
This paper is included in the Proceedings of the
26th USENIX Security Symposium
August 16–18, 2017 • Vancouver, BC, Canada

ISBN 978-1-931971-40-9

Open access to the Proceedings of the
26th USENIX Security Symposium

is sponsored by USENIX

Venerable Variadic Vulnerabilities Vanquished
Priyam Biswas, Purdue University; Alessandro Di Federico, Politecnico di Milano;
Scott A. Carr, Purdue University; Prabhu Rajasekaran, Stijn Volckaert, Yeoul Na,

and Michael Franz, University of California, Irvine; Mathias Payer, Purdue University

https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/biswas

Venerable Variadic Vulnerabilities Vanquished

Priyam Biswas1, Alessandro Di Federico2, Scott A. Carr1, Prabhu Rajasekaran3, Stijn Volckaert3,
Yeoul Na3, Michael Franz3, and Mathias Payer1

1Department of Computer Science, Purdue University
{biswas12, carr27}@purdue.edu, mathias.payer@nebelwelt.net

2Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano
alessandro.difederico@polimi.it

3Department of Computer Science, University of California, Irvine
{rajasekp, stijnv, yeouln, franz}@uci.edu

Abstract
Programming languages such as C and C++ support vari-
adic functions, i.e., functions that accept a variable num-
ber of arguments (e.g., printf). While variadic func-
tions are flexible, they are inherently not type-safe. In
fact, the semantics and parameters of variadic functions
are defined implicitly by their implementation. It is left
to the programmer to ensure that the caller and callee fol-
low this implicit specification, without the help of a static
type checker. An adversary can take advantage of a mis-
match between the argument types used by the caller of a
variadic function and the types expected by the callee to
violate the language semantics and to tamper with mem-
ory. Format string attacks are the most popular example
of such a mismatch.

Indirect function calls can be exploited by an adver-
sary to divert execution through illegal paths. CFI re-
stricts call targets according to the function prototype
which, for variadic functions, does not include all the ac-
tual parameters. However, as shown by our case study,
current CFI implementations are mainly limited to non-
variadic functions and fail to address this potential attack
vector. Defending against such an attack requires a state-
ful dynamic check.

We present HexVASAN, a compiler based sanitizer to
effectively type-check and thus prevent any attack via
variadic functions (when called directly or indirectly).
The key idea is to record metadata at the call site and
verify parameters and their types at the callee whenever
they are used at runtime. Our evaluation shows that Hex-
VASAN is (i) practically deployable as the measured
overhead is negligible (0.45%) and (ii) effective as we
show in several case studies.

1 Introduction

C and C++ are popular languages in systems program-
ming. This is mainly due to their low overhead ab-

stractions and high degree of control left to the devel-
oper. However, these languages guarantee neither type
nor memory safety, and bugs may lead to memory cor-
ruption. Memory corruption attacks allow adversaries to
take control of vulnerable applications or to extract sen-
sitive information.

Modern operating systems and compilers implement
several defense mechanisms to combat memory corrup-
tion attacks. The most prominent defenses are Address
Space Layout Randomization (ASLR) [47], stack ca-
naries [13], and Data Execution Prevention (DEP) [48].
While these defenses raise the bar against exploitation,
sophisticated attacks are still feasible. In fact, even
the combination of these defenses can be circumvented
through information leakage and code-reuse attacks.

Stronger defense mechanisms such as Control Flow
Integrity (CFI) [6], protect applications by restricting
their control flow to a predetermined control-flow graph
(CFG). While CFI allows the adversary to corrupt non-
control data, it will terminate the process whenever the
control-flow deviates from the predetermined CFG. The
strength of any CFI scheme hinges on its ability to stati-
cally create a precise CFG for indirect control-flow edges
(e.g., calls through function pointers in C or virtual calls
in C++). Due to ambiguity and imprecision in the analy-
sis, CFI restricts adversaries to an over-approximation of
the possible targets of individual indirect call sites.

We present a new attack against widely deployed mit-
igations through a frequently used feature in C/C++ that
has so far been overlooked: variadic functions. Variadic
functions (such as printf) accept a varying number of
arguments with varying argument types. To implement
variadic functions, the programmer implicitly encodes
the argument list in the semantics of the function and
has to make sure the caller and callee adhere to this im-
plicit contract. In printf, the expected number of argu-
ments and their types are encoded implicitly in the for-
mat string, the first argument to the function. Another
frequently used scheme iterates through parameters until

USENIX Association 26th USENIX Security Symposium 183

a condition is reached (e.g., a parameter is NULL). List-
ing 1 shows an example of a variadic function. If an ad-
versary can violate the implicit contract between caller
and callee, an attack may be possible.

In the general case, it is impossible to enumerate the
arguments of a variadic function through static analysis
techniques. In fact, their number and types are intrinsic
in how the function is defined. This limitation enables (or
facilitates) two attack vectors against variadic functions.
First, attackers can hijack indirect calls and thereby call
variadic functions over control-flow edges that are never
taken during any legitimate execution of the program.
Variadic functions that are called in this way may inter-
pret the variadic arguments differently than the function
for which these arguments were intended, and thus vio-
late the implicit caller-callee contract. CFI countermea-
sures specifically prevent illegal calls over indirect call
edges. However, even the most precise implementations
of CFI, which verify the type signature of the targets of
indirect calls, are unable to fully stop illegal calls to vari-
adic functions.

A second attack vector involves overwriting a variadic
function’s arguments directly. Such attacks do not vi-
olate the intended control flow of a program and thus
bypass all of the widely deployed defense mechanisms.
Format string attacks are a prime example of such at-
tacks. If an adversary can control the format string
passed to, e.g., printf, she can control how all of the
following parameters are interpreted, and can potentially
leak information from the stack, or read/write to arbitrary
memory locations.

The attack surface exposed by variadic functions is
significant. We analyzed popular software packages,
such as Firefox, Chromium, Apache, CPython, nginx,
OpenSSL, Wireshark, the SPEC CPU2006 benchmarks,
and the FreeBSD base system, and found that variadic
functions are ubiquitous. We also found that many of
the variadic function calls in these packages are indirect.
We therefore conclude that both attack vectors are realis-
tic threats. The underlying problem that enables attacks
on variadic functions is the lack of type checking. Vari-
adic functions generally do not (and cannot) verify that
the number and type of arguments they expect matches
the number and type of arguments passed by the caller.
We present HexVASAN, a compiler-based, dynamic san-
itizer that tackles this problem by enforcing type checks
for variadic functions at run-time. Each argument that is
retrieved in a variadic function is type checked, enforc-
ing a strict contract between caller and callee so that (i) a
maximum of the passed arguments can be retrieved and
(ii) the type of the arguments used at the callee are com-
patible with the types passed by the caller. Our mecha-
nism can be used in two operation modes: as a runtime
monitor to protect programs against attacks and as sani-

tizer to detect type mismatches during program testing.
We have implemented HexVASAN on top of the

LLVM compiler framework, instrumenting the compiled
code to record the types of each argument of a variadic
function at the call site and to check the types when-
ever they are retrieved. Our prototype implementation
is light-weight, resulting in negligible (0.45%) overhead
for SPEC CPU2006. Our approach is general as we show
by recompiling the FreeBSD base system and effective as
shown through several exploit case studies (e.g., a format
string vulnerability in sudo).

We present the following contributions:

• Design and implementation of a variadic function
sanitizer on top of LLVM;

• A case study on large programs to show the preva-
lence of direct and indirect calls to variadic func-
tions;

• Several exploit case studies and CFI bypasses using
variadic functions.

2 Background

Variadic functions are used ubiquitously in C/C++ pro-
grams. Here we introduce details about their use and im-
plementation on current systems, the attack surface they
provide, and how adversaries can abuse them.

#include <stdio.h>
#include <stdarg.h>

int add(int start, ...) {
int next, total = start;
va_list list;
va_start(list, start);
do {

next = va_arg(list, int);
total += next;

} while (next != 0);
va_end(list);
return total;

}

int main(int argc, const char *argv[]) {
printf("%d\n", add(5, 1, 2, 0));
return 0;

}

Listing 1: Example of a variadic function in C. The
function add takes a non-variadic argument start
(to initialize an accumulator variable) and a series
of variadic int arguments that are added until the
terminator value 0 is met. The final value is returned.

184 26th USENIX Security Symposium USENIX Association

2.1 Variadic functions

Variadic functions (such as the printf function in the C
standard library) are used in C to maximize the flexibil-
ity in the interface of a function, allowing it to accept a
number of arguments unknown at compile-time. These
functions accept a variable number of arguments, which
do not necessarily have fixed types. An example of a
variadic function is shown in Listing 1. The function add
accepts one mandatory argument (start) and a varying
number of additional arguments, which are marked by
the ellipsis (...) in the function definition.

The C standard defines several macros that portable
programs may use to access variadic arguments [33].
stdarg.h, the header that declares these macros, defines
an opaque type, va_list, which stores all information re-
quired to retrieve and iterate through variadic arguments.
In our example, the variable list of type va_list is ini-
tialized using the va_start macro. The va_arg macro
retrieves the next variadic argument from the va_list,
updating va_list to point to the next argument as a side
effect. Note that, although the programmer must specify
the expected type of the variadic argument in the call to
va_arg, the C standard does not require the compiler to
verify that the retrieved variable is indeed of that type.
va_list variables must be released using a call to the
va_end macro so that all of the resources assigned to the
list are deallocated.
printf is an example of a more complex variadic

function which takes a format string as its first argument.
This format string implicitly encodes information about
the number of arguments and their type. Implementa-
tions of printf scan through this format string several
times to identify all format arguments and to recover
the necessary space in the output string for the specified
types and formats. Interestingly, arguments do not have
to be encoded sequentially but format strings allow out-
of-order access to arbitrary arguments. This flexibility is
often abused in format string attacks to access arbitrary
stack locations.

2.2 Variadic functions ABI

The C standard does not define the calling convention
for variadic functions, nor the exact representation of the
va_list structure. This information is instead part of the
ABI of the target platform.

x86-64 ABI. The AMD64 System V ABI [36], which
is implemented by x86-64 GNU/Linux platforms, dic-
tates that the caller of a variadic function must adhere to
the normal calling conventions when passing arguments.
Specifically, the first six non-floating point arguments
and the first eight floating point arguments are passed
through CPU registers. The remaining arguments, if any,

are passed on the stack. If a variadic function accepts five
mandatory arguments and a variable number of variadic
arguments, then all but one of these variadic arguments
will be passed on the stack. The variadic function itself
moves the arguments into a va_list variable using the
va_start macro. The va_list type is defined as follows:

typedef struct {
unsigned int gp_offset;
unsigned int fp_offset;
void *overflow_arg_area;
void *reg_save_area;

} va_list[1];

va_start allocates on the stack a reg_save_area to
store copies of all variadic arguments that were passed
in registers. va_start initializes the overflow_arg_area

field to point to the first variadic argument that was
passed on the stack. The gp_offset and fp_offset fields
are the offsets into the reg_save_area. They represent
the first unused variadic argument that was passed in a
general purpose register or floating point register respec-
tively.

The va_arg macro retrieves the first unused vari-
adic argument from either the reg_save_area or
the overflow_arg_area, and either it increases
the gp_offset/fp_offset field or moves the
overflow_arg_area pointer forward, to point to the
next variadic argument.

Other architectures. Other architectures may imple-
ment variadic functions differently. On 32-bit x86, for
example, all variadic arguments must be passed on the
stack (pushed right to left), following the cdecl calling
convention used on GNU/Linux. The variadic function
itself retrieves the first unused variadic argument directly
from the stack. This simplifies the implementation of
the va_start, va_arg, and va_end macros, but it generally
makes it easier for adversaries to overwrite the variadic
arguments.

2.3 Variadic attack surface
When calling a variadic function, the compiler statically
type checks all non-variadic arguments but does not en-
force any restriction on the type or number of variadic ar-
guments. The programmer must follow the implicit con-
tract between caller and callee that is only present in the
code but never enforced explicitly. Due to this high flex-
ibility, the compiler cannot check arguments statically.
This lack of safety can lead to bugs where an adver-
sary achieves control over the callee by modifying the
arguments, thereby influencing the interpretation of the
passed variadic arguments.

Modifying the argument or arguments that control the
interpretation of variadic arguments allows an adversary

USENIX Association 26th USENIX Security Symposium 185

to change the behavior of the variadic function, causing
the callee to access additional or fewer arguments than
specified and to change the interpretation of their types.

An adversary can influence variadic functions in sev-
eral ways. First, if the programmer forgot to validate the
input, the adversary may directly control the arguments
to the variadic function that controls the interpretation of
arguments. Second, the adversary may use an arbitrary
memory corruption elsewhere in the program to influ-
ence the argument of a variadic function.

Variadic functions can be called statically or dynam-
ically. Direct calls would, in theory, allow some static
checking. Indirect calls (e.g., through a function pointer),
where the target of the variadic function is not known, do
not allow any static checking. Therefore, variadic func-
tions can only be protected through some form of run-
time checker that considers the constraints of the call site
and enforces them at the callee side.

2.4 Format string exploits

Format string exploits are a perfect example of corrupted
variadic functions. An adversary that gains control over
the format string used in printf can abuse the printf
function to leak arbitrary data on the stack or even re-
sort to arbitrary memory corruption (if the pointer to the
target location is on the stack). For example, a format
string vulnerability in the smbclient utility (CVE-2009-
1886) [40] allows an attacker to gain control over the
Samba file system by treating a filename as format string.
Also, in PHP 7.x before 7.0.1, an error handling function
in zend execute API.c allows an attacker to execute arbi-
trary code by using format string specifiers as class name
(CVE-2015-8617) [1].

Information leaks are simple: an adversary changes
the format string to print the desired information that re-
sides somewhere higher up on the stack by employing the
desired format string specifiers. For arbitrary memory
modification, an adversary must have the target address
encoded somewhere on the stack and then reference the
target through the %n modifier, writing the number of al-
ready written bytes to that memory location.

The GNU C standard library (glibc) enforces some
protection against format string attacks by checking if
a format string is in a writable memory area [29]. For
format strings, the glibc printf implementation opens
/proc/self/maps and scans for the memory area of the
format string to verify correct permissions. Moreover, a
check is performed to ensure that all arguments are con-
sumed, so that no out-of-context stack slots can be used
in the format string exploit. These defenses stop some at-
tacks but do not mitigate the underlying problem that an
adversary can gain control over the format string. Note
that this heavyweight check is only used if the format

string argument may point to a writable memory area
at compile time. An attacker may use memory corrup-
tion to redirect the format string pointer to an attacker-
controlled area and fall back to a regular format string
exploit.

3 Threat model

Programs frequently use variadic functions, either in the
program itself or as part of a shared library (e.g., printf
in the C standard library). We assume that the program
contains an arbitrary memory corruption, allowing the
adversary to modify the arguments to a variadic function
and/or the target of an indirect function call, targeting a
variadic function.

Our target system deploys existing defense mecha-
nisms like DEP, ASLR, and a strong implementation of
CFI, protecting the program against code injection and
control-flow hijacking. We assume that the adversary
cannot modify the metadata of our runtime monitor. Pro-
tecting metadata is an orthogonal engineering problem
and can be solved through, e.g., masking (and-ing every
memory access), segmentation (for x86-32), protecting
the memory region [9], or randomizing the location of
sensitive data. Our threat model is a realistic scenario for
current attacks and defenses.

4 HexVASAN design

HexVASAN monitors calls to variadic functions and
checks for type violations. Since the semantics of how
arguments should be interpreted by the function are in-
trinsic in the logic of the function itself, it is, in general,
impossible to determine the number and type of argu-
ments a certain variadic function accepts. For this rea-
son, HexVASAN instruments the code generated by the
compiler so that a check is performed at runtime. This
check ensures that the arguments consumed by the vari-
adic function match those passed by the caller.

The high level idea is the following: HexVASAN
records metadata about the supplied argument types at
the call site and verifies that the extracted arguments
match in the callee. The number of arguments and their
types is always known at the call site and can be encoded
efficiently. In the callee this information can then be used
to verify individual arguments when they are accessed.
To implement such a sanitizer, we must design a meta-
data store, a pass that instruments call sites, a pass that
instruments callers, and a runtime library that manages
the metadata store and performs the run-time type verifi-
cation. Our runtime library aborts the program whenever
a mismatch is detected and generates detailed informa-
tion about the call site and the mismatched arguments.

186 26th USENIX Security Symposium USENIX Association

source1.c

C frontend

HexVASAN
instrumentation

Compile

IR

IR

source2.cpp

C++ frontend

HexVASAN
instrumentation

Compile

IR

IR

source3.c

C frontend

HexVASAN
instrumentation

Compile

IR

IR

Link

Object file
Object file

Object file

output.elfhexvasan.a

Figure 1: Overview of the HexVASAN compilation
pipeline. The HexVASAN instrumentation runs right
after the C/C++ frontend, while its runtime library,
hexvasan.a, is merged into the final executable at link
time.

4.1 Analysis and Instrumentation
We designed HexVASAN as a compiler pass to be run
in the compilation pipeline right after the C/C++ fron-
tend. The instrumentation collects a set of statically
available information about the call sites, encodes it in
the LLVM module, and injects calls to our runtime to
perform checks during program execution.

Figure 1 provides an overview of the compilation
pipeline when HexVASAN is enabled. Source files are
first parsed by the C/C++ frontend which generates the in-
termediate representation on which our instrumentation
runs. The normal compilation then proceeds, generating
instrumented object files. These object files, along with
the HexVASAN runtime library, are then passed to the
linker, which creates the instrumented program binary.

4.2 Runtime support
The HexVASAN runtime augments every va_list in the
original program with the type information generated by
our instrumentation pass, and uses this type information
to perform run-time type checking on any variadic argu-
ment accessed through va_arg. By managing the type in-
formation in a metadata store, and by maintaining a map-
ping between va_lists and their associated type infor-
mation, HexVASAN remains fully compatible with the
platform ABI. This design also supports interfacing be-
tween instrumented programs and non-instrumented li-
braries.

The HexVASAN runtime manages the type informa-
tion in two data structures. The core data structure, called
the variadic list map (VLM), associates va_list struc-

tures with the type information produced by our instru-
mentation, and with a counter to track the index of the
last argument that was read from the list. A second data
structure, the variadic call stack (VCS), allows callers of
variadic functions to store type information of variadic
arguments until the callee initializes the va_list.

Each variadic call site is instrumented with a call to
pre call, that prepares the information about the call
site (a variadic call site descriptor or VCSD), and a
call to post call, that cleans it up. For each vari-
adic function, the va start calls are instrumented with
list init, while va copy, whose purpose is to clone a
va list, is instrumented through list copy. The two
run-time functions will allocate the necessary data struc-
tures to validate individual arguments. Calls to va end
are instrumented through list end to free up the corre-
sponding data structures.

Algorithm 1 summarizes the two phases of our anal-
ysis and instrumentation pass. The first phase identifies
all the calls to variadic functions (both direct and indi-
rect). Note that identifying indirect calls to variadic func-
tions is straight-forward in a compiler framework since,
even if the target function is not statically known, its type
is. Then, all the parameters passed by that specific call

input: a module m
/* Phase 1 */
foreach function f in module m do

foreach variadic call c with n arguments in f do
vcsd.count← n;
foreach argument a of type t do

vcsd.args.push(t);
end
emit call to pre call(vcsd) before c;
emit call to post call() after c;

end
end
/* Phase 2 */
foreach function f in module m do

foreach call c to va start(list) do
emit call to list init(&list) after c;

end
foreach call c to va copy(dst,src) do

emit call to list copy(&dst,&src) after c;
end
foreach call c to va end(list) do

emit call to list free(&list) after c;
end
foreach call c to va arg(list, type) do

emit call to check arg(&list, type) before c;
end

end
Algorithm 1: The instrumentation process.

USENIX Association 26th USENIX Security Symposium 187

site are inspected and recorded, along with their type in
a dedicated VCSD which is stored in read-only global
data. At this point, a call to pre call is injected before
the variadic function call (with the newly created VCSD
as a parameter) and, symmetrically, a call to post call
is inserted after the call site.

The second phase identifies all calls to va start and
va copy, and consequently, the va list variables in the
program. Uses of each va list variable are inspected in
an architecture-specific way. Once all uses are identified,
we inject a call to check arg before dereferencing the
argument (which always resides in memory).

4.3 Challenges and Discussion
When designing a variadic function call sanitizer, several
issues have to be considered. We highlight details about
the key challenges we encountered.

Multiple va lists. Functions are allowed to create
multiple va_lists to access the same variadic arguments,
either through va_start or va_copy operations. Hex-
VASAN handles this by storing a VLM entry for each
individual va_list.

Passing va_lists as function arguments. While un-
common, variadic functions are allowed to pass the
va_lists they create as arguments to non-variadic func-
tions. This allows non-variadic functions to access vari-
adic arguments of functions higher in the call stack. Our
design takes this into account by maintaining a list map
(VLM) and by instrumenting all va_arg operations, re-
gardless of whether or not they are in a variadic function.

Multi-threading support. Multiple threads are sup-
ported by storing our per-thread runtime state in a thread-
local variable as supported on major operating systems.

Metadata format. We use a constant data structure per
variadic call site, the VCSD, to hold the number of ar-
guments and a pointer to an array of integers identifying
their type. The check arg function therefore only per-
forms two memory accesses, the first to load the number
of arguments and the second for the type of the argument
currently being checked.

To uniquely identify the data types with an integer, we
decided to build a hashing function (described in Algo-
rithm 2) using a set of fixed identifiers for primitive data
types and hashing them in different ways depending on
how they are aggregated (pointers, union, or struct).
The last hash acts as a terminator marker for aggre-
gate types, which allows us to, e.g., distinguish between
{struct{ int }, int} and {struct {struct{ int,
int }}}. Note that an (unlikely) hash collision only re-
sults in two different types being accepted as equal. Such
a hashing mechanism has the advantage of being deter-
ministic across compilation units, removing the need for

input : a type t and an initial hash value h
output: the final hash value h
h = hash(h, typeID(t));
switch typeID(t) do

case AggregateType
/* union, struct and pointer */
foreach c in componentTypes(t) do

h = hashType(c, h);
end

case FunctionType
h = hashType(returnType(t), h);
foreach a in argTypes(t) do

h = hashType(a, h);
end

end
endsw
h = hash(h, typeID(t));
return h

Algorithm 2: Algorithm describing the type hashing
function hashType. typeID returns an unique identifier
for each basic type (e.g., 32-bit integer, double), type
of aggregate type (e.g., struct, union...) and functions.
hash is a simple hashing function combining two inte-
gers. componentTypes returns the components of an ag-
gregate type, returnType the return type of a function
prototype and argTypes the type of its arguments.

keeping a global map of type-unique id pairs. Due to
the information loss during the translation from C/C++

to LLVM IR, our type system does not distinguish be-
tween signed and unsigned types. The required meta-
data is static and immutable and we mark it as read-only,
protecting it from modification. However, the VCS still
needs to be protected through other mechanisms.

Handling floating point arguments. In x86-64 ABI,
floating point and non-floating point arguments are han-
dled differently. In case of floating point arguments,
the first eight arguments are passed in the floating point
registers whereas in case of non-floating point the first
six are passed in general-purpose registers. HexVASAN
handles both argument types.

Support for aggregate data types. According to
AMD64 System V ABI, the caller unpacks the fields of
the aggregate data types (structs and unions) if the argu-
ments fit into registers. This makes it hard to distinguish
between composite types and regular types – if unpacked
they are indistinguishable on the callee side from argu-
ments of these types. HexVASAN supports aggregate
data types even if the caller unpacks them.

Attacks preserving number and type of arguments.
Our mechanism prevents attacks that change the num-
ber of arguments or the types of individual arguments.

188 26th USENIX Security Symposium USENIX Association

Format string attacks that only change one modifier can
therefore be detected through the type mismatch even if
the total number of arguments remains unchanged.

Non-variadic calls to variadic functions. Consider the
following code snippet:

typedef void (*non_variadic)(int, int);

void variadic(int, ...) { /* ... */ }

int main() {
non_variadic function_ptr = variadic;
function_ptr(1, 2);

}

In this case, the function call in main to function_ptr

appears to the compiler as a non-variadic function call,
since the type of the function pointer is not variadic.
Therefore, our pass will not instrument the call site, lead-
ing to potential errors.

To handle such (rare) situations appropriately, we
would have to instrument all non-variadic call sites too,
leading to an unjustified overhead. Moreover, the code
above represents undefined behavior in C [27, 6.3.2.3p8]
and C++ [26, 5.2.10p6], and might not work on certain ar-
chitectures where the calling convention for variadic and
non-variadic function calls are not compatible. The GNU
C compiler emits a warning when a function pointer is
cast to a different type, therefore we require the devel-
oper to correct the code before applying HexVASAN.

Central management of the global state. To allow the
HexVASAN runtime to be linked into the base system li-
braries, such as the C standard library, we made it a static
library. Turning the runtime into a shared library is pos-
sible, but would prohibit its use during the early process
initialization – until the dynamic linker has processed all
of the necessary relocations. Our runtime therefore ei-
ther needs to be added solely to the C standard library
(so that it is initialized early in the startup process) or
the runtime library must carefully use weak symbols to
ensure that each symbol is only defined once if multiple
libraries are compiled with our countermeasure.

C++ exceptions and longjmp. If an exception is raised
while executing a variadic function (or one of its callees),
the variadic function may not get a chance to clean up the
metadata for any va_lists it has initialized, nor may the
caller of this variadic function get the chance to clean up
the type information it has pushed onto the VCS. Other
functions manipulating the thread’s stack directly, such
as longjmp, present similar issues.

C++ exceptions can be handled by modifying the
LLVM C++ frontend (i.e., clang) to inject an object
with a lifetime spanning from immediately before a vari-
adic function call to immediately after. Such an object
would call pre_call in its constructor and post_call in

the destructor, leveraging the exception handling mech-
anism to make HexVASAN exception-safe. Functions
like longjmp can be instrumented to purge the portions
of HexVASAN’s data structures that correspond to the
discarded stack area. We did not observe any such calls
in practice and leave the implementation of handling ex-
ceptions and longjump across variadic functions as future
engineering work.

5 Implementation

We implemented HexVASAN as a sanitizer for the
LLVM compiler framework [31], version 3.9.1. We
have chosen LLVM for its robust features on analyzing
and transforming arbitrary programs as well as extract-
ing reliable type information. The sanitizer can be en-
abled from the C/C++ frontend (clang) by providing the
-fsanitize=vasan parameter at compile-time. No an-
notations or other source code changes are required for
HexVASAN. Our sanitizer does not require visibility of
whole source code (see Section 4.3), but works on indi-
vidual compilation units. Therefore link-time optimiza-
tion (LTO) is not required and thus fits readily into exist-
ing build systems. In addition, HexVASAN also supports
signal handlers.

HexVASAN consists of two components: a static in-
strumentation pass and a runtime library. The static in-
strumentation pass works on LLVM IR, adding the nec-
essary instrumentation code to all variadic functions and
their callees. The support library is statically linked to
the program and, at run-time, checks the number and
type of variadic arguments as they are used by the pro-
gram. In the following we describe the two components
in detail.

Static instrumentation. The implementation of the
static instrumentation pass follows the description in
Section 4. We first iterate through all functions, looking
for CallInst instructions targeting a variadic function
(either directly or indirectly), then we inspect them and
create for each one of them a read-only GlobalVariable
of type vcsd t. As shown in Listing 2, vcsd t is com-
posed by an unsigned integer representing the number
of arguments of the considered call site and a pointer to
an array (another GlobalVariable) with an integer el-
ement for each argument of type t. type t is an inte-
ger uniquely identifying a data type obtained using the
hashType function presented in Algorithm 2. At this
point a call to pre call is injected before the call site,
with the newly create VCSD as a parameter, and a call to
post call is injected after the call site.

During the second phase, we first identify all va_start,
va_copy, and va_end operations in the program. In the IR
code, these operations appear as calls to the LLVM in-

USENIX Association 26th USENIX Security Symposium 189

struct vcsd_t {
unsigned count;
type_t *args;

};

thread_local stack<vcsd_t *> vcs;
thread_local map<va_list *,

pair<vcsd_t *, unsigned>> vlm;

void pre_call(vcsd_t *arguments) {
vcs.push_back(arguments);

}
void post_call() {
vcs.pop_back();

}
void list_init(va_list *list_ptr) {
vlm[list_ptr] = { vcs.top(), 0 };

}

void list_free(va_list *list_ptr) {
vlm.erase(list_ptr);

}

void check_arg(va_list *list_ptr, type_t type) {
pair<vcsd_t *, unsigned> &args = vlm[list_ptr];
unsigned index = args.second++;
assert(index < args.first->count);
assert(args.first->args[index] == type);

}

int add(int start, ...) {
/* ... */
va_start(list, start);
list_init(&list);
do {
check_arg(&list, typeid(int));
total += va_arg(list, int);

} while (next != 0);
va_end(list);
list_free(&list);
/* ... */

}

const vcsd_t main_add_vcsd = {
.count = 3,
.args = {typeid(int), typeid(int), typeid(int)}

};

int main(int argc, const char *argv[]) {
/* ... */
pre_call(&main_add_vcsd);
int result = add(5, 1, 2, 0);
post_call();
printf("%d\n", result);
/* ... */

}

Listing 2: Simplified C++ representation of the
instrumented code for Listing 1.

trinsics llvm.va_start, llvm.va_copy, and va_end. We
instrument the operations with calls to our runtime’s
list_init, list_copy, and list_free functions respec-
tively. We then proceed to identify va_arg operations.
Although the LLVM IR has a dedicated va_arg instruc-
tion, it is not used on any of the platforms we tested.
The va_list is instead accessed directly. Our identifi-
cation of va_arg is therefore platform-specific. On x86-
64, our primary target, we identify va_arg by recogniz-
ing accesses to the gp_offset and fp_offset fields in the
x86-64 version of the va_list structure (see Section 2.2).
The fp_offset field is accessed whenever the program
attempts to retrieve a floating point argument from the
list. The gp_offset field is accessed to retrieve any other
types of variadic arguments. We insert a call to our run-
time’s check_arg function before the instruction that ac-
cesses this field.

Listing 2 shows (in simplified C) how the code in List-
ing 1 would be instrumented by our sanitizer.

Dynamic variadic type checking. The entire runtime
is implemented in plain C code, as this allows it to be
linked into the standard C library without introducing
a dependency to the standard C++ library. The VCS is
implemented as a thread-local stack, and the VLM as
a thread-local hash map. The pre_call and post_call

functions push and pop type information onto and from
the VCS. The list_init function inserts a new entry
into the VLM, using the top element on the stack as the
entry’s type information and initializing the counter for
consumed arguments to 0.

check arg looks up the type information for the
va_list being accessed in the VLM and checks if the
requested argument exists (based on the counter of con-
sumed arguments), and if its type matches the one pro-
vided by the caller. If either of these checks fails, exe-
cution is aborted, and the runtime will generate an error
message such as the one shown in Listing 3. As a con-
sequence, the pointer to the argument is never read or
written, since the pointer to it is never dereferenced.

Error: Type Mismatch
Index is 1
Callee Type : 43 (32-bit Integer)
Caller Type : 15 (Pointer)
Backtrace:
[0] 0x4019ff <__vasan_backtrace+0x1f> at test
[1] 0x401837 <__vasan_check_arg+0x187> at test
[2] 0x8011b3afa <__vfprintf+0x20fa> at libc.so.7
[3] 0x8011b1816 <vfprintf_l+0x86> at libc.so.7
[4] 0x801200e50 <printf+0xc0> at libc.so.7
[5] 0x4024ae <main+0x3e> at test
[6] 0x4012ff <_start+0x17f> at test

Listing 3: Error message reported by HexVASAN

190 26th USENIX Security Symposium USENIX Association

6 Evaluation

In this section we present a case study on variadic func-
tion based attacks against state-of-the-art CFI implemen-
tations. Next, we evaluate the effectiveness of Hex-
VASAN as an exploit mitigation technique. Then, we
evaluate the overhead introduced by our HexVASAN
prototype implementation on the SPEC CPU2006 in-
teger (CINT2006) benchmarks, on Firefox using stan-
dard JavaScript benchmarks, and on micro-benchmarks.
We also evaluate how widespread the usage of variadic
functions is in SPEC CPU2006 and in Firefox 51.0.1,
Chromium 58.0.3007.0, Apache 2.4.23, CPython 3.7.0,
nginx 1.11.5, OpenSSL 1.1.1, Wireshark 2.2.1, and the
FreeBSD 11.0 base system.

Note that, along with testing the aforementioned soft-
ware, we also developed an internal set of regression
tests. Our regression tests allow us to verify that our
sanitizer correctly catches problematic variadic function
calls, and does not raise false alarms for benign calls.
The test suite explores corner cases, including trying to
access arguments that have not been passed and trying to
access them using a type different from the one used at
the call site.

6.1 Case study: CFI effectiveness

One of the attack scenarios we envision is that an at-
tacker controls the target of an indirect call site. If the
intended target of the call site was a variadic function,
the attacker could illegally call a different variadic func-
tion that expects different variadic arguments than the in-
tended target (yet shares the types for all non-variadic
arguments). If the intended target of the call site was a
non-variadic function, the attacker could call a variadic
function that interprets some of the intended target’s ar-
guments as variadic arguments.

All existing CFI mechanisms allow such attacks to
some extent. The most precise CFI mechanisms, which
rely on function prototypes to classify target sets (e.g.,
LLVM-CFI, piCFI, or VTV) will allow all targets with
the same prototype, possibly restricting to the subset
of functions whose addresses are taken in the program.
This is problematic for variadic functions, as only non-
variadic types are known statically. For example, if
a function of type int (*)(int, ...) is expected to
be called from an indirect call site, then precise CFI
schemes allow calls to all other variadic functions of that
type, even if those other functions expect different types
for the variadic arguments.

A second way to attack variadic functions is to over-
write their arguments directly. This happens, for ex-
ample, in format string attacks, where an attacker can
overwrite the format string to cause misinterpretation

of the variadic arguments. HexVASAN detects both of
these attacks when the callee attempts to retrieve the
variadic arguments using the va_arg macro described
in Section 2.1. Checking and enforcing the correct
types for variadic functions is only possible at runtime
and any sanitizer must resort to run-time checks to do
so. CFI mechanisms must therefore be extended with
a HexVASAN-like mechanism to detect violations. To
show that our tool can complement CFI, we create test
programs containing several variadic functions and one
non-variadic function. The definitions of these functions
are shown below.

int sum_ints(int n, ...);
int avg_longs(int n, ...);
int avg_doubles(int n, ...);
void print_longs(int n, ...);
void print_doubles(int n, ...);
int square(int n);

This program contains one indirect call site from
which only the sum_ints function can be called legally,
and one indirect call site from which only the square

function can be legally called. We also introduce a mem-
ory corruption vulnerability which allows us to override
the target of both indirect calls.

We constructed the program such that sum_ints,
avg_longs, print_longs, and square are all address-taken
functions. The avg_doubles and print_doubles functions
are not address-taken.

Functions avg_longs, avg_doubles, print_longs, and
print_doubles all expect different variadic argument
types than function sum_ints. Functions sum_ints,
avg_longs, avg_doubles, and square do, however, all
have the same non-variadic prototype (int (*)(int)).

We compiled six versions of the test program,
instrumenting them with, respectively, HexVASAN,
LLVM 3.9 Forward-Edge CFI [59], Per-Input CFI [44],
CCFI [35], GCC 6.2’s VTV [59] and Visual C++ Control
Flow Guard [37]. In each version, we first built an attack
involving a variadic function, by overriding the indirect
call sites with a call to each of the variadic functions de-
scribed above. We then also tested overwriting the argu-
ments of the sum_ints function, without overwriting the
indirect call target. Table 1 shows the detection results.

LLVM Forward-Edge CFI allows calls to avg_longs

and avg_doubles from the sum_ints indirect call site be-
cause these functions have the same static type signa-
ture as the intended call target. This implementation of
CFI does not allow calls to variadic functions from non-
variadic call sites, however.

CCFI only detects calls to print_doubles, a function
that is not address-taken and has a different non-variadic
prototype than square, from the square call site. It allows
all of the other illegal calls.

USENIX Association 26th USENIX Security Symposium 191

Actual target

Intended target Prototype A.T.? LLVM-CFI pi-CFI CCFI VTV CFG HexVASAN

Variadic
Same Yes 7 7 7 7 7 X

No 7 X 7 7 7 X

Different Yes X X 7 7 7 X

No X X 7 7 7 X

Non-variadic
Same Yes X X 7 7 7 X

No X X 7 7 7 X

Different Yes X X 7 7 7 X

No X X X 7 7 X

Original Overwritten Arguments 7 7 7 7 7 X

Table 1: Detection coverage for several types of illegal calls to variadic functions. X indicates detection, 7 indicates
non-detection. “A.T.” stands for address taken.

GCC VTV, and Visual C++ CFG allow all of the ille-
gal calls, even if the non-variadic type signature does not
match that of the intended call target.

pi-CFI allows calls to the avg_longs function from the
sum_ints indirect call site. avg_longs is address-taken
and it has the same static type signature as the intended
call target. pi-CFI does not allow illegal calls to non-
address-taken functions or functions with different static
type signatures. pi-CFI also does not allow calls to vari-
adic functions from non-variadic call sites.

All implementations of CFI allow direct overwrites of
variadic arguments, as long as the original control flow
of the program is not violated.

6.2 Exploit Detection
To evaluate the effectiveness of our tool as a real-world
exploit detector, we built a HexVASAN-hardened ver-
sion of sudo 1.8.3. sudo allows authorized users to ex-
ecute shell commands as another user, often one with
a high privilege level on the system. If compromised,
sudo can escalate the privileges of non-authorized users,
making it a popular target for attackers. Versions 1.8.0
through 1.8.3p1 of sudo contained a format string vul-
nerability (CVE-2012-0809) that allowed exactly such a
compromise. This vulnerability could be exploited by
passing a format string as the first argument (argv[0]) of
the sudo program. One such exploit was shown to by-
pass ASLR, DEP, and glibc’s FORTIFY SOURCE pro-
tection [20]. In addition, we were able to verify that GCC
5.4.0 and clang 3.8.0 fail to catch this exploit, even when
annotating the vulnerable function with the format func-
tion attribute [5] and setting the compiler’s format string
checking (-Wformat) to the highest level.

Although it is sudo itself that calls the format string
function (fprintf), HexVASAN can only detect the vio-
lation on the callee side. We therefore had to build hard-
ened versions of not just the sudo binary itself, but also
the C library. We chose to do this on the FreeBSD plat-
form, as its standard C library can be easily built using
LLVM, and HexVASAN therefore readily fits into the
FreeBSD build process. As expected, HexVASAN does
detect any exploit that triggers the vulnerability, produc-
ing the error message shown in Listing 4.

$ ln -s /usr/bin/sudo %x%x%x%x
$./%x%x%x%x -D9 -A

Error: Index greater than Argument Count
Index is 1
Backtrace:
[0] 0x4053bf <__vasan_backtrace+0x1f> at sudo
[1] 0x405094 <__vasan_check_index+0xf4> at sudo
[2] 0x8015dce24 <__vfprintf+0x2174> at libc.so
[3] 0x8015dac52 <vfprintf_l+0x212> at libc.so
[4] 0x8015daab3 <vfprintf_l+0x73> at libc.so
[5] 0x40bdaf <sudo_debug+0xdf> at sudo
[6] 0x40ada3 <main+0x6c3> at sudo
[7] 0x40494f <_start+0x17f> at sudo

Listing 4: Exploit detection in sudo.

6.3 Prevalence of variadic functions

To collect variadic function usage in real software,
we extended our instrumentation mechanism to collect
statistics about variadic functions and their calls. As
shown in Table 2, for each program, we collect:

192 26th USENIX Security Symposium USENIX Association

Call sites Func. Ratio

Program Tot. Ind. % Tot. A.T. Proto Tot. A.T.

Firefox 30225 1664 5.5 421 18 241 1.75 0.07

Chromium 83792 1728 2.1 794 44 396 2.01 0.11

FreeBSD 189908 7508 3.9 1368 197 367 3.73 0.53

Apache 7121 0 0 94 29 41 2.29 0.71

CPython 4183 0 0 382 0 38 10.05 0.00

nginx 1085 0 0 26 0 14 1.86 0.00

OpenSSL 4072 1 0.02 23 0 15 1.53 0.00

Wireshark 37717 0 0 469 1 110 4.26 0.01

perlbench 1460 1 0.07 60 2 18 3.33 0.11

bzip2 85 0 0 3 0 3 1.00 0.00

gcc 3615 55 1.5 125 0 31 4.03 0.00

mcf 29 0 0 3 0 3 1.00 0.00

milc 424 0 0 21 0 8 2.63 0.00

namd 485 0 0 24 2 8 3.00 0.25

gobmk 2911 0 0 35 0 8 4.38 0.00

soplex 6 0 0 2 1 2 1.00 0.50

povray 1042 40 3.8 45 10 16 2.81 0.63

hmmer 671 7 1 9 1 5 1.80 0.20

sjeng 253 0 0 4 0 3 1.33 0.00

libquantum 74 0 0 91 0 7 13.00 0.00

h264ref 432 0 0 85 5 13 6.54 0.38

lbm 11 0 0 3 0 2 1.50 0.00

omnetpp 340 0 0 48 23 19 2.53 1.21

astar 42 0 0 4 1 4 1.00 0.25

sphinx3 731 0 0 20 0 5 4.00 0.00

xalancbmk 19 0 0 4 2 4 1.00 0.50

Table 2: Statistics of Variadic Functions for Different
Benchmarks. The second and third columns are vari-
adic call sites broken into “Tot.” (total) and “Ind.” (indi-
rect); % shows the percentage of variadic call sites. The
fifth and sixth columns are for variadic functions. “A.T.”
stands for address taken. “Proto.” is the number of dis-
tinct variadic function prototypes. “Ratio” indicates the
function-per-prototypes ratio for variadic functions.

Call sites. The number of function calls targeting vari-
adic functions. We report the total number and how
many of them are indirect, since they are of particular
interest for an attack scenario where the adversary can
override a function pointer.

Variadic functions. The number of variadic functions.
We report their total number and how many of them
have their address taken, since CFI mechanism cannot

prevent functions with their address taken from being
reachable from indirect call sites.

Variadic prototypes. The number of distinct variadic
function prototypes in the program.

Functions-per-prototype. The average number of vari-
adic functions sharing the same prototype. This mea-
sures how many targets are available, on average, for
each indirect call sites targeting a specific prototype.
In practice, this the average number of permitted des-
tinations for an indirect call site in the case of a perfect
CFI implementation. We report this value both consid-
ering all the variadic functions and only those whose
address is taken.

Interestingly, each benchmark we analyzed contains
calls to variadic functions and several programs (Fire-
fox, OpenSSL, perlbench, gcc, povray, and hmmer) even
contain indirect calls to variadic functions. In addition to
calling variadic functions, each benchmark also defines
numerous variadic functions (421 for Firefox, 794 for
Chromium, 1368 for FreeBSD, 469 for Wireshark, and
382 for CPython). Variadic functions are therefore preva-
lent and used ubiquitously in software. Adversaries have
plenty of opportunities to modify these calls and to at-
tack the implicit contract between caller and callee. The
compiler is unable to enforce any static safety guaran-
tees when calling these functions, either for the number
of arguments, nor their types. In addition, many of the
benchmarks have variadic functions that are called indi-
rectly, often with their address being taken. Looking at
Firefox, a large piece of software, the numbers are even
more staggering with several thousand indirect call sites
that target variadic functions and 241 different variadic
prototypes.

The prevalence of variadic functions leaves both a
large attack surface for attackers to either redirect vari-
adic calls to alternate locations (even if defense mecha-
nisms like CFI are present) or to modify the arguments so
that callees misinterpret the supplied arguments (similar
to extended format string attacks).

In addition, the compiler has no insight into these
functions and cannot statically check if the programmer
supplied the correct parameters. Our sanitizer identi-
fied three interesting cases in omnetpp, one of the SPEC
CPU2006 benchmarks that implements a discrete event
simulator. The benchmark calls a variadic functions with
a mismatched type, where it expects a char * but re-
ceives a NULL, which has type void *. Listing 5 shows
the offending code.

We also identified a bug in SPEC CPU2006’s
perlbench. This benchmark passes the result of a sub-
traction of two character pointers as an argument to a

USENIX Association 26th USENIX Security Symposium 193

static sEnumBuilder _EtherMessageKind(
"EtherMessageKind",
JAM_SIGNAL, "JAM_SIGNAL",
ETH_FRAME, "ETH_FRAME",
ETH_PAUSE, "ETH_PAUSE",
ETHCTRL_DATA, "ETHCTRL_DATA",
ETHCTRL_REGISTER_DSAP,

"ETHCTRL_REGISTER_DSAP",
ETHCTRL_DEREGISTER_DSAP,

"ETHCTRL_DEREGISTER_DSAP",
ETHCTRL_SENDPAUSE, "ETHCTRL_SENDPAUSE",
0, NULL

);

Listing 5: Variadic violation in omnetpp.

variadic function. At the call site, this argument is a ma-
chine word-sized integer (i.e., 64-bits integer on our test
platform). The callee truncates this argument to a 32-
bit integer by calling va arg(list, int). HexVASAN
reports this (likely unintended) truncation as a violation.

6.4 Firefox
We evaluate the performance of HexVASAN by in-
strumenting Firefox (51.0.1) and using three differ-
ent browser benchmark suites: Octane, JetStream, and
Kraken. Table 3 shows the comparison between the Hex-
VASAN instrumented Firefox and native Firefox. To re-
duce variance between individual runs, we averaged fif-
teen runs for each benchmark (after one warmup run).
For each run we started Firefox, ran the benchmark, and
closed the browser. HexVASAN incurs only 1.08% and
1.01% overhead for Octane and JetStream respectively
and speeds up around 0.01% for Kraken. These num-
bers are indistinguishable from measurement noise. Oc-
tane [4] and JetStream measure the time a test takes to
complete and then assign a score that is inversely pro-
portional to the runtime, whereas Kraken [3] measures

Benchmark Native HexVASAN

Octane
AVERAGE 31241.80 30907.73
STDDEV 2449.82 2442.82
OVERHEAD -1.08%

JetStream
AVERAGE 200.76 198.75
STDDEV 0.66 1.68
OVERHEAD -1.01%

Kraken
AVERAGE [ms] 832.48 832.41
STDDEV [ms] 7.41 12.71
OVERHEAD 0.01%

Table 3: Performance overhead on Firefox benchmarks.
For Octane and JetStream higher is better, while for
Kraken lower is better.

0.9

0.95

1

1.05

1.1

Native HexVASAN

Figure 2: Run-time overhead of HexVASAN in the
SPECint CPU2006 benchmarks, compared to baseline
LLVM 3.9.1 performance.

the speed of test cases gathered from different real-world
applications and libraries.

6.5 SPEC CPU2006

We measured HexVASAN’s run-time overhead by run-
ning the SPEC CPU2006 integer (CINT2006) bench-
marks on an Ubuntu 14.04.5 LTS machine with an Intel
Xeon E5-2660 CPU and 64 GiB of RAM. We ran each
benchmark program on its reference inputs and measured
the average run-time over three runs. Figure 2 shows the
results of these tests. We compiled each benchmark with
a vanilla clang/LLVM 3.9.1 compiler and optimization
level -O3 to establish a baseline. We then compiled the
benchmarks with our modified clang/LLVM 3.9.1 com-
piler to generate the HexVASAN results.

The geometric mean overhead in these benchmarks
was just 0.45%, indistinguishable from measurement
noise. The only individual benchmark result that stands
out is that of libquantum. This benchmark program per-
formed 880M variadic function calls in a run of just 433
seconds.

6.6 Micro-benchmarks

Besides evaluating large benchmarks, we have also
measured HexVASAN’s runtime overhead on a set of
micro-benchmarks. We have written test cases for vari-
adic functions with different number of arguments, in
which we repeatedly invoke the variadic functions. Ta-
ble 4 shows the comparison between the native and
HexVASAN-instrumented micro-benchmarks. Overall,
HexVASAN incurs runtime overheads of 4-6x for vari-
adic function calls due to the additional security checks.
In real-world programs, however, variadic functions are
invoked rarely, so HexVASAN has little impact on the
overall runtime performance.

194 26th USENIX Security Symposium USENIX Association

calls Native [µs] HexVASAN [µs]

Variadic function
argument count: 3 1 0 0

100 2 12
1000 20 125

Variadic function
argument count: 12 1 0 0

100 6 22
1000 55 198

Table 4: Performance overhead in micro-benchmarks.

7 Related work

HexVASAN can either be used as an always-on runtime
monitor to mitigate exploits or as a sanitizer to detect
bugs, sharing similarities with the sanitizers that exist
primarily in the LLVM compiler. Similar to HexVASAN,
these sanitizers embed run-time checks into a program
by instrumenting potentially dangerous program instruc-
tions.

AddressSanitizer [54] (ASan), instruments memory
accesses and allocation sites to detect spatial memory
errors, such as out-of-bounds accesses, as well as tem-
poral memory errors, such as use-after-free bugs. Unde-
fined Behavior Sanitizer [52] (UBSan) instruments vari-
ous types of instructions to detect operations whose se-
mantics are not strictly defined by the C and C++ stan-
dards, e.g., increments that cause signed integers to over-
flow, or null-pointer dereferences. Thread Sanitizer [55]
(TSAN) instruments memory accesses and atomic opera-
tions to detect data races, deadlocks, and various misuses
of synchronization primitives. Memory Sanitizer [58]
(MSAN) detects uses of uninitialized memory.

CaVer [32] is a sanitizer targeted at verifying correct-
ness of downcasts in C++. Downcasting converts a base
class pointer to a derived class pointer. This operation
may be unsafe as it cannot be statically determined, in
general, if the pointed-to object is of the derived class
type. TypeSan [25] is a refinement of CaVer that reduces
overhead and improves the sanitizer coverage.

UniSan [34] sanitizes information leaks from the ker-
nel. It ensures that data is initialized before leaving the
kernel, preventing reads of uninitialized memory.

All of these sanitizers are highly effective at finding
specific types of bugs, but, unlike HexVASAN, they do
not address misuses of variadic functions. The aforemen-
tioned sanitizers also differ from HexVASAN in that they
typically incur significant run-time and memory over-
head.

Different control-flow hijacking mitigations offer par-
tial protection against variadic function attacks by
preventing adversaries from calling variadic functions
through control-flow edges that do not appear in legit-

imate executions of the program. Among these miti-
gations, we find Code Pointer Integrity (CPI) [30], a
mitigation that prevents attackers from overwriting code
pointers in the program, and various implementations of
Control-Flow Integrity (CFI), a technique that does not
prevent code pointer overwrites, but rather verifies the in-
tegrity of control-flow transfers in the program [6, 7, 11,
14–16,21,22,28,35,37,38,41–44,46,49–51,59,61–66].

Control-flow hijacking mitigations cannot prevent at-
tackers from overwriting variadic arguments directly.
At best, they can prevent variadic functions from be-
ing called through control-flow edges that do not ap-
pear in legitimate executions of the program. We there-
fore argue that HexVASAN and these mitigations are
orthogonal. Moreover, prior research has shown that
many of the aforementioned implementations fail to fully
prevent control-flow hijacking as they are too impre-
cise [8, 17, 19, 23], too limited in scope [53, 57], vulner-
able to information leakage attacks [18], or vulnerable
to spraying attacks [24, 45]. We further showed in Sec-
tion 6.1 that variadic functions exacerbate CFI’s impre-
cision problems, allowing additional leeway for adver-
saries to attack variadic functions.

Defenses that protect against direct overwrites or mis-
use of variadic arguments have thus far only focused on
format string attacks, which are a subset of the possible
attacks on variadic functions. LibSafe detects potentially
dangerous calls to known format string functions such
as printf and sprintf [60]. A call is considered dan-
gerous if a %n specifier is used to overwrite the frame
pointer or return address, or if the argument list for the
printf function is not contained within a single stack
frame. FormatGuard [12] instruments calls to printf
and checks if the number of arguments passed to printf
matches the number of format specifiers used in the for-
mat string.

Shankar et al. proposed to use static taint analysis to
detect calls to format string functions where the format
string originates from an untrustworthy source [56]. This
approach was later refined by Chen and Wagner [10] and
used to analyze thousands of packages in the Debian 3.1
Linux distribution. TaintCheck [39] also detects untrust-
worthy format strings, but relies on dynamic taint analy-
sis to do so.

FORTIFY SOURCE of glibc provides some lightweight
checks to ensure all the arguments are consumed. How-
ever, it can be bypassed [2] and does not check for type-
mismatch. Hence, none of these aforementioned solu-
tions provide comprehensive protection against variadic
argument overwrites or misuse.

USENIX Association 26th USENIX Security Symposium 195

8 Conclusions

Variadic functions introduce an implicitly defined con-
tract between the caller and callee. When the program-
mer fails to enforce this contract correctly, the violation
leads to runtime crashes or opens up a vulnerability to
an attacker. Current tools, including static type check-
ers and CFI implementations, do not find variadic func-
tion type errors or prevent attackers from exploiting calls
to variadic functions. Unfortunately, variadic functions
are prevalent. Programs such as SPEC CPU2006, Fire-
fox, Apache, CPython, nginx, wireshark and libraries
frequently leverage variadic functions to offer flexibility
and abundantly call these functions.

We have designed a sanitizer, HexVASAN, that ad-
dresses this attack vector. HexVASAN is a light weight
runtime monitor that detects bugs in variadic functions
and prevents the bugs from being exploited. It imposes
negligible overhead (0.45%) on the SPEC CPU2006
benchmarks and is effective at detecting type viola-
tions when calling variadic arguments. Download Hex-
VASAN at https://github.com/HexHive/HexVASAN.

9 Acknowledgments

We thank the anonymous reviewers for their insightful
comments. We also thank our shepherd Adam Doupé
for his informative feedback. This material is based
in part upon work supported by the National Science
Foundation under awards CNS-1513783, CNS-1657711,
and CNS-1619211, by the Defense Advanced Research
Projects Agency (DARPA) under contracts FA8750-15-
C-0124 and FA8750-15-C-0085, and by Intel Corpora-
tion. We also gratefully acknowledge a gift from Oracle
Corporation. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of
the authors and do not necessarily reflect the views of
the National Science Foundation, the Defense Advanced
Research Projects Agency (DARPA) and its Contracting
Agents, or any other agency of the U.S. Government.

References
[1] http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=

CVE-2015-8617.

[2] A eulogy for format strings. http://phrack.org/issues/67/
9.html.

[3] Kraken benchmark. https://wiki.mozilla.org/Kraken.

[4] Octane benchmark. https://developers.google.com/
octane/faq.

[5] Using the gnu compiler collection (gcc) - function at-
tributes. https://gcc.gnu.org/onlinedocs/gcc-3.2/gcc/
Function-Attributes.html.

[6] ABADI, M., BUDIU, M., ERLINGSSON, U., AND LIGATTI, J.
Control-flow integrity. In ACM Conference on Computer and
Communications Security (CCS) (2005).

[7] BOUNOV, D., KICI, R., AND LERNER, S. Protecting C++ dy-
namic dispatch through vtable interleaving. In Symposium on
Network and Distributed System Security (NDSS) (2016).

[8] CARLINI, N., BARRESI, A., PAYER, M., WAGNER, D., AND
GROSS, T. R. Control-flow bending: On the effectiveness of
control-flow integrity. In USENIX Security Symposium (2015).

[9] CASTRO, M., COSTA, M., MARTIN, J.-P., PEINADO, M.,
AKRITIDIS, P., DONNELLY, A., BARHAM, P., AND BLACK, R.
Fast byte-granularity software fault isolation. In ACM Symposium
on Operating Systems Principles (SOSP) (2009).

[10] CHEN, K., AND WAGNER, D. Large-scale analysis of format
string vulnerabilities in debian linux. In Proceedings of the 2007
workshop on Programming languages and analysis for security
(2007).

[11] CHENG, Y., ZHOU, Z., MIAO, Y., DING, X., AND DENG,
R. H. ROPecker: A generic and practical approach for defending
against ROP attacks. In Symposium on Network and Distributed
System Security (NDSS) (2014).

[12] COWAN, C., BARRINGER, M., BEATTIE, S., KROAH-
HARTMAN, G., FRANTZEN, M., AND LOKIER, J. Formatguard:
Automatic protection from printf format string vulnerabilities. In
USENIX Security Symposium (2001).

[13] COWAN, C., PU, C., MAIER, D., WALPOLE, J., BAKKE, P.,
BEATTIE, S., GRIER, A., WAGLE, P., ZHANG, Q., AND HIN-
TON, H. Stackguard: Automatic adaptive detection and preven-
tion of buffer-overflow attacks. In USENIX Security Symposium
(1998).

[14] CRISWELL, J., DAUTENHAHN, N., AND ADVE, V. KCoFI:
Complete control-flow integrity for commodity operating system
kernels. In IEEE Symposium on Security and Privacy (S&P)
(2014).

[15] DAVI, L., DMITRIENKO, A., EGELE, M., FISCHER, T., HOLZ,
T., HUND, R., NÜRNBERGER, S., AND SADEGHI, A.-R.
MoCFI: A framework to mitigate control-flow attacks on smart-
phones. In Symposium on Network and Distributed System Secu-
rity (NDSS) (2012).

[16] DAVI, L., KOEBERL, P., AND SADEGHI, A.-R. Hardware-
assisted fine-grained control-flow integrity: Towards efficient
protection of embedded systems against software exploitation. In
Annual Design Automation Conference (DAC) (2014).

[17] DAVI, L., SADEGHI, A.-R., LEHMANN, D., AND MONROSE,
F. Stitching the gadgets: On the ineffectiveness of coarse-grained
control-flow integrity protection. In USENIX Security Symposium
(2014).

[18] EVANS, I., FINGERET, S., GONZÁLEZ, J., OTGONBAATAR, U.,
TANG, T., SHROBE, H., SIDIROGLOU-DOUSKOS, S., RINARD,
M., AND OKHRAVI, H. Missing the point (er): On the effective-
ness of code pointer integrity. In IEEE Symposium on Security
and Privacy (S&P) (2015).

[19] EVANS, I., LONG, F., OTGONBAATAR, U., SHROBE, H., RI-
NARD, M., OKHRAVI, H., AND SIDIROGLOU-DOUSKOS, S.
Control jujutsu: On the weaknesses of fine-grained control flow
integrity. In ACM Conference on Computer and Communications
Security (CCS) (2015).

[20] EXPLOIT DATABASE. sudo debug privilege escalation. https:
//www.exploit-db.com/exploits/25134/, 2013.

[21] GAWLIK, R., AND HOLZ, T. Towards Automated Integrity
Protection of C++ Virtual Function Tables in Binary Programs.
In Annual Computer Security Applications Conference (ACSAC)
(2014).

[22] GE, X., TALELE, N., PAYER, M., AND JAEGER, T. Fine-
Grained Control-Flow Integrity for Kernel Software. In IEEE
European Symp. on Security and Privacy (2016).

196 26th USENIX Security Symposium USENIX Association

https://github.com/HexHive/HexVASAN
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-8617
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-8617
http://phrack.org/issues/67/9.html
http://phrack.org/issues/67/9.html
https://wiki.mozilla.org/Kraken
https://developers.google.com/octane/faq
https://developers.google.com/octane/faq
https://gcc.gnu.org/onlinedocs/gcc-3.2/gcc/Function-Attributes.html
https://gcc.gnu.org/onlinedocs/gcc-3.2/gcc/Function-Attributes.html
https://www.exploit-db.com/exploits/25134/
https://www.exploit-db.com/exploits/25134/

[23] GÖKTAS, E., ATHANASOPOULOS, E., BOS, H., AND POR-
TOKALIDIS, G. Out of control: Overcoming control-flow in-
tegrity. In IEEE Symposium on Security and Privacy (S&P)
(2014).

[24] GÖKTAS, E., GAWLIK, R., KOLLENDA, B., ATHANASOPOU-
LOS, E., PORTOKALIDIS, G., GIUFFRIDA, C., AND BOS, H.
Undermining information hiding (and what to do about it). In
USENIX Security Symposium (2016).

[25] HALLER, I., JEON, Y., PENG, H., PAYER, M., GIUFFRIDA,
C., BOS, H., AND VAN DER KOUWE, E. Typesan: Practical
type confusion detection. In ACM Conference on Computer and
Communications Security (CCS) (2016).

[26] Information technology – Programming languages – C++. Stan-
dard, International Organization for Standardization, Geneva,
CH, Dec. 2014.

[27] Information technology – Programming languages – C. Standard,
International Organization for Standardization, Geneva, CH, Dec.
2011.

[28] JANG, D., TATLOCK, Z., AND LERNER, S. SAFEDISPATCH:
Securing C++ virtual calls from memory corruption attacks. In
Symposium on Network and Distributed System Security (NDSS)
(2014).

[29] JELINEK, J. FORTIFY SOURCE. https://gcc.gnu.org/ml/
gcc-patches/2004-09/msg02055.html, 2004.

[30] KUZNETSOV, V., SZEKERES, L., PAYER, M., CANDEA, G.,
SEKAR, R., AND SONG, D. Code-pointer integrity. In USENIX
Symposium on Operating Systems Design and Implementation
(OSDI) (2014).

[31] LATTNER, C., AND ADVE, V. Llvm: A compilation framework
for lifelong program analysis & transformation. In IEEE/ACM
International Symposium on Code Generation and Optimization
(CGO) (2004).

[32] LEE, B., SONG, C., KIM, T., AND LEE, W. Type casting verifi-
cation: Stopping an emerging attack vector. In USENIX Security
Symposium (2015).

[33] LINUX PROGRAMMER’S MANUAL. va start (3) - Linux Manual
Page.

[34] LU, K., SONG, C., KIM, T., AND LEE, W. Unisan: Proactive
kernel memory initialization to eliminate data leakages. In ACM
Conference on Computer and Communications Security (CCS)
(2016).

[35] MASHTIZADEH, A. J., BITTAU, A., BONEH, D., AND
MAZIÈRES, D. Ccfi: cryptographically enforced control flow
integrity. In ACM Conference on Computer and Communications
Security (CCS) (2015).

[36] MATZ, M., HUBICKA, J., JAEGER, A., AND MITCHELL, M.
System v application binary interface. AMD64 Architecture Pro-
cessor Supplement, Draft v0.99 (2013).

[37] MICROSOFT CORPORATION. Control Flow Guard (Windows).
https://msdn.microsoft.com/en-us/library/windows/
desktop/mt637065(v=vs.85).aspx, 2016.

[38] MOHAN, V., LARSEN, P., BRUNTHALER, S., HAMLEN, K.,
AND FRANZ, M. Opaque control-flow integrity. In Symposium
on Network and Distributed System Security (NDSS) (2015).

[39] NEWSOME, J., AND SONG, D. Dynamic taint analysis for auto-
matic detection, analysis, and signature generation of exploits on
commodity software. In Symposium on Network and Distributed
System Security (NDSS) (2005).

[40] NISSIL, R. http://cve.mitre.org/cgi-bin/cvename.cgi?
name=CVE-2009-1886.

[41] NIU, B., AND TAN, G. Monitor integrity protection with space
efficiency and separate compilation. In ACM Conference on Com-
puter and Communications Security (CCS) (2013).

[42] NIU, B., AND TAN, G. Modular control-flow integrity. In ACM
SIGPLAN Conference on Programming Language Design and
Implementation (PLDI) (2014).

[43] NIU, B., AND TAN, G. RockJIT: Securing just-in-time compila-
tion using modular control-flow integrity. In ACM Conference on
Computer and Communications Security (CCS) (2014).

[44] NIU, B., AND TAN, G. Per-input control-flow integrity. In ACM
Conference on Computer and Communications Security (CCS)
(2015).

[45] OIKONOMOPOULOS, A., ATHANASOPOULOS, E., BOS, H.,
AND GIUFFRIDA, C. Poking holes in information hiding. In
USENIX Security Symposium (2016).

[46] PAPPAS, V., POLYCHRONAKIS, M., AND KEROMYTIS, A. D.
Transparent ROP exploit mitigation using indirect branch tracing.
In USENIX Security Symposium (2013).

[47] PAX TEAM. Pax address space layout randomization (aslr).

[48] PAX TEAM. PaX non-executable pages design & implementa-
tion. http://pax.grsecurity.net/docs/noexec.txt, 2004.

[49] PAYER, M., BARRESI, A., AND GROSS, T. R. Fine-grained
control-flow integrity through binary hardening. In Conference
on Detection of Intrusions and Malware & Vulnerability Assess-
ment (DIMVA) (2015).

[50] PEWNY, J., AND HOLZ, T. Control-flow restrictor: Compiler-
based CFI for iOS. In Annual Computer Security Applications
Conference (ACSAC) (2013).

[51] PRAKASH, A., HU, X., AND YIN, H. vfGuard: Strict Protection
for Virtual Function Calls in COTS C++ Binaries. In Symposium
on Network and Distributed System Security (NDSS) (2015).

[52] PROJECT, G. C. Undefined behavior sanitizer.
https://www.chromium.org/developers/testing/
undefinedbehaviorsanitizer.

[53] SCHUSTER, F., TENDYCK, T., LIEBCHEN, C., DAVI, L.,
SADEGHI, A.-R., AND HOLZ, T. Counterfeit object-oriented
programming: On the difficulty of preventing code reuse attacks
in c++ applications. In IEEE Symposium on Security and Privacy
(S&P) (2015).

[54] SEREBRYANY, K., BRUENING, D., POTAPENKO, A., AND
VYUKOV, D. Addresssanitizer: a fast address sanity checker.
In USENIX Annual Technical Conference (2012).

[55] SEREBRYANY, K., AND ISKHODZHANOV, T. Threadsanitizer:
Data race detection in practice. In Workshop on Binary Instru-
mentation and Applications (2009).

[56] SHANKAR, U., TALWAR, K., FOSTER, J. S., AND WAGNER,
D. Detecting format string vulnerabilities with type qualifiers. In
USENIX Security Symposium (2001).

[57] SNOW, K. Z., MONROSE, F., DAVI, L., DMITRIENKO, A.,
LIEBCHEN, C., AND SADEGHI, A. Just-in-time code reuse: On
the effectiveness of fine-grained address space layout randomiza-
tion. In IEEE Symposium on Security and Privacy (S&P) (2013).

[58] STEPANOV, E., AND SEREBRYANY, K. Memorysanitizer: Fast
detector of uninitialized memory use in c++. In IEEE/ACM In-
ternational Symposium on Code Generation and Optimization
(CGO) (2015).

[59] TICE, C., ROEDER, T., COLLINGBOURNE, P., CHECKOWAY,
S., ERLINGSSON, Ú., LOZANO, L., AND PIKE, G. Enforcing
forward-edge control-flow integrity in gcc & llvm. In USENIX
Security Symposium (2014).

USENIX Association 26th USENIX Security Symposium 197

https://gcc.gnu.org/ml/gcc-patches/2004-09/msg02055.html
https://gcc.gnu.org/ml/gcc-patches/2004-09/msg02055.html
https://msdn.microsoft.com/en-us/library/windows/desktop/mt637065(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/mt637065(v=vs.85).aspx
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-1886
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-1886
http://pax.grsecurity.net/docs/noexec.txt
https://www.chromium.org/developers/testing/undefinedbehaviorsanitizer
https://www.chromium.org/developers/testing/undefinedbehaviorsanitizer

[60] TSAI, T., AND SINGH, N. Libsafe 2.0: Detection of format string
vulnerability exploits. white paper, Avaya Labs (2001).

[61] VAN DER VEEN, V., ANDRIESSE, D., GÖKTAŞ, E., GRAS, B.,
SAMBUC, L., SLOWINSKA, A., BOS, H., AND GIUFFRIDA,
C. PathArmor: Practical ROP protection using context-sensitive
CFI. In ACM Conference on Computer and Communications Se-
curity (CCS) (2015).

[62] WANG, Z., AND JIANG, X. Hypersafe: A lightweight approach
to provide lifetime hypervisor control-flow integrity. In IEEE
Symposium on Security and Privacy (S&P) (2010).

[63] YUAN, P., ZENG, Q., AND DING, X. Hardware-assisted fine-
grained code-reuse attack detection. In International Symposium
on Research in Attacks, Intrusions and Defenses (RAID) (2015).

[64] ZHANG, C., SONG, C., CHEN, K. Z., CHEN, Z., AND SONG,
D. VTint: Defending virtual function tables’ integrity. In Sympo-
sium on Network and Distributed System Security (NDSS) (2015).

[65] ZHANG, C., WEI, T., CHEN, Z., DUAN, L., SZEKERES, L.,
MCCAMANT, S., SONG, D., AND ZOU, W. Practical control
flow integrity and randomization for binary executables. In IEEE
Symposium on Security and Privacy (S&P) (2013).

[66] ZHANG, M., AND SEKAR, R. Control flow integrity for cots
binaries. In USENIX Security Symposium (2013).

198 26th USENIX Security Symposium USENIX Association

	Introduction
	Background
	Variadic functions
	Variadic functions ABI
	Variadic attack surface
	Format string exploits

	Threat model
	HexVASAN design
	Analysis and Instrumentation
	Runtime support
	Challenges and Discussion

	Implementation
	Evaluation
	Case study: CFI effectiveness
	Exploit Detection
	Prevalence of variadic functions
	Firefox
	SPEC CPU2006
	Micro-benchmarks

	Related work
	Conclusions
	Acknowledgments

