goo.gl/evrruW.
[8] Github hacked, millions of projects at risk of being modified or

deleted. https://goo.gl/EdguGO.
[9] Leaked data. https://haveibeenpwned.com/.

[10] Linux audit subsystem. https://goo.gl/WSwnJB.
[11] Many watering holes, targets in hacks that netted facebook, twitter

and apple. https://goo.gl/NIg2Va.
[12] More details on "operation aurora". https://goo.gl/p76ovs.
[13] Sloccount. http://www.dwheeler.com/sloccount/.
[14] The sony hack. https://goo.gl/B4G7Pl.
[15] Tuxpaint. www.tuxpaint.org.
[16] Ubsi. https://github.com/kyuhlee/UBSI.
[17] Vim document: windows. https://goo.gl/Lqp9Gb.
[18] Watering hole attack. https://goo.gl/AcN0dv.
[19] Watering hole attack. https://goo.gl/aw1t9l.
[20] Windows event log. https://msdn.microsoft.com/en-us/

library/windows/desktop/aa385780(v=vs.85).aspx.
[21] ARP, D., SPREITZENBARTH, M., HUBNER, M., GASCON, H.,

AND RIECK, K. Drebin: Effective and explainable detection of
android malware in your pocket. NDSS’14.

[22] BATES, A., BUTLER, K. R., AND MOYER, T. Take only what
you need: Leveraging mandatory access control policy to reduce
provenance storage costs. TaPP ’15.

[23] BATES, A., TIAN, D. J., BUTLER, K. R., AND MOYER, T.
Trustworthy whole-system provenance for the linux kernel. Usenix
Security’15.

[24] BESCHASTNIKH, I., BRUN, Y., SCHNEIDER, S., SLOAN, M.,
AND ERNST, M. D. Leveraging existing instrumentation to auto-
matically infer invariant-constrained models. ESEC/FSE’11.

[25] BEVAN, C. F., AND YOUNG, R. M. Planning Attack Graphs. In
ACSAC (2011).

[26] BORKIN, M. A., YEH, C. S., BOYD, M., MACKO, P., GAJOS,
K. Z., SELTZER, M., AND PFISTER, H. Evaluation of filesystem
provenance visualization tools. IEEE Transactions on Visualiza-
tion and Computer Graphics 19, 12 (Dec. 2013), 2476–2485.

[27] BRAUN, U., GARFINKEL, S., HOLLAND, D. A., MUNISWAMY-
REDDY, K.-K., AND SELTZER, M. I. Issues in automatic prove-
nance collection. In Provenance and annotation of data.

[28] CHOW, J., PFAFF, B., GARFINKEL, T., CHRISTOPHER, K., AND
ROSENBLUM, M. Understanding data lifetime via whole system
simulation. USENIX SSYM’04.

[29] CUMMINGS, A., LEWELLEN, T., MCINTIRE, D., MOORE, A. P.,
AND TRZECIAK, R. Insider threat study: Illicit cyber activity
involving fraud in the us financial services sector. Tech. rep.,
DTIC Document, 2012.

[30] DEVECSERY, D., CHOW, M., DOU, X., FLINN, J., AND CHEN,
P. M. Eidetic systems. In 11th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 14) (2014), pp. 525–
540.

[31] GEHANI, A., AND TARIQ, D. Spade: Support for provenance
auditing in distributed environments. Middleware ’12.

[32] GOEL, A., PO, K., FARHADI, K., LI, Z., AND DE LARA, E. The
taser intrusion recovery system. SOSP ’05.

[33] GU, Z., PEI, K., WANG, Q., SI, L., ZHANG, X., AND XU, D.
Leaps: Detecting camouflaged attacks with statistical learning
guided by program analysis. In 2015 45th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks
(June 2015), pp. 57–68.

[34] GUO, Z., ZHOU, D., LIN, H., YANG, M., LONG, F., DENG,
C., LIU, C., AND ZHOU, L. G2: A graph processing system for
diagnosing distributed systems. USENIX ATC’11.

[35] JIANG, X., WALTERS, A., XU, D., SPAFFORD, E. H., BUCH-
HOLZ, F., AND WANG, Y.-M. Provenance-aware tracing of-
worm break-in and contaminations: A process coloring approach.
ICDCS ’06, IEEE.

[36] KEENEY, M., KOWALSKI, E., CAPPELLI, D., MOORE, A.,
SHIMEALL, T., ROGERS, S., ET AL. Insider threat study: Com-
puter system sabotage in critical infrastructure sectors. US Secret
Service and CERT Coordination Center/SEI (2005).

[37] KIM, T., WANG, X., ZELDOVICH, N., AND KAASHOEK, M. F.
Intrusion recovery using selective re-execution. OSDI’10.

[38] KING, S. T., AND CHEN, P. M. Backtracking intrusions. SOSP
’03.

[39] KING, S. T., MAO, Z. M., LUCCHETTI, D. G., AND CHEN, P. M.
Enriching intrusion alerts through multi-host causality. NDSS ’05.

[40] KOLBITSCH, C., COMPARETTI, P. M., KRUEGEL, C., KIRDA,
E., ZHOU, X.-Y., AND WANG, X. Effective and efficient malware
detection at the end host. USENIX’09.

[41] KOLBITSCH, C., KIRDA, E., AND KRUEGEL, C. The power
of procrastination: Detection and mitigation of execution-stalling
malicious code. CCS ’11, ACM.

[42] KOWALSKI, E., CONWAY, T., KEVERLINE, S., WILLIAMS, M.,
CAPPELLI, D., WILLKE, B., AND MOORE, A. Insider threat
study: Illicit cyber activity in the government sector. US De-

1124 26th USENIX Security Symposium USENIX Association

https://goo.gl/L7bGOK
http://beefproject.com/
http://beefproject.com/
https://goo.gl/AO2Qlz
https://goo.gl/AO2Qlz
https://goo.gl/UpniZC
http://msdn.microsoft.com/en-us/library/ windows/desktop/aa363668(v=vs.85).aspx.
http://msdn.microsoft.com/en-us/library/ windows/desktop/aa363668(v=vs.85).aspx.
http://msdn.microsoft.com/en-us/library/ windows/desktop/aa363668(v=vs.85).aspx.
https://goo.gl/pn19Np
https://goo.gl/evrruW
https://goo.gl/EdguGO
https://haveibeenpwned.com/
https://goo.gl/WSwnJB
https://goo.gl/NIg2Va
https://goo.gl/p76ovs
http://www.dwheeler.com/sloccount/
https://goo.gl/B4G7Pl
www.tuxpaint.org
https://github.com/kyuhlee/UBSI
https://goo.gl/Lqp9Gb
https://goo.gl/AcN0dv
https://goo.gl/aw1t9l
https://msdn.microsoft.com/en-us/library/windows/desktop/aa385780(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa385780(v=vs.85).aspx

partment of Homeland Security, US Secret Service, CERT, and
the Software Engineering Institute (Carnegie Mellon University),
Tech. Rep (2008).

[43] LEE, K. H., ZHANG, X., AND XU, D. High accuracy attack
provenance via binary-based execution partition. NDSS ’13.

[44] LEE, K. H., ZHANG, X., AND XU, D. Loggc: garbage collecting
audit log. CCS ’13.

[45] MA, S., LEE, K. H., KIM, C. H., RHEE, J., ZHANG, X., AND
XU, D. Accurate, low cost and instrumentation-free security audit
logging for windows. ACSAC ’15.

[46] MA, S., ZHANG, X., AND XU, D. Protracer: towards practical
provenance tracing by alternating between logging and tainting.
NDSS ’16.

[47] MEHTA, V., BARTZIS, C., ZHU, H., CLARKE, E., AND WING, J.
Ranking Attack Graphs. 9th International Symposium on Recent
Advances in Intrusion Detection (RAID’06) 4219 (2006), 127–144.

[48] MILES, S., GROTH, P., MUNROE, S., AND MOREAU, L. Prime:
A methodology for developing provenance-aware applications.
ACM Transactions on Software Engineering and Methodology
(TOSEM) 20, 3 (2011), 8.

[49] MUNISWAMY-REDDY, K.-K., BRAUN, U., HOLLAND, D. A.,
MACKO, P., MACLEAN, D., MARGO, D., SELTZER, M., AND
SMOGOR, R. Layering in provenance systems. USENIX ATC’09.

[50] MUNISWAMY-REDDY, K.-K., HOLLAND, D. A., BRAUN, U.,
AND SELTZER, M. I. Provenance-aware storage systems. Usenix
ATC ’06.

[51] NAGARAJ, K., KILLIAN, C., AND NEVILLE, J. Structured
comparative analysis of systems logs to diagnose performance
problems. NSDI’12.

[52] NEWSOME, J., AND SONG, D. X. Dynamic taint analysis for
automatic detection, analysis, and signaturegeneration of exploits
on commodity software. NDSS’05.

[53] OU, X., BOYER, W. F., AND MCQUEEN, M. A. A scalable
approach to attack graph generation. In Proceedings of the 13th
ACM conference on Computer and communications security - CCS
’06 (2006), p. 336.

[54] OU, X., GOVINDAVAJHALA, S., AND APPEL, A. MulVAL: A
logic-based network security analyzer. 14th USENIX Security . . . ,
August (2005), 8.

[55] POHLY, D. J., MCLAUGHLIN, S., MCDANIEL, P., AND BUT-
LER, K. Hi-fi: Collecting high-fidelity whole-system provenance.
ACSAC ’12.

[56] RANDAZZO, M. R., KEENEY, M., KOWALSKI, E., CAPPELLI,
D., AND MOORE, A. Insider threat study: Illicit cyber activity
in the banking and finance sector. Tech. rep., DTIC Document,
2005.

[57] SAWILLA, R. E., AND OU, X. Identifying critical attack assets in
dependency attack graphs. In Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics) (2008), vol. 5283 LNCS, pp. 18–
34.

[58] SHEYNER, O., HAINES, J., JHA, S., LIPPMANN, R., AND WING,
J. M. Automated generation and analysis of attack graphs. In
Proceedings - IEEE Symposium on Security and Privacy (2002),
vol. 2002-January, pp. 273–284.

[59] SITARAMAN, S., AND VENKATESAN, S. Forensic analysis of
file system intrusions using improved backtracking. IWIA ’05.

[60] SUNDARARAMAN, S., SIVATHANU, G., AND ZADOK, E. Selec-
tive versioning in a secure disk system. Usenix Security’08.

[61] TIAN, D. J., BATES, A., BUTLER, K. R., AND RANGASWAMI,
R. Provusb: Block-level provenance-based data protection for
usb storage devices. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security (New
York, NY, USA, 2016), CCS ’16, ACM, pp. 242–253.

[62] WRIGHT, C., COWAN, C., SMALLEY, S., MORRIS, J., AND
KROAH-HARTMAN, G. Linux security modules: General security
support for the linux kernel. In Proceedings of the 11th USENIX
Security Symposium (Berkeley, CA, USA, 2002), USENIX Asso-
ciation, pp. 17–31.

[63] XIE, Y., FENG, D., TAN, Z., CHEN, L., MUNISWAMY-REDDY,
K.-K., LI, Y., AND LONG, D. D. A hybrid approach for efficient
provenance storage. CIKM ’12.

[64] XIE, Y., MUNISWAMY-REDDY, K.-K., FENG, D., LI, Y., AND
LONG, D. D. Evaluation of a hybrid approach for efficient prove-
nance storage. ACM Transactions on Storage (TOS) 9, 4 (2013),
14.

[65] XIE, Y., MUNISWAMY-REDDY, K.-K., LONG, D. D., AMER,
A., FENG, D., AND TAN, Z. Compressing provenance graphs.
TaPP’11.

[66] XU, W., HUANG, L., FOX, A., PATTERSON, D., AND JORDAN,
M. I. Detecting large-scale system problems by mining console
logs. SOSP’09.

[67] XU, Z., WU, Z., LI, Z., JEE, K., RHEE, J., XIAO, X., XU, F.,
WANG, H., AND JIANG, G. High fidelity data reduction for big
data security dependency analysis. CCS ’16.

[68] ZELDOVICH, N., BOYD-WICKIZER, S., KOHLER, E., AND
MAZIÈRES, D. Making information flow explicit in histar. OSDI
’06.

[69] ZHU, N., AND CHIUEH, T.-C. Design, implementation, and
evaluation of repairable file service. DSN’13.

A Run Time Optimization

MPI emits special syscall events to denote unit context
switches, and channel reads/writes. During causal graph
construction Appendix B, the unit context switch events
are used to derive unit boundaries and the channel events
are used to derive inter-unit dependencies. Note that chan-
nel operations are essentially memory reads and writes
that need to be exposed as system events. Otherwise, they
are invisible to MPI. Inter-unit communication through
system resources such as files, sockets, and the system
clipboard can be captured by the default underlying sys-
tem event tracking module without the intervention of
MPI.

A naive solution is to emit a unit context switch event
upon any indicator update and a channel event upon any
channel read/write. However in practice, we observe
that (1) an indicator update may not imply the change
of the unit context and (2) even though the unit context
changes, there may not be any system events that happen
in between the two unit context switches. Both cases
lead to redundant unit context switch events. Similarly,
there are often multiple accesses to the same channel
object within the same unit. These accesses must induce
the same causality and hence cause redundancy. Since
emitting an event entails a system call and hence a context
switch, preventing redundant event emission is critical
to the efficiency of MPI. We have two approaches to
address this problem. One is through the static analysis
(§3.4) and the other is runtime optimization. MPI does

USENIX Association 26th USENIX Security Symposium 1125

not emit any event upon an indicator update. Instead,
it simply updates the current unit context (in memory),
which has much lower overhead compared to a system
call. Upon a regular system call (e.g., file read), it checks
if the current unit context is the same as the previous
context that was emitted. If not, it emits a unit context
switch event right before the system call. Otherwise, it
does not emit. Similarly, upon a channel operation, MPI
checks if a channel operation by the same unit was logged
before. If so, it avoids logging the channel operation.

B Causal Graph Construction

In this section, we discuss the causal graph construction
algorithms for backward tracking starting from a symp-
tom event and forward tracking starting from a root cause
event. Algorithm 1 shows how to generate the backward
tracking causal graph for a specific perspective with a
given log file and a symptom event. Generating the graphs
for all perspectives only requires an easy extension.

Algorithm 1 Backward Causal Graph Construction
Input: L - the event log

l - unit type (i.e., perspective) given in the @indicator
annotation
es - symptom event

Output: Gl - the generated causal graph for perspective l

Variable: ob js - system objects/subjects relevant to es
se, pide - the system object/pid of event e
bUnit - if the current unit causally related with es
eventUnit[pid] - the events in the current unit of process
pid

1: ob js← { pides , ses}
2: bUnit ← true
3: for each event e ∈ L in reverse order, starting from es do
4: if e is not a unit context switch event then
5: eventUnit[pid].add(e)
6: if e updates any object or subject in ob js then
7: bUnit ← true
8: if e is a unit context switch event then
9: if e does not switch to a l unit then

10: continue
11: else
12: if bUnit then
13: add events in eventUnit[pide] to Gl
14: add accessed objects/subjects in eventUnit[pide] to

ob js
15: eventUnit[pide]← ∅
16: bUnit ← f alse
17: return Gl

We use an ob js set to represent the system objects,
subjects, and channels between units that are directly
or indirectly related to the symptom event. The overall
procedure of the algorithm is to traverse the log in a
reverse order to populate the set and identifies events
causally related to the symptom by correlating to some
entity in ob js. At line 1, the algorithm initializes the set to

contain the system object accessed by the symptom event
and the system subject (i.e., the process of the event). It
also marks the current unit as correlated to the symptom
(line 2). Then it traverses all the events in the log file in
a reverse order, starting from the symptom event (lines
3-17). If the current event e is not a unit context switch
event, the algorithm saves it in a temporary list of events
for the current unit (line 4-5). If e updates an object (e.g.,
file and pipe) or spawns a subject (i.e., process) that was
identified as related to the symptom (and hence in the
ob js set), a flag is set to indicate that the current unit
is correlated (lines 6-7). If e is a unit context switch,
the algorithm further tests if e switches to a unit in the
given perspective. If not, the switch event is irrelevant
and simply skipped (lines 9-10). Otherwise, it indicates
a unit boundary of our interest. The algorithm checks
the flag to see if the current unit is causally related to
the symptom (lines 11-12). If so, it adds all the events
in the current unit to the result graph. It also updates
ob js with all the objects read by any event in the current
unit and all the subjects spawned in the unit (lines 13-
14). The temporary event list and the flag are then reset
(lines 15-16). Note that when the events are added to the
graph, nodes are created and further connected to existing
nodes in the graph by the dependencies implied by the
events. For example, a file read event entails connecting
to the (previously created) file node. Details are elided
for brevity.

□ Example. Figure 20 shows an example of constructing
the backward causal graph. The simplified log entries
are shown on the left while the generated graph is shown
on the right. The graph is also annotated with events to
explain why nodes/edges are introduced. The algorithm
generates the graph starting from the symptom event at
line 8, which is a write event to the socket a.a.a.a. It
traverses back and reaches line 7, which is a unit context
switch (UCX) event whose indicator is 5 and the identifier
value is 7. Two nodes are hence created representing that
a process (node) wrote to a socket (node) whose value is
a.a.a.a. Going backward, the algorithm further identifies
another unit represented in lines 4-6 with the indicator
value 5 and the identifier value 3. This is a different unit
instance of the same type and it has no causal relation
with the object set that currently contains the socket object
and the process. Therefore, all the events in this unit are
dropped. The algorithm continues to traverse backward
and encounter another unit in lines 1-3. Line 2 indicates
that it reads file index.html, so the subgraph for lines 1-3
is file index.html being read by the process. Note that
the value of identifier indicates lines 1-3 and lines 7-8
belong to the same unit (instance), which means that the
application is working on the same task. Hence, the global
causal graph is updated by joining the two subgraphs. The
result graph is shown on the right hand side.

1126 26th USENIX Security Symposium USENIX Association

UCX: IND=5, ID=7

FDR: index.html

……

UCX: IND=5, ID=3

FDR: about.html

……

UCX: IND=5, ID=7

SKW: a.a.a.a

1:

2:

3:

4:

5:

6:

7:

8:

Process

index.html

8: SKW

2: FDR

1: UCX

a.a.a.a

Process

index.html

8: SKW

2: FDR

1:UCX

7:UCX

a.a.a.a

Process7:UCX

Figure 20: An example of constructing backward causal graph.
(UCX is short for Unit Context Switch, FDR is short for File
Descriptor Read, and SKW is short for Socket Write.)

The forward graph construction algorithm is similar
and hence omitted.

Essence of MPI and Memory Dependencies. From the
graph construction Algorithm 1, one can observe that all
the events in a unit are considered correlated. If there
is a single event (within a unit) that has any direct/indi-
rect dependency with the symptom, all the events in the
unit are added to the graph and all the objects/subjects
accessed by the unit are considered correlated. As such,
MPI does not need to track any fine-grained (memory)
dependencies within a unit. Dependencies across units
are either captured through system level dependencies
(e.g., file/socket reads and writes) or explicitly indicated
by the user through the channel annotation.

C Case Studies

Case: Insider Threat. In attacks such as watering hole
and phishing emails, the adversaries apply external in-
fluences and wait for the employees to make mistakes.
However, it is also very common that attacks are launched
from inside the enterprise (e.g., by malicious or former
employees). In fact, a large number of such cases had
been reported [29, 36, 42, 56]. Next, we simulate such an
attack.

A computer game development company noticed that
the graphical design of a to-be-announced game was
leaked on an online gaming forum. The company started
investigation, trying to understand how this design was
leaked and who should be held responsible. The inves-
tigator first conducted forward tracking from the design
file but found that the file was neither sent outside by any
email nor copied by any employee to their own devices.
She further suspected that some old version of the file
was leaked instead of the current version. Even though
the old versions of the design file did not explicitly exist
any more, the provenance of the file was tracked by the
audit system.

She first conducted backward tracking to disclose all
the past versions (with the name “p_v” plus the version
number) and then forward tracking to see how these ver-
sions were propagated/used. Assume that she used BEEP
first. She quickly noticed a number of problems in the
BEEP graph that makes manual inspection difficult.

p_v0.png

p_v12.png p_v13.png

p_v14.png

slogan.txt

title.txt

p_v19.png p_v20.png

p_v47.png

Figure 21: Event handling loop based solution

The resulting graphs by BEEP are shown in Figure 21.
White boxes represent units for TuxPaint [15], gray boxes
are for the editor, Vim, and red boxes are for other apps.
First of all, the graph is very large (containing 1832
nodes). This is because many people had contributed
to the file in the past using TuxPaint, a graph drawing
tool. There were a lot of interactions (e.g., copy & paste)
among multiple image files, some of which were from
Internet. The various historic versions of the design file
were propagated to other places. Second, there are many
“empty” execution units, which are execution units just
have boundary events. This is because many operations
in UI intensive program TuxPaint have no real effects on
the provenance. These operations include, but are not
limited to, switching painting tools (frequently), clicking
menu bars and so on. Third, she found that most execu-
tion units for TuxPaint only have memory dependency
events. This is because TuxPaint stores the image buffers
in memory, and flushes them to disk only when the user
clicks the save button. In the editing units (e.g., choosing
tools and drawing figures), TuxPaint only operates on the
image buffers. These units are only connected by memory
dependency and do not invoke any system calls. How-
ever, these units are important as they are responsible for
chaining up the important behaviors.

After inspecting such a large graph, the inspector still
could not spot any suspicious behavior. The reason is that
there are broken links in the graph such that some updates
to the design file are missing from the graph. Specifically,
some of the editing actions were not in the BEEP training
set such that the corresponding memory dependencies
are not visible, leading to broken provenance, e.g., “p_-
v14.png” and “p_v20.png”.

p_v0.png

p_s.png

plan.txt
proposal.txt mv

p_v21.png p_v47.png

p_archive

bash
notice

pine

p_v20.png

Figure 22: MPI solution

The inspector switched to MPI. She used individual
image files as the perspective. The resulting (simplified)
graph is in Figure 22. Now each white box represents all
the editing operations on a single file. It can be clearly
seen that a version of the design file, “p_v20.png”, was

USENIX Association 26th USENIX Security Symposium 1127

read by a TuxPaint unit that operated on file “p_s.png”,
which was later archived with a number of text files. The
archive was renamed and sent through an email. The link
from the design file to file “p_s.png” was missed by BEEP
because the attacker opened the design file, conducted
a few editing actions whose memory dependencies are
missed by BEEP such that the later save-as unit is discon-
nected from the file read unit. Note that all these actions
are individual units in BEEP that need to be chained up by
memory dependencies, whereas they belong to the same
unit in MPI. Overall, the MPI graph is precise, much
smaller (152 nodes) and cleaner. We also want to point
out that a graph similar to the MPI graph cannot be gen-
erated by post-processing the BEEP graph as the missing
links cannot be inferred and it is difficult to determine
which low-level nodes belong to an image file.

firefox: Bing

firefox: Search Result

firefox: LinkedIn

firefox

firefox
x.x.x.20

firefox

z.z.z.9

y.y.y.200

k.k.k.222

caffee.pdf

~/mpi-firefox/firefox-build/dist/bin/firefox

Figure 23: Firefox browsing history of page perspective

Case: Complex Browsing Behavior in Firefox. In this
case study, we show how MPI precisely captures the
causality of complex browsing behavior of Firefox. Dur-
ing browsing, the user first opened Bing from the book-
mark bar, and searched a key word, and then used dif-
ferent ways to open new pages including clicking links,
choosing “open page in a new tab/window” in the right-
click menu, going back to the previous page, and opening
new pages from Javascript code automatically. In the end,
the user downloaded a PDF file. We collected the log
with the page perspective and generated a causal graph by
conducting backward traversal starting from the PDF file.
The graph is shown in Figure 23. Observe that the entire
browsing history is precisely captured by the graph, in-
cluding visiting the LinkedIn page from the search result
page and then going back to the search result page. In
contrast, the BEEP’s graph only includes the page hosting
the PDF file, missing all the other pages along the causal
chain, due to missing memory dependencies.

D Additional Experimental Results

Window Tab Element Conn Request
 Firefox Apache

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

35.0%

40.0%

45.0%

S
p
a
ce

 o
v
e
rh
e
a
d
(%

)

Figure 24: Overhead for applications with different partitioning

We also conduct experiments to measure space over-
head for the same application with different partitioning
choices, and the results are shown in Figure 24. We se-
lect two programs, Firefox and Apache. For Firefox, we
choose three different ways to instrument: windows, i.e.,
a unit for a top level residence window for tabs (note that
multiple windows may be driven by the same Firefox pro-
cess internally); tabs and elements (inside a page). We do
not show the numbers for each web site instance, because
the instrumentations are similar to those of tabs, and the
only difference lies in the expressions used in the @iden-
tifier annotation (see §3). For Apache, we use two ways
to instrument: each connection (each client instance), and
each request. The results show that with different levels
of instrumentation, the overhead is significantly different.
Instrumenting the applications at a higher level causes
less overhead. For both cases, a lower level suggests 2-3
times overhead increase.

0 5 10 15 20 25
Time (h)

0

100

200

300

400

500

600

700

Lo
g
 S
iz
e
(M

B
)

Total Log Size
MPI-Log Size

Figure 25: Overhead for a whole day

The last space overhead experiment we did is to run
the instrumented applications on our machine for a whole
day with Linux audit system enabled and measure the
events generated by MPI. The workload includes regular
uses such as web surfing, checking and responding emails.
The result is shown in Figure 25. The black solid line
shows the log size generated by the Linux audit system,
and the dashed blue line shows the log size generated
by MPI. From the graph, we can see that the log size
generated by the Linux audit is more than 600 MB while
our instrumentation issues less than 80 MB.

1128 26th USENIX Security Symposium USENIX Association

	Introduction
	Motivation
	Motivating Example
	Traditional Solutions
	Loop Based Partitioning Solutions
	Our Approach

	Design
	Overview
	Annotations
	Runtime
	Analysis

	Evaluation
	Overhead
	Annotation Efforts
	Attack Investigation

	Discussion
	Related work
	Conclusion
	Run Time Optimization
	Causal Graph Construction
	Case Studies
	Additional Experimental Results

