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Abstract

Cryptocurrencies such as Bitcoin and Ethereum are op-
erated by a handful of mining pools. Nearly 95% of Bit-
coin’s and 80% of Ethereum’s mining power resides with
less than ten and six mining pools respectively. Although
miners benefit from low payout variance in pooled min-
ing, centralized mining pools require members to trust
that pool operators will remunerate them fairly. Further-
more, centralized pools pose the risk of transaction cen-
sorship from pool operators, and open up possibilities for
collusion between pools for perpetrating severe attacks.

In this work, we propose SMARTPOOL, a novel pro-
tocol design for a decentralized mining pool. Our pro-
tocol shows how one can leverage smart contracts, au-
tonomous blockchain programs, to decentralize cryp-
tocurrency mining. SMARTPOOL gives transaction se-
lection control back to miners while yielding low-
variance payouts. SMARTPOOL incurs mining fees lower
than centralized mining pools and is designed to scale to
a large number of miners. We implemented and deployed
a robust SMARTPOOL implementation on the Ethereum
and Ethereum Classic networks. To date, our deployed
pools have handled a peak hashrate of 30 GHs from
Ethereum miners, resulting in 105 blocks, costing miners
a mere 0.6% of block rewards in transaction fees.

1 Introduction

Cryptocurrencies such as Bitcoin and Ethereum offer the
promise of a digital currency that lacks a centralized is-
suer or a trusted operator. These cryptocurrency net-
works maintain a distributed ledger of all transactions,
agreed upon by a large number of computation nodes (or
miners). The most widely used protocol for agreement
is Nakamoto consensus, which rewards one miner ev-
ery epoch (lasting, say, 10 minutes as in Bitcoin) who
exhibits a solution to a probabilistic computation puzzle
called a “proof-of-work” (or PoW) puzzle [1]. The win-

ning miner’s solution includes a transaction block, which
is appended to the distributed ledger that all miners main-
tain. The reward is substantial (e.g. 12.5 BTC in Bitcoin,
or 30,000 USD at present), incentivizing participation.

Nakamoto-based cryptocurrencies, such as Bitcoin
and Ethereum, utilize massive computational resources
for their mining. Finding a valid solution to a PoW puz-
zle is a probabilistic process, which follows a Poisson
distribution, with a miner’s probability of finding a solu-
tion within an epoch determined by the fraction of com-
putation power it possesses in the network. Miners with
modest computational power can have extremely high
variance. A desktop CPU would mine 1 Bitcoin block
in over a thousand years, for instance [2]. To reduce
variance, miners join mining pools to mine blocks and
share rewards together. In a mining pool, a designated
pool operator is responsible for distributing computation
sub-puzzles of lower difficulty than the full PoW block
puzzle to its members. Each solution to a sub-puzzle has
a probability of yielding a solution to the full PoW block
puzzle—so if enough miners solve them, some of these
solutions are likely to yield blocks. When a miner’s sub-
mitted solution yields a valid block, the pool operator
submits it to the network and obtains the block reward.
The reward is expected to be fairly divided among all
pool members proportional to their contributed solutions.

Problem. Centralized pool operators direct the massive
computational power of their pools’ participants. At the
time of this writing, Bitcoin derives at least 95% of its
mining power from only 10 mining pools; the Ethereum
network similarly has 80% of its mining power ema-
nating from 6 pools. Previous works have raised con-
cerns about consolidation of power on Bitcoin [3,4]. Re-
cent work by Apostolaki et al. has demonstrated large-
scale network attacks on cryptocurrencies, such as dou-
ble spending and network partitioning, which exploit
centralized mining status quo [5]. By design, if a single
pool operator controls more than half of the network’s
total mining power, then a classical 51% attack threat-
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ens the core security of the Nakamoto consensus protocol
[1]. Cryptocurrencies have witnessed that a single pool
has commandeered more than half of a cryptocurrency’s
hash rate (e.g. DwarfPool1 in Ethereum and GHash.io2

in Bitcoin) on several occasions. In such cases, the pool
operator’s goodwill has been the only barrier to an attack.

Furthermore, pools currently dictate which transac-
tions get included in the blockchain, thus increasing the
threat of transaction censorship significantly [6]. While
some Bitcoin pools currently offer limited control to
miners of transaction selection via the getblocktemplate
protocol [7], this protocol only permits a choice between
mining with a transaction set chosen by the pool or min-
ing an empty block. The situation is worse in Ethereum
where it is not yet technically possible for miners in cen-
tralized pools to reject the transaction set selected by the
operator. For example, users recently publicly speculated
that a large Ethereum pool favored its own transactions
in its blocks to gain an advantage in a public crowdsale 3.

One can combat these security issues by running a
pool protocol with a decentralized network of miners in
place of a centralized operator. In fact, one such solution
for Bitcoin, called P2POOL [8], already exists. How-
ever, P2POOL has not attracted significant participation
from miners, and consequently its internal operational
network remains open to infiltration by attackers. Sec-
ondly, technical challenges have hindered widespread
adoption. Scalable participation under P2POOL’s cur-
rent design would require the system to check a mas-
sive number of sub-puzzles. Furthermore, P2POOL only
works for Bitcoin; we are not aware of any decentralized
mining approach for Ethereum.

Solution. This work introduces a new and practical so-
lution for decentralized pooled mining called SMART-
POOL. We claim two key contributions. First, we ob-
serve that it is possible to run a decentralized pool mining
protocol as a smart contract on the Ethereum cryptocur-
rency. Our solution layers its security on the existing
mining network of a large and widely deployed cryp-
tocurrency network, thereby mitigating the difficulty of
bootstrapping a new mining network from scratch. Sec-
ondly, we propose a design that is efficient and scales
to a large number of participants. Our design uses a
simple yet powerful probabilistic verification technique
which guarantees the fairness of the payoff. We also in-
troduce a new data structure, the augmented Merkle tree,
for secure and efficient verification. Most importantly,
SMARTPOOL allows miners to freely select which trans-

1https://forum.ethereum.org/discussion/5244/
dwarfpool-is-now-50-5

2https://www.cryptocoinsnews.com/warning-ghash-io-
nearing-51-leave-pool/

3https://www.reddit.com/r/ethereum/comments/6itye9/
collecting information about f2pool/

action set they want to include in a block. If widely
adopted, SMARTPOOL makes the underlying cryptocur-
rency network much more censorship-resistant. Finally,
SMARTPOOL does not charge any fees 4, unlike central-
ized pools, and disburses all block rewards to pool par-
ticipants entirely.

SMARTPOOL can be used to run mining pools for sev-
eral different cryptocurrencies. In this work, we demon-
strate concrete instantiations for Bitcoin and Ethereum.
SMARTPOOL can be run natively within the protocol of
a cryptocurrency — for instance, it can be implemented
in Ethereum itself. We believe SMARTPOOL can sup-
port a variety of standard payoff schemes, as in present
mining pools. In this work, we demonstrate the standard
pay-per-share (or PPS) scheme in our implementation.
Supporting other standard schemes like pay-per-last-n-
shares (PPLNS) and schemes that disincentivize against
block withholding attacks [9–11] is left for future work.

Results. We have implemented SMARTPOOL and a sta-
ble SMARTPOOL implementation has been released and
deployed on the main network via a crowd-funded com-
munity project [12]. As of 18 June 2017, SMARTPOOL-
based pools have mined in total 105 blocks on both
Ethereum and Ethereum Classic networks and have suc-
cessfully handled a peak hashrate of 30 GHs from 2 sub-
stantial miners. SMARTPOOL costs miners as little as
0.6% for operational transaction fees, which is much less
than 3% fees taken in centralized pools like F2Pool 5.
Furthermore, each miner has to send only a few mes-
sages per day to SMARTPOOL. Finally, although being
decentralized, SMARTPOOL still offers the advantage of
low variance payouts like centralized pools.

As a final remark, SMARTPOOL does not make cen-
tralized pooled mining in cryptocurrencies impossible,
nor does it incentivize against centralized mining or alter
the underlying proof-of-work protocol (as done in work
by Miller et al. [13]). SMARTPOOL simply offers a prac-
tical alternative for miners to move away from central-
ized pools without degrading functionality or rewards.

Contributions. We claim the following contributions:

• We introduce a new and efficient decentralized
pooled mining protocol for cryptocurrencies. By
leveraging smart contracts in existing cryptocurren-
cies, a novel data structure, and an efficient verifi-
cation mechanism, SMARTPOOL provides security
and efficiency to miners.

• We implemented SMARTPOOL and deployed real
mining pools on Ethereum and Ethereum Classic.
The pools have so far mined 105 real blocks and

4The caveat here is that cryptocurrency miners will pay Ethereum
transaction fees to execute SMARTPOOL distributively.

5https://www.f2pool.com/ethereum-blocks
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have handled significant hashrates while deferring
only 0.6% of block rewards to transaction fee costs.

2 Problem and Challenges

We consider the problem of building a decentralized pro-
tocol which allows a large open network to collectively
solve a computational PoW puzzle, and distribute the
earned reward between the participants proportional to
their computational contributions. We expect such a pro-
tocol to satisfy the following properties:

• Decentralization. There is no centralized operator
who operates the protocol and manage other partic-
ipants. The protocol is collectively run by all par-
ticipants in the network. There is also no require-
ment for joining, i.e. anyone with sufficient compu-
tation power can freely participate in and contribute
to solving the PoW puzzle.
• Efficiency. The protocol running costs should be

low and offer participants comparable reward and
low variance guarantees as centralized operations.
Furthermore, communication expenses, communi-
cation bandwidth, local computation and other costs
incurred by participants must be reasonably small.
• Security. The protocol protects participants from at-

tackers who might steal rewards or prevent others
from joining the protocol.
• Fairness. Participants receive rewards in proportion

to their share of contributions.

In this paper we focus on this list of properties with
respect to mining pools. Cryptocurrencies like Bitcoin
and Ethereum reward network participants (or miners)
new crypto-coins for solving computationally hard puz-
zles (or proof-of-work puzzles) [1,14,15]. Typically, Bit-
coin miners competitively search for a nonce value sat-
isfying

H(BlockHeader || nonce)≤ D (1)

where H is some preimage-resistant cryptographic hash
function (e.g. SHA-256), BlockHeader includes new
set of transactions that the miner wants to append to the
ledger and D is a global parameter which determines
the puzzle hardness. Ethereum uses a different, ASIC-
resistant PoW function [16]. which requires miners to
have a (predetermined) big dataset of 1 GB (increasing
over time). Thus, in Ethereum, the condition (1) becomes

H(BlockHeader || nonce || dataset)≤ D

in which the dataset includes 64 elements of the 1GB
dataset that are randomly sampled with the nonce and
the BlockHeader as the random seed.

Finding a solution for a PoW puzzle in cryptocurren-
cies requires enormous amount of computation power.
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Figure 1: The effect of share’s difficulty on i) the probability of
a miner with 1 GHs finding a share within a day as per [2]; ii)
resource (i.e. number of messages) consumed by a miner; in a
decentralized mining pool for Bitcoin (e.g. P2POOL).

Thus miners often join resources and solve the puzzle to-
gether via pooled mining. Currently, most mining pools
follow a centralized approach in which an operator man-
ages the pool and distributes work to pool miners. Here
we are interested in a decentralized approach that allows
miners to collectively run and manage the pool without
inherent trust in any centralized operator.

Threat model and security assumptions. Cryptocur-
rencies like Bitcoin and Ethereum allow users to use
pseudonymous identities in the network. Users do not
have any inherent identities and there is no PKI in the
network. Our solution adheres to this setting.

We consider a threat model where miners are ratio-
nal, which means they can deviate arbitrarily from the
honest protocol to gain more reward. An alternative is a
malicious model where the attacker does anything just to
harm other miners. In this work, we are not interested
in the malicious model since i) such sustained attacks in
cryptocurrencies often require huge capital, and ii) exist-
ing centralized pools are not secure in such a model ei-
ther [9–11]. We also assume that the adversary controls
less than 50% of the computation power in the network
on which SMARTPOOL runs. This assumption rules out
double-spending via 51% attacks [1].

On the other hand, we do not make any assumption on
the centralization or trusted setup in our solution apart
from what have been made in existing cryptocurrencies 6.

2.1 Existing Solutions
In the widely adopted centralized pooled mining proto-
col, there is a pool operator who asks pool miners to
solve pool sub-puzzles by finding nonce so that the hash
satisfies some smaller difficulty d (d � D). A solution

6Bitcoin and Ethereum have trusted setups where the first blocks
are constructed and provided by Satoshi Nakamoto (for Bitcoin) and
Ethereum Foundation (for Ethereum).
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for a pool-puzzle is called a share and has some prob-
ability of being a valid solution for the main PoW puz-
zle. Once a miner in the pool finds a valid block, the re-
ward, i.e., new crypto-coins, is split among all pool min-
ers in proportion to the number of their valid submitted
shares [2].

Despite being widely used in practice, centralized
mining pools have several problems including network
centralization and transaction censorship as discussed in
Section 1. P2POOL for Bitcoin is the first and only
deployed solution we are aware of which decentralizes
pooled mining for cryptocurrencies [8]. At a high level,
P2POOL decides on the contribution of each miner by
running an additional Nakamoto Consensus protocol to
build a share-chain between all miners in the pool. The
share-chain includes all shares submitted to the pool, one
after another (akin to the normal Bitcoin blockchain, but
each block is a share). To guarantee that each share is
submitted and credited exactly once, P2POOL leverages
coinbase transactions, which are special transactions that
pay block reward to miners (see details in Section 3.3).

P2POOL satisfies almost all ideal properties of a de-
centralized pool (defined in Section 2) except the effi-
ciency and security properties. Specifically, P2POOL en-
tails a high performance overhead since the number of
messages exchanged between miners is a scalar multi-
ple of the number of shares in the pool. When the share
difficulty is low, miners have to spend a lot of resources
(e.g. bandwidth, local computation) to download, and
verify each other’s shares. Figure 1 demonstrates how
adjusting the difficulty of shares affects the variance of
miners’ reward and the amount of resource (both band-
width and computation) consumed per miner (with 1GHs
capacity) in a decentralized pool like P2POOL. As a re-
sult, P2POOL requires high share difficulty in order to
reduce the number of transmitted messages. Therefore
P2POOL miners experience higher reward variance than
they would when mining with centralized pools. As dis-
cussed in [2], high variance in the reward (i.e. the supply
of money) decreases miners’ utility by making it harder
for them to predict their income and verify that their sys-
tems are working correctly. Perhaps as a result, P2POOL
has to date attracted only a few miners who comprise a
negligible fraction of Bitcoin mining power (as of June
23, 2017, the last block mined by P2POOL was 22 days
ago [8]).

The security of P2POOL’s share-chain depends on the
amount of computation power in its pool. As of this writ-
ing, P2POOL accounts for less than 0.1% of Bitcoin min-
ing power, thus P2POOL’s share chain is vulnerable to
51% attacks from adversaries who control only 0.1% of
Bitcoin mining power. Hence P2POOL may not offer
better security guarantees than centralized pools.

2.2 Our Solution and Challenges
Our solution for a decentralized pooled mining lever-
ages Ethereum smart contracts which are decentralized
autonomous agents running on the blockchain itself [17,
18]. A non-contract account has an address and balance
in Ether, the native currency for Ethereum. A smart con-
tract has, in addition, code and private persistent storage
(i.e. a mapping between variables and values). Smart
contract code is akin to a normal program which can ma-
nipulates stored variables. To invoke a contract (i.e. ex-
ecute its code) at address addr, users send a transaction
to addr with an appropriate payload, i.e. payment for the
execution (in Ether) and/or input data for the invocation.
The contract code executes correctly on the blockchain
as long as a majority of Ethereum miners faithfully fol-
low the Ethereum protocol.

At a high level, SMARTPOOL replaces the mining pool
operator with a smart contract. The smart contract acts as
a trustless bookkeeper for the pool by storing all shares
submitted by miners. When a new share is submitted, the
contract verifies the validity of the share, checks that no
previous record of the share exists, and then updates the
corresponding miner’s record. We allow miners to lo-
cally generate the block template of the pool (discussed
more in Section 3.3). If a miner finds a share which is a
valid block, it will broadcast the block to the cryptocur-
rency network, the reward will be instantly credited to
SMARTPOOL. SMARTPOOL then disburses the block re-
ward fairly to all miners in the pool.
Challenges. There are several challenges in building
such a smart contract for a mining pool. We illus-
trate them by considering a straw-man solution (called
StrawmanPool) in Figure 2 which implements a decen-
tralized pool as a Ethereum smart contract. The solution
works by having a smart contract which receives all the
shares submitted by miners, verifies each of them and
records number of shares one has submitted. The con-
tract has a designated address for receiving block reward.
A share is valid if it uses the contract address as the coin-
base address (i.e., the address that the block reward is
sent to) and satisfies the predefined difficulty (e.g. Line
6). On each share submission, the pool verifies the share
and updates the contribution statistics of the pool mem-
bers (Line 13). If a miner finds a valid block, the smart
contract distributes the reward to miners in the pool pro-
portional to their contribution by using any of the stan-
dard payout schemes [2](Line 16). The solution in Fig-
ure 2 has the following shortcomings and challenges.

• C1. The number of shares in the pool may be
large, thus resulting in an unwieldy number of mes-
sages sent to the contract. For example, it may
take 1,000,000 shares on average to get a valid
block. A naı̈ve solution might require miners to
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1 contract StrawmanPool{
2 mapping (uint256 => boolean) mSubmittedShares;
3 mapping (uint256 => int) mContribution;
4 function submitShare(someShare) returns (boolean ){
5 // check validity
6 if !isValid(someShare)
7 return false;
8 // check if the share has been submitted
9 if mSubmittedShares[someShare.hash]

10 return false;
11 mSubmittedShares[someShare.hash] = true;
12 // update miner’s contribution
13 mContribution[msg.owner] += 1;
14 // distribute reward if is a valid block
15 if isValidBlock(someShare)
16 distributeReward(mContribution );
17 return true;
18 }}

Figure 2: Pseudo-code of a straw-man solution which imple-
ments a mining pool in a smart contract.

create 1,000,000 transactions and send all of them
to the pool’s contract. No existing open network
agreement protocol can process that many transac-
tions within the course of a few minutes [19, 20].
On the other hand, reducing the number of shares
per block by increasing the share difficulty will in-
crease the variance in reward for miners, thus negat-
ing the sole advantage of pooled mining (see [2] for
more analysis on the effects of share difficulty).

• C2. A valid share earns miners a small amount
of reward, but miners may have to pay much more
in Ethereum gas fees when submitting their shares
to the pool. The gas fee compensates for the
storage and computation required to verify shares
and update the contract state (see [21, 22]). Thus,
StrawmanPool may render a negative income for
miners when the fee paid to submit a share out-
weighs the reward earned by the share itself.

• C3. In Ethereum, transactions are in plaintext; thus,
any network adversary can observe other miners’
transactions that include the shares and either steal
or resubmit the shares. This challenge does not ex-
ist in centralized pools where miners can establish
secure and private connections to the pools. In de-
centralized settings, such secure connections are not
immediate since i) there is no centralized operator
who can initiate secure connections to miners, and
ii) there is no PKI between miners in the pool. Thus,
a good design for a mining pool must prevent the
adversary from stealing others’ shares. Similarly,
the pool should prevent miners from over-claiming
their contribution by either re-submitting previous
shares or submitting invalid shares. Centralized
pools can efficiently guarantee this since the pool
manager can check every submission from miners.

• C4. This challenge is specific to the scenario when

one wishes to use SMARTPOOL for a different cryp-
tocurrency (e.g. Bitcoin) than the one on which
its contract is deployed (e.g. Ethereum). A smart
contract in Ethereum running a Bitcoin mining pool
must guarantee correct payments in Bitcoin. This
is tricky because Bitcoin miners expect to receive
rewards in Bitcoin, but Ethereum contracts can op-
erate only on balances in Ether.

3 Design

SMARTPOOL’s design can be used to implement a de-
centralized mining pool on Ethereum for many existing
target cryptocurrencies, but for ease of explanation we fix
Ethereum as the target. In Section 5, we discuss how one
can use SMARTPOOL-based decentralized mining pools
for other cryptocurrencies (e.g. Bitcoin).

3.1 Approach

We briefly describe how we address the challenges from
Section 2.2 in SMARTPOOL.

• SMARTPOOL guarantees the decentralization prop-
erty by implementing the pool as a smart contract.
Like any smart contract, SMARTPOOL is operated
by all miners in the Ethereum network, yet it can se-
cure other cryptocurrency networks including Bit-
coin as well as the underlying Ethereum network
itself. SMARTPOOL relies on the Ethereum’s con-
sensus protocol to agree on the state of the pool.
The security of SMARTPOOL depends exclusively
on the underlying network (i.e. Ethereum) which
runs smart contracts, not on how many users adopt
the pool.
• SMARTPOOL’s efficiency comes from allowing

miners to claim their shares in batches, e.g. one
transaction to the SMARTPOOL contract can claim,
say, 1 million shares. Furthermore, miners do not
have to submit data of all shares but only a few for
verification purposes, hence the transaction fee per
share is negligible. As a result, the number of trans-
actions required to send to SMARTPOOL is several
orders of magnitude less than the number of shares
(i.e. the number of messages in P2POOL).
• We propose a simple but powerful probabilistic ver-

ification of submissions from miners. Our mech-
anism, aided by a new and efficient Merkle-tree
based commitment scheme, guarantees the same av-
erage outcome as running a full verification for each
submission by enforcing a penalty function to disin-
centivize cheating. Our mechanism detects miners
submitting duplicated shares or resubmitting shares
in different batched claims. As a result, we guar-
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antee fairness in that miners receive their expected
reward based on their contributions even when other
dishonest miners submit invalid shares.
• SMARTPOOL forces the miner to commit the right

set of beneficiary addresses in the share before min-
ing, so that it cannot be changed after a solution
is found. This commitment prevents share theft,
wherein a network participant tries to use someone
else’s solutions to pay itself.
• For the case of running an external SMARTPOOL-

based Bitcoin mining pool on top of Ethereum,
SMARTPOOL leverages the Bitcoin coinbase

transaction to guarantee that miners can mine di-
rectly in their target currency (i.e. Bitcoin) without
trusting a third party to proxy the payment (e.g. be-
tween Ethereum and Bitcoin). Nevertheless, miners
still need to acquire Ether to pay for the gas when
interacting with the SMARTPOOL smart contract.
Such costs are less than 1% of miners’ reward as
we show in our experiments with a deployment in
Ethereum testnet. Indeed SMARTPOOL operates at
lower cost than today’s centralized pools.

3.2 Overview of SMARTPOOL

SMARTPOOL is a smart contract which implements a de-
centralized mining pool for Ethereum and runs on the
Ethereum network. SMARTPOOL maintains two main
lists in its contract state — a claim list claimList and
a verified claim list verClaimList. When a miner sub-
mits a set of shares as claim for the current Ethereum
block, it is added to the claimList. This step acts as a
cryptographic commitment to the set of shares claimed
to be found by the miner. Each claim specifies the num-
ber of shares the miner claims to have found, and it has
a particular structure that aids verification in a subse-
quent step. SMARTPOOL then proceeds to verify the
validity of the claim, and once verified, it moves it to
the verClaimList. Claim verification and payments for
verified claims happen atomically in a single Ethereum
transaction. Each claim allows miners to submit a batch
of (say, 1 million) shares. Submitted claims need to in-
clude sufficient meta-data for verification purposes. Dur-
ing the first step of mining the shares, if a miner finds
a valid block in the target cryptocurrency, it can directly
submit the found block to the target cyrptocurrency net-
work with the SMARTPOOL address as the beneficiary.
Thus, miners receive payouts for their shares one or more
blocks after SMARTPOOL receives reward from the tar-
get network; and, the mechanism ensures that the cryp-
tographic commitment strictly preceeds the verification
step (the cryptographic reveal phase).

In Section 3.4 we will discuss our verification pro-
tocol, a key contribution of this work which enables

Field Size
(bytes) Name Data type

4 number uint
32 parent hash uint
32 TRIEHASH(TX list) uint
20 coinbase address address
32 state root uint
32 extra data char[32]
8 timestamp uint
8 difficulty uint
8 nonce uint

Table 1: Some important fields of a block header in Ethereum.
“coinbase address” is the address that receives the block re-
ward, while “extra data” allows miners to include any data
(upto 32 byes) to the block header.

efficiency. The goal of the verification process is to
prevent miners from both submitting invalid shares and
over-claiming the number of shares they have found.
SMARTPOOL pays claimants proportional to the number
of shares claimed, if the verification succeeds, and other-
wise nothing. The key guarantee here is that of fairness
— SMARTPOOL does not advantage miners who cheat
by claiming invalid or duplicate shares. The expected
payoff from cheating is the same (or worse) as honestly
reporting shares.

In order to join the pool, miners only need to prepare
a correct block template. SMARTPOOL maintains the
verClaimList array in the contract which records the
contributed shares by different miners to date. To enable
efficient verification checks, SMARTPOOL forces miners
to search for blocks with a particular structure and dic-
tates a particular template for claim submissions, which
we discuss in Section 3.3. Unlike P2POOL, SMART-
POOL miners do not have to run an additional consensus
protocol to agree on the list state.

3.3 Claim Submissions

Miners can submit a large batch of shares in a single
claim. To permit this, SMARTPOOL defines a Claim
structure which consists of a few pieces of data. First,
the miner cryptographically commits to the set of shares
he is claiming. The cryptographic commitment goes via
a specific data structure we call an augmented Merkle
tree, as discussed in Section 3.5. The Merkle root of this
data structure is a single cryptographic hash representing
all the shares claimed and is included in the Claim as a
field called ShareAugMT.

After a miner claims several shares in a batch, SMART-
POOL requires the miner to submit proofs to demon-
strate that the shares included in the claim are valid. For
each claimed share being examined, SMARTPOOL de-
fines a ShareProof structure to help validate the share.
First, SMARTPOOL requires a Merkle proof, denoted as
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AugMkProof, to attest that the share has been commit-
ted to ShareAugMT. Furthermore, SMARTPOOL ensures
that if a miner finds a share that is a valid Ethereum
block, then the corresponding block reward is distributed
among the pool members. In an Ethereum block, there
is a special field called “coinbase address” which speci-
fies the address that receives the block reward. A share
in SMARTPOOL is valid only if the miner uses pool’s ad-
dress as the “coinbase address.”

It is straightforward to see how SMARTPOOL’s use of
cryptographic commitments prevents certain timing vul-
nerabilities. SMARTPOOL asks the miners to fix their
coinbase address before starting to find shares. Once a
share is found, it is not possible to change or eliminate
the coinbase address. SMARTPOOL also asks miners to
put their beneficiary address in the “extra data” field, so
SMARTPOOL can extract the address to credit the share
to. Although miners may use different addresses to sub-
mit their claims to the contract, SMARTPOOL credits the
share to only one account by fetching the beneficial ad-
dress from the “extra data” field. This prevents miners
from claiming the same share to different Ethereum ad-
dresses (or accounts), forcing a one-to-one mapping be-
tween shares found and addresses credited for them. If
a network attacker steals someone else’s share, it can-
not pay itself since the coinbase transaction has already
committed to a payee.

3.4 Batching & Probabilistic Verification
SMARTPOOL processes share claims efficiently. Min-
ers can claim multiple shares to SMARTPOOL in a single
submission. Each Claim includes less than one hundred
bytes consisting of a cryptographic commitment for the
shares, in a field called ShareAugMT. This cryptographic
commitment forces the miner to commit to a set of shares
before including them in the claim. Ideally, before ac-
cepting any claim of n shares submitted by the miner, we
want to verify that

(i) all shares submitted are valid;
(ii) no share is repeated twice in a claim;

(iii) each share appears in at most one claim.

Probabilistic verification. For efficiency, SMARTPOOL
uses a simple but powerful observation: if we probabilis-
tically verify the claims of a miner, and pay only if no
cheating is detected, then expected payoffs of cheating
miners are the same or less than those of honest miners.
In effect, this observation reduces the effort of verifying
millions of shares down to verifying one or two!

We provide a way to sample shares to verify, outline
a detailed procedure for checking validity in Section 3.5,
and a full proof in Section 4. Here, we explain this ob-
servation with an example, since it may appear counter-
intuitive at first. Let us consider a case where cheating

miner finds 500 valid shares but claims that he has found
1000 valid shares to SMARTPOOL. If SMARTPOOL were
able to randomly sample one share from the miner’s
committed set, and verify its validity, then the odds of
having detected the cheating is 500/1000 (or 1/2). If the
miner is caught cheating, he is paid nothing; if he gets
lucky without being detected, he gets rewarded for 1000
shares. Note that the expected payoff for such a miner is
still 500, computed as (0.5 ·1000+0.5 ·0) = 500, which
is the same as that of an honest miner that claimed the
right amount of valid shares. The argument extends eas-
ily to varying amounts of cheating; if the cheater wishes
to claim 1,500 shares, he is detected with with probabil-
ity 2/3 and stands to get nothing. The higher his claim
away from the true value of found shares, the lower is the
chance of a successful payout. By sampling k ≥ 1 times,
SMARTPOOL can reduce the probability of a cheater re-
maining undetected exponentially small in k, as we show
in Section 4.

Searching for shares. To enable probabilistic verifi-
cation, SMARTPOOL prescribes a procedure for mining
shares. Each SMARTPOOL miner is expected to search
for shares in a monotonic order, starting from a distinct
value that it commits to. Specifically, when a miner
claims shares S = {s1,s2, . . . ,sn}, SMARTPOOL extracts
a unique counter from each share, e.g., taking the first k
(say 20) bits, and requires that the counters of all si ∈ S
to be strictly increasing. Each time a miner finds a valid
nonce that yields a valid share, he increases the counter
by at least 1 and searches for the next share. When the
miner claims for the set S, its submitted elements must be
lexicographically ordered by counter values. The miner
commits the latest counter in his Claim to this set S,
which has at most one share for each counter value. This
eliminates any repeats in claimed shares in one claim,
and across claims by one miner. In SMARTPOOL im-
plementation as an Ethereum contract, as discussed in
Section 3.5, we use the share’s timestamp and the used
nonce to act as the counter value of a share.

SMARTPOOL guarantees that miners produce distinct
shares by providing a unique value in the “extra data”
field in each miner’s share template. This ensures that
miners search in distinct sub-spaces of the search space.

Checking Validity of Shares. SMARTPOOL checks
that miners have followed the prescribed mining proce-
dure by randomly sampling a share from each submitted
Claim along with a ShareProof (as described in Sec-
tion 3.3). SMARTPOOL validates the following:

(i) the hash of the share meets the difficulty criterion;
(ii) the share is constructed correctly, i.e., uses the

SMARTPOOL’s address as the beneficiary address
of the block reward.

(iii) the share correctly satisfies the proof-of-work
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(PoW) solution constraints (e.g. the use of prede-
termined 1GB dataset mandated by the Ethereum
PoW scheme)

The checks for (i) and (ii) are straightforward. The
check for (iii) is to guarantee that miners actually have
and use the data cache when they generate the shares.
This 1GB of data cache is introduced in Ethereum to
make its PoW ASIC-resistant. Thus, skipping checking
(iii) would allow rational miners to easily mine a lot of
invalid shares and still get paid from SMARTPOOL. It
is not straightforward to efficiently check (iii) inside a
smart contract. Indeed a naı̈ve solution would require a
massive amount of gas and hence invoke enormous trans-
action fees. We discuss implementation tricks on how to
check (iii) in Section 6.1.1.

It remains to discuss (a) how miners cryptographically
commit to a batched set of shares in a claim, (b) how
SMARTPOOL verifies that the committed set has mono-
tonically increasing counters, and (c) how shares are
sampled. For (a) and (b), one can think of using a stan-
dard Merkle tree on all the claimed share set to generate
the cryptographic commitment. However, in a standard
Merkle tree, verifying the inclusion of a share is efficient,
but checking the ordering of the set elements is not effi-
cient. In SMARTPOOL, we devise a new data structure
called augmented Merkle tree to help us verify inclusion
and ordering of shares efficiently.

3.5 Detailed Constructions
In this section, we discuss an efficient verification
scheme using probabilistic share sampling and a simple
penalty function that penalizes cheaters. The description
here takes an Ethereum pool as a target, but the same
data structure works for other PoW-based cryptocurrency
such as Bitcoin as we discuss in Section 5.
Augmented Merkle tree. Recall that a Merkle tree is
a binary tree in which each node is the hash of the con-
catenation of its children nodes. In general, the leaves
of a Merkle tree will collectively contain some data of
interest, and the root is a single hash value which acts
as a certificate commitment for the leaf values in the fol-
lowing sense. If one knows only the root of a Merkle
tree and wants to confirm that some data x sits at one of
the leaves, then holder of the original data can provide
a “Merkle path” from the root to the leaf containing x
together with the children of each node traversed in the
Merkle tree. Such a path is difficult to fake because one
needs to know the children’s preimages for each hash in
the path, so with high probability the data holder will
supply a correct path if and only if x actually sits at one
of the leaves.

For the purposes of submitting shares in SMART-
POOL, we not only want to ensure that shares exist in

the batch list but also that there are no repeats and order-
ing of the counters is correct. We therefore introduce an
augmented Merkle tree structure which we use to guard
against duplicates in the leaves.

Definition 1 (Augmented Merkle tree). Let ctr be
a one-to-one function that maps shares to integers.
An augmented Merkle tree for a set of objects S =
{s1,s2, . . . ,sn} is a tree whose nodes x have the form
(min(x),hash(x),max(x)) where:
(I) min(x) is the minimum of the children’s min (or

ctr(si), if x is a leaf corresponding to the object si),
(II) hash(x) is the cryptographic hash of the concatena-

tion of the children nodes (or hash(si) if x is a leaf
corresponding to the object si), and

(III) max(x) is the maximum of the children’s max (or
ctr(si), if x is a leaf corresponding to the object si).

An augmented Merkle tree is called sorted if all of its
leaves occur in strictly increasing order from left to right
with respect to its counter function.

SMARTPOOL expects claims of submitted shares to be
monotonically ordered by their counters. Thus, one can
think of each share si to have a “timestamp” given by
its ctr(x), since integer-valued counters can be naturally
ordered (ascending or descending). For implementation
in Ethereum, we can use the block timestamp and an the
nonce to serve as the counter. In Appendix 10.2, we dis-
cuss alternative candidates for the ordering function ctr
with backward compatibility to serve Bitcoin mining.

Figure 3 gives an example of an augmented Merkle
tree based on four submitted shares with timestamps as
1,2,3,4 respectively. To prove that the share c has been
committed, a miner has to submit two nodes d and e to
SMARTPOOL. SMARTPOOL can reconstruct other nodes
on the path from c to the root (i.e. b and a sequentially)
and accepts the proof if the computed root is the same
as the committed one. The proof for one share, thus,
in a Merkle tree of height h will contain h hashes. The
algorithm to check the validity of a proof for a valid path
in an augmented Merkle is in Algorithm 1.

Batch submission with augmented Merkle trees. Af-
ter collecting a list of shares, the miner locally constructs
an augmented Merkle tree for all the shares in the list. It
then submits the data of the root node of the tree along
with a number indicating how many shares it finds to
SMARTPOOL. For example, the miner in Figure 3 sub-
mits the node a as the cryptographic commitment, which
has min and max as 1 and 4 respectively. We use this
committed data to i) verify that the sampled shares are
found before the miner submits the claim; ii) efficiently
check whether a share is duplicated in a claim. Verify-
ing i) is straightforward as mentioned before. To ver-
ify ii), we observe that any duplicated shares in a claim
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Algorithm 1 Algorithm to verify the validity of one path
in a augmented Merkle tree
1: procedure VALIDATENODEINPATH(x)
2: Check if x is a leaf :
3: if isALeaf(x) then
4: if !(x.min == x.max == x.ctr) or !isValidShare(x) then
5: return false
6: end if
7: else
8: left← x.leftChild
9: right← x.rightChild

10: if !isHashValid(x,x.hash) then
11: return false
12: end if
13: if (!(x.min < x.max) or !(left.min == x.min)
14: or !(right.max == x.max)
15: or !(left.max < right.min)) then
16: return false
17: end if
18: end if
19:
20: Check if x is the root:
21: if isRoot(x) then
22: return true
23: else
24: return ValidateNodeInPath(x.parent)
25: end if
26: end procedure

a = [1, hash(b, e), 4]

b=[1, hash(c, d), 2]

c=[1, s1, 1] d=[2, s2, 2]

e=[3, hash(f, g), 4]

f=[3, s3, 3] g=[4, s4, 4]
Figure 3: A sorted augmented Merkle tree for a list of shares
(s1 to s4) with timestamp values from 1 to 4.

will yield a sorting error in at least one path of the aug-
mented Merkle tree. Thus, by sampling the tree in a con-
stant number of leaves and checking their corresponding
paths, with high probability we will detect a sorting error
in the augmented Merkle tree if there is one.

Prevent over-claiming shares across claims. Our aug-
mented Merkle tree allows us to detect if miners over
claim shares or submit invalid shares in a claim. How-
ever, it does not help guarantee that miners do not sub-
mit the same shares in two different claims, i.e. over-
claiming shares across claims. We prevent this prob-
lem by tracking counters of the shares in every claim
and randomizing the counter start scheme for each claim.
For example, we can use the the pair (block-timestamp,
nonce) as a counter in an Ethereum block. We observe
that, for a single miner, the counters for each claim are
distinct because of the nonce. At the same time, times-
tamps monotonically order shares across claims, since
the block timestamp monotonically increases over time.

Thus for any two distinct claims, the maximum share
counter among an earlier claim is always smaller than
the minimum counter of the shares in a later one. This
observation enables a simple duplication check on the
shares submitted in two different claims. Specifically,
we require miners to submit their claims in chronolog-
ically increasing order of timestamp values (which are
prefixes in the counter values). We use an additional vari-
able last max in our smart contract to keep track of the
maximum counter (i.e. max value of the root node in
the augmented Merkle tree) from the last claim. We only
accept a new claim if the min value of the root node is
greater than last max, and update last max properly if
the new claim is valid.

Penalty scheme. Miners are rewarded according to the
amount of shares that they submitted to the pool. In cen-
tralized pools, the pool manager is able to check every
share submitted by miners, thus miners cannot cheat. In
SMARTPOOL, since we use probabilistic verification, we
introduce a penalty scheme that penalizes detected cheat-
ing, independent of the reward distribution scheme used.
The penalty scheme in Definition 2 is simple and suffices
to disincentivize cheating, assuming rational miners.

Definition 2 (Penalty Scheme). In SMARTPOOL, the
penalty scheme for a claim of n shares is as follow:{

Pay all n shares if invalid share was not detected;
Pay 0 otherwise.

In Section 4, we prove that our penalty scheme dis-
incentivizes rational miners from submitting wrong or
duplicated shares. Our detailed analysis shows that for
k ≥ 1 samples, honesty maximizes payout.

Randomly sampling shares. In order to randomly sam-
ple, we need a source of randomness. A practical way
to obtain such a random seed to use the hash of a fu-
ture block. To reduce the amount of bias that any adver-
sary can introduce to the block hash, one can take several
samples based on several consecutive block hashes. For
example, let us consider a scenario where a miner sub-
mits a claim of 1 million shares at block 1, and we wish
to sample 2 random shares for our probabilistic verifica-
tion. The miner is required to submit the data of 2 shares
which are corresponding to hashes of blocks 1 and 2 (e.g.
the hash values modulo 106) to SMARTPOOL for verifi-
cation. If the miner fails to submit any of these deter-
mined shares, they will not be able to claim the reward.

Putting everything together, we summarize the entire
SMARTPOOL protocol in Figure 4 of the Appendix. Due
to the space constraints, we address other technical ques-
tions in the full version of the paper [23].
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4 Analysis

We analyze the security that SMARTPOOL provides
through probabilistic verification and the penalty scheme
in Definition 2.

We begin by informally reviewing the properties of
our Merkle tree test and then formally establishing its
correctness in Corollary 9 below. The intuition is if a
claim has n valid shares and m invalid or duplicated ones,
by randomly sampling a share from the claim, we can de-
tect invalid shares with probability m/(n+m). Suppose
that a claim submitted by the adversary has n valid shares
and m invalid or duplicated ones. If our test procedure is
correct, the probability that our test on k independently
chosen random samples fails to catch the cheating is at
most (1− m

n+m )
k. In this case, the cheating miner gets

paid for n+m shares, which is higher than reward for
being honest (i.e. n shares). Corollary 9 shows that for
all choices of m, for k≥ 1, the adversary’s advantage (ex-
pected payoff) from cheating does not exceed the guar-
anteed payoff he would obtain from honestly submitting
shares. Further, it is easy to see that over all choices of m
the attacker’s advantage is bounded by a negligible func-
tion in k (the number of samples checked).

Note that we establish that the adversary’s advantage
is minimal using a simple penalty function presented in
Definition 2. Our probabilistic verification with penalties
provide a basis to determine which shares to pay; how-
ever, any rewarding scheme can determine how to pay
for the valid shares (e.g. using PPS, PPLNS, and so on).

Finally, we consider other possible attacker manipula-
tions. One further security concern, in particular, merits
analysis. The seed for our sampling is based on a block
hash chosen by miners. We show that this source of ran-
domness has a (low) bias, assuming that at least 50% of
the mining network is honest. However, we establish in
Theorem 10 that by sampling k ≥ 2 times, the expected
reward from honest submissions majorizes the expected
payoff advantage from biased sampling.

4.1 Analysis of Expected Payoffs

We first analyze the scenario where the adversary can-
not drop Ethereum blocks to introduce bias on sampling
random seed, so the sample blocks in our probabilistic
scheme are randomly selected. Furthermore, we assume
that the adversary does not attempt to manipulate the ex-
pected format of the submitted data aside from possi-
bly submitting duplicate or invalid shares. We will relax
these conditions in Section 4.2.

It suffices for the SMARTPOOL contract to check a
single, randomly chosen path through a submitted aug-
mented Merkle tree in order to pay fairly for shares, on
average (Corollary 9). If all submitted shares are valid

and there are no duplicates, then SMARTPOOL pays for
all shares with probability 1 (Theorem 7). The following
facts will be useful.

Lemma 3. For any node x in a augmented Merkle tree,

(I) min(x) is the minimum of all nodes below x, and

(II) max(x) is the maximum of all nodes below x.

Proof. We will prove (I), and (II) follows by symmetry.
Let y be any node below x, and trace a path from x to
y in the given augmented Merkle tree. The min of x’s
immediate children along this path is, by definition of
augmented Merkle tree, no greater than min(x). Simi-
larly for the next children down, and so on, down to y.
Therefore min(x)≤ y.

Proposition 4. Let A be an augmented Merkle tree. The
following are equivalent:

(I) A is sorted (see Definition 1).

(II) For every node x, the max of x’s left child is less
than the min of x’s right child.

Proof. We argue by induction. Assume (I), and further
assume than (II) holds restricted to the first n levels above
the leaves (the leaves are at the ground, i.e. zero level).
Consider a node x at depth n+ 1. By the inductive hy-
pothesis, the max of x’s left child is less than the min of
the next right child down, which is less than the min of
the next right child down and so on, all the way down
to some leaf y. By a symmetrical argument, the min of
x’s left child is greater than some leaf z which happens
to be to the right of y. Since A is sorted, it follows that
min(x)< y < z <max(x).

Next assume (II), and let y and z be any two leaves.
Let x be the lowest node (farthest from the root) which is
an ancestor of both y and z. By Lemma 3, y is less than or
equal to the max of x’s left child, and z is is greater than
or equal to the min of x’s right child. Now y < z follows
from the assumption, hence A is sorted.

Definition 5. A node in an augmented Merkle tree which
satisfies condition (II) of Proposition 4 is called valid.
Furthermore, we say that a path from a root to a leaf is
valid if all its constituent nodes are valid. A path which
is not valid is invalid.

The adversary can submit any arbitrary tree with the
syntactic structure of an augmented Merkle tree, but not
satisfying the constraint outlined in Definition 1. Let us
call such a tree which syntactically has the structure of
a augmented Merkle tree, but not necessarily satisfy the
Definition 1 simply as a Merkle tree. A submitted Merkle
tree can have any number of invalid or duplicate shares
as well as ill-constructed internal nodes. Intuitively, an
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Merkle tree with invalid nodes will have sorting errors,
which are defined below, and include both duplicates as
well as decreasing share counters.

Definition 6. An element x in an array is out of order if
there exists a corresponding witness, namely an element
to the left of x which is greater than or equal to x, or an
element to the right of x which is less than or equal to x.
A leaf in a Merkle tree contains a sorting error if its label
value is out of order when viewing the leaves’ labels as
an array.

Now, we will show that any submitted Merkle tree has
at least as many invalid paths as the sorting errors it has.

Theorem 7. Let A be a Merkle tree. If A is sorted, then
all paths in A are valid. If A is not sorted, then every leaf
containing a sorting error lies on an invalid path.

Proof. If A is sorted then all its nodes are valid by Propo-
sition 4, hence all paths in A are valid. Now suppose A
is not sorted, and consider the highest node x in the tree
(farthest from the root) which is is an ancestor of two dis-
tinct leaves y and z where y is left of z but z≤ y. Now x is
not valid, because by Lemma 3 the max of x’s left child is
at least y and the min of x’s right child is no more than z.
It follows that neither the path from root to y nor the path
from root to z is valid because both pass through x.

The theorem above shows that miners who submit
sorted augmented Merkle trees will receive their proper
reward. Algorithm 1 checks the validity of a given path
in a tree, and we omit a proof of its correctness here
leaving it to inspection. It remains to demonstrate that
sampling and checking a single path in the augmented
Merkle tree suffices to discourage miners from submit-
ting duplicate shares.

Corollary 8. Every Merkle tree has at least as many in-
valid paths as sorting errors among the leaves. In par-
ticular, there are at least as many invalid paths as there
are duplicate values among the leaves.

Proof. Theorem 7 gives an injection from sorting errors
to invalid paths. Since each duplicate and out of order
leaf yields a sorting error, the result follows.

Finally, we calculate the adversary’s expected reward.

Corollary 9. Under the payment scheme in Definition 2,
if SMARTPOOL checks one random path in the aug-
mented Merkle tree of a claim, the expected reward when
submit invalid or duplicated shares is the same as the
expected reward when submit only valid shares.

Proof. Suppose that in a claim of an adversary, there are
k shares which are either invalid or duplicated. Since
we randomly pick a path, by Corollary 8, we sample an

invalid share with probability k/n and a valid share with
probability (n−k)/n. Hence the expected profit from the
payment scheme in Definition 2 is(

k
n

)
·0+

(
n− k

n

)
·n = n− k.

One expects to obtain this same profit by submitting only
the n− k valid shares. Thus, on average, it is not prof-
itable to submit invalid shares to SMARTPOOL if we em-
ploy the payment scheme in Definition 2 and check one
random path from the augmented Merkle tree.

In summary, SMARTPOOL can efficiently probabilis-
tically check that an augmented Merkle tree is sorted.

4.2 Discussion of Attacker Strategies
In this section, for clarity, we discuss ways in which an
adversary might deviate from intended claim submission
behavior and argue that these deviations do not obtain
him greater rewards.

4.2.1 Rearrangements

The adversary cannot increase his expected profits by
permuting the leaves of the Merkle tree. Observe that,
given a list of integers L which may include repeats,
a non-decreasing arrangement of L’s members in the
leaves of a Merkle tree minimizes sorting errors. By
Theorem 7, every duplicate yields a sorting error regard-
less of permutation. Furthermore, the number of sorting
errors that occur when the leaves are in non-decreasing
order is exactly the number of duplicates. Hence a ra-
tional miner has no incentive to deviate from this non-
decreasing configuration.

4.2.2 Bogus entries in augmented Merkle tree

Falsifying Merkle tree nodes does not decrease the num-
ber of invalid paths. Indeed, note that increasing the
range for a given node can only increase the number of
invalid paths, so we need only consider the case where
the cheater makes the range smaller. If the range is made
smaller so as to exclude the value of a leaf above that
doesn’t have a sorting error, then a new invalid path was
introduced by cheating. If the range is made smaller so
as to exclude a sorting error, then the path leading to that
sorting error is still invalid, and therefore injection from
Theorem 7 still applies.

4.3 Analysis of Bias In Seed Selection
We next consider the scenario in which the the adversary
is able to drop Ethereum blocks to bias the random seed.
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Thus, the sample blocks in our probabilistic verification
are not randomly selected, i.e. the adversary can drop the
blocks which sample invalid shares from his claim. We
show that, even in the extreme case where the adversary
controls up to 50% of Ethereum mining power (i.e. can
drop 50% of the blocks), it suffices to check only two
randomly chosen paths through a submitted augmented
Merkle tree in order to discourage the adversary from
cheating.

Theorem 10. If an adversary controls less than 50% of
Ethereum hash power, then it suffices to sample only two
paths of the augmented Merkle tree based on two con-
secutive blocks to pay miners fairly, on average.

Proof. We call an Ethereum block a good block for the
adversary if its hash samples a valid share in the adver-
sary’s claim. Suppose that in the adversary’s claim, γ

fraction of the shares are invalid (0 ≤ γ ≤ 1). By Theo-
rem 7, at least γ fraction of the paths in the corresponding
augmented Merkle tree are invalid. Hence, on average
1− γ fraction of the blocks are good blocks, since each
block hash is a random number. The probability that the
adversary’s claim is still valid after two samples is the
probability that two consecutive blocks in Ethereum are
good blocks. We aim to compute this latter probability.

Let us assume that the choices of the two sample
shares are drawn based on the hash of a single block
hash, and that attacker controls p fraction of the net-
work’s mining power. The attacker’s strategy is to suc-
cessively drop blocks until he finds one that favorably
samples his claim submission. We estimate his prob-
ability of success. The probability that he succeeds in
exactly one round, regardless of who mined the block,
is (1 − γ)2, that is, if the samples drawn are favor-
able. The chances that the attacker wins in exactly two
rounds is the probability that the first block gave un-
favorable sampling, but the attacker managed to mine
it, and the next sample was favorable. The probabil-
ity that all three of these independent events occur is
[1− (1− γ)2] · p · (1− γ)2. In general, the chance that
the attacker succeeds in exactly k rounds is

f (k) =
(
1− (1− γ)2)k−1 · pk−1 · (1− γ)2.

Summing over all possible game lengths k, we find that
the chance that the attacker wins is exactly

∞

∑
k=1

f (k) = (1− γ)2 ·
∞

∑
k=0

[(
1− (1− γ)2) · p]k .

Since the right-hand side is a geometric series in which
the magnitude of the common ratio is less than 1, we
obtain

∞

∑
k=1

f (k) =
1

1− (1− (1− γ)2) · p
=

1
1+(γ2−2γ)p

.

The block withholding strategy is profitable if and only
if this probability exceeds the attacker’s chances of suc-
cess without block withholding, namely 1− γ . That is,
the value p for which block withholding is advantageous
satisfies

1
1+(γ2−2γ)p

> 1− γ. (2)

We complete the analysis by inspecting the cases where
p is greater than or less than the threshold 1/(2γ−γ2). In
the first case it follows that p≥ 1/2, since this threshold
is always at least 1/2 when 0 < γ ≤ 1, and if γ = 0 then
the attacker has no incentive for dropping blocks. In the
second case, the left hand side of (2) is negative, and so
the inequality in (2) fails in this case.

5 Supporting Other Cryptocurrencies

One can use SMARTPOOL’s design to build decentral-
ized mining pools for other cryptocurrencies. For clarity
of exposition, we fix Bitcoin as the target in this section.
The overall protocol is still similar to what have been dis-
cussed in previous sections, but here we present the detail
changes to make SMARTPOOL work with Bitcoin while
the contract is running on the Ethereum blockchain.

Generating a block template. In Ethereum, it is
straightforward to to generate a valid block template, i.e.,
just by using the pool’s address in the “coinbase address.”
It is tricker in Bitcoin since the block header is much sim-
pler, (see Table 3 in Appendix 10.2) and the pool oper-
ates in another cryptocurrency (i.e., Ethereum). To gen-
erate a share that belongs to the pool, we leverage a spe-
cial transaction in Bitcoin called a “coinbase transaction”
whose outputs consist of a list of Bitcoin addresses paid
and along with their payment amounts.

Specifically, in order to generate valid shares, a miner
queries the verClaimList in the contract which records
the contributed shares by different miners to date. The
miner then prepares the coinbase transaction such that
the first output pays to the miner who mined the block;
the latter outputs pay to other miners included in the
verClaimList. The sum of all outputs in the coinbase
transaction equals the block reward. Thus, if a miner
finds a fraction f of the shares in SMARTPOOL, he gets
paid proportional to f in the reward that SMARTPOOL’s
miners get every time they mine a valid block.

Verifying a claim. As before, we use the probabilis-
tic approach which samples random shares from a claim.
However, in SMARTPOOL, verifying a Bitcoin share is
slightly different from verifying an Ethereum share. Typ-
ically, a Bitcoin share is valid if the miner can demon-
strate that the share has a valid coinbase transaction (la-
beled as the field Coinbase) in their ShareProof paid
out to the pool members. The miner cannot selectively
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choose to omit this transaction; it is required to be the
first transaction in the list of transactions (called TxList)
on which the miner has searched for shares. The claimant
must submit a Merkle root as commitment over the set
TxList he has selected, and a Merkle proof (labeled
CoinProof) that it contains the coinbase transaction.
Second, the ShareProof contains an indication of the
verClaimList based on which the payouts to miners
were determined by the claimant. This last field is called
a Snapshot to allow discretizing payouts over an ever-
growing verClaimList. This is used to check the cor-
rectness of the coinbase transaction, i.e. if all the out-
puts pay to miners correctly. Figure 4 in the Appendix
reports on all data fields of our Claim and ShareProof
structures.

6 Implementation and Evaluation

We implemented SMARTPOOL and deployed it on
Ethereum and Ethereum classic (main) networks. In this
section, we describe the implementation (along with a
Bitcoin pool implementation) and report actual fees from
real mining that was done with SMARTPOOL.

6.1 Implementation

We implement SMARTPOOL protocol (as described in
Figure 4) in an Ethereum smart contract and a miner soft-
ware (client) that interacts with the contract according
to our protocol [12]. Our smart contract implementation
consists of two main modules, namely, claim submission,
claim verification.

Claim submission. This module allows miners to sub-
mit their shares in batch. A miner submits a batch of
shares by calling submitClaim() with the parameters:
(i) the root of the corresponding augmented Merkle
tree for the shares; (ii) number of shares in the tree;
(iii) counter interval of the shares. A submission is ac-
cepted only if the smallest counter is greater than the
current biggest counter.

Claim verification. A miner submits a proof for
the validity of his last submitted claim by calling
verifyClaim() with a branch in the augmented Merkle
tree that corresponds to the next block hash. We allow
different claims to include different amounts of shares,
i.e. NShare can vary between claims. If the verification
fails, then the claim is discarded, and the miner will not
be able to submit all the shares (or a subset of them) again
(forced by validating the counter in submitClaim()). If
the verification is successful, then the claim is added to
the to the verClaimList list.

6.1.1 Verifying Ethereum PoW

The PoW function that Ethereum is using is Ethash [16].
Ethash is not a native opcode nor a pre-compiled con-
tract in the Ethereum virtual machine (EVM). Hence, to
verify that a block header satisfies the required difficulty
we have to explicitly implement Ethash function. Ethash
was designed to be ASIC resistant, which is achieved by
forcing miners to extract 64 values from pseudo-random
positions of a 1 GB dataset. Thus, to explicitly com-
pute Ethash, one would have to store 1 GB data in a
contract, which costs roughly 33,554 Ether (storing 32
bytes of data costs 50,000 gas). Moreover, the Ethereum
protocol dictates that the dataset is changed every four
days (on average). Hence, one would require a budget
of approximately $3,000,000 per day as of June 2017 to
maintain the dataset, which is impractical. Alternatively,
one could store a smaller subset of the seed elements and
calculate the values of the dataset on the fly. Unfortu-
nately, to extract values from the seed one would have
to compute several SHA3 512 calculations, which is not
a native opcode in the EVM, and would require massive
gas usage if queried many times.

Fortunately, for our purposes, we do not need to fully
compute Ethash. Instead it is enough to just verify the
result of an Ethash computation. Thus, we ask the miner
to submit along with every block header the 64 dataset
values that are used when computing its Ethash and a
witness for the correctness of the dataset elements. The
witness shows that the 64 values are from the correspond-
ing positions in the 1 GB dataset. Intuitively, to verify
the witness for dataset elements, the contract will keep
the Merkle-root of the dataset and a witness for a single
element is its Merkle-branch. Formally, the pool contract
holds the Merkle-roots of all the 1 GB datasets that are
applicable for the next 10 years. We note that the con-
tent of the dataset only depends on block number (i.e.,
the length of the chain). Hence, it is predictable and the
values of all future datasets are already known. Storing
the Merkle roots of one year dataset requires storing 122
Merkle hashes, and would cost only 0.122 Ether.

We note that technically, our approach does not pro-
vide a mathematical guarantee for the correct computa-
tion of Ethash. Instead it guarantees the correct compu-
tation provided that the public dataset roots stored on the
contract were correct. Hence, it is the miner’s respon-
sibility (and best interest) to verify the stored values on
the contract before joining the pool. As the verification
is purely algorithmic, no trust on the intentions of the
contract authors is required.

6.1.2 Coinbase Transactions in Bitcoin

Recall that the payment to the Bitcoin miners is done
via the coinbase transaction of a block. As per Figure 4,

USENIX Association 26th USENIX Security Symposium    1421



SMARTPOOL allows miners to fetch the verClaimList
and build the coinbase transaction locally. This ap-
proach, however, has a technical challenge regarding the
transaction size when we implement SMARTPOOL in the
current Ethereum network. Specifically, a single coin-
base transaction may have many outputs to pay to hun-
dreds or thousands of miners. As a result, the size of the
coinbase transaction could be in the order of 10KB (e.g.,
P2POOL’s coinbase transactions is of size 10KB [24]).
Hence, it is expensive to submit a coinbase transaction
of that size to an Ethereum contract. In SMARTPOOL
implementation we could not ask miners to construct the
coinbase transaction naively and submit as the input for
verifyClaim() function.

To address the challenge, we modify SMARTPOOL
protocol slightly. Instead of asking miners to construct
the coinbase transaction naively as in P2POOL, we ask
them to work on only a small part of it. Specifically,
we observe that we can fix the postfix of the coinbase
transaction by using the pay per share scheme. Recall
that the block reward consists of the block subsidy (12.5
Bitcoin) and the transaction fees. Thus, in our imple-
mentation, we pay the transaction fees to the miner who
finds the block. The remaining 12.5 Bitcoin (the block
subsidy) is paid to, say, the next 1 million shares in
verClaimList. This distribution is encoded in all the
latter outputs. Thus, we can fix all the outputs but the
first one in the coinbase transaction, since the next 1 mil-
lion shares in verClaimList are the same for all min-
ers. This allows us to maintain the postfix of the coinbase
transaction in SMARTPOOL and only ask miners to sub-
mit the prefix (the first output) when they verify a share.
Our approach significantly reduces both the gas fees paid
for verifyClaim() and also the amount of bandwidth
that miners have to send for verification.

Block submission. In SMARTPOOL-based pool for Bit-
coin, there exists the block submission module which al-
lows any user to submit a witness for a new valid block
in the Bitcoin blockchain so that SMARTPOOL can have
the latest state of the blockchain. If the block is mined
by miners in SMARTPOOL, SMARTPOOL updates the
verClaimList to remove the paid shares from the list.
This also reduces the amount of persistent storage re-
quired in the contract since we do not need to store all
verified claims in SMARTPOOL.

There are other technical subtleties in block submis-
sion and constructing coinbase transactions. We discuss
these in Appendix 10.2.

6.2 Experimental Results
We deployed SMARTPOOL on Ethereum [25] (and
Ethereum classic [26]) live networks and mined with
them with 30GH/s (4GH/s) hash power for 7 days (1

Function Gas Price % of reward
submitClaim() 79,903 0.000319612 0.01%
verifyClaim() 2,872,693 0.011490772 0.6%

Table 2: Ethereum fees of contract operations for Ethereum
pool. Prices are in Ether. We note that in verifyClaim() for
the Ethereum pool, 2.1M gas is spent on Ethash verification.

week). The pool successfully mined over 20 blocks [27]
(85 blocks [28]) in corresponding periods. In this sec-
tion we report the deployment cost of the contract and
the fees that our protocol entails.

For verifyClaim(), we measure the cost to check 1
sample. The cost to check multiple samples can be eas-
ily computed from the cost to check 1. The results are
presented in Tables 2.

The contract consists of over 1,300 lines of Solid-
ity code. The deployment of the contract consumed
4,351,573 gas (6.24 USD). The contract source code is
publicly available [29]. To reduce verification costs, we
have submitted 1024 Merkle nodes for each 1GB dataset,
namely, all the nodes in depth 10 of the Merkle tree. This
operation was done is 11 transactions, which consumed
in total around 6,000,000 gas (around 15 USD) [30]. We
emphasize that this operation is done only once every
30,000 Ethereum blocks, or roughly 5 days. We report
the evaluation of the claim submission and verification in
transactions [31,32]. In our report, a miner with 20 GH/s
submits a batch of shares every 3 hours. Every batch is
rewarded with around 1.8 Ether (630 USD), and entails
total gas fees of 0.011 Ether. Hence, the miner pays 0.6%
for the effective pool fees.

7 Related Work

A number of previous works have studied the problem
of addressing centralization in cryptocurrencies, and ad-
dressing flaws in pool mining protocols. We discuss
these here, and further discuss security of smart contract
applications of which SMARTPOOL is an instance.

P2POOL. The work which most directly relates to
SMARTPOOL is P2POOL [8]. As discussed in Sec-
tion 2.1, P2POOL consumes much more resources (both
computation and network bandwidth), and the variance
of reward is much higher than in centralized pools.
SMARTPOOL solves these problems in P2POOL by i)
relying on the smart contracts which are executed in a
decentralized manner; ii) using probabilistic verification
and a novel data structure to reduce verification costs
significantly; iii) applying simple penalty scheme to dis-
courage cheating miners. As a result, SMARTPOOL is
the first decentralized pooled mining protocol which has
low costs, guarantees low variance of reward to miners.
Further, SMARTPOOL is more secure than P2POOL since
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any miner who has more than 50% of the mining power
in P2POOL can fork and create a longer share-chain.
On the other hand, the adversary has to compromise the
Ethereum network to attack SMARTPOOL.

Pooled mining research. Several previous works have
analysed the security of pooled mining in Bitcoin [2, 4,
9–11]. In previous works [9–11], researchers study the
block withholding attack to mining pools and show that
the attack is profitable when conducted properly. In [2]
Rosenfeld et al. discussed (i) “pool hopping” in which
miners hop across different pools to exploit a weakness
of an old payoff scheme, and (ii) “lie in wait” attacks that
allows miner to strategically calculate the time to sub-
mit his blocks. These challenges also apply to SMART-
POOL when SMARTPOOL is used as a decentralized min-
ing pool in existing networks, and have specific payoff
schemes to reward miners as solutions. The design of
SMARTPOOL is agnostic to the payoff scheme used to
reward miners. Furthermore, if SMARTPOOL were to be
deployed natively in a cryptocurrency as the only mining
pool (see Appendix 10.1), these attacks no longer work.

In [13], Miller et al. study different puzzles and pro-
tocols which either make pooled mining impossible and/
or disincentivize it. Out work is different from [13] in
several aspects. First, we aim to provide an efficient and
practical decentralized pooled mining protocol so miners
have an option to move away from centralized mining
pools. Second, SMARTPOOL is compatible with current
Bitcoin and Ethereum networks as we do not require any
changes in the design of these cryptocurrencies. In [13],
the solutions are designed for new and future cryptocur-
rencies.

In [3, 4], the authors study the decentralization of the
Bitcoin network. Previous works have highlighted that
Bitcoin is not as decentralized as it was intended ini-
tially in terms of services, mining and protocol develop-
ment [3,33]. On the other hand, Bonneau et al. provided
an excellent survey on Bitcoin which also covered the
security concerns of pooled mining [4].

Smart contract applications. Previous works pro-
posed several applications which leveraged smart con-
tracts [34–36]. For example, in [35], Juels et al. study
how smart contracts support criminal activities, e.g.
money laundering, illicit marketplaces, and ransomware
due to the anonymity and the elimination of trust in the
platform. Such applications are built separately from the
underlying consensus protocol of the network. In this
work, we propose a new application of smart contract
that enhances the security of the underlying network by
supporting decentralized mining pools. Bugs in smart
contract implementations are a practical concern; we be-
live the use of bug-detection tools such as Oyente [17]
are useful to SMARTPOOL as well as other.

8 Conclusion
In this paper, we present a new protocol design for an
efficient decentralized mining pool in existing cryptocur-
rencies. Our protocol, namel SMARTPOOL, resolves the
centralized mining problem in Bitcoin and Ethereum by
enabling a platform where mining is fully decentralized,
yet miners still enjoy low variance in reward and better
security. Our experiments on Ethereum and Ethereum
Classic show that SMARTPOOL is efficient.
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10 Appendix

10.1 Applications

We discuss several applications that can be built based
on SMARTPOOL. One straightforward application is
to build decentralized mining pools for cryptocurren-
cies as we have established. Apart from requiring low
costs, guaranteeing low variance in rewards to miners
than the only related solution P2POOL, SMARTPOOL is
also more secure. Specifically, one must compromise the
entire Ethereum network (e.g. having more than 50%
of Ethereum network) in order to compromise SMART-
POOL. On the other hand, the adversary only needs to
acquire 51% of P2POOL’s mining power in order to build
the longest share-chain in P2POOL and rule out other
miners’ contributions.

The second application is a new cryptocurrency based
on SMARTPOOL in which mining is fully decentralized.
Typically, we enforce the consensus rules such that only
blocks generated by SMARTPOOL are accepted valid
blocks. One can easily build a SMARTPOOL-based cryp-
tocurrency by using our introduced solution and adding
the aforementioned consensus rule which dictates that
only SMARTPOOL can produce new valid blocks. Such
cryptocurrencies can offer several good properties to the
network that existing cryptocurrencies cannot. First,
mining is fully decentralized, yet miners still enjoy low
variance in reward. This improves the security of the
underlying network as a whole significantly. Second,
miners are not susceptible to several attacks targeting
to pooled mining. For example, in [9–11] the authors
demonstrate that if a malicious miner withholds blocks
from a victim pool and mines privately in other pool, the
miner can earn more profits from the loss of miners in
the victim pool. Such block withholding attack does not
work in SMARTPOOL-based cryptocurrencies since there
is only one pool in the network.
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Field Size
(bytes) Name Data type

4 version int32 t
32 prevBlock char[32]
32 TxMerkleRoot char[32]
4 timestamp uint32 t
4 bits uint32 t
4 nonce uint32 t

Table 3: Header of a Bitcoin block. This is also used as the
header for shares in pooled mining.

10.2 Implementation Subtleties for
SMARTPOOL-based Bitcoin pool

In this section we address two technical issues that arise
from the design of the protocol. The first issue is the
format of a witness for a new valid block, and the sec-
ond issue is how a miner should decide on his coinbase
transaction in the next share he mines.
Witness for a new valid block. Intuitively, a witness for
a new block is a block header (see Table 3) with suffi-
cient difficulty. However, in Bitcoin network (like in any
blockchain based network), some of the mined blocks
could be orphan, namely, they could be transmitted to the
network a short period before or after an uncle block (a
block that extends the a previous block but does not reach
the blockchain) was found. In this case the network will
eventually form a consensus over only one of the blocks,
and the other block(s) will become orphan (and will not
get any block reward from the network). In our proto-
col we must update the miners verClaimList list only
according to non-orphan blocks. For this purpose, as a
witness we ask for a chain of six blocks. While in the-
ory, even a chain of six blocks could become orphan, in
practice this never happens.
Deciding on the coinbase transaction of the next
share. In order for a share to be valid it must have a coin-
base transaction that corresponds to a verClaimList

list. However, the verClaimList list is updated by the
Ethereum contract. Hence, the contract is only aware of
the Ethereum timestamp at the time the list is updated.
On the other hand, the function verifyClaim() is sup-

posed to verify the coinbase transaction according to the
Bitcoin timestamp of the share. Hence SMARTPOOL
must synchronize Bitcoin and Ethereum time-stamps.
The synchronization is done by introducing a new time
metric, namely, the number of blocks SMARTPOOL has
found. With this new notion of timestamp, we imple-
ment the verClaimList list in such way that a list of
payment claims is maintained for every block number n.
The list of n corresponds to the payments that have to be
done when SMARTPOOL finds block number n. As new
blocks might be reported with some delay, a payment re-
quest for a bulk that is verified in time n is added to the
payment list of time n+20.

Given this implementation, the miner should construct
the coinbase transaction in time n in the following way:
As long as a new block is not found, the coinbase should
correspond to list n. Once a new block is added to Bit-
coin’s blockchain, the miner should immediately start
working on list n + 1 (which already exists, as it was
constructed at time n−19), even before the new block is
submitted to the contract. If the new block becomes or-
phan, the miner should switch back to list n. Otherwise,
after six blocks he should submit a witness for block n.

We note that in this approach the miner might do some
stale unrewarded work in case the new block ends as an
orphan block. However, such cases are also not rewarded
in standard pools.
Other candidates for counter. Careful readers may re-
alize that the timestamp field has only 4 bytes, thus we
will run out of values for the counter after 232 shares.
In SMARTPOOL, one can have several ways to imple-
ment the share’s counter. For example, one can embed
the counter inside the coinbase transaction of a share.
Specifically, Bitcoin allows users to insert 40 random
bytes in a transaction output after the OP RETURN op-
code 7. SMARTPOOL can force miners to store the
share’s counter in these 40 bytes, which can accommo-
date much more number of shares (i.e. 2320).

7https://en.bitcoin.it/wiki/OP RETURN
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Notations
• Let NSize,NSample denote the number of shares included in a claim and the number of random samples

SMARTPOOL will verify in each claim respectively.
• Let claimList[x] store all unverified claims submitted by the miner at address x.
• Let verClaimList[x][y] store all verified and unpaid claims submitted by the miner at address x at block y.
• Let maxCounter[x] store the maximum counter of the miner at address x.
• We denote d as the minimum difficulty of a share.

Data structures.
The Claim structure has the following fields.

1. the number NSize of claimed shares;
2. the ShareAugMT commitment of the set of claimed shares.

The ShareProof structure for a share si has the following fields.
• the header of the share si located at the i-th leaf in the augmented Merkle tree;
• the AugMkProof, attesting that si is committed to the ShareAugMT;

For SMARTPOOL-based Bitcoin pool, the following additional data fields are included in the ShareProof
• the Coinbase transaction;
• the CoinProof, attesting that the coinbase transaction is included in the TxList of si; and
• the Snapshot of verClaimList that the Coinbase is computed on.

Main executions in SMARTPOOL

• Accept a claim. Accept a claim C which has the Claim structure and includes NSize shares from a miner x.
Add C to claimList[x] and update maxCounter[x].

• Verify a claim. Receive a proof p which has ShareProof structure for a share si included in a claim C from
miner x. SMARTPOOL verifies the following.

1. if i is the supposed position that we want to sample based on the intended block hash;
2. if si’s hash is included in the claim C by verifying amkpsi

;
3. if si meets the minimum difficulty d;
4. if si’s counter is greater than the last maxCounter[x];
5. if the coinbase address is the pool contract’s address for Ethereum; or if Coinbase is included
in si based on CoinProof and if Coinbase is correctly constructed with respect to Snapshot of
verClaimList for Bitcoin.

We reject the claim C if any of the above checks fail. If everything is correct and we have verified NSample

from C , update verClaimList[x]. Otherwise, wait for more proofs from miner x.
• Get a new valid block (for Bitcoin’s pool only). If a new block is mined by SMARTPOOL, update
verClaimList.

• Request payment (for Ethereum’s pool only). When a miner requests his/ her payment, send the payment in
proportional to his/her shares in verClaimList. Update verClaimList when the payment is done.

For miners

• Construct block template. For Ethereum, simply use the pool contract’s address as the coinbase address. For
Bitcoin, fetch verClaimList from SMARTPOOL and build the correct coinbase transaction locally.

• Find valid shares. Simply search for valid nonce which yields valid shares.
• Submit a claim. If have found enough NSize shares, build an augmented Merkle tree and submit a claim C to

SMARTPOOL to claim these NSize shares.
• Submit proofs. Wait until C is accepted then construct and submit NSample proofs pi (i = 1,2, . . . ,NSample),

each follows the ShareProof structure, to SMARTPOOL.
Figure 4: Summary of how SMARTPOOL protocol works for both the pool and miners.
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