
This paper is included in the Proceedings of the 
26th USENIX Security Symposium
August 16–18, 2017 • Vancouver, BC, Canada

ISBN 978-1-931971-40-9

Open access to the Proceedings of the 
26th USENIX Security Symposium 

is sponsored by USENIX

Adaptive Android Kernel Live Patching
Yue Chen, Florida State University; Yulong Zhang, Baidu X-Lab; Zhi Wang, Florida State 

University; Liangzhao Xia, Chenfu Bao, and Tao Wei, Baidu X-Lab

https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/chen



Adaptive Android Kernel Live Patching

Yue Chen
Florida State University

Yulong Zhang
Baidu X-Lab

Zhi Wang
Florida State University

Liangzhao Xia
Baidu X-Lab

Chenfu Bao
Baidu X-Lab

Tao Wei
Baidu X-Lab

Abstract

Android kernel vulnerabilities pose a serious threat to
user security and privacy. They allow attackers to take
full control over victim devices, install malicious and un-
wanted apps, and maintain persistent control. Unfortu-
nately, most Android devices are never timely updated
to protect their users from kernel exploits. Recent An-
droid malware even has built-in kernel exploits to take
advantage of this large window of vulnerability. An ef-
fective solution to this problem must be adaptable to lots
of (out-of-date) devices, quickly deployable, and secure
from misuse. However, the fragmented Android ecosys-
tem makes this a complex and challenging task.

To address that, we systematically studied 1,139 An-
droid kernels and all the recent critical Android ker-
nel vulnerabilities. We accordingly propose KARMA,
an adaptive live patching system for Android kernels.
KARMA features a multi-level adaptive patching model
to protect kernel vulnerabilities from exploits. Specifi-
cally, patches in KARMA can be placed at multiple lev-
els in the kernel to filter malicious inputs, and they can
be automatically adapted to thousands of Android de-
vices. In addition, KARMA’s patches are written in a
high-level memory-safe language, making them secure
and easy to vet, and their run-time behaviors are strictly
confined to prevent them from being misused. Our eval-
uation demonstrates that KARMA can protect most crit-
ical kernel vulnerabilities on many Android devices (520
devices in our evaluation) with only minor performance
overhead (< 1%).

1 Introduction

Android is a popular mobile operating system based on
the Linux kernel. The kernel, due to its high privilege, is
critical to the security of the whole Android system [4].
For example, Android relies on the Linux kernel to en-
force proper isolation between apps and to protect im-
portant system services (e.g., the location manager) from
unauthorized access. Once the kernel is compromised,
none of the apps in the system can be trusted. Many

apps contain sensitive personal data, such as bank ac-
counts, mobile payments, private messages, and social
network data. Even TrustZone, widely used as the se-
cure keystore and digital rights management in Android,
is under serious threat since the compromised kernel en-
ables the attacker to inject malicious payloads into Trust-
Zone [42, 43]. Therefore, Android kernel vulnerabilities
pose a serious threat to user privacy and security.

Tremendous efforts have been put into finding (and ex-
ploiting) Android kernel vulnerabilities by both white-
hat and black-hat researchers, as evidenced by the sig-
nificant increase of kernel vulnerabilities disclosed in
Android Security Bulletin [3] in recent years. In ad-
dition, many kernel vulnerabilities/exploits are publicly
available but never reported to Google or the vendors,
let alone patched (e.g., exploits in Android rooting
apps [47]). The supply of Android kernel exploits likely
will continue growing. Unfortunately, officially patching
an Android device is a long process involving multiple
parties with disparate interests: Google/the vendor ver-
ifies a reported vulnerability and creates a patch for it.
The patch is then thoroughly tested and released to carri-
ers; carriers test the update again for compatibility with
their networks and release it to their users as an over-
the-air (OTA) update. Many updates may queue up at
the carriers waiting to be tested [33]; finally, the user
may or may not install the update promptly. Arguably,
device vendors and carriers have little incentive to keep
user devices updated and secure. They instead prefer
users to buy new devices. For example, phone vendors
usually move to new products and stop updating older
devices within one year. Consequently, many Android
phones become obsolete shortly after they get into the
customers’ hands. There also exist lots of small ven-
dors that do not have necessary resources to keep their
phones updated. This dire situation is faithfully reflected
in the vulnerable phones in use. Table 1 lists the statis-
tics of two infamous kernel vulnerabilities: CVE-2015-
3636 (“PingPong Root”) [16] and CVE-2015-1805 [15]
(data collected from 30 million devices 1). After months

1With user consent, we collected kernel versions and build dates
from devices with the Baidu app installed and compare them to each
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CVE ID Release Date Months % Vulnerable Devices
CVE-2015-3636 Sep. 2015 14 30%
CVE-2015-1805 Mar. 2016 8 47%

Table 1: Devices vulnerable to two infamous root ex-
ploits as of Nov. 2016. The second column lists the dates
when they are disclosed in Android Security Advisory.

since their public disclosure, there are still a significant
portion of devices vulnerable to them. Hence, it is un-
surprising that Android malware with years-old root ex-
ploits can still compromise many victim devices world-
wide [5,17,18,21]. In light of these serious threats, there
is an urgent need for third-parties to promptly provide
patches for these out-of-date devices, without involving
vendors or carriers.

Android’s fragmented ecosystem poses a significant
challenge to a third-party kernel patching system: there
are thousands of Android vendors that have produced
and keep producing tens of thousands of devices [1],
and Google releases new versions of Android at a reg-
ular base. This combination creates a mess of Android
devices with all kinds of hardware and software con-
figurations. For example, Android Lollipop (Android
5.0) was released in November 2014; as of September
2016, 46.3% of Android devices still run an older ver-
sion of Android with little hope of any future updates [2].
Even worse, many Android vendors, small and large
ones alike [19], indefinitely “delay” releasing the ker-
nel source code despite the fact that the kernel’s license
(GPL) demands it. As such, existing source-code based
patching systems [22,23,25,27] can only cover a limited
number of devices; a binary-based approach would work
better for a third-party solution. However, kernel binaries
in these devices could differ significantly in details. For
example, they may use different build systems, different
versions of the compiler, and different optimization lev-
els. An effective solution must accommodate thousands
of similar yet very different kernels, a challenging goal.

To achieve our goal, we first quantified the Android
fragmentation by systematically studying and measur-
ing 1,139 Android kernel binaries. We formulated three
key observations that allowed us to effectively tackle this
problem. We also analyzed all the recent critical An-
droid kernel vulnerabilities. Armed with these insights,
we propose KARMA, a multi-level adaptive patching
model that can overcome the Android fragmentation is-
sue. KARMA stands for Kernel Adaptive Repair for
Many Androids 2. It protects kernel vulnerabilities by
filtering malicious inputs to prevent them from reaching
the vulnerable code. KARMA’s patches are written in

vulnerability’s disclosure date to decide if it is potentially vulnerable.
2KARMA is a part of the OASES (Open Adaptive Security Exten-

sions, https://oases.io) project, an initiative founded by Baidu to
enable fast and scalable live patching for mobile and IoT devices.

a high-level memory-safe language. To prevent patches
from being misused, KARMA strictly confines their run-
time behaviors so that the kernel remains as stable and
consistent as possible under attack. Adaptiveness is a key
distinguishing feature of KARMA from other live patch-
ing systems. It allows KARMA to scale to many Android
devices. Specifically, given a reference patch and a target
kernel, KARMA automatically identifies whether the tar-
get kernel contains the same vulnerability and customizes
the reference patch for the target kernel if so. Therefore,
KARMA’s patches are easy to vet, secure, and adaptive.
Like other kernel patching systems, KARMA requires
privileged access to the devices it protects. It can either
be pre-installed in the device’s firmware or installed af-
terwards [7]. The implementation of KARMA supports
all major Android platforms, and we are currently work-
ing with various Android vendors to pre-install KARMA
in their future devices.
The main contributions of our paper are four-fold:

• We analyzed the fragmentation issue that hinders ex-
isting kernel live patching solutions to be ubiquitously
applied on Android devices, and brought the need of
an adaptive Android kernel patching solution to light.

• We studied 1,139 Android kernels from popular de-
vices and 76 critical Android kernel vulnerabilities in
the last three years. Based on these insights, we pro-
pose KARMA, a multi-level adaptive patching model
that can be applied to the fragmented Android ecosys-
tem.

• We implemented KARMA with the framework and
primitives enabling memory-safe adaptive live patch-
ing. The implementation can support all the current
Android kernel versions (from 2.6.x to 3.18.x) and dif-
ferent OEM vendors.

• We comprehensively evaluated KARMA against all the
recently reported critical kernel vulnerabilities. Our
evaluation shows that KARMA can both adaptively
and effectively handle the majority of these vulnera-
bilities with negligible overhead (< 1%).

The rest of the paper is organized as follows. We first
state the problem and present the design of KARMA
in Section 2. We then evaluate the applicability, adapt-
ability, and performance overhead of KARMA in Sec-
tion 3. Section 4 discusses the potential improvements
to KARMA, and Section 5 compares KARMA to the
closely related work. We conclude the paper in Sec-
tion 6.
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2 System Design

In this section, we first present our key observations on
the Android fragmentation problem and then describe the
design of KARMA in detail.

2.1 Measuring Android Fragmentation

Designing a live kernel patching system that can scale
to lots of devices is a challenging task. However, three
key observations we gained from systematically measur-
ing the Android fragmentation render this task feasible
and manageable. These observations can serve as a foun-
dation for future systems tackling this problem.

Observation A: most kernel functions are stable across
devices and Android releases.

Android (Linux) kernel is a piece of large and mature
software. Like other large software, evolution is more
common and preferred than revolution – bugs are fixed
and new features are gradually added. Complete rewrite
of a core kernel component is few and far between. A
patch for one kernel thus can probably be adapted to
many other kernels. Adaptiveness is a key requirement
for protecting the fragmented Android ecosystem.

To measure the stableness of Android kernels, we col-
lected 1,139 system images from four major vendors
(Samsung/Huawei/LG/Oppo, 1,124 images) and Google
(15 images). These four vendors together command more
than 40% of the Android smartphone market, and Google
devices have the newest Android software. This data set
is representative of the current Android market: these im-
ages come from 520 popular old and new devices, feature
Android versions from 4.2 to 7.0, and cover kernels from
2.6.x to 3.18.x. The statistics of these images are shown
in Table 2 and 3.

After collecting these images, we extracted symbols
from their kernels. There are about 213K unique func-
tions, and about 130K of them are shared by more than
10 kernels. We wrote a simple tool to roughly analyze
how many different revisions each of these shared func-
tions has. Specifically, we abstract the syntax of each
function by the number of its arguments, the conditional
branches it contains, the functions called by it, and non-
stack memory writes. We then cluster each function
across all the images based on these syntactic features.
Each different cluster can be roughly considered as a re-
vision of the function (i.e., each cluster potentially re-
quires a different revision of the patch). The results are
shown in Fig. 1 and 2. Specifically, Fig. 1 shows how
many clusters each shared function has. About 40% of
the shared functions have only one cluster, and about
80% of them have 4 clusters or less. Fig. 2 shows the
percentage of the kernels in the largest cluster for each
shared function. For about 60% of shared functions, the

largest cluster contains more than 80% of all the kernels
that have this function. These data show that most kernel
functions are indeed stable across different devices. Vul-
nerabilities in shared functions should be given a higher
priority for patching because they affect more devices.

Observation B: many kernel vulnerabilities are trig-
gered by malicious inputs. They can be protected by fil-
tering these inputs.

Kernel vulnerabilities, especially exploitable ones, are
often triggered by malicious inputs through syscalls or
external inputs (e.g., network packets). For example,
CVE-2016-0802, a buffer overflow in the Broadcom
WiFi driver, can be triggered by a crafted packet whose
size field is larger than the actual packet size. Such vul-
nerabilities can be protected by placing a filter on the in-
puts (i.e., function arguments and external data received
from functions like copy_from_user) to screen mali-
cious inputs. We surveyed all the critical kernel vulnera-
bilities in the Android Security Bulletin reported in 2015
and 2016 and found that 71 out of 76 (93.4%) of them
could be patched using this method (Table 6).

Observation C: many kernel functions return error
codes that are handled by their callers. We can leverage
the error handling code to gracefully discard malicious
inputs.

When a malicious input is blocked, we need to alter
the kernel’s execution so that the kernel remains as con-
sistent and stable as possible. We observe that many ker-
nel functions return error codes that are handled by their
callers. In such functions, a patch can simply end the ex-
ecution of the current function and return an error code
when a malicious input is detected. The caller will han-
dle the error code accordingly [34]. Linux kernel’s cod-
ing style recommends that functions, especially exported
ones, returning an error code to indicate whether an op-
eration has succeeded or not [24]. If the function does
not normally return error codes, it should indicate errors
by returning out-of-range results. A notable exception is
functions without return values. Most (exported) kernel
functions follow the official coding style and return error
codes — even kernel functions that return pointers of-
ten return out-of-range “error codes” using the ERR_PTR
macro.

Based on these observations, our approach is as fol-
lows: for each applicable vulnerability, we create a patch
that can be placed on the vulnerable function to filter ma-
licious inputs. The patch returns a selected error code
when it detects an attack attempt. The error is handled by
the existing error handling code, keeping the kernel sta-
ble. This patch is then automatically adapted to other de-
vices. Automatic adaptation of patches can significantly
reduce the manual efforts and speed up the patch deploy-
ment.
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Vendor #Models #Images
Samsung 192 419
Huawei 132 217
LG 120 239
Oppo 74 249
Google Nexus 2 15
Total 520 1139

Table 2: Images obtained from popular devices.

Category Statistics
Countries 67
Carriers 37
Android Versions 4.2.x, 4.3.x, 4.4.x, 5.0.x, 5.1.x, 6.0.x, 7.0.x
Kernel Versions 2.6.x, 3.0.x, 3.4.x, 3.10.x, 3.18.x
Kernel Architectures ARM (77%), AArch64 (23%)
Kernel Build Years 2012, 2013, 2014, 2015, 2016

Table 3: Statistics of the obtained Android kernels.
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Figure 1: Number of revision clusters for each shared
function, sorted by the number of clusters.
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Figure 2: Percentage of kernels in the largest cluster
for each shared function.

2.2 Adaptive Multi-level Patching

KARMA features a secure and adaptive multi-level
patching model. The security is enforced by the follow-
ing two technical constraints:

Rule I, a patch can only be placed at designated lo-
cations, and its patched function must be able to return
error codes or return void (i.e., no return value).

KARMA protects kernel vulnerabilities by preventing
malicious inputs from reaching them. For security rea-
sons, a patch can only be placed at the designated levels.
Specifically, level 1 is the entry or return points of a vul-
nerable function; level 2 is before or after call instruc-
tions to a callee of the vulnerable function. Note that
we do not patch the callee itself but rather hook call in-
structions in order to avoid affecting other callers of this
callee. A typical example of callees hooked by KARMA
is copy_from_user, a function dedicated to copy un-
trusted user data into the kernel. copy_from_user is
a perfect checkpoint for malicious inputs because the
kernel calls it whenever the kernel needs to read the
user data; Level 3 is similar to the existing binary-based
patches [22,23,27]. Level-3 patches are more flexible but
potentially dangerous because they are (currently) uncon-
strained. If a vulnerability is difficult to patch at level
1 and level 2, we fall back to level 3. Level-3 patches
have to be manually scrutinized to prevent them from be-
ing misused. Our experiment with 76 critical kernel vul-
nerabilities shows that level 1 can patch 49 (64%) vul-
nerabilities, level 2 can patch 22 (29%) vulnerabilities,
and we have to fall back to level 3 in only 5 cases (7%).
This multi-level design allows KARMA to patch most, if
not all, Android kernel vulnerabilities. In the following,
we focus on the level-1 and level-2 patches since level-
3 patches (i.e., binary patching) have been studied by a
number of the previous research [22, 23, 27].

A patch can indirectly affect the kernel’s control flow
by returning an error code when a malicious input is
intercepted. This immediately terminates the execution
of the vulnerable function and passes the error code to
the caller. We require a patched function to return er-
ror codes on fault in order to leverage the existing error
handling code of the kernel to gracefully fail on mali-
cious inputs. Allowing a patch to return arbitrary values
(i.e., other than error codes) may have unintended con-
sequences. Fortunately, many kernel functions return er-
ror codes on fault, following the guidelines of the official
coding style. Similarly, we allow functions that return
void to be patched.

Rule II, a patch can read any valid kernel data struc-
tures, but it is prohibited from writing to the kernel.

Even though KARMA’s patches are vetted before de-
ployment, they may still contain weakness that can be ex-
ploited by attackers. To control their side effects, patches
are only allowed to read necessary, valid kernel data
structures (e.g., registers, stacks, the heap, code, etc.), but
they are prohibited from writing to the kernel. Allowing
a patch to change the kernel’s memory, even one bit, is
dangerous. For example, it could be exploited to clear the
U-bit (the user/kernel bit) of a page table entry to grant
the user code the kernel privilege. Without the write per-
mission, patches are also prevented from leaking kernel
information to a local or remote adversary. This rule is
enforced by providing a set of restricted APIs as the only
interface for the patches to access the kernel data.

By combining these two rules with a careful vetting
process and the memory-safety of the patches, we can
strictly confine the run-time behaviors of patches to pre-
vent them from potential misuse.

1256    26th USENIX Security Symposium USENIX Association



Vulnerable 
Function 

Identification

Semantic 
Matching

Download &
Verify Patch

Online Live Patching by KARMA Client

Apply
Patch

Reference
Patch

Vulnerable
Function

Target KernelTarget KernelTarget 
Kernels

Signed Patch 
For 

Target Kernel

Signed Patch 
For 

Target Kernel

Signed 
Patches For 

Target Kernels

THE CLOUD

Offline Patch Generation and Verification

Figure 3: Workflow of KARMA

2.3 Architecture and Workflow

KARMA works in two phases as shown in Figure 3.
The offline phase adapts a reference patch (Pr ) to all
the devices supported by KARMA. The reference patch
often comes from an upstream source, such as Google
and chipset manufacturers. It targets a specific device
and kernel (named as the reference kernel, Kr ) and is
not directly applicable to other devices. To address that,
KARMA employs an automated system to customize Pr
for each target kernel (Kt ). Specifically, KARMA first
roughly identifies potentially vulnerable functions in ker-
nel Kt , and applies symbolic execution to compare the
semantics of each candidate function (Ft ) against refer-
ence function Fr . If these two functions are semantically
equivalent, KARMA further adjusts the reference patch
for kernel Kt , signs it, and deposits it to the cloud. To
prevent malicious patches from being installed by user
devices, reference patches are carefully vetted and all
the patches are signed. User devices only install signed
patches. Matching semantics with symbolic execution
can abstract syntactic differences in function binaries
(e.g., register allocation). Semantic matching decides
whether candidate function Ft is semantically equivalent,
or very similar to, reference function Fr , and whether Ft
has been patched or not. In other words, it is responsi-
ble for locating a function in the target kernel that can be
patched but has not been patched yet. Semantic matching
also provides a scheme to customize reference patch Pr
for target kernels.

In the second phase, the KARMA client in the user
device downloads and verifies the patches for its device
and applies them to the running kernel. Specifically, the
client verifies that each downloaded patch is authentic by
checking its signature and that it is applicable to this de-
vice by comparing the device model and the kernel ver-
sion. If a patch passes the verification, it is cached in a
secure store provided by Android. The client then applies
the patch to the running kernel. An applied patch imme-
diately protects the kernel from exploits without reboot-
ing the device or user interactions. In the unlikely event
that a patch causes the device to malfunction, the user
can reboot the device and skip the problematic patches

1 function kpatcher(patchID , sp, cpsr , r0, r1 ,
r2 , r3 , r4, r5, r6, r7, r8, r9, r10 , r11 ,
r12 , r14)

2 if patchID == 0xca5269db50f4 then
3 uaddr1 = r0
4 uaddr2 = r2
5 if uaddr1 == uaddr2 then
6 return -22
7 else
8 return 0
9 end

10 end
11 end
12 kpatch.hook (0 xca5269db50f4 ,"futex_requeue")

Figure 4: A simplified patch in Lua for CVE-2014-3153

by holding a hardware key. Currently, KARMA’s patches
are written in the Lua language. We choose Lua for its
simplicity, memory-safety, and easiness to embed and ex-
tend (in security, simplicity is a virtue). Lua provides suf-
ficient expressive power for KARMA to fix most kernel
vulnerabilities. Other kernel scripting languages, such as
BPF [8], can also satisfy our requirements. To execute
these patches, we embed a restricted Lua engine in the
kernel. The engine strictly enforces the security rules of
KARMA (Section 2.2).

In the rest of this section, we first illustrate KARMA’s
patches and then present these two phases in detail.

2.4 KARMA Patches
Patches in KARMA are written in the Lua programming
language. Lua is a simple, extensible, embedded lan-
guage. It has only eight primitive types, such as nil,
boolean, number, string, and table. Tables are the
only built-in composite data type. Most user data struc-
tures are built on top of tables. Lua is a dynamically
typed language, and all the data accesses are checked
at the run-time. This reduces common memory-related
flaws like buffer overflows. Lastly, Lua creates an iso-
lated environment to execute patches. This prevents
patches from directly accessing the kernel memory. In-
stead, the kernel data can only be accessed through re-
strictive APIs provided by KARMA.

Figure 4 shows a simplified patch for CVE-2014-3153,
exploited by the infamous Towelroot. CVE-2014-3153
is a flaw in function futex_requeue. It fails to check
that two arguments are different, allowing a local user
to gain the root privilege via a crafted FUTEX_REQUEUE
command [14]. To fix it, we just check whether these two
arguments (in register r0 and r1, respectively) are differ-
ent and return an error code (-22 or -EINVAL) if they are
the same. As shown in Fig. 4, each hooking point has a
unique ID. The patch can check this ID to ensure that it
is called by the correct hooking points. When invoked,
the patch receives the current values of the registers as
arguments. They allow the patch to access function argu-
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1 s t a t i c i n t sock_diag_rcv_msg( s t r u c t sk_buff *
skb , s t r u c t nlmsghdr *nlh)

2 {
3 ...
4 s w i t c h (nlh ->nlmsg_type) {
5 ...
6 c a s e SOCK_DIAG_BY_FAMILY:
7 r e t u r n __sock_diag_rcv_msg(skb ,

nlh);
8 ...
9 }

10 s t a t i c i n t __sock_diag_rcv_msg( s t r u c t sk_buff
*skb , s t r u c t nlmsghdr *nlh)

11 {
12 i n t err;
13 s t r u c t sock_diag_req *req = NLMSG_DATA(

nlh);
14 s t r u c t sock_diag_handler *hndl;
15 i f (nlmsg_len(nlh) < s i z e o f (*req))
16 r e t u r n -EINVAL;
17 + if (req ->sdiag_family >= AF_MAX)
18 + return -EINVAL;
19 hndl=sock_diag_lock_handler(req ->

sdiag_family);
20 ...
21 }

Figure 5: Source-code patch for CVE-2013-1763

ments and other necessary data by using the APIs pro-
vided by KARMA. The last line of the patch installs
itself at the futex_request function with a patch ID
of 0xca5269db50f4. Next, we use a few examples to
demonstrate how to convert a regular source-code based
patch to a reference patch for KARMA.

CVE-2013-1763: Figure 5 shows the original source
code patch for CVE-2013-1763. Each “+” sign marks
a new line added by the patch. The added lines val-
idate that the protocol family of the received message
(req->sdiag_family) is less than AF_MAX and returns
-EINVAL otherwise. This patch can be easily con-
verted to a reference patch for KARMA. However, since
__sock_diag_rcv_msg does not appear in the kernel’s
symbol table (because it is a static function), KARMA
instead hooks the entry point of its parent function and
screens the arguments there.

CVE-2013-6123: this is a vulnerability in func-
tion msm_ioctl_server, which reads an untrusted
data structure (u_isp_event) from the user space with
copy_from_user. However, it fails to check that the
queue_index field of the input is valid. This vulnera-
bility is fixed by line 10-17 in Fig. 6. To patch this vul-
nerability in KARMA, we cannot hook the entry point
of msm_ioctl_server because the malicious input data
is not available yet. Instead, we should hook the return
point of copy_from_user and filter the received data.
copy_from_user returns status codes; therefore it can
be hooked by KARMA. If the patch detects a malicious
input, it returns the error code of -EINVAL. This termi-
nates the execution gracefully.

CVE-2016-0802: this is a buffer overflow in the

1 s t a t i c l o n g msm_ioctl_server( s t r u c t file *
file , v o i d *fh , bool valid_prio , i n t cmd ,

v o i d *arg)
2 {
3 ...
4 i f (copy_from_user (& u_isp_event ,
5 ( v o i d __user *)ioctl_ptr ->ioctl_ptr ,
6 s i z e o f ( s t r u c t msm_isp_event_ctrl))) {
7 ...
8 }
9 ...

10 + if(u_isp_event.isp_data.ctrl.queue_idx <0
11 + || u_isp_event.isp_data.ctrl.queue_idx >=
12 + MAX_NUM_ACTIVE_CAMERA) {
13 + pr_err ("%s: Invalid index %d\n",
14 + __func__ , u_isp_event.isp_data.

ctrl.queue_idx);
15 + rc = -EINVAL;
16 + return rc;
17 + }
18 ...
19 }

Figure 6: Source-code patch for CVE-2013-6123

Broadcom WiFi driver, caused by the missing check
that the packet data length is less than the packet
length. This vulnerability represents an interesting
challenge to KARMA: the source-code is patched in
several functions, and a new argument is added to
function dhd_wl_host_event and dngl_host_event.
The error condition is finally checked in function
dngl_host_event. Apparently, this type of fix (i.e.,
adding new arguments to functions) cannot be translated
directly in KARMA because patches are not allowed to
write the kernel memory. To address that, we need to
hook both dhd_rx_frame and dngl_host_event func-
tions. The first hook saves the packet length, and the sec-
ond hook compares the packet length to the data length.
If the data length is larger than the packet length, the
patch returns the error code of BCME_ERROR. This is
an example of KARMA’s multi-invocation patches (also
called stateful patches). Both patches bear the same patch
ID. The variables at the first hook are made accessible
to the second hook by KARMA’s Lua engine. An alter-
native fix is to hook only dhd_rx_frame and manually
extract the data length from the packet. However, this
fix is less favorable because the patch has to parse the
packet structure by itself and it is placed differently from
where the source-code patch modifies the control flow,
i.e., where the error handling is guaranteed to work.

2.5 Offline Patch Adaptation

KARMA’s offline component adapts a reference patch
for all supported devices. It first identifies the vulnerable
function in a target kernel through structural and seman-
tic matching; then it uses the information from semantic
matching to customize the patch for the target kernel. In
the following, we describe these two steps in detail.
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1 v o i d dhd_rx_frame (...)
2 {
3 ...
4 dhd_wl_host_event(dhd , &ifidx ,
5 skb_mac_header(skb),
6 skb ->mac.raw ,
7 + len - 2,
8 &event , &data);
9 ...

10 }

11 s t a t i c i n t dhd_wl_host_event (...)
12 {
13 ...
14 - if (dngl_host_event(dhd_pub , pktdata) ==

BCME_OK) {
15 + if (dngl_host_event(dhd_pub , pktdata ,

pktlen) == BCME_OK) {
16 ...
17 }

18 i n t dngl_host_event (...)
19 {
20 ...
21 + if (datalen > pktlen)
22 + return (BCME_ERROR);
23 ...
24 }

Figure 7: Source-code patch for CVE-2016-0802

2.5.1 Syntactic Matching

Given a target kernelKt , we first identify candidate func-
tions (Ft ) in Kt that may contain the same vulnerability
as reference function Fr . However, this task is not as
simple as searching the kernel symbol table. There are
a number of challenges. First, function Ft might have
different semantics than Fr even though their names are
the same. Accordingly, the patch cannot be applied to
Kt . KARMA addresses this problem by further match-
ing their semantics. Second, Ft may have a (slightly)
different name than Fr even though their semantics is the
same. For example, CVE-2015-3636 [30], exploited by
PingPong root, exists in function ping_unhash in the
Google Nexus 5 kernel but ping_v4_unhash in some
other kernels. Third, Ft could have been inlined in the
target kernel and thus does not exist in the symbol ta-
ble. To address these challenges, we assume that most
(other) functions are not changed or renamed across dif-
ferent kernels. This assumption is backed by our first
observation (Section 2.1).

To find matches of function Fr in target kernel Kt ,
we first extract the symbol table from Kt ’s binary 3 and
search in it for the name of Fr . If an exact match is
found, we consider this function to be the only candi-
date. Otherwise, we try to identify candidate functions
by call relations. Specifically, we first extract the call
graphs from the target and the reference kernels. We col-
lect callers and callees of function Fr in the reference

3The kernel binary often contains the symbol table so that kernel
modules can be linked to the kernel. This table may or may not be
exported through the /proc/kallsym file at runtime.

kernel’s graph, and try to locate nodes in the target ker-
nel’s graph that have similar call relations to these two
sets of functions. We may find a unique matching node if
the function has been simply renamed. If the function has
been inlined, the target kernel’s call graph contains direct
edges from the caller set to the callee set (instead of con-
nected through Fr ). Accordingly, we use the containing
function as the candidate. Multiple candidate functions
may be identified using this approach. The semantics
of these candidate functions is then compared to that of
function Fr to ensure that the patch is applied to correct
functions.

2.5.2 Semantic Matching

In this step, KARMA uses semantic matching to de-
cide whether a function should be patched and whether
a given reference patch can be adapted to it. For two
Android kernels, the same source code could be com-
piled into different binaries – they may vary in regis-
ter allocation, instruction selection, and instruction lay-
out. In addition, the positions of structure members may
have shifted, and the stack may contain different tempo-
rary variables (e.g., because of differences in the regis-
ter spilling). Therefore, simple syntactic comparison of
functions is too restrictive and may reject functions that
could otherwise be patched. To this end, we leverage
symbolic execution to compare semantics of the candi-
date function (Ft ) and the reference function (Fr ).

Path explosion is a significant obstacle in symbolic ex-
ecution. The situation is even more serious in the Linux
kernel because many kernel functions are highly com-
plicated. Even if the vulnerable function looks simple, it
may call complex other functions. This can quickly over-
whelm the symbolic execution engine. In KARMA, we
assume that functions called by Ft and Fr have the same
semantics if they share the same signature (i.e., function
name and arguments). Therefore, we can use non-local
memory writes (i.e., writes to the heap or global vari-
ables), function calls, and function returns as checkpoints
for semantic comparison. Non-local memory writes,
function calls, and returns make up the function’s impacts
to the external environment. We consider two functions
having the same semantics if their impacts to the envi-
ronment are the same. We do not take stack writes into
consideration because the same function may have dif-
ferent stack layouts in two kernels.

To compare their semantics, we symbolically execute
the basic blocks of Fr and Ft and generate constraints
for memory writes and function calls. For each memory
write, we first check whether it is a local write or not (we
consider it a local write if its address is calculated related
to the stack/base pointer). If it is a non-local write, we
add two constraints that the memory addresses and the
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content-to-write should be equal. For function calls, we
first check that these functions have the same name (and
arguments if the kernel source is available). If so, we
add constraints that the arguments to these two functions
should be equal. We handle function returns similarly
by adding constraints for register r0 at the function exits.
External inputs to these two functions, such as initial reg-
ister values, non-local memory reads, and sub-function
returns, are symbolized.

KARMA supports two modes of operation: in the
strict mode, we require that two matching constraints are
exactly the same, except for constants. Constants are
often used as offsets into structures or the code (e.g.,
to read embedded constants in the code). These offsets
could be different even for the same source code because
of different hardware/software settings (e.g., conditional
compiling). We ignore these constants to accommodate
these differences. In a relaxed mode, we use a constraint
solver to find a solution that can fulfill all the constraints
at the same time. We consider two functions to be se-
mantically equivalent if there exist at least one such so-
lution. Moreover, to avoid patching an already-patched
function, we compare path constraints for the variables
accessed by reference patch Pr in function Fr and Ft .
If they are more restrictive in Ft than in Fr (i.e., con-
ditional checks are added in Ft ), the function may have
already been patched. Note that since KARMA’s patches
cannot modify the kernel memory, reapplying a patch is
likely safe. If a semantic match is found, the symbolic
formulas provide useful information for adapting patch
Pr for the target kernel. For example, we can adjust Pr ’s
registers and field offsets by comparing formulas of the
function arguments. We evaluate the effectiveness of se-
mantic matching in Section 3.2.

2.6 Live Patching

To enable its protection, KARMA needs to run its client
in the user device. The client consists of a regular app and
a kernel module. The app contacts the KARMA servers
to retrieve patches for the device, while the kernel module
verifies the integrity of these patches and applies ones
that pass the verification.

2.6.1 Integration of Lua Engine

Patches in KARMA are written in the Lua language.
They are executed by a Lua engine embedded in the
kernel. KARMA extends the Lua language by provid-
ing a number of APIs for accessing kernel data struc-
tures. Normally, extending Lua with unsafe C functions
forgoes Lua’s memory safety. KARMA provides two
groups of APIs to Lua scripts. The first group is used
exclusively for applying patches, and the other group is

API Functionality
hook Hook a function for live patching
subhook Hook the calls to sub-functions for live patching
alloc_mem Allocate memory for live patching
free_mem Free the allocated memory for live patching
get_callee Locate a callee that can be hooked
search_symbol Get the kernel symbol address
current_thread Get the current thread context
read_buf Read raw bytes from memory with the given size
read_int_8 Read 8 bits from memory as an integer
read_int_16 Read 16 bits from memory as an integer
read_int_32 Read 32 bits from memory as an integer
read_int_64 Read 64 bits from memory as an integer

Table 4: The extension to Lua. The first five functions
can only be used by the live patcher, not by patches.

used by patches to read kernel data. Our vetting process
automatically ensures that patches can only use the sec-
ond group of APIs. As such, the memory safety of Lua
is retained because all the APIs that a patch can access
are read-only. Table 4 lists these APIs, which provide
the following functionalities: 1) symbol searching: re-
turn the run-time address of a symbol; 2) function hook-
ing: hook a given function/sub-function in order to exe-
cute the patch before/after the function is called; 3) typed
read: given an address, validate whether the address is
readable and return the (typed) data if so; 4) thread-info
fetching: return the current thread information, such as
its thread ID, kernel stack, etc. The first two function-
alities belong to the first group, and the rest belongs to
the second group. Again, the live patcher can use both
groups of the APIs, but patches can only use the second
one.

2.6.2 Patch Application

To apply a patch, KARMA hooks the target function
to interpose the patch in the regular execution flow, as
shown in Fig. 8. Specifically, for each hooking point, we
create a piece of the trampoline code and overwrite the
first few instructions at the hooking point with a jump to
the trampoline. At run-time, the trampoline saves the cur-
rent context by pushing all the registers to the stack and
invokes the Lua engine to execute the associated patch.
The saved context is passed to the patch as arguments so
that the patch can access these registers. Before installing
the hook, the live patcher calls the stop_machine func-
tion and checks whether there are any existing invoca-
tions of the target function in the kernel stacks. If so, it is
unsafe to immediately patch the function because other-
wise the existing invocations will return to the patched
version, potentially causing inconsistent kernel states.
When this happens, we return an error code to the client
which will retry later. As soon as the patch is applied, the
vulnerable function is protected from attacks. If no ma-
licious inputs are detected, the patch returns zero to the
trampoline, which in turn restores the context, executes

1260    26th USENIX Security Symposium USENIX Association



Instruction A

Instruction B

Instruction C
...

Exploit Check

Instruction AReturn Status

Original Function Patched Function Lua Engine

Jump to 
Trampoline

Instruction C
...

Save Context

Invoke Patch

Restore Context

Instruction A

Instruction B

Jump Back

Figure 8: Live patching through function hooking

the overwritten instructions, and jumps back to the orig-
inal function; If malicious inputs are detected, the patch
returns an error code to the trampoline, which ends the
execution of the hooked function by jumping to a return
instruction.

2.6.3 Patch Dispatching

KARMA supports two methods to dispatch a patch, one
for each of the two execution contexts: the interrupt con-
text or the thread (or process) context. In the interrupt
context, the Lua engine is directly invoked through the
engine’s C interface, similar to a regular function call.
However, it is expensive to launch a new Lua engine each
time a patch is executed. In the thread context, we instead
schedule patches to a standalone Lua engine (through a
workqueue) and wait for the results. The Lua engine ex-
ecutes in a self-contained kernel thread and processes in-
coming requests from the workqueue. Each request is
identified by the thread ID and the patch ID. This dis-
patching method cannot be used in the interrupt context
because blocking functions (e.g., to acquire a lock) can-
not be called in that context. If a vulnerable function is
called in both contexts, we dispatch the patch according
to the active context (we have not found such cases in
practice). Patch dispatching in the thread context is more
complex. In the following we give more details about it.

The kernel is a concurrent execution environment, es-
pecially with multi-core CPUs, which most Android de-
vices have. A patch accordingly can be executed simulta-
neous by multiple threads on different CPU cores. These
invocations are grouped by their thread ID and patch ID.
Specifically, for each distinct combination of thread ID
and patch ID, a separate name space is created. Each
Lua variable is saved to its associated name space. A
name space is not destroyed until the associated thread
ends. Therefore, variables of the previous invocations re-
main available to the subsequent invocations in the same
name space 4. By keeping the states across invocations,
KARMA can support multi-invocation patches, i.e., com-
plex patches that need to combine the results of several

4If the vulnerable function is recursively called, some variable states
might be lost. To retain the whole history, we can tag variables with the
thread ID, patch ID, and the stack top. However, we have not found any
of such cases in practice.

executions to make a decision. A number of patches
we tested require this capability. In the thread context,
we can also support multiple Lua engines to improve
the throughput of patch execution. Specifically, we can
spawn multiple kernel threads to run several instances of
the Lua engine. A dispatch algorithm decides which Lua
engine a request should be scheduled to. The algorithm
must be deterministic so that requests in the same name
space will always be scheduled to the same engine, al-
lowing them to access states from previous invocations.
When a thread ends, its associated states are cleared from
all the Lua engines.

Lua is a garbage-collected language. Patches thus do
not need to explicitly manage memory allocation and re-
lease. The Lua engine uses a simple mark-and-sweep
garbage collector [35]. Kernel patches usually do not
need to allocate many memory blocks. The default
garbage collector works well for our purpose without
slowing down the system.

2.7 Prototype of KARMA

We have implemented a prototype of KARMA. We wrote
a number of offline tools for patch adaptation and sign-
ing. Our symbolic execution engine was based on the
angr framework [6, 44]. We implemented the syntactic
and semantic matching by ourselves. Our Lua engine in
the kernel is similar to the lunatik-ng project [26]. For
example, the Linux kernel does not use floating-point
arithmetic. We therefore changed Lua’s internal number
representation from floating-points to integers. We also
removed the unnecessary Lua libraries such as file opera-
tions. Furthermore, we added the support to name spaces
in our Lua engine and extended the Lua language with
the APIs specified in Table 4. We added roughly about
11K lines of source code in total to the Android ker-
nel. The added code was compiled as an 800KB kernel
module. This kernel module can be pre-installed on An-
droid devices through collaboration with vendors or in-
stalled afterwards through rooting, the only choice avail-
able. KARMA can support all the known Android kernel
versions (from 2.6.x to 3.18.x) and different vendors.

3 Evaluation

The effectiveness of KARMA can be evaluated by its ap-
plicability, adaptability, and performance. Applicability
quantifies how many existing kernel vulnerabilities can
be patched by KARMA, and adaptability quantifies how
many devices that KARMA can adapt a reference patch
for. In the following, we describe these three aspects of
the evaluation in detail.
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3.1 Evaluation of Applicability

We tested KARMA with all the critical kernel vulnera-
bilities from Android Security Bulletin and ones used to
root Android devices. There are 76 such vulnerabilities
in total in the last three years. Remarkably, KARMA
can fix 71 of them (93.4%) with level-1 and level-2
patches; i.e., we can create an adaptable KARMA patch
for them. Table 6 in Appendix A gives a more complete
list of the results. In the following, we describe how
KARMA can prevent some interesting kernel vulnerabil-
ities used in one-click rooting apps and recent malware
incidents [5,17,18,21]. Appendix A contains a couple of
more examples.

CVE-2013-6282 (VROOT): this was one of the most
popular vulnerabilities used in the wild to root An-
droid devices, publicly known as “VROOT”. It ex-
ists in the get/put_user macros. They both fail to
check that user-provided addresses are in the valid range.
The original patches add the necessary checks to these
macros and return -EFAULT if invalid addresses are de-
tected [12]. However, KARMA cannot patch these
two macros because they are expanded by the com-
piler and thus do not exist in the kernel binary. In-
stead, KARMA patches their expanded functions (i.e.,
__get_user_1/2/4 and __put_user_1/2/4/8) with
checks of whether user-provided addresses are less than
current_thread_info()->addr_limit-1. Note that
these patches can access the current thread_info struc-
ture by using the current_thread API provided by
KARMA. These patches simply return -EFAULT if the
address is out of the range.

CVE-2013-2595 (Framaroot): this vulnerability was
a part of the infamous Framaroot app (the “Gandalf” pay-
load). It exists in the camera driver for the Qualcomm
MSM devices [10]. The driver provides an uncontrolled
mmap interface, allowing the attacker to map sensitive
kernel memory into the user space. KARMA can patch
this vulnerability by validating whether the memory to be
mapped is within the user space.

CVE-2013-2596 (MotoChopper): an integer over-
flow in the fb_mmap function allows a local user to cre-
ate a read-write mapping of the entire kernel memory and
consequently gain the kernel privileges. Specifically, the
function has a faulty conditional check:
if((vma->vm_end - vma->vm_start + off)>len)

return -EINVAL;

Because off is a user-controlled variable, an at-
tacker can pass in a really large number to overflow
(vma->vm_end - vma->vm_start + off) (the result
is interpreted as a negative number) and bypass the
validation. Here the original patch adds more checks
to prevent this situation [11]. To patch this vul-
nerability in KARMA, we hook the fb_mmap func-

tion and extract the needed variables from its argu-
ment vma. For example, we can calculate off as
(vma->vm_pgoff << PAGE_SHIFT). The patch then
checks whether (vma->vm_end - vma->vm_start +
off) is negative or not, and return -EINVAL if so.

3.2 Evaluation of Adaptability
KARMA is an adaptive kernel live patching system for
Android. Its ability to automatically adapt a reference
patch is the key to protect a wide variety of devices and
reduce the window of vulnerability. In this experiment,
we evaluate KARMA’s adaptability with 1,139 Android
kernels collected from Internet.

Semantic matching is the key to KARMA’s adaptabil-
ity. It uses symbolic execution to abstract away syntactic
differences in function binaries, such as register alloca-
tion, instruction selection, and data offset. To evaluate
its effectiveness, we cluster the collected 1,139 Android
kernels 5 by syntactic and semantic features for 13 pop-
ular vulnerabilities. Specifically, the opcode-based clus-
tering classifies kernel functions by types and frequen-
cies of instruction opcodes; the syntax-based clustering
classifies kernel functions by function calls and condi-
tional branches; and the semantic-based clustering clas-
sifies kernel functions according to KARMA’s seman-
tic matching results. Table 5 lists the number of clus-
ters and the percentage of kernels in the largest cluster
for each clustering method. This table shows that the
semantic-based method is the most precise one because
it has the smallest number of clusters. Technically, each
cluster may need a different adaptation of the reference
patch. Therefore, fewer clusters mean a better chance
for adaptation to succeed and less manual efforts if au-
tomated adaptation fails. Moreover, the largest clusters
in the semantic matching often contain the majority of
the vulnerable kernels. For example, a single reference
patch for the largest cluster of perf_swevent_init can
be applied to 96.3% of the vulnerable kernels.

We randomly picked some functions to manually ver-
ify the outcome of semantic matching. For example, the
source code of sock_diag_rcv_msg (the function re-
lated to CVE-2013-1763) is exactly the same in Sam-
sung Galaxy Note Edge (Android 5.0.1, Linux kernel
3.10.40) and Huawei Honor 6 Plus (Android 4.4, Linux
kernel 3.10.30) 6. However, its binaries are very dif-
ferent between these two devices because of the dif-
ferent compilers and kernel configurations. Figure 9a
and 9b show a part of the disassembly code for these
two binaries, respectively. The syntactic differences are
highlighted. There are changes to the order of instruc-
tions (BB8 on the left vs BB8’ on the right), register

5Only kernels sharing symbols are considered in the clustering.
6Both vendors have released the source code for their devices.
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Kernel Function CVE ID # of Opcode Clusters

% of the Largest Opcode Cluster

# of Syntax Clusters

% of the Largest Syntax Cluster

# of Semantic Clusters

% of Largest Semantic Cluster

Semantic Matching Time Cost

# of Instructions

# of Basic Blocks

sock_diag_rcv_msg 2013-1763 35 25.0% 7 73.5% 3 75.5% 10.5s 72 16
perf_swevent_init 2013-2094 9 55.9% 5 55.9% 2 96.3% 24.6s 81 22
fb_mmap 2013-2596 26 20.2% 7 44.4% 5 66.9% 12.2s 102 15
__get_user_1 2013-6282 3 92.4% 2 92.4% 2 98.0% 3.2s 6 2
futex_requeue 2014-3153 54 14.8% 9 71.0% 3 99.3% 35.8s 459 107
msm_isp_proc_cmd 2014-4321 42 22.0% 5 66.5% 3 42.8% 8.8s 385 68
send_write_packing_test_read 2014-9878 12 57.6% 4 61.2% 1 100% 4.9s 25 4
msm_cci_validate_queue 2014-9890 6 59.5% 4 84.9% 2 72.4% 6.7s 77 8
ping_unhash 2015-3636 36 12.5% 5 75.7% 3 50.5% 4.6s 54 8
q6lsm_snd_model_buf_alloc 2015-8940 29 34.0% 9 36.6% 5 44.2% 9.9s 104 20
sys_perf_event_open 2016-0819 22 36.3% 6 46.9% 6 84.2% 34.6s 569 118
kgsl_ioctl_gpumem_alloc 2016-3842 16 35.4% 3 88.8% 4 46.0% 4.7s 79 11
is_ashmem_file 2016-5340 6 89.6% 2 93.9% 2 98.1% 0.8s 23 3

Table 5: Clustering 1,139 kernels for each function by syntax and semantics. The last-but-two column lists the time of
semantic matching to compare Nexus 5 (Android 4.4.2, kernel 3.4.0) and Samsung Note Edge (Android 6.0.1, kernel
3.10.40). The experiment was conducted on an Intel E5-2650 CPU with 16GB of memory, and the results are the
average over 10 repeats. The last two columns list the number of instructions and basic blocks for each function in
Nexus 5.

The rest of the control f ow graph is omitted for simplicity.

sock_diag_rcv_msg:
MOV R12, SP
STMFD SP!, {R4-R6,R11,R12,LR,PC}
SUB R11, R12, #4
SUB SP, SP, #0xC
LDRH R3, [R1,#4]
MOV R4, R1
MOV R6, R0
CMP R3, #0x12
BCS loc_C0D4C488

loc_C0D4C478:
MOV R4, #0xFFFFFFEA

loc_C0D4C488:
CMP R3, #0x13
BHI loc_C0D4C4D4

loc_C0D4C490:
LDR R5, =0xC1A33F44
LDR R3, [R5,#0xA4]
CMP R3, #0
BEQ loc_C0D4C52C

loc_C0D4C4D4:
CMP R3, #0x14
BNE loc_C0D4C478

loc_C0D4C52C:
MOV R3, #2
MOV R2, #0x10
STR R3, [SP,#0x24+var_24]
MOV R0, #1
LDR R1, =dword_C11D9904
MOV R3, #4
BL __request_module
B loc_C0D4C4A0

loc_C0D4C4DC:
LDR R3, [R1]
SUB R3, R3, #0x10
CMP R3, #1
BLS loc_C0D4C478

loc_C0D4C4EC:
LDRB R3, [R1,#0x10]
CMP R3, #0x28
BHI loc_C0D4C478

BB 1

BB 2

BB 3

BB 4

BB 5 BB 6

BB 8

BB 7

(a)

The rest of the control f ow graph is omitted for simplicity.

sock_diag_rcv_msg:
STMFD SP!, {R0,R1,R4-R6,LR}
MOV R5, R0
LDRH R3, [R1,#4]
MOV R4, R1
CMP R3, #0x12
BCC loc_C0A06C7C

loc_C0A06C7C:
MOV R0, #0xFFFFFFEA

loc_C0A06B8C:
CMP R3, #0x13
BLS loc_C0A06BA0

loc_C0A06B94:
CMP R3, #0x14
BEQ loc_C0A06BEC

loc_C0A06BA0:
LDR R3, =0xC222E584
LDR R2, [R3]
MOV R6, R3
CMP R2, #0
BNE loc_C0A06BD0

loc_C0A06B9C:
B loc_C0A06C7C

loc_C0A06BEC:
LDR R3, [R1]
SUB R3, R3, #0x10
CMP R3, #1
BLS loc_C0A06C7C

loc_C0A06BB4:
MOV R3, #2
MOV R0, #1
LDR R1, =aNetPfDProtoDTy
MOV R2, #0x10
STR R3, [SP,#0x18+var_18]
MOV R3, #4
BL __request_module

loc_C0A06BFC:
LDRB R3, [R1,#0x10]
CMP R3, #0x28
BHI loc_C0A06C7C

BB 1'

BB 2'

BB 4'

BB 5'
BB 6'

BB 7'

BB 8'

BB 9'

BB 3'

(b)

Figure 9: sock_diag_rcv_msg of (a) Huawei Honor 6 Plus (PE-TL10) with Android 4.4 and Linux kernel 3.10.30,
compiled by GCC 4.7, and (b) Samsung Galaxy Note Edge (N915R4) with Android 5.0.1 and Linux kernel 3.10.40,
compiled by GCC 4.8. Basic blocks and control flows with different syntax are highlighted.

allocation (BB7 vs BB7’), instruction selection (BB2 vs
BB2’), and control flow (additional BB9’ in the Sam-
sung kernel). KARMA’s semantic matching can abstract
these syntactic differences and put these two binaries of
sock_diag_rcv_msg into the same cluster. That is, both
can be patched by the same CVE-2013-1763 patch dis-

cussed in Section 2.4.

Semantic matching can also separate kernel functions
that are incorrectly classified together by the syntax
matching. For example, the control flow and most in-
structions of function msm_cci_validate_queue (the
function related to CVE-2014-9890) are identical in the
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A
LDR R1, [R4,#0x15C]
MOV R0, #1
MOV R0, R0, LSL R5
ADD R1, R1, #8
BL msm_camera_io_wb

B
MOV R0, #0x64
BL msecs_to_jiffies

C
MUL R7, R7, R6
ADD R5, R7, #0x210
ADD R5, R4, R5
MOV R1, R0
MOV R0, R5
BL wait_for_completion

_timeout

A'
LDR R1,[R4,#0x15C]
MUL R7, R7, R6
MOV R0, #1
MOV R0, R0, LSL R5
ADD R5, R4, R7
ADD R1, R1, #8
ADD R5, R5, #0x1E4
BL msm_camera_io_w

B'
MOV R0, #0x64
BL msecs_to_jiffies

C'
MOV R1, R0
MOV R0, R5
BL wait_for_completion

_interruptible_timeout

Figure 10: Three semantically different basic blocks
of msm_cci_validate_queue in Oppo 3007 (left) and
Samsung N910G (right). They have different callees and
arguments, and thus different semantics.

kernel of Oppo 3007 (Android 4.4.4, kernel 3.10.28) and
Samsung N910G (Android 6.0.1, kernel 3.10.40). A sim-
ple syntactic matching algorithm would consider them
similar. These functions are shown in Fig. 10 (only ba-
sic blocks with different semantics are shown). However,
KARMA’s semantic matching algorithm considers basic
block A and A′, C and C ′ to be different because their last
instructions call different functions with different argu-
ments. Consequently, KARMA needs to use two patches
to fix this vulnerability in these devices. A further inves-
tigation shows that KARMA can actually use the same
patch for CVE-2014-9890 to fix both kernels because it
only needs to validate the arguments, which are the same
for both functions.

Finally, KARMA’s semantic matching is quite effi-
cient. It simplifies symbolic execution by considering
most functions remain unchanged. The last-but-two col-
umn of Table 5 lists the time used by semantic matching
to compare each listed function in two kernels. The anal-
ysis time increases with the complexity of the function,
but they are all less than 36 seconds with an average of
12.5 seconds. Without this heuristics, it will take much
longer and may never finish in some cases.

3.3 Evaluation of Performance
To evaluate the performance overhead of KARMA, we
experimented with both a standard Android benchmark
(CF-Bench [9]) and a syscall-based micro-benchmark.
Both benchmarks were run on Google Nexus 5 with An-
droid 4.4. Each reported result is the average over 20
measurements. The standard deviation of the results is
negligible. Overall, we find that KARMA does not in-
troduce noticeable time lag to regular operations of the
test device. Considering the fact that most critical kernel
vulnerabilities exist in less-hot code paths (e.g., device
drivers’ ioctl interfaces as shown in Table 6), we con-
sider KARMA’s performance is sufficient for real-world
deployment.

The first benchmark measures the whole system per-
formance with CF-Bench. We tested the performance
of the following four configurations: the original kernel
without any patches, the kernel with the patch for Tow-
elroot, the kernel with the patch for PingPong root, and
the kernel with both patches. The results are shown in
Fig. 11. The measured performance is virtually the same
for all four configurations. This benchmark shows that
KARMA’s kernel engine has minimal impact on the per-
formance if patches are not frequently executed.

To further quantify the overhead of KARMA, we mea-
sured the execution time of a syscall with several differ-
ent patches executed by a single Lua engine. We inserted
a hook point in the execution path of a selected syscall
(i.e., the patch was always executed for this syscall) and
measured the execution time of the syscall under the fol-
lowing conditions:

• The patch simply returns 0. This reflects the run-time
cost of the trampoline for function hooking. It takes
about 0.42µs to execute.

• The patch contains a set of if/elseif/else condi-
tional statements. This simulates patches that validate
input arguments. It takes about 0.98µs to execute.

• The patch consists of a single read of the kernel mem-
ory. This measures the overhead of the Lua APIs pro-
vided by KARMA. It takes about 0.82µs to execution.

• To simulate more complex patches, we created a patch
with a mixture of assignments, memory reads, and con-
ditional statements. It takes about 3.74µs to execute.

The results are shown in Figure 12. In each test, the
syscall was invoked in a tight loop for a thousand times,
and each result is the average of 20 runs. To put this
into context, we counted all the syscalls made by Google
Chrome for Android during one minute of browsing. The
most frequently made syscall was gettimeofday for
about 110,000 times. This translates to about 0.55 sec-
onds (0.9%) of extra time even if we assume the patch
takes 5µs for each invocation. In summary, KARMA
only incurs negligible performance overhead and per-
forms sufficiently well for real-world deployment.

4 Discussion and Future Work

In this section, we discuss potential improvements to
KARMA and the future work. First, KARMA aims at
protecting the Android kernel from exploits because the
kernel has a high privilege and its compromise has seri-
ous consequences on user security and privacy. An ap-
proach similar to KARMA can be applied to the Android
framework and user-space apps. In addition, Android O
formalizes the interface between the Android framework
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Figure 12: Execution time of chmod with different patches.

and the vendor implementation so that, eventually, the
Android framework can be updated independent of the
vendor implementation (aka. project Treble [20]). This
will at least partially address the user-space update prob-
lem. However, project Treble does not address the kernel
update problem. Android kernels are still fragmented and
out-of-date. A system like KARMA is still necessary.

Second, KARMA’s patches are written in the Lua pro-
gramming language. It relies on the Lua engine to strictly
confine patches’ run-time behaviors. However, this ap-
proach increases the kernel’s trusted computing base de-
spite the fact that the Lua engine is relatively mature and
secure. Executing patches on the Lua engine also nega-
tively impacts the performance, especially if the system
is under heavy load (in reality, this is not a concern be-
cause most Android kernel vulnerabilities are on the ker-
nel’s cold paths, such as device drivers’ ioctl functions,
as shown in Table 6). We are investigating alternative de-
signs that can achieve similar security guarantees, such
as BPF [8] and sandboxed binary patches.

Third, KARMA leverages the existing error handling
code in the kernel to handle filtered malicious inputs, in
order to keep the kernel as stable as possible. However,
error handling code has been shown to contain vulnera-
bilities [36], and this design may leak resources and even
cause deadlocks (KARMA does not allow patches them-
selves to release resource because that requires writing
to the kernel). We did not find this to be a constraint
during our experiment with all the critical Android ker-
nel vulnerabilities. KARMA’s reference patch is often a
direct translation of the official source-code patch, which
should have properly released the resources. If an official
patch cannot be translated to a level-1 or level-2 patch,
we can fall back to the level-3 (binary) patch. Level-3
patches are more flexible but require careful vetting.

Fourth, KARMA uses symbolic execution to semanti-
cally match two vulnerable functions. The approach is
sufficient for our purpose in practice because many ker-
nel functions are rather stable across devices and Android
releases. In theory, the approach is not sound. It is a
trade-off between soundness and scalability. Many sys-
tems make a similar trade-off because symbolic execu-

tion itself is neither very scalable nor very precise (e.g.,
how to handle loops). We are improving our method to
better identify vulnerable functions and adapt patches. If
KARMA’s automated adaption cannot find a proper func-
tion to patch, we can fall back to the binary patch for this
particular vulnerability.

Lastly, KARMA is a third-party kernel live patching
system. Patches can be promptly delivered to user de-
vices without the long wait caused by vendors and carri-
ers. However, without testing performed by vendors and
carries, its patches could cause stability issues in the user
devices. Our implementation allows users to selectively
disable a problematic patch. With KARMA’s cloud ser-
vice, we can automatically blacklist such patches from
specific device models. We can also work with device
vendors so patches can be quickly tested before release.

5 Related Work

Kernel live patching: the first category of the related
work consists of a number of kernel live patching sys-
tems, such as kpatch [23], kGraft [22], Ksplice [27], and
KUP [37]. They assume that the kernel source code
is available (a reasonable assumption for their purpose)
and create live patches from source code patches. Their
patches are however in the binary form. This design does
not fit the threat model of KARMA. First, although An-
droid kernel is licensed in GPL, many Android vendors,
small and large alike [19], do not (promptly) release their
kernel source code. Second, these systems lack a mech-
anism to automatically adapt a kernel patch to different
Android devices. An important design goal of KARMA
is adaptiveness so that it can scale to the Android ecosys-
tem. Third, binary patches are prone to misuse because
they are hard to understand and vet, and these systems
have no strong confinement of patches’ run-time behav-
iors. KARMA has been designed specifically to address
all these challenges in a live kernel patching system for
Android.

Among these systems, kpatch [23] and kGraft [22] re-
place a whole vulnerable function with the patched ver-
sion. They differ in how patches are applied: kpatch
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stops all the running processes and ensures that none
of these processes are running inside the function to be
patched (similar to KARMA). kGraft instead maintains
two copies of each patched function at the same time and
dynamically decides which copy to execute. Specifically,
the kernel code active at the time of patching (e.g., sys-
tem calls, kernel threads, and interrupt handlers) is dis-
patched to the original version until it reaches a comple-
tion point; all other code is dispatched to the patched ver-
sion. Like kpatch, Ksplice [27] also stops the machine
to apply patches. However, Ksplice can patch individual
instructions instead of replacing whole functions. These
systems share the same limitation that they cannot sup-
port patches that “change the semantics of persistent data
structures [27]”. To address that, KUP [37] employs the
process checkpoint-and-restart to implement kernel hot
patching. Specifically, it checkpoints all the user pro-
cesses, replaces the running kernel with the patched ver-
sion, and then restores these user processes. Because it
replaces the whole kernel, KUP can support all kinds
of patches. However, restoring external resources (e.g.,
sockets) is often problematic for checkpoint-and-restore
systems, including KUP.

Semantic matching: the second category of the re-
lated work includes systems that compare semantics or
similarity of two functions [31, 32, 39, 40]. BinHunt [32]
first uses symbolic execution to compute semantic simi-
larity of basic blocks and uses a graph isomorphism algo-
rithm to further compare the similarity of CFGs (control-
flow graphs). Their follow-up work, iBinHunt [40],
extends BinHunt with the inter-procedural control-flow
graph comparison. However, whole-program compari-
son could be very time-consuming. To solve that, iB-
inHunt runs the program with taint tracking and only
compares basic blocks within the same data flows. This
approach is not suitable for KARMA because none of
the commercial Android devices support kernel dynamic
taint tracking or whole-kernel instrumentation. CoP [39]
also uses symbolic execution to compute the seman-
tic similarity of basic blocks and uses the longest com-
mon sub-sequence of linearly independent paths to mea-
sure the similarity of programs. KARMA uses symbolic
execution to solve syntax differences in semantically-
equivalent functions. In addition, it leverages the fact
that most kernel functions remain semantically similar
across different kernel versions to significantly speed-
up the comparison. DiscovRE [31] takes a different ap-
proach by using the syntactic information (i.e., structural
and numeric features) to compare function similarities.
This can significantly improve the analysis efficiency.
KARMA requires a more precise comparison than that
can be provided by syntax-based approaches.

Automatic patch/filter generation: the third category
of the related work includes systems that aim at auto-

matically generating patches or input filters. For exam-
ple, Talos [34] is a vulnerability rapid response system.
It inserts SWRRs (Security Workarounds for Rapid Re-
sponse) into the kernel source code in order to temporar-
ily protect kernel vulnerabilities from being exploited.
Talos shares a similar goal as KARMA, and both rely
on the kernel’s error handling code to gracefully neutral-
ize attacks. Talos’ source code based approach cannot
be applied to the fragmented Android ecosystem. To ad-
dress the fragmentation problem, KARMA can automat-
ically adapt a patch to other devices and strictly confine
the run-time behaviors of its patches. ClearView [41]
learns invariants of a program during a dynamic train-
ing phase. When program failure happens, it identifies
the failure-related invariants and uses them to generate
patches for the program. PAR [38] proposes a pattern-
based automatic program repair framework. Its gener-
ated patches resemble the patterns learned from human-
written patches. ASSURE introduces rescue points that
can recover software from unknown exploits while main-
taining system integrity and availability [45]. Shield-
Gen [29] is a system for automatically generating vul-
nerability signatures (i.e., data patches). Signature-based
filtering can only block known attacks. To address that,
ShieldGen leverages protocol specifications to generate
more exploits from an initial sample. Bouncer [28] uses
static analysis and dynamic symbolic execution to cre-
ate comprehensive input filters to protect software from
bad inputs. Compared to these systems, KARMA aims at
protecting kernel vulnerabilities for many Android sys-
tems and have a different design.

6 Summary

We have presented the design, implementation, and eval-
uation of KARMA, an adaptive live patching system
for Android kernel vulnerabilities. By filtering mali-
cious user inputs, KARMA can protect most Android
kernel vulnerabilities from exploits. Compared to ex-
isting kernel live patching systems, the unique features
of KARMA are that it can automatically adapt a refer-
ence patch for many Android devices, and it strictly con-
fines the run-time behaviors of its patches. These two
features allow KARMA to scale to a large, fragmented
Android ecosystem. Our evaluation results demonstrated
that KARMA can protect most critical Android kernel
vulnerabilities in many devices with negligible perfor-
mance overhead.
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A Evaluation of Applicability: Additional
Case Studies

A.1 CVE-2014-3153 (Towelroot)
this vulnerability is the second most-used one to root Android
devices, known as “Towelroot”. It lies in the futex_requeue
function, which takes the addresses of two futexes as argu-
ments. By design, the function should only re-queue from a
non-PI (priority inheritance [46]) futex to a PI futex. How-
ever, this condition is violated if these two addresses point to
the same futex. This leads to an exploitable dangling pointer
condition. To fix this bug, Linux simply adds a check to en-
sure that these two futex addresses are different [13]. This vul-
nerability can be similarly fixed in KARMA by hooking the
futex_requeue function, obtaining its arguments, and com-
pare their equality. The patch returns -EINVAL if an attack is
detected (Figure 4).

A.2 CVE-2015-3636 (PingPong Root)
This is another popular vulnerability used to root Android de-
vices, known as “PingPong Root”. It originates in the inter-
action between the socket and hlist functions. Specifically,
when hlist_nulls_del(&sk-> sk_nulls_node) is called,
it assigns LIST_POISON2 to sk->sk_nulls_node.pprev.
LIST_POISON2 is defined as the constant of 0x200200. If in-
terpreted as an address, address LIST_POISON2 can be mapped
by a malicious app in the user space without any permissions.
A second call to connect by the attacker will result in a
use-after-free on this attacker-controlled address, compromis-
ing the kernel. The Linux patch sets the pointer to NULL in
the ping_unhash function [16]. However, this method cannot
be applied by KARMA because its patch is prohibited from
writing to the kernel memory. Instead, the patch checks if
sk->sk_nulls_node.pprev equals to LIST_POISON2. If so,
it returns an error code without freeing the associated mem-
ory. This blocks the exploit but leaves the socket object on the
list. This patch is not clean, but it works and does not impact
the kernel’s functionalities. Alternatively, KARMA can hook
connect in the kernel to prevent reusing the freed socket.
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CVE-2016-7117
Hook __sys_recvmmsg and its invocation of fput. On returning of fput, check
if __sys_recvmmsg's err is not equal to 0 and not equal to -EAGAIN. If so, return
err and skip the rest execution.

!

CVE-2016-5340
Hook is_ashmem_file and check the full path of the input file. Only return
True if the full path is /dev/ashmem. Otherwise return False. !

CVE-2016-4470
Hook key_reject_and_link and its invocation of __key_link_end. Check
if link_ret is 0 before calling into __key_link_end. If so, simply return.
key_reject_and_link is void typed so any return value is fine.

!

CVE-2016-3951 It requires writing to kernel memory, violating KARMA's basic constraint. Level-3

CVE-2016-3841
Hook do_ipv6_setsockopt to avoid concurrent access to the socket options of
the same socket fd. !

CVE-2016-3775
Hook aio_setup_single_vector and check if the input kiocb->ki_nbytes
exceeds MAX_RW_COUNT. If so, return -EFAULT. !

CVE-2016-3768
It requires to skip some instructions and continue execution afterwards, which is
not an allowed operation by KARMA.

Level-3

CVE-2016-3767
Hook mtk_p2p_wext_discovery_results etc. functions of which the bodies
are deleted by the official patch, and simply return 0. !

CVE-2016-3134
Android does not enable CONFIG_USER_NS so this should not be a direct threat
to Android devices. But KARMA can still fix it by iterating newpos = pos +
e->next_offset to check if there is a out-of-bound access.

!

CVE-2016-2503
It requires to reorder the instructions (to change when to take the lock). This is
not an allowed operation by KARMA.

Level-3

CVE-2016-2474
Hook hdd_parse_ese_beacon_req and check the tempInt read from the ar-
gument pValue. If it exceeds SIR_ESE_MAX_MEAS_IE_REQS, return -EINVAL. !

CVE-2016-2468 Hook _kgsl_sharedmem_page_alloc and validate the input size. !

CVE-2016-2467

Hook msm_compr_ioctl and its invocation of __copy_from_user.
Check if the params_length passed into __copy_from_user exceeds
MAX_AC3_PARAM_SIZE. If so, return error code from __copy_from_user
without executing into it.

!

CVE-2016-2466
Hook adm_get_params and check if adm_get_parameters[0] exceeds
ADM_GET_PARAMETER_LENGTH-1 and params_length/sizeof(int). If so,
return -EINVAL.

!

CVE-2016-2465
Hook the concerned functions in drivers/video/msm/mdss/mdss_debug.c
patched in the original patch, and their invocations of __copy_to_user. Validate
len and count, and return -EFAULT in case of exploit conditions.

!

CVE-2016-2067
Hook check_vma and return -EFAULT if vma->vm_flags & memdesc->flags
!= memdesc->flags. !

CVE-2016-2062
Hook adreno_perfcounter_query_group and its invocation of kmalloc. On
the entry of kmalloc, check if t is larger than count. !

CVE-2016-0844
Hook ipa_wwan_ioctl and its invocation of find_mux_channel_index. On
entry of find_mux_channel_index, if the value of rmnet_index exceeds
MAX_NUM_OF_MUX_CHANNEL, return -EFAULT directly.

!

CVE-2016-0843
Hook msm_l2_test_set_ev_constraint and check if shift_idx >=
PMU_CODES_SIZE. Return -EINVAL in case of that. !

CVE-2016-0820
Hook priv_get_struct and its invocation of __copy_from_user, check if
prIwReqData->data.length>u4CopyDataMax and return -EFAULT if so. !

CVE-2016-0806
Hook iw_softap_set_channel_range and check if the caller has the capabil-
ity CAP_NET_ADMIN, return -EPERM if not. !

CVE-2016-0805
Hook get_krait_evtinfo and check if reg exceeds krait_max_l1_reg, re-
turn -EINVAL if so. !

CVE-2016-0801
Hook wl_validate_wps_ie and check if subelt_len exceeds the size of
devname (100). Hook wl_notify_sched_scan_results and its invocation of
memcpy and check if the buffer length passed in exceeds DOT11_MAX_SSID_LEN.

!

CVE-2016-0758
Hook asn1_find_indefinite_length and check if dp is larger than datalen.
Return -1 if so. !

CVE-2016-0728
Hook join_session_keyring and iterate the keyring. Return error if
keyring->usage reaches the overflow boundary (0xFFFFFFFF). !
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CVE-2015-8942
Hook msm_cpp_subdev_ioctl, if the argument cmd equals to
VIDIOC_MSM_CPP_IOMMU_DETACH, from its argument sd obtain
cpp_dev->stream_cnt and check if it equals to 0.

!

CVE-2015-8941
Hook msm_isp_axi_check_stream_state and iterate over the input
stream_cfg_cmd->stream_handle to see if one exceeds MAX_NUM_STREAM.
The other vulnerable functions can be fixed in the same way.

!

CVE-2015-8940
Hook q6lsm_snd_model_buf_alloc and check if the integer argument len is
out of range. !

CVE-2015-8939
Hook mdp4_argc_process_write_req and check if the input
pgc_ptr->num_r/g/b_stages are out of range. !

CVE-2015-8938
Hook msm_isp_send_hw_cmd and check if the ioctl input arguments satisfy the
constraints updated by the official patch. The constraint list is long so omitted
here.

!

CVE-2015-8816
Fixing the problem requires locking and increasing the reference of the usb_hub
structure, thus the patch needs to write to kernel memory.

Level-3

CVE-2015-6640
Hook the system call prctl and check if the corresponding argument as the end
passed to prctl_set_vma_anon_name is out of range. !

CVE-2015-6638
Hook PVRSRVSyncPrimSetKM and check if the input
psSyncBlk->ui32BlockSize is smaller than another input ui32Index *
sizeof(IMG_UINT32).

!

CVE-2015-6619
The official patch is to remove all .tmpfile handlers. So we can simply hook
such handlers and always return -EINVAL. !

CVE-2015-2686
Hook sys_sendto/sys_recvfrom and check if the input buff and len/size
are out of range. !

CVE-2015-0570
Hook __iw_softap_setwpsie and check if ioctl arguments have improper
length, same as the official patch. The check list is long so omitted here. !

CVE-2014-9902
Hook dot11fUnpackIeCountry and dot11fUnpackIeSuppChannels to vali-
date the value of the input ielen. !

CVE-2014-9891
Hook __qseecom_process_rpmb_svc_cmd and validate if the input req_ptr
fields passed in from user space are out of range. !

CVE-2014-9890
Hook msm_cci_validate_queue and validate if cmd_size extracted from the
inputs is larger than 10. !

CVE-2014-9887
Hook qseecom_send_modfd_cmd and its invocation of __copy_from_user.
Validate req.cmd_req_len obtained from user space. !

CVE-2014-9884
Hook qseecom_register_listener etc. handlers to validate pointers passed
in from user space, same as the official patch. !

CVE-2014-9883
Hook extract_dci_log and check for the integer overflow condition of the
input log_length. !

CVE-2014-9882
Hook iris_vidioc_s_ctrl. If the input ctrl->id is
V4L2_CID_PRIVATE_IRIS_RIVA_ACCS_LEN/_POKE, validate if the copied
data length exceeds MAX_RIVA_PEEK_RSP_SIZE.

!

CVE-2014-9881
Hook iris_vidioc_s_ext_ctrls and perform range/overflow check on the in-
put ctrl. !

CVE-2014-9880
Hook vid_enc_ioctl and its invocation of __copy_from_user. Validate
seq_header fetched from user space. !

CVE-2014-9879
Hook mdp3_histogram_start and validate its input req; hook mdp3_pp_ioctl
and validate mdp_pp obtained from user space. !

CVE-2014-9878
Hook send_write_packing_test_read and validate its input buffer and
count. !

CVE-2014-9869
Hook msm_isp_ functions as specified in the official patch, and validate if
stats_idx from input exceeds MSM_ISP_STATS_MAX. !

CVE-2014-9868
Hook msm_csiphy_release and validate the value of input
csi_lane_params->csi_lane_mask. !

CVE-2014-9529
Fixing the issue requires to change the instruction order (delay the reference put).
This is not a secure operation permitted by KARMA.

Level-3

Table 6: A partial list of recent critical Android kernel vulnerabilities and KARMA's effectiveness to create adaptable
patches for them. Some adaptable vulnerabilities are omitted due to the space constraint.
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