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Abstract

For over 30 years, password requirements and feedback
have largely remained a product of LUDS: counts of
lower- and uppercase letters, digits and symbols. LUDS
remains ubiquitous despite being a conclusively burden-
some and ineffective security practice.
zxcvbn is an alternative password strength estimator

that is small, fast, and crucially no harder than LUDS
to adopt. Using leaked passwords, we compare its esti-
mations to the best of four modern guessing attacks and
show it to be accurate and conservative at low magni-
tudes, suitable for mitigating online attacks. We find 1.5
MB of compressed storage is sufficient to accurately esti-
mate the best-known guessing attacks up to 105 guesses,
or 104 and 103 guesses, respectively, given 245 kB and
29 kB. zxcvbn can be adopted with 4 lines of code
and downloaded in seconds. It runs in milliseconds and
works as-is on web, iOS and Android.

1 Introduction

Passwords remain a key component of most online
authentication systems [32], but the quest to replace
them [20] is an active research area with a long history of
false starts and renewed enthusiasm (recently e.g., [33]).
Whatever the future may hold for passwords, we argue
that one of the most unusable and ineffective aspects
of password authentication as encountered in 2016 truly
does belong in the past: composition requirements and
feedback derived from counts of lower- and uppercase
letters, digits and symbols – LUDS for short.

LUDS requirements appear in many incarnations:
some sites require digits, others require the presence of
at least 3 character classes, some banish certain sym-
bols, and most set varying length minimums and max-
imums [21, 29, 52]. It is also now commonplace to pro-
vide real-time password feedback in the form of visual
strength bars and dynamic advice [50, 28]. As with pass-

word requirements, inconsistent LUDS calculations tend
to lurk behind these feedback interfaces [25].

We review the history of LUDS in Section 2 as well
as its usability problems and ineffectiveness at mitigat-
ing guessing attacks, facts that are also well known out-
side of the security community [23, 44]. But because
it isn’t obvious what should go in place of LUDS, Sec-
tion 3 presents a framework for evaluating alternatives
such as zxcvbn. We argue that anything beyond a small
client library with a simple interface is too costly for
most would-be adopters, and that estimator accuracy is
most important at low magnitudes and often not impor-
tant past anywhere from 102 to 106 guesses depending
on site-specific rate limiting capabilities.

The Dropbox tech blog presented an early version of
zxcvbn in 2012 [55]. We’ve made several improvements
since, and Section 4 presents the updated algorithm in de-
tail. At its core, zxcvbn checks how common a password
is according to several sources – common passwords ac-
cording to three leaked password sets, common names
and surnames according to census data, and common
words in a frequency count of Wikipedia 1-grams. For
example, if a password is the 55th most common entry
in one of these ranked lists, zxcvbn estimates it as re-
quiring 55 attempts to be guessed. Section 5.2.3 demon-
strates that this simple minimum rank over several lists
is responsible for most of zxcvbn’s accuracy.

Section 4 generalizes this idea in two ways. First, it in-
corporates other commonly used password patterns such
as dates, sequences, repeats and keyboard patterns. Sim-
ilar to its core, zxcvbn estimates the attempts needed
to guess other pattern types by asking: if an attacker
knows the pattern, how many attempts would they need
to guess the instance? For example, the strength of the
QWERTY pattern zxcvfr is estimated by counting how
many other QWERTY patterns have up to six charac-
ters and one turn. Second, Section 4 generalizes beyond
matching single patterns by introducing a search heuris-
tic for multi-pattern sequences. That way, C0mpaq999
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can be matched as the common password C0mpaq fol-
lowed by the repeat pattern 999.

We simulate a professional guessing attack in Sec-
tion 5 by running four attack models in parallel via
Ur et al.’s Password Guessability Service [51, 8]. For
each password in a test set sampled from real leaks, we
take the minimum guess attempts needed over these four
models as our conservative gold standard for strength.
Section 5 measures accuracy by comparing strength es-
timations of each password to this gold standard. We
investigate two other estimators in addition to zxcvbn:
the estimator of KeePass Password Safe [5] (hereafter
KeePass) as it is the only other non-LUDS estimator
studied in [25],1 and NIST entropy, an influential LUDS
estimator reviewed in Section 2.

Our experiments are motivated by two intended uses
cases: smarter password composition requirements and
strength meters. Given a good estimator, we believe
the best-possible strength requirement both in terms
of usability and adopter control becomes a minimum
check: does it take more than N attempts to guess the
password? If not, tell the user their choice is too obvious
and let them fix it however they want. For such a policy,
an adopter needs confidence that their estimator won’t
overestimate below their chosen N value. Similarly,
smarter strength meters need to know over what range
their estimator can be trusted.

Contributions:

• We demonstrate how choice of algorithm and data
impacts accuracy of password strength estimation,
and further demonstrate the benefit of matching
patterns beyond dictionary lookup. We observe
that KeePass and NIST substantially overestimate
within the range of an online guessing attack and
suggest a fix for KeePass.

• We show zxcvbn paired with 1.5MB of compressed
data is sufficient to estimate the best-known guess-
ing attacks with high accuracy up to 105 guesses.
We find 245 kB is sufficient to estimate up to 104

guesses, and 29 kB up to 103 guesses.

• We present the internals of zxcvbn in detail, to
serve immediately as a LUDS replacement for web
and mobile developers, and in the future as a refer-
ence point that other estimators can measure against
and attempt to beat.

• We present an evaluation framework for low-cost
estimators to help future improvements balance se-
curity, usability, and ease of adoption.

1We exclude Google’s estimator, a server-side estimator with no
details available.

2 Background and Related Work

2.1 LUDS
LUDS has its roots at least as far back as 1985, trac-
ing to the U.S. Defense Department’s influential Pass-
word Management Guideline [12] (nicknamed the Green
Book) and NIST’s related Password Usage of the Fed-
eral Information Processing Standards series that same
year [13]. The Green Book suggested evaluating pass-
word strength in terms of guessing space, modeled as
S = AM , where S is the maximum guess attempts needed
to guess a password, M is the password’s length, and A
is its alphabet size. For example, a length-8 password of
random lowercase letters and digits would have a guess-
ing space of S = (26+ 10)8, and a passphrase of three
random words from a 2000-word dictionary would have
S = 20003. S is often expressed in bits as M · log2(A), a
simple metric that is properly the Shannon entropy [47]
when every password is assigned randomly in this way.

While this metric works well for machine-generated
passwords, NIST’s related guideline applied similar rea-
soning to user-selected passwords at a time before much
was known about human password habits. This er-
roneous randomness assumption persists across the In-
ternet today. For example, consider our pseudocode
summary of the metric NIST recommends (albeit with
some disclaimers) in its most recent Special Publication
800-63-2 Electronic Authentication Guideline of August
2013 [22], commonly referred to as NIST entropy (here-
after NIST):

1: function NIST_ENTROPY(p, dict)
2: e ← 4+2·p[2:8].len+1.5·p[9:20].len+ p[21:].len
3: e ← e+6 if p contains upper and non-alpha
4: e ← e+6 if p.len < 20 and p �∈ dict
5: return e

That is, NIST adds 4 bits for the first character in a pass-
word p, 2 bits each for characters 2 through 8, progres-
sively fewer bits for each additional character, 6 more
bits if both an uppercase and non-alphabetic character are
used – so far, all LUDS. Up to now the 0 in Passw0rd
would give it a higher entropy than QJqUbPpA. NIST
recommends optionally adding up to 6 more bits if the
password is under 20 characters and passes a dictio-
nary check,2 the idea being that longer passwords are
likely to be multiword passphrases that don’t deserve a
bonus. Even then, assuming Passw0rd fails the dic-
tionary check and QJqUbPpA passes, these sample pass-
words would oddly have equal scores.

NIST entropy remains influential on password policy.
Shay et al. [48] studied Carnegie Mellon University’s

2a non-LUDSian detail.
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policy migration as part of joining the InCommon Fed-
eration and seeking its NIST-entropy-derived Silver As-
surance certification [9], to give one notable example.

Whether used for feedback or for requirements, the
goal of any LUDS formulation is ultimately to guide
users towards less guessable passwords,3 and herein lies
the first problem – it’s ineffective. Numerous studies
confirm that people use types of characters in skewed dis-
tributions [27, 38, 48]: title case, all caps, digit suffixes,
some characters more often than others within a class –
to give only a small taste. Worse, the most commonly
used patterns in passwords cannot be captured by charac-
ter class counts, such as words, dates, and keyboard pat-
terns. By taking tens of millions of leaked passwords and
comparing NIST entropy to the guess order enumeration
of a modern password cracker, Weir et al. [53] conclu-
sively demonstrated that even with an added dictionary
check and varied parameters, LUDS counts cannot be
synthesized into a valid metric for password guessability.
In a collaboration with Yahoo, Bonneau [19] found that
a six-character minimum length policy exhibited almost
no difference in online guessing resistance compared to
no length requirement.

The second problem with LUDS is its high usability
cost [34]. Any LUDS requirement beyond a low min-
imum length check necessarily disallows many strong
passwords and places a burden on everyone, instead of
a subgroup with a known risk of having their password
guessed. Florêncio and Herley [29] studied the password
policies of 75 American websites and concluded that pol-
icy stringency did not correlate with a heightened need
for security, but rather with absence of competition and
insulation from the consequences of poor usability.

This usability problem is compounded by policy in-
consistency among sites. Wang and Wang [52] studied
the password composition policies of 50 sites in 2015
(30 from mainland China, the rest mostly American) and
found that no two sites enforced the same policy. Bon-
neau and Preibusch [21] found 142 unique policies in a
2010 survey of 150 high-traffic sites. As a result of these
inconsistent policies, people often have to jump through
unique hoops upon selecting new passwords [23].

Password feedback is similarly inconsistent across the
Internet. Carnavalet and Mannan [25] investigated the
registration flows of 18 prominent services spanning
multiple countries, platforms, and product domains, and
with three exceptions (Google, Dropbox, and KeePass),
they found simple but widely inconsistent LUDS-based
calculations powering visual feedback, sometimes com-
bined with dictionary checks.

3Proximate goals might include compliance or perception of secu-
rity, both of which still derive from a notion of guessing resistance in
most instances.

2.2 Password Guessing

In their seminal 1979 publication, Morris and Thomp-
son [43] conducted one of the first studies of password
habits and detailed the early UNIX history of co-evolving
password attacks and mitigations. The decades that
followed have seen immense development in password
guessing efficiency.

Our gold standard for measuring a password’s strength
is the minimum attempts needed to guess it over
four modern guessing attacks, obtained by running the
min_auto configuration of Ur et al.’s Password Guess-
ability Service [8] (hereafter PGS), demonstrated in [51]
to be a conservative estimate of an experienced and well-
resourced professional. We run two cutting-edge attacks
from the literature, consisting of a PCFG model [54] with
Komanduri’s improvements [36] and a Smoothed Order-
5 Markov model [39]. Because our gold standard should
be a safe lower bound not just over the theoretical best
attacks, but also the best-productized attacks in common
use by professionals, we further run Hashcat [2] and John
the Ripper [3] mangled dictionary models with carefully
tuned rule sets.

Throughout this paper, we will differentiate between
online guessing, where an attacker attempts guesses
through a public interface, and offline guessing, where,
following a theft of password hashes, an attacker makes
guesses at a much higher rate on their own hardware.
We recommend [30] for a more detailed introduction to
guessing attacks.

2.3 Guessing Resistance

We focus on guessing resistance techniques that influ-
ence usability, as opposed to developments in cryptogra-
phy, abuse detection, and other service-side precautions.

The idea of a proactive password checker, a program
that offers feedback and enforces policy at composi-
tion time, traces to the late 80s and early 90s with pi-
oneering work by Nagle [45], Klein [35], Bishop [17]
and Spafford [49]. Eight days after the Morris worm,
which spread in part by guessing weak passwords, Na-
gle presented his Obvious Password Detector program
that rejected any password that didn’t have a sufficient
number of uncommon triplets of characters. Klein fo-
cused on dictionary checks with various transformations,
such as reversed token lookup, common character sub-
stitutions, and stemming, but also recommended LUDS
rules including the rejection of all-digit passwords. In
his pwcheck program, Bishop introduced a concise lan-
guage for system administrators to formulate composi-
tion rules in terms of dictionary lookups, regular ex-
pression matching, and relations to personal information.
This language is also one of the first to allow customized
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user feedback, a precursor to today’s ubiquitous pass-
word strength meters. None of these early rule-based
systems estimate password strength, making it hard to
correctly balance usability and answer whether a pass-
word is sufficiently unguessable.

Spafford and others proposed space-efficient dictio-
nary lookup techniques using Bloom filters [49, 40] and
decision trees [15, 18]. These approaches similarly do
not directly estimate guessing resistance or compare their
output to modern guessing attacks, providing instead a
binary pass/fail. Yan [56] highlights the need to catch
patterns beyond dictionary lookups, something we find
modest supporting evidence for in Section 5.2.3.

Castelluccia et al. [24] propose maintaining a pro-
duction database of character n-gram counts in order
to model a password’s guessability with an adaptive
Markov model. Schechter et al. [46] outline a count-min
sketch datastructure to allow all passwords that aren’t al-
ready too popular among other users. Both of these pro-
posals have the advantage of modeling a service’s unique
password distribution. Both aggregate information that,
if stolen, aid offline cracking attacks, and both include
noise mitigations to reduce that threat. We argue in Sec-
tion 3 that their respective requirements to maintain and
secure custom production infrastructure at scale is too
costly for most would-be adopters.

Dell’Amico and Filippone [26] detail a Monte Carlo
sampling method that converts a password’s probabil-
ity as computed by any generative model into an esti-
mate of a cracker’s guessing order when running that
model. Given that some of today’s best guessing tech-
niques are built on probabilistic models [39, 54, 36], the
benefit of this approach is fast and accurate estimation of
guessing order, even up to as high as 280 (1024) guesses.
But while the conversion step itself is time- and space-
efficient, we haven’t encountered investigations in the
literature that limit the size of the underlying probability
model to something that would fit inside a mobile app or
browser script. Comparing space-constrained probabilis-
tic estimators to today’s best guessing attacks (or perhaps
a minimum over several parallel attacks as we do) would
be valuable future work. Melicher et al.’s concurrent and
independent research on lean estimation with Recurrent
Neural Networks is quite promising [42].

Turning to open-source industry contributions,
zxcvbn and KeePass [5] were originally designed for
password strength feedback, but we consider them here
for policy enforcement as well. Industry adoption of
zxcvbn is growing, currently deployed by Dropbox,
Stripe, Wordpress, Coinbase, and others. KeePass
(reviewed in [25]) matches several common patterns
including a dictionary lookup with common transfor-
mations, then applies an optimal static entropy encoder
documented in their help center [4] to search for the

simplest set of candidate matches covering a password.
We extracted KeePass into a stand-alone command-line
utility such that we could compare it against realistic
guessing attacks in Section 5.

Telepathwords [37] offers some of the best real-time
password feedback currently available. It employs a
client-server architecture that is hosted as a stand-alone
site, and does not output a guess attempt estimate or
equivalent, so we do not evaluate it as a candidate LUDS
alternative.

Ur et al. [50] and Egelman et al. [28] studied the effect
of strength meters on password composition behavior.
The consensus is that users do follow the advice of these
meters for accounts of some importance; however, both
studies employed LUDS metrics to power their meters as
is common in the wild, conditionally with an added dic-
tionary check in the case of [50]. Our aim is to provide
strength meters with more accurate underlying estima-
tion.

3 Evaluation Framework

While the problems of LUDS are well understood, it isn’t
obvious what should go in its place. We motivate some
of the important dimensions and reference two LUDS
methods for comparison: NIST as well 3class8 – the
easy-to-adopt requirement that a password contain 8 or
more characters of at least 3 types.

It should be no harder than LUDS to adopt
In the wider scheme of password authentication, com-
position policy and feedback are small details. Bonneau
and Preibusch [21] demonstrated that the big details –
cryptography and rate-limiting, for example – are com-
monly lacking throughout the Internet with little eco-
nomic incentive to do better. To then have a starting
chance of widespread adoption, a LUDS alternative can-
not be harder than LUDS to adopt. We believe this real-
istically eliminates alternatives that require hosting and
scaling special infrastructure from mainstream consider-
ation, whereas small client libraries with simple inter-
faces are more viable. To give an example, the following
is working web integration code for a policy that disal-
lows passwords guessable in under 500 attempts accord-
ing to zxcvbn:

var zxcvbn = require(‘zxcvbn’);
var meets_policy = function(password) {

return zxcvbn(password).guesses > 500;
};

This sample assumes a CommonJS module interface.
For comparison, Appendix A lists our implementation of
3class8 back-to-back with two other zxcvbn integra-
tion options.
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It should only burden at-risk users
Users face many threats in addition to guessing attacks,
including phishing, keylogging, and credential reuse at-
tacks. Because guessing attacks often rank low on a
user’s list of worries, short and memorable password
choices are often driven by rational cost-benefit analysis
as opposed to ignorance [31]. To encourage less guess-
able choices, a LUDS alternative must accept this real-
ity by imposing as few rules as possible and burdening
only those facing a known guessing risk. As examples,
words should be recognized and weighted instead of, as
with space-efficient dictionary lookups, rejected. All-
digit and all-lowercase passwords – respectively the most
common password styles in mainland China and the U.S.
according to a comprehensive study [38] – should simi-
larly be weighted instead of rejected via blanket rules.
3class8 is a prime offender in this category.

While underestimation harms usability, overestima-
tion is arguably worse given an estimator’s primary goal
of mitigating guessing attacks. In Section 5 we measure
accuracy and overestimation as separate quantities in our
comparison of alternative estimators. We find KeePass
and NIST tend to overestimate at lower magnitudes.

It should estimate guessing order
The security community’s consensus definition of a pass-
word’s strength is the number of attempts that an at-
tacker would need in order to guess it [26]. Strength
estimators should thus estimate this guessing order di-
rectly, versus an entropy, percentage, score, or binary
pass/fail. This detail provides adopters with an intuitive
language for modeling guessing threats and balancing
usability. An alternative should further measure its es-
timations against real guessing attacks and communicate
its accuracy bounds. For example, given enough sam-
ples, [26] is accurate up to the highest feasible guess-
ing ranges, whereas with 1.5MB of data, zxcvbn is only
highly accurate up to 105 guesses.

It should be accurate at low magnitudes
Online guessing attacks are a threat that password au-
thentication systems must defend against continually.
While rate limiting and abuse detection can help, pass-
words guessable in, say, 10 to 100 guesses could re-
main vulnerable to capable adversaries over time. As we
show in Section 5.2, NIST greatly overestimates pass-
word strength at low magnitudes. Similarly, 3class8
permits obvious choices such as Password1!. A strict
improvement over LUDS in terms of security, then, is to
improve accuracy at low guessing magnitudes.

Past an online guessing threshold, the benefit of accu-
rate estimation becomes more situation-dependent. Ref-
erencing the online-offline chasm of [30], the added secu-
rity benefit from encouraging or requiring stronger pass-
words might only start to appear after many orders of

magnitude past an online guessing cutoff, indicating a
substantial usability-security trade-off that often won’t
be justified. While we focus on online attack mitigation,
key stretching techniques such as Argon2 [16] can fur-
ther render offline attacks unfeasible at higher guessing
magnitudes.

For the remainder of this paper, we will use 106

guesses as our approximate online attack cutoff, citing
the back-of-the-envelope upper limit estimation in [30]
for a depth-first online attack (thus also bounding an on-
line trawling attack). By studying leaked password dis-
tributions, [30] also points out that an attacker guessing
in optimal order would face a reduction in success rate
by approximately 5 orders of magnitude upon reaching
106 guesses.

While we use 106 as an online cutoff for safe and sim-
ple analysis in Section 5, we recognize that an upper
bound on online guessing is highly dependent on site-
specific capabilities, and that some sites will be able to
stop an online attack starting at only a few guesses. This
motivates our next item:

It should have an adjustable size
An estimator’s accuracy is greatly dependent on the data
it has available. Adopters should be given control over
this size / accuracy trade-off. Some might want to bun-
dle an estimator inside their app, selecting a smaller size.
We expect most will want to asynchronously download
an estimator in the background on demand, given that
password creation only happens once per user and typ-
ically isn’t the first step in a registration flow. Current
bandwidth averages should factor into this discussion:
a South Korean product might tolerate a gzipped-5MB
estimator (downloadable in 2 seconds at 20.5Mbps na-
tional average in Q3 2015 [14]4), whereas 1.5MB is a
reasonable global upper bound in 2016 (2.3 seconds at
5.1Mbps Q3 2015 global default). Need should also fac-
tor in: a site that is comfortable in its rate-limiting might
only need accurate estimation up to 102 guesses.

4 Algorithm

We now present the internals of zxcvbn in detail. Sec-
tions 4.2 and 4.3 explain how common token lookup and
pattern matching are combined into a single guessing
model. Section 4.4 is primarily about speed, providing
a fast algorithm for finding the simplest set of matches
covering a password. We start with a high-level sketch.

4.1 Conceptual Outline
zxcvbn is non-probabilistic, instead heuristically esti-
mating a guessing attack directly. It models passwords

4We cite figures from Akamai’s State of the Internet series.
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as consisting of one or more concatenated patterns. The
2012 version of zxcvbn assumes the guesser knows the
pattern structure of the password it is guessing, with
bounds on how many guesses it needs per pattern. For
example, if a password consists of two top-100 common
words, it models an attacker who makes guesses as con-
catenations of two words from a 100-word dictionary,
calculating 1002 as its worst-case guess attempt estimate.

To help prevent overly complex matching, zxcvbn
now loosens the 2012 assumption by instead assuming
the attacker knows the patterns that make up a password,
but not necessarily how many or in which order. To il-
lustrate the difference, compare the respective 2012 and
2016 analyses of jessiah03:

jess(name) i(word) ah0(surname) 3(bruteforce)
jessia(name) h03(bruteforce)

The 2012 version has no bias against long pattern
sequences, matching i and jess as common words.
(jessia is in the common surname dictionary at about
rank 3.5k, jess is at about rank 440, and jessiah is in
neither dictionary.) To give another example, the random
string 3vMs3o7B7eTo is now matched as a single brute-
force region by zxcvbn, but as a 5-pattern sequence by
the 2012 version, including 7eT as a l33ted “let.”

To formalize this difference in behavior, at a high
level, both versions consist of three phases: match, es-
timate and search. Given a plaintext password input,
the pattern matching phase finds a set S of overlapping
matches. For example, given lenovo1111 as input, this
phase might return lenovo (password token), eno (En-
glish “one” backwards), no (English), no (English “on”
backwards), 1111 (repeat pattern), and 1111 (Date pat-
tern, 1/1/2011). Next, the estimation phase assigns a
guess attempt estimation to each match independently. If
lenovo is the 11007th most common password in one
of our password dictionaries, it’ll be assigned 11007,
because an attacker iterating through that dictionary by
order of popularity would need that many guesses be-
fore reaching it. The final phase is to search for the
sequence of non-overlapping adjacent matches S drawn
from S such that S fully covers the password and min-
imizes a total guess attempt figure. In this example,
the search step would return [lenovo (token), 1111
(repeat)], discarding the date pattern which covers the
same substring but requires more guesses than the repeat.
zxcvbn’s formalized assumption about what an attacker
knows is represented by the following search heuristic:

argmin
S⊆S

D|S|−1 + |S|! ∏
m∈S

m.guesses (1)

|S| is the length of the sequence S, and D is a constant.
The intuition is as follows: if an attacker knows the pat-
tern sequence with bounds on how many guesses needed

for each pattern, the Π term measures how many guesses
they would need to make in the worst case. This Π term,
by itself, is the heuristic employed by the 2012 version.
With the added |S|! term, the guesser now knows the
number of patterns in the sequence but not the order.
For example, if the password contains a common word
c, uncommon word u, and a date d, there are 3! possible
orderings to try: cud, ucd, etc.

The D|S|−1 term attempts to model a guesser who
additionally doesn’t know the length of the pattern se-
quence. Before attempting length-|S| sequences, zxcvbn
assumes that a guesser attempts lower-length pattern se-
quences first with a minimum of D guesses per pattern,
trying a total of ∑|S|−1

l=1 Dl ≈ D|S|−1 guesses for suffi-
ciently large D. For example, if a password consists of
the 20th most common password token t with a digit d
at the end – a length-2 pattern sequence – and the at-
tacker knows the D = 10000 most common passwords,
and further, td is not in that top-10000 list (otherwise it
would have been matched as a single token), the D1 term
models an attacker who iterates through those 10000 top
guesses first before moving on to two-pattern guessing.
While an attacker might make as few as 10 guesses for
a single-digit pattern or as many as tens of millions of
guesses iterating through a common password dictio-
nary, we’ve found D = 1000 to D = 10000 to work well
in practice and adopt the latter figure for zxcvbn.

In practical terms, the additive D penalty and multi-
plicative |S|! penalty address overly complex matching
in different ways. When two pattern sequences of differ-
ing length have near-equal Π terms, the |S|! factor biases
towards the shorter sequence. The D term biases against
long sequences with an overall low Π term.

4.2 Matching
The matching phase finds the following patterns:

pattern examples

token logitech l0giT3CH ain’t
parliamentarian 1232323q

reversed DrowssaP

sequence 123 2468 jklm ywusq

repeat zzz ababab l0giT3CHl0giT3CH

keyboard qwertyuio qAzxcde3 diueoa

date 7/8/1947 8.7.47 781947 4778
7-21-2011 72111 11.7.21

brute f orce x$JQhMzt

The token matcher lowercases an input password
and checks membership for each substring in each
frequency-ranked dictionary. Additionally, it attempts
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each possible l33t substitution according to a table. An
input @BA1one is first lowercased to @ba1one. If the l33t
table maps @ to a and l to either i or l, it tries two addi-
tional matches by subbing [@->a, 1->i] and [@->a,
1->l], finding abalone with the second substitution.

Taking a cue from KeePass, sequence matching in
zxcvbn looks for sequences where each character is a
fixed Unicode codepoint distance from the last. This
has two advantages over the hardcoded sequences of the
2012 version. It allows skipping, as in 7531, and it
recognizes sequences beyond the Roman alphabet and
Arabic numerals, such as Cyrillic and Greek sequences.
Unicode codepoint order doesn’t always map directly to
human-recognizable sequences; this method imperfectly
matches Japanese kana sequences as one example.

The repeat matcher searches for repeated blocks of
one or more characters, a rewrite of the 2012 equiv-
alent, which only matched single-character repeats. It
tries both greedy /(.+)\1+/ and lazy /(.+?)\1+/ reg-
ular expressions in search of repeated regions spanning
the most characters. For example, greedy beats lazy for
aabaab, recognizing (aab) repeated over the full string
vs (a) repeated over aa, whereas lazy beats greedy for
aaaaa, matching (a) spanning 5 characters vs (aa)
spanning 4. The repeat matcher runs a match-estimate-
search recursively on its winning repeated unit, such that,
for example, repeated words and dates are identified.

The keyboard matcher runs through password lin-
early, looking for chains of adjacent keys according to
each of its keyboard adjacency graphs. These graphs
are represented as a mapping between each key to a
clockwise positional list of its neighbors. The matcher
counts chain length, number of turns, and number of
shifted characters. On QWERTY, zxcvfR$321 would
have length 10, 2 turns, and 2 shifted characters. QW-
ERTY, DVORAK, and Windows and Mac keypad lay-
outs are included by default. Additional layouts can be
prepackaged or dynamically added.

Date matching considers digit regions of 4 to 8 char-
acters, checks a table to find possible splits, and attempts
a day-month-year mapping for each split such that the
year is two or four digits, the year isn’t in the mid-
dle, the month is between 1 and 12 inclusive, and the
day is between 1 and 31 inclusive. For example, a six-
digit sequence 201689 could be broken into 2016-8-9,
20-16-89, or 2-0-1689. The second candidate would
be discarded given no possible month assignment, and
the third discarded because 0 is an invalid day and month.
Given multiple valid splits, the choice with year closest
to a reference year of 2016 wins. Two-digit years are
matched as 20th- or 21st-century years, depending on
whichever is closer to 2016. For ease of portability, date
matching does not filter improper Gregorian dates; for
example, it allows Feb. 29th on a non-leap year.

4.3 Estimation
Next, a guess attempt estimate guesses is determined for
each match m ∈ S. The guiding heuristic is to ask: if an
attacker knows the pattern, how many guesses might they
need to guess the instance? Green Book-style guessing
space calculations then follow, but for patterns instead
of random strings, where a guesser attempts simpler or
more likely patterns first.

For tokens, we use the frequency rank as the estimate,
because an attacker guessing tokens in order of popular-
ity would need at least that many attempts. A reversed to-
ken gets a doubled estimate, because the attacker would
then need to try two guesses (normal and reversed) for
each token. A conservative factor of 2 is also added for
an obvious use of uppercase letters: first-character, last-
character, and all caps. The capitalization factor is other-
wise estimated as

1
2

min(U,L)

∑
i=1

(
U +L

i

)
(2)

where U and L are the number of uppercase and low-
ercase letters in the token. For example, to guess
paSswOrd, an attacker would need to try a guessing
space of 8 different single-character capitalizations plus
28 different two-character capitalizations. The 1/2 term
converts the total guessing space into an average at-
tempts needed, assuming that each capitalization scheme
is equally likely – this detail could be improved by bet-
ter modeling observed distributions of capitalization pat-
terns in leaked password corpora. The min() term flips
the lowercasing game into an uppercasing game when
there are more upper- than lowercase letters, yielding 8
for PAsSWORD.

Guesses for keyboard patterns are estimated as:

1
2

L

∑
i=1

min(T,i−i)

∑
j=1

(
i−1
j−1

)
SD j (3)

where L is the length of the pattern, T is the number
of terms, D is the average number of neighbors per key
(a tilde has one neighbor on QWERTY, the ‘a’ key has
four) and S is the number of keys on the keyboard. For T
turns throughout a length L keyboard pattern, we assume
a guesser attempts lower-length, lower-turn patterns first,
starting at length 2. The binomial term counts the differ-
ent configuration of turning points for a length-i pattern
with j turns, with −1 added to each term because the first
turn is defined to occur on the first character. The min()
term avoids considering more turns than possible on a
lower-length pattern. The sequence might have started
on any of S keys and each turn could have gone any of D
ways on average, hence the S ·D j. Equation 3 estimates
about 103 guesses for kjhgfdsa on QWERTY and 106
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guesses for kjhgt543. Shifted keys in the pattern add a
factor according to expression 2, where L and U become
shifted and unshifted counts.

Repeat match objects consist of a base repeated n
times, where a recursive match-estimate-search step pre-
viously assigned a number of guesses g to the base. Re-
peat guess attempts are then estimated as g ·n. For exam-
ple, nownownow is estimated as requiring 126 guesses:
now is at rank 42 in the Wiktionary set, times 3.

Sequences are scored according to s ·n · |d|, where s is
the number of possible starting characters, n is the length,
and d is the codepoint delta (e.g., -2 in 9753). s is set to
a low constant 4 for obvious first choices like 1 and Z,
set to 10 for other digits, or otherwise 26, an admittedly
Roman-centric default that could be improved.

For dates, we assume guessers start at 2016 and guess
progressively earlier or later dates, yielding a ballpark of
365 · |2016− year|

Finally, bruteforce matches of length l are assigned a
constant C = 10 guesses per character, yielding a total
estimate of Cl . The 2012 version performs a guessing
space calculation, treating bruteforce regions as random,
and determines a cardinality C that adds 26 if any lower-
case letters are present, 26 if uppercase, 10 if digits, and
33 for one or more symbols. This dramatically overesti-
mates the common case, for example a token that isn’t in
the dictionary. The 2012 version scores Teiubesc (Ro-
manian for “I love you”) as (26+ 26)8 ≈ 1014, whereas
zxcvbn now estimates it 6 orders of magnitude lower at
108. (Thanks to the addition of RockYou’09 data, it also
matches it as a common password at rank 104).

4.4 Search
Given a string password and a corresponding set of over-
lapping matches S, the last step is to search for the
non-overlapping adjacent match sequence S that covers
password and minimizes expression (1). We outline a
dynamic programming algorithm that efficiently accom-
plishes this task. The idea is to iteratively find the opti-
mal length-l sequence of matches covering each length-k
character prefix of password. It relies on the following
initial state:

1: n ← password.length
2: Bopt ← [ ]×n
3: Πopt ← [ ]×n
4: lopt ← 0
5: gopt ← null

Bopt is a backpointer table, where Bopt [k][l] holds
the ending match in the current optimal length-l match
sequence covering the length-k prefix of password.
Πopt [k][l] correspondingly holds the product term in ex-

pression (1) for that sequence. When the algorithm ter-
minates, gopt holds the optimum guesses figure and lopt
holds the length of the corresponding optimal sequence.
Note that if no length-l sequence exists such that it
scores lower than every alternative sequence with fewer
matches covering the same k-prefix, then l �∈Bopt [k].

Each match object m has a guess value m.guesses and
covers a substring of password at indices m.i and m. j, in-
clusive. The search considers one character of password
at a time, at position k, and for each match m ending at k,
evaluates whether adding m to any length-l optimal se-
quence ending just before m (at m.i− 1) leads to a new
candidate for the optimal match sequence covering the
prefix up to k:

1: function SEARCH(n, S)
2: for k ∈ 0 to n−1
3: gopt ← ∞
4: for m ∈ S when m. j = k
5: if m.i > 0
6: UPDATE(m, l +1) for l ∈Bopt [m.i−1]
7: else
8: UPDATE(m, 1)
9: BF_UPDATE(k)

10: return UNWIND(n)

Instead of including a bruteforce match object in S for
every O(n2) substring in password, bruteforce matches
are considered incrementally by BF_UPDATE:

1: function BF_UPDATE(k)
2: m ← bruteforce from 0 to k
3: UPDATE(m, 1)
4: for l ∈Bopt [k−1]
5: if Bopt [k−1][l] is bruteforce
6: m ← bruteforce from Bopt [k−1][l].i to k
7: UPDATE(m, l)
8: else
9: m ← bruteforce from k to k

10: UPDATE(m, l +1)

That is, at each index k, there are only three cases
where a bruteforce match might end an optimal se-
quence: it might span the entire k-prefix, forming a
length-1 sequence, it might extend an optimal bruteforce
match ending at k− 1, or it might start as a new single-
character match at k. Note that given the possibility of
expansion, it is always better to expand by one character
than to append a new bruteforce match, because either
choice would contribute equally to the Π term, but the
latter would increment l.

The UPDATE helper computes expression (1) and up-
dates state if a new minimum is found. Thanks to the
Πopt table, it does so without looping:
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1: function UPDATE(m, l)
2: Π ← m.guesses
3: if l > 1
4: Π ← Π×Πopt [m.i−1][l −1]

5: g ← Dl−1 + l!×Π
6: if g < gopt
7: gopt ← g
8: lopt ← l
9: Πopt [k][l]← Π

10: Bopt [k][l]← m

At the end, UNWIND steps through the backpointers
to form the final optimal sequence:

1: function UNWIND(n)
2: S ← [ ]
3: l ← lopt
4: k ← n−1
5: while k ≥ 0
6: m ← Bopt [k][l]
7: S.prepend(m)
8: k ← m.i−1
9: l ← l - 1

10: assert l = 0
11: return S

Each match m ∈ S is considered only once during the
search, yielding a runtime of O(lmax · (n+ |S|)), where
lmax is the maximum value of lopt over each k iteration.
In practice, lmax rarely exceeds 5, and this method rapidly
terminates even for passwords of hundreds of characters
and thousands of matches.

4.5 Deployment

zxcvbn is written in CoffeeScript and compiled via an
npm build flow into both a server-side CommonJS mod-
ule and a minified browser script. The ranked token lists
take up most of the total library size: each is represented
as a sorted comma-separated list of tokens which then get
converted into an object, mapping tokens to their ranks.
The browser script is minified via UglifyJS2 with in-
structions on how to serve as gzipped data.
zxcvbn works as-is on most browsers and javascript

server frameworks. Because iOS and Android both ship
with javascript interpreters, zxcvbn can easily interface
with most mobile apps as well. JSContext on iOS7+ or
UIWebView for legacy support both work well. Running
javascript with or without a web view works similarly on
Android.

Dropbox uses zxcvbn for feedback and has never en-
forced composition requirements other than a 6-character
minimum. For those implementing requirements, we
suggest a client-side soft enforcement for simplicity,

such as a submit button that is disabled until the re-
quirement is met. Because different versions and ports
give slightly different estimates, we suggest those need-
ing server-side validation either skip client-side valida-
tion or make sure to use the exact same build across their
server and various clients. zxcvbn ports exist for Java,
Objective-C, Python, Go, Ruby, PHP, and more.

4.6 Limitations
zxcvbn doesn’t model interdependencies between pat-
terns, such as common phrases and other collocations.
However, its ranked password dictionaries include many
phrases as single tokens, such as opensesame. It only
matches common word transformations that are easy to
implement given limited space; it doesn’t match words
with deleted letters and other misspellings, for exam-
ple. Unmatched regions are treated equally based on
length; the English-sounding made-up word novanoid
gets the same estimate as a length-8 random string, and
unmatched digits and symbols are treated equally even
though some are more common than others.

5 Experiments

We investigate how choice of algorithm and dataset im-
pacts the estimation accuracy of a realistic guessing at-
tack. We also show the impact of matching patterns be-
yond token lookup. Our experiments employ a test set
of 15k passwords from the RockYou’09 leak [7]. Ap-
pendix C includes the same analysis on a 15k sample
from the Yahoo’12 leak [11]. We close the Section with
runtime benchmarks for zxcvbn.

5.1 Methodology

Algorithms and Data
The algorithms we selected for our experiment – NIST,
KeePass, and zxcvbn – estimate guess attempts or
equivalent (excludes [49, 17]) and can operate without
a backing server (excludes [46, 24]).

For our password strength gold standard, as intro-
duced in Section 2.2, we ran the min_auto configura-
tion of PGS [8] with the same training data found to be
most effective in [51]. The PGS training data (roughly
21M unique tokens) consists of the RockYou’09 pass-
word leak (minus a randomly sampled 15k test set), Ya-
hoo’12 leak (minus a similar 15k test set), MySpace’06
leak, 1-grams from the Google Web Corpus, and two En-
glish dictionaries. To make brute force guessing attacks
infeasible, the 15k test sets are sampled from the subset
of passwords that contain at least 8 characters. Of the
four attacks, we ran the Markov attack up through 1010

guesses, John the Ripper and Hashcat up through 1013,
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and PCFG up to 1014. Detailed specifics can be found
in [51].

While our test data is distinct from our training data,
it is by design that both include samples from the same
RockYou’09 distribution; our aim is to simulate an at-
tacker with knowledge of the distribution they are guess-
ing. While a real attacker wouldn’t have training data
from their target distribution, they might be able to tai-
lor their attack by deriving partial knowledge – common
locales and other user demographics (RockYou includes
many Romanian-language passwords in addition to En-
glish), site-specific vocabulary (game terminology, say),
and so on.

Our estimators are given ranked lists of common to-
kens as their training data, with one separately ranked
list per data source. NIST and KeePass do not make
use of rank, instead performing membership tests on a
union of their lists. Rather than attempting to precisely
match the training sources supplied to PGS, our estimator
sources more closely match those used in the current pro-
duction version of zxcvbn. For example, in the spirit of
free software, we avoid the Google Web Corpus which is
only available through a license via the Linguistic Data
Consortium. Instead of counting top passwords from the
MySpace’06 leak, our estimators use the Xato’15 corpus
which is over 200 times bigger.

In all, we count top tokens from the PGS training
portion of RockYou’09 and Yahoo’12 (test sets are ex-
cluded from the count), Xato’15, 1-grams from English
Wikipedia, common words from a Wiktionary 29M-
word frequency study of US television and film [10], and
common names and surnames from the 1990 US Cen-
sus [1]. Appendix B has more details on our data sources
and algorithm implementations.

We experiment with three estimator training set sizes
by truncating the frequency lists at three points: 100k
(1.52 MB of gzipped storage), 10k (245 kB), and 1k
(29.3 kB). In the 10k set, for example, each ranked list
longer than 10k tokens is cut off at that point.

Metrics

When PGS is unable to guess a password, we exclude
it from our sample set S. On each sampled password
xi ∈ S, we then measure an algorithm’s estimation error
by computing its order-of-magnitude difference ∆i from
PGS,

∆i = log10
galg(xi)

gpgs(xi)
(4)

where galg is the guess attempt estimate of the algorithm
and gpgs is the minimum guess order of the four PGS
guessing attacks. For example, ∆i =−2 means the algo-
rithm underestimated guesses by 2 orders of magnitude
compared to PGS for password xi.

We compare PGS to the estimator algorithms in three
ways. First, to give a rough sense of the shape of esti-
mator accuracy, we show log-log scatter plots spanning
from 100 to 1015 guesses, with gpgs on the x axis, galg on
the y axis, and a point for every xi ∈ S. Second, we show
the distribution of ∆i as a histogram by binning values to
their nearest multiple of .5, corresponding to half-orders
of magnitude. Third, we calculate the following sum-
mary statistics:

|∆|= 1
|S| ∑

i∈S
|∆i| (5)

∆+ =
1
|S| ∑

i∈S

{
∆i if ∆i ≥ 0
0 if ∆i < 0 (6)

|∆| gives a sense of accuracy, equally penalizing under-
and overestimation. ∆+ measures overestimation. Fewer
and smaller overestimations improve (reduce) this met-
ric. We calculate summary statistics within an online
range gpgs < 106 and separately higher magnitudes.

One comparison challenge is that KeePass and NIST
output entropy as bits, whereas we want to compare algo-
rithms in terms of guesses. While commonplace among
password strength estimators, including the 2012 version
of zxcvbn, it is mathematically improper to apply en-
tropy, a term that applies to distributions, to individual
events. Neither KeePass nor NIST formalize the type of
entropy they model, so we assume that n bits of strength
means guessing the password is equivalent to guessing a
value of a random variable X according to

n = H(X) =−∑
i

p(xi) log2 p(xi) (7)

Assuming the guesser knows the distribution over X and
tries guesses xi in decreasing order of probability p(xi), a
lower bound on the expected number of guesses E[G(X)]
can be shown [41] to be:

E[G(X)]≥ 2H(X)−2 +1 (8)

provided that H(X)≥ 2. We use this conservative lower
bound to convert bits into guesses. Had we additionally
assumed a uniform distribution, our expected guesses
would be 2H(X)−1, a negligible difference for our loga-
rithmic accuracy comparisons.

5.2 Results
Of the RockYou 15k test set, PGS cracked 39.68% within
our online guessing range of up to 106 guesses and
52.65% above 106, leaving 7.67% unguessed.

5.2.1 Choice of Algorithm
Figures 1-3 give a sense of how algorithm choice af-
fects guess attempt estimation. The solid diagonal cor-
responds to ∆ = 0, indicating estimator agreement with
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Figure 1: PGS (x axis) vs. NIST (y axis), 100k token set.
Points on the solid diagonal indicate agreement between
PGS and NIST (∆i = 0). Points above the solid diagonal
indicate overestimation. Points above the top dashed di-
agonal indicate overestimation by more than two orders
of magnitude (∆i > 2).

PGS. Points above the top / below the bottom dotted lines
over/underestimate by more than 2 orders of magnitude
(∆i > 2 above the top line, ∆i < −2 below the bottom
line). Points to the left of gpgs = 106 indicate samples
potentially susceptible to online guessing as argued in
Section 3.
NIST and KeePass both exhibit substantial horizon-

tal banding in the low online range. Figure 2 shows
that a KeePass estimate of about 104.5 can range any-
where from about 10.25 to 106 PGS guesses. Figure 1
shows that NIST has a similar band at about 104.8, and
that NIST tends to overestimate in the online range and
lean towards underestimation at higher magnitudes. In
Table 1 we measured NIST and KeePass to be respec-
tively off by |∆|= 1.81 and 1.43 orders of magnitude on
average within the online range. We conclude neither are
suitable for estimating online guessing resistance; how-
ever, we expect KeePass could fix its low-order banding
problem by incorporating token frequency rank instead
of a fixed entropy for each dictionary match.

Figure 3 demonstrates that zxcvbn grows roughly lin-
ear with PGS up until about 105, corresponding to the
maximum rank of the 100k token set. Both zxcvbn and
KeePass suffer from a spike in overestimation approx-
imately between 105 and 107. We speculate this is be-
cause PGS is trained on 21M unique tokens and, in one at-
tack, tries all of them in order of popularity before mov-
ing onto more complex guessing. Hence, the greatest
overestimation in both cases happens between the esti-
mator dictionary cutoff and PGS dictionary cutoff, high-

Figure 2: PGS (x) vs. KeePass (y), 100k token set.

Figure 3: PGS (x) vs. zxcvbn (y), 100k token set.

lighting the sensitivity of estimator dictionary size.
The horizontal banding at fixed orders of magnitude

in zxcvbn corresponds to bruteforce matches where no
other pattern could be identified. Detailed in Section 4,
zxcvbn rewards 10l guesses for length-l unmatched re-
gions. zxcvbn has comparable but slightly worse |∆| and
∆+ than NIST past the online range. Given both have a
low ∆+, this primarily demonstrates a usability problem
at higher magnitudes (overly harsh feedback).

Figure 4 counts and normalizes ∆i in bin multiples of
.5, demonstrating that zxcvbn is within ±.25 orders of
magnitude of PGS about 50% of the time within the on-
line range. The sharp drop-off to the right indicates infre-
quent overestimation in this range. Figure 4 also shows
that, within the online range, NIST and KeePass accu-
racy could be improved by respectively dividing their
estimates by about 102 and 101 guesses; however, both
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Figure 4: ∆ histograms, 100k token set, online attack
range (gpgs < 106). zxcvbn spikes at ∆ = 0 then conser-
vatively falls off to the right.

Figure 5: PGS (x) vs. zxcvbn (y), 10k token set.

would still exhibit substantial overestimation tails.

5.2.2 Choice of Data

We now contrast a single algorithm zxcvbn with varying
data. Figures 3, 5, and 6 show zxcvbn with the 100k,
10k and 1k token sets. The noticeable effect is linear
growth up until 105, 104 and 103, respectively. Overesti-
mation is nearly non-existent in these respective ranges.

Within the online range, |∆| and ∆+ noticeably im-
prove with more data. Past the online range, more data
makes the algorithm more conservative, with progres-
sively higher |∆| and lower ∆+.

Figure 6: PGS (x) vs. zxcvbn (y), 1k token set.

5.2.3 Impact of Pattern Matching

We lastly measure the impact of matching additional pat-
terns beyond token lookup. Figure 7 shows a variant of
zxcvbn that recognizes case-insensitive token lookups
only. Differences from Figure 3 include noticeably more
overestimation before 105 and more prominent horizon-
tal banding.

For our |∆| and ∆+ figures, we show the cumulative
effect of starting with case-insensitive token matching
only, and then incrementally matching additional types
of patterns. Overall the impact is small compared to sup-
plying additional data, but the space- and time- cost is
near-zero, hence we consider these extra patterns a strict

PGS < 106 PGS > 106

|∆| ∆+ |∆| ∆+

NIST-100k 1.81 1.79 2.04 0.14
KP-100k 1.43 1.31 1.81 0.70
ZX-100k 0.58 0.27 2.20 0.21

ZX-1k 1.47 1.23 2.13 0.46
ZX-10k 0.82 0.53 2.18 0.28

ZX-100k 0.58 0.27 2.20 0.21

ZX-100k:
tokens only 0.68 0.48 1.85 0.30

+reversed/l33t 0.68 0.47 1.87 0.29
+date/year 0.60 0.35 2.13 0.23
+keyboard 0.60 0.34 2.13 0.22

+repeat 0.57 0.28 2.19 0.21
+sequence 0.58 0.27 2.20 0.21

Table 1: |∆| and ∆+ summary statistics. The top, middle
and bottom portions correspond to Sections 5.2.1-5.2.3,
respectively.
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Figure 7: PGS (x) vs. zxcvbn (y), 100k token set, case-
insensitive token lookups only. Table 1 shows the cumu-
lative benefit of matching additional patterns.

improvement.
Within the online range, |∆| shrinks by 15% after all

pattern types are included. ∆+ shrinks by 44%. As with
adding more data, past 106, adding patterns increases es-
timator conservatism, with a progressively higher |∆| and
lower ∆+.

5.3 Performance Benchmarks

To measure zxcvbn runtime performance, we con-
catenated the RockYou’09 and Yahoo’12 test sets
into a single 30k list. We ran through that sam-
ple 1000 times, recording zxcvbn runtime for
each password, and finally averaged the runtimes
across the batches for each password. We obtained
the following runtime percentiles in milliseconds:

25th 50th 75th 99.9th max
Chrome (ms) 0.31 0.44 0.60 3.34 27.33

node (ms) 0.38 0.53 0.72 3.00 29.61

We checked that these numbers are comparable to run-
ning a single batch, to verify that we avoided caching
effects and other interpreter optimizations. Our trials
used 64-bit Chrome 48 and 64-bit node v5.5.0 on OS X
10.10.4 running on a late 2013 MacBook Pro with a 2.6
GHz Intel Core i7 Haswell CPU.

5.4 Limitations

Because we measured estimator accuracy against the cur-
rent best guessing techniques, accuracy will need to be
reevaluated as the state of the art advances. By includ-
ing training and test data from the same distribution, we

erred on the side of aggressiveness for our guessing sim-
ulation; however, test data aside, to the extent that PGS
and zxcvbn are trained on the same or similar data with
the same models, we expect similar accuracy at low mag-
nitudes up until zxcvbn’s frequency rank cutoff (given a
harder guessing task, that range might span a lower per-
centage of the test set). Our experiments measured esti-
mator accuracy but not their influence on password selec-
tion behavior; a separate user study would be valuable,
with results that would likely depend on how competing
estimators are used and presented.

6 Conclusion

To the extent that our estimator is trained on the same
or similar password leaks and dictionaries as employed
by attackers, we’ve demonstrated that checking the min-
imum rank over a series of frequency ranked lists, com-
bined with light pattern matching, is enough to accu-
rately and conservatively predict today’s best guessing
attacks within the range of an online attack. zxcvbn
works entirely client-side, runs in milliseconds, and
has a configurable download size: 1.5MB of com-
pressed storage is sufficient for high accuracy up to 105

guesses, 245 kB up to 104 guesses, or 29 kB up to 103

guesses. zxcvbn can be bundled with clients or asyn-
chronously downloaded on demand. It works as-is on
most browsers, browser extensions, Android, iOS, and
server-side javascript frameworks, with ports available
in several other major languages. In place of LUDS, it
is our hope that client-side estimators such as zxcvbn
will increasingly be deployed to allow more flexibility
for users and better security guarantees for adopters.
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Availability

zxcvbn is free software under the MIT License:

http://github.com/dropbox/zxcvbn
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A zxcvbn vs. 3class8

We made the claim that zxcvbn is no harder to adopt than LUDS strate-
gies such as 3class8. We provided a CommonJS implementation in

Section 3 that rejects passwords guessable in 500 attempts according
to zxcvbn. For comparison, here we provide our implementation of
3class8 back-to-back with equivalent zxcvbn integrations using two
other common JavaScript module interfaces: global namespacing and
Asynchronous Module Definition with RequireJS.

var meets_3class8 = function(password) {
var classes = 0;
if /[a-z]/.test(password) {classes++;}
if /[A-Z]/.test(password) {classes++;}
if /\d/.test(password) {classes++;}
if /[\W_]/.test(password) {classes++;}
return classes >= 3 and password.length > 8;

}

// in .html: <script src="zxcvbn.js"></script>
var meets_policy_global = function(password) {

return zxcvbn(password).guesses > 500;
};

requirejs(["path/to/zxcvbn"], function(zxcvbn) {
var meets_policy_amd = function(password) {

return zxcvbn(password).guesses > 500;
};

});

B Experiment implementation details

For the sake of reproducibility, we detail the specifics of the algorithms
and data we employed in our experiments.

Algorithms
KeePass: We downloaded the C# source of KeePass 2.31 released on
1/9/2016 and extracted its strength estimator into a stand-alone Mono
executable that takes a token dictionary as input.

NIST: calculated as specified in Section 2. The NIST 2013
guideline [22] does not precisely define the dictionary check but
recommends applying common word transformations. We ignore case
and check for reversed words and common l33t substitutions, the same
as in zxcvbn. NIST specifies awarding up to 6 bits for passing the
dictionary check, decreasing to 0 bits at or above 20 characters, but
doesn’t otherwise specify how to award bits. We award a full 6 bits
for passwords at or under 10 characters, 4 bits if between 11 and 15,
and otherwise 2 bits. NIST recommends a dictionary of at least 50k
tokens. The 100k token set described in Section 5 consists of about
390k unique tokens (consisting of several lists ending up to rank-100k).

zxcvbn: Outlined in detail in Section 4.

Data
Within each data source, all tokens were lowercased, counted, and
sorted by descending count. When multiple lists contained the
same token, that token was filtered from every list but the one with
the lowest (most popular) rank. We made use of the following raw data:

RockYou: 32M passwords leaked in 2009 [7], excluding a random 15k
test set consisting of passwords of 8 or more characters.

Yahoo: 450k passwords leaked in 2012 [11], excluding a random 15k
test set consisting of passwords of 8 or more characters. We cut this
list off at 10k top tokens, given the smaller size of the leak.

Xato: Mark Burnett’s 10M password corpus, released in 2015 on
Xato.net and compiled by sampling thousands of password leaks
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over approximately 15 years. These passwords mostly appear to be
from Western users. The authors confirmed with Burnett that the
RockYou set is not sampled in Xato; however, Xato likely includes a
small number of samples from the Yahoo set. Given the relative sizes
of the two sets, Yahoo could at most make up 4.5% of Xato; however,
we expect a much smaller percentage from talking to Mark.

Wikipedia: 1-grams from the the English Wikipedia database dump
of 2015-10-2. We include all Wikipedia articles but not previous
revisions, edit histories, template files, or metadata. We parse text from
wiki markup via the open-source WikiExtractor.py and tokenize
according to the Penn Treebank method [6].

Wiktionary: Words from a 2006 Wiktionary word frequency study
counting 29M words from US television and film [10]. This list
balances Wikipedia’s formal English with casual language and slang.
40k unique tokens.

USCensus: Names and surnames from the 1990 United States
Census [1] ranked by frequency as three separate lists: surnames,
female names, and male names. We cut surnames off at 10k tokens.

C Yahoo Analysis

For reference, we reproduce the results of Section 5.2 with a sample
of Yahoo’12 passwords instead of RockYou’09. Of the 15k test set,
PGS cracked 29.05% within our Section 3 online guessing cutoff at 106

guesses and 60.07% above 106, leaving 10.88% unguessed.

Choice of Algorithm
Figures 8-10 respectively show PGS vs NIST, KeePass, and zxcvbn,
with each estimator supplied with the same 100k token set. As in
the RockYou sample, NIST and KeePass exhibit substantial horizontal
banding and overestimate at low magnitudes. At higher magnitudes,
NIST tends to underestimate.

Figure 10 demonstrates that zxcvbn grows roughly linear with PGS,
leaning towards underestimation, up until 105 guesses. Observable in
the RockYou sample but more pronounced here, KeePass and zxcvbn
both experience a spike in overestimation between 105 and 107. We
offer the same explanation as with RockYou: PGS is trained on a little
over 107 unique tokens, some of which are long and unrecognized by
the estimators. PGS occasionally succeeds making single-token guesses
at these higher magnitudes, leading to a spike in inaccuracy between
estimator dictionary cutoff and PGS dictionary cutoff.

In Figure 11, we see a similar ∆i spike at zero for zxcvbn followed
by a sharp decline to the right, indicating high accuracy and low over-
estimation within an online range.

Choice of Data
Figures 12-13 show PGS vs. zxcvbn with 10k and 1k token sets, re-
spectively. We observe the same noticeable effect as with RockYou:
high accuracy at low magnitudes up until the max token rank cutoff at
104 and 103, respectively. Referring to Table 2, |∆| and ∆+ noticeably
improve with more data within the online range. Past the online range,
more data makes the algorithm more conservative, with progressively
higher |∆| and lower ∆+.

Impact of Pattern Matching
Figure 14 shows a variant of zxcvbn, supplied with the 100k token set,
that matches case-insensitive token lookups only. We similarly observe
more overestimation before gpgs = 105 and more prominent horizontal
banding at higher magnitudes compared to Figure 10.

The bottom portion of Table 2 shows the cumulative effect of match-
ing additional pattern types. Within the online range, |∆| and ∆+ shrink
by about 5% and 46%, respectively.

PGS < 106 PGS > 106

|∆| ∆+ |∆| ∆+

NIST-100k 1.46 1.43 2.19 0.13
KP-100k 1.24 1.05 1.85 0.83
ZX-100k 0.74 0.19 2.45 0.26

ZX-1k 0.74 0.19 2.45 0.26
ZX-10k 0.91 0.39 2.40 0.32

ZX-100k 1.42 1.04 2.28 0.50

ZX-100k:
tokens only 0.78 0.35 2.13 0.33

+reversed/l33t 0.79 0.33 2.19 0.32
+date/year 0.74 0.26 2.35 0.28
+keyboard 0.74 0.25 2.36 0.27

+repeat 0.73 0.19 2.43 0.26
+sequence 0.74 0.19 2.45 0.26

Table 2: |∆| and ∆+ summary statistics.

Figure 8: PGS (x) vs. NIST (y), 100k token set.

Figure 9: PGS (x) vs. KeePass (y), 100k token set.
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Figure 10: PGS (x) vs. zxcvbn (y), 100k token set.

Figure 11: ∆ histograms, 100k token set, online attack
range (gpgs < 106). zxcvbn spikes at ∆ = 0 then conser-
vatively falls off to the right.

Figure 12: PGS (x) vs. zxcvbn (y), 10k token set.

Figure 13: PGS (x) vs. zxcvbn (y), 1k token set.

Figure 14: PGS (x) vs. zxcvbn (y), 100k token set, case-
insensitive token lookups only.


