
This paper is included in the Proceedings of the
25th USENIX Security Symposium

August 10–12, 2016 • Austin, TX

ISBN 978-1-931971-32-4

Open access to the Proceedings of the
25th USENIX Security Symposium

is sponsored by USENIX

Ariadne: A Minimal Approach to State Continuity
Raoul Strackx and Frank Piessens, Katholieke Universiteit Leuven

 https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/strackx

USENIX Association 	 25th USENIX Security Symposium  875

Ariadne: A Minimal Approach to State Continuity

Raoul Strackx
iMinds-DistriNet, KU Leuven,

3001 Leuven, Belgium
raoul.strackx@cs.kuleuven.be

Frank Piessens
iMinds-DistriNet, KU Leuven,

3001 Leuven, Belgium
frank.piessens@cs.kuleuven.be

Abstract
Protected-module architectures such as Intel SGX pro-
vide strong isolation guarantees to sensitive parts of ap-
plications while the system is up and running. Unfor-
tunately systems in practice crash, go down for reboots
or lose power at unexpected moments in time. To deal
with such events, additional security measures need to
be taken to guarantee that stateful modules will either re-
cover their state from the last stored state, or fail-stop
on detection of tampering with that state. More specifi-
cally, protected-module architectures need to provide a
security primitive that guarantees that (1) attackers can-
not present a stale state as being fresh (i.e. rollback pro-
tection), (2) once a module accepted a specific input, it
will continue execution on that input or never advance,
and (3) an unexpected loss of power must never leave the
system in a state from which it can never resume execu-
tion (i.e. liveness guarantee).

We propose Ariadne, a solution to the state-continuity
problem that achieves the theoretical lower limit of re-
quiring only a single bit flip of non-volatile memory per
state update. Ariadne can be easily adapted to the plat-
form at hand. In low-end devices where non-volatile
memory may wear out quickly and the bill of materials
(BOM) needs to be minimized, Ariadne can take optimal
use of non-volatile memory. On SGX-enabled proces-
sors, Ariadne can be readily deployed to protect stateful
modules (e.g., as used by Haven and VC3).

1 Introduction

Computing devices have become ever more diverse,
ranging from cloud computing platforms and super com-
puters to embedded systems used in Internet of Things
(IoT) applications. The familiar multi-level approach
to security where a more privileged layer has full con-
trol over software running on top, is ill-suited for many
of these applications; clients of cloud providers may

fear rogue employees or government subpoenas targeting
their provider that may reside in a different country [7].
On embedded devices paging and privilege layers may
be too power/energy expensive to be applied.

Protected-module architectures (PMAs) take another,
non-hierarchical approach. After almost a decade of re-
search [5,6,8,9,11–13,22,27,28,30,31,41,45,48,49], two
key primitives have emerged: isolation and key deriva-
tion. The isolation mechanism ensures that a protected
module is completely isolated from any other piece of
code running on the system, including other protected
modules. Only when the instruction pointer points to
a memory location within the module, can a module’s
memory regions be accessed. All other attempts from
different locations are blocked by the architecture. Only
a module’s entry points are an exception and can be ac-
cessed from any location. Once an entry point is called,
the instruction pointer points within the module’s mem-
ory region and it’s secrets can be accessed.

A key derivation mechanism provides a unique, un-
forgeable key for each protected module. It is usually de-
rived from a platform specific key – that can only be ac-
cessed directly by the platform itself – and the measure-
ment of the module when it was created. This implies
that only identical modules can derive the same crypto-
graphic key. An attacker modifying the module before it
was properly isolated, will cause a variation in the mod-
ule’s measurement and eventually in the cryptographic
key that was derived. This makes it ideal to seal data to a
specific module. Data can be integrity and confidential-
ity protected by the derived key, and stored on disk. As
only the identical module can derive the same key, the
stored sensitive data cannot be accessed by an attacker.

Related work showed that these minimal require-
ments are small enough to be implemented directly in
hardware [31], even for embedded devices [8, 12, 22,
30]. With the arrival of Intel Skylake CPUs in August
2015, equipped with Intel Software Guard eXtensions
(SGX) [3, 18, 29], PMAs are now available on commod-

876  25th USENIX Security Symposium	 USENIX Association

ity devices.
In parallel, research was conducted on how the secu-

rity properties provided by PMAs can be leveraged to
provide provable security guarantees. Agten et al. [2]
and others in subsequent work [1, 33, 34] showed that by
adding limited security checks at runtime, fully-abstract
compilation can be guaranteed; all security properties
that hold at source-code level, can be guaranteed at
machine-code level too. This makes reasoning about se-
curity properties much easier.

Unfortunately an important security requirement has
received little attention. Many security properties only
hold while the system is up and running. In practice ma-
chines crash, go down for reboots and lose power at un-
expected moments in time. To account for such events,
stateful protected modules must securely store their state.
Parno et al. [32] showed that this is a non-trivial task.
Sealing a module’s state before it is handed over to the
untrusted operating system and written to disk, is insuf-
ficient. Additional security measures need to be taken to
ensure that: (1) a protected module’s state can never be
rolled back to a previous, stale state, (2) once a module
accepted input, it must either (eventually) finish its ex-
ecution or never advance at all and (3) unexpected loss
of power at any moment in time should never result in a
system that cannot be resumed after reboot.

State continuity solutions must take the platform spe-
cifications and use case at hand into account. Existing
solutions [32,46] rely on an uninterruptible power source
(UPS) or risk wearing out non-volatile memory. Such ap-
proaches are acceptable in higher-end applications (e.g.,
in a cloud setting [7, 40]). On other platforms [35, 36]
a UPS may not be available on commercial off-the-shelf
(COTS) devices and may lead to significant increases in
the bill-of-materials (BOM). In such cases wear and tear
on non-volatile memory must be minimized to increase
longevity of the device. We present a proven-secure so-
lution to state-continuity and show that it can be applied
on a large range of platforms.

More specifically, we make following contributions:

• We present Ariadne, a solution to the state-
continuity problem that achieves the mathematical
lower-bound of only a single bit flip per state up-
date.

• We show that Ariadne can be easily adapted to re-
duce wear on EEPROM/NAND flash memory.

• We demonstrate that Ariadne can be applied imme-
diately on the SGX/ME platform, without any hard-
ware modifications. This is particularly important
as SGX modules (called enclaves) are destroyed
when the system is suspended or hibernated. In
addition we compare the use of the Intel Manage-

ment Engine (ME) to the TPM chip to store fresh-
ness information and show that no clear winner ex-
ists; much depends on the use case and the available
hardware.

The remainder of this paper is structured as follows.
In the next section we discuss our attack model and the
security properties we need to provide in detail. Sec-
tion 3 builds upon related work and shows that the state-
continuity problem can be easily reduced to that of state-
continuous storage. Ariadne’s algorithm and its opti-
mizations are discussed in Section 4. We evaluate its
security in Section 5. Two possible implementations are
discussed and evaluated in Section 6. Finally we discuss
related work and conclude in Sections 7 and 8.

2 Problem Definition

2.1 Attack Model
Our goal is to provide state-continuity support to
protected-module architectures, without (significantly)
increasing their attack surface. As such, we assume the
following. First, an attacker is able to compromise the
complete (untrusted) software stack. As untrusted oper-
ating system services are used to store and retrieve mod-
ule states, this implies that these states can be replayed.

Second, an attacker is able to halt execution at any mo-
ment in time because she has complete control over the
system’s power supply, or because she can launch other
attacks leading to similar results. Especially Intel SGX
is vulnerable to such attacks. To protect the system from
malicious or badly behaving enclaves, execution control
is returned to the kernel whenever an interrupt occurs
while an enclave is executing. Regardless of how such
attacks are executed, we will refer to them as “power-
interruption attacks”.

2.2 Security Properties
In order to build a secure and reliable system, it is
paramount that we are able to provide three security
properties. First, we need to provide rollback preven-
tion; an attacker must not be able to provide a stale state
of a module and have it accepted as being fresh. Espe-
cially in DRM/ERM contexts such security guarantees
are important. Consider as an example a document that
should only be printed a limited number of times. Such
limitations can be guaranteed easily by first checking and
decrementing a monotonic counter before the document
is printed.

Second, a module’s execution needs to be continuous.
Once a module accepted input, it needs to eventually fin-
ish its execution based on that input and output all com-

2

USENIX Association 	 25th USENIX Security Symposium  877

puted results, or it must never advance at all. This prop-
erty is related to rollback-prevention, but is much stricter.
Rollback-prevention may guarantee for example that an
X509 certificate authority (CA) does not provide two dif-
ferent certificates with the same serial number. But in
practice it is also important that every certificate is ac-
counted for; for every serial number the CA should be
able to prove which (if any) unique certificate it signed.
Failure to do so may break trust [17] that it did not pro-
vide rogue certificates.

Third, we must also be able to guarantee liveness of
the system. Unexpected crashes or loss of power at any
moment in time, must not result in a system that will
never be able to recover. Note that this is not an availabil-
ity guarantee. We only consider interrupts in execution
that may occur even if the system is not under attack. We
cannot guarantee availability: a kernel-level attacker can
easily prevent a system from ever resuming its previous
state by erasing the fresh state from disk, enter an endless
crash-reboot cycle, or erasing the system’s boot image.

3 Background: State-Continuous Storage
is Sufficient

Related work [32, 46] already showed that the state-
continuity problem can be reduced to that of state-
continuous storage. We take the same approach. We
first introduce libariadne, a library providing state-
continuous storage in Section 3.1. Sections 3.2 and 3.3
discuss how this library should be used and introduce a
running example.

3.1 libariadne’s Interface
We provide programmers with the libariadne library
that can be linked with a protected module. It provides
an interface of three functions.

The void store state(Blob *blob, String

f format) function stores the provided data in blob

in a file on disk. To enable easy recovery of the fresh
state, we require that f format is a format string which
includes an integer conversion specifier (i.e., “%i”). The
library will internally replace the conversion specifier
with the value of a monotonic counter. Note that this
is only for practical reasons, an attacker changing the
filename may prevent the module from ever being
resumed, but it will never result in a rollback attack.

The Blob *retrieve state(String f format

) function will attempt to read a file with a matching
filename, verify its integrity and freshness and return its
content. When this verification step fails for any reason
NULL is returned.

In case an attacker deletes the fresh data from disk
– or simply when the hard drive got damaged and

needed replacement – the fresh data is permanently
lost. The void purge state(Blob *init, String

format) function can resolve the situation by allow-
ing the programmer to specify an initial, public state of
the module. As this results in a loss of any previously
stored sensitive data, this operation does not violate state
continuity.

3.2 Security Considerations of the
libariadne Library

With libariadne providing state-continuous storage,
protected modules writers can easily guarantee rollback
prevention and continuous execution [32,46] by ensuring
that modules adhere to two principles:
Requirement 1: Store Input Before Processing Before
processing any input, protected modules must store their
current state, with the received input and called entry
point.1

Requirement 2: Only Deterministic Protected Mod-
ules Any source of non-determinism (e.g., rdrand in-
structions) needs to be considered input, and thus fol-
lowing Requirement 1 stored before being used.

These requirements ensure that when a protected-
module is interrupted during execution (e.g., due to a
power failure), it will restart the computation based on
the same input when the module is resumed. Since mod-
ules are deterministic, it will either reach an identical
state as when power was lost, or its execution is inter-
rupted again before it reaches that state.

3.3 Running Example: A PIN-Protected
Secret

Consider a module that protects access to a secret. Only
when a user presents a valid PIN, will the secret be re-
turned. To mitigate brute-force attacks, we need to be
able to guarantee that a user/attacker can make at most
three failed attempts before being locked out indefinitely.

The implementation of the module is presented in list-
ing 1. Whenever the module is loaded in memory, the
on load function is called implicitly, and an attempt
is made to retrieve the last stored state (line 8). If
libariadne’s retrieve state function finds a freshly
stored file, the module’s state is restored and execution
of the last called entry point is restarted. Eventually the
module will end up in the same state as when the module
was interrupted.

If on the other hand no matching file can be found, it
is corrupted, or it is stale, retrieve state will return

1Alternatively we could have opted to state-continuously store the
state only right before the module returns output. Unfortunately this is
hard in practice as any sources of output need to be considered (e.g.,
calls to unprotected memory, and timing and page-fault channels [59]).

3

878  25th USENIX Security Symposium	 USENIX Association

1#include <libariadne/interface.h>
2

3static int tries left;
4static String pin;
5static String secret;
6

7void on load(void) {
8 Blob ∗blob = retrieve state(”state %i.pkg”);
9

10 if (blob != NULL){
11 // restart computation using state & input in blob
12 ...
13 } else
14 reset();
15}
16

17void entry point reset(void) {
18 Blob ∗blob = new Blob(&reset || tries left || pin ||

secret);
19 purge state(blob, ”state %i.pkg”);
20 pin = ”0000”;
21 secret = ”publicly−known secret”;
22 tries left = 3;
23}
24

25String entry point get secret(String p) {
26 Blob ∗blob = new Blob(&get secret || p || tries left ||

pin || secret);
27 store state(blob, ”state %i.pkg”);
28

29 if (tries left <= 0)
30 return ”Locked out”;
31

32 if (pin == p) {
33 tries left = 3;
34 return secret;
35 } else {
36 −−tries left;
37 return ”Incorrect PIN”;
38 }
39}
40

41bool entry point set pin(String p old, String p new){...}
42bool entry point set secret(String p, String s new){...}

Listing 1: A running example: A PIN-protected secret.
The || operator is used to denote concatenation.

NULL. It is up to the module writers to handle such sit-
uations. In this case the module is reset to a known
good initial state (line 14), at the cost of losing the pro-
tected secret indefinitely. The same reset entry point
can be called when the user exhausted her 3 access at-
tempts. Note that the reset function stores the previous
tries left, pin and secret within the created blob.
While this is not required given that the function will al-

blob cntr MAC
encrypted

Figure 1: Layout of a package. A module’s state and
input is confidentiality and integrity protected. The en-
closed cntr value enables Ariadne to determine fresh-
ness.

ways set these variables to a known-good value, it does
not enable an avenue of attack; Ariadne will always en-
sure that the reset function will be called upon recov-
ery.

When on load successfully retrieved and resumed the
fresh state, the user can attempt to access the secret by
calling the get secret entry point and providing it with
a PIN. When she hasn’t exhausted her number of guesses
yet, the provided PIN p is verified (line 32). When the
correct PIN is provided, the tries left variable is re-
set and the secret is returned. Otherwise tries left is
decremented and an error string is returned. The entry
points set pin and set secret – offering the obvious
functionality to the user – use identical security measures
to protect against brute-force attacks.

4 Ariadne

We describe Ariadne in three steps. In Section 4.1 we
provide a scheme for state-continuous storage based on
a monotonic counter. In Sections 4.2 and 4.3 we propose
alternative counter encodings that will lead to a minimal
approach to state continuity.

We will only focus on state-continuity guarantees for
a single module. Related work [32, 46] showed that sup-
port for an unlimited amount of modules can be added
easily by (1) using a single state-continuous module to
provide secure, state-continuous storage for other mod-
ules and (2) inter-module communication. For complete-
ness, we elaborate in Appendix B.

4.1 State-Continuity based on a Monotonic
Counter

Guaranteeing state continuity based only on a single
monotonic counter to keep track of the fresh state, is a
hard problem. Developers of protected modules may be
tempted to re-use solutions borrowed from anti-replay
security measures, but these are flawed.

Strawman Solutions Generally two approaches are
considered. In one approach the monotonic counter is
incremented first. Afterwards, the state of the module
is confidentiality protected, appended with the counter

4

USENIX Association 	 25th USENIX Security Symposium  879

value and the whole is integrity protected. Figure 1
displays the resulting package graphically. When the
system crashes, only the package with an encapsulated
counter value equal to the monotonic counter is accepted
as being fresh. This approach has the obvious problem
that a crash before the new package was written to disk,
prevents the system from recovering; liveness cannot be
guaranteed.

Alternatively, first storing the package with the next
counter value before the monotonic counter is incre-
mented also fails. Repeated crashes before the mono-
tonic counter was incremented, enables the creation of
multiple packages with the same counter values but dif-
ferent user input. This enables dictionary-style attacks
and thus breaks rollback prevention and continuity guar-
antees. We elaborate on both attacks in Appendix A.

Key Observations Ariadne relies on two important ob-
servations. First, the isolation guarantees of protected
module architectures ensure that an attacker cannot jump
within the middle of a module. During execution we are
thus able to assemble guarantees that may not hold when
power is lost unexpectedly.

Second, an attacker is extremely restricted in the valid
packages she can get access to. The MAC included in the
package prevents her from crafting her own packages, or
modifying existing ones. To ensure liveness, we need
to write new packages to disk before incrementing the
monotonic counter. An attacker can abuse this behavior
by crashing the system before the counter is incremented.
But this implies that at any moment in time, she has at
most access to packages with an enclosed counter value
smaller than one increment of the monotonic counter.

Ariadne’s key insight is that during recovery from a
crash, we need to store the fresh package and incre-
ment the monotonic counter twice before the encapsu-
lated state is resumed.

A Secure Solution Let’s re-use the PIN-protected
module to describe our solution. Assume that the mod-
ule is up and running. When a user requests access to
the secret by calling get secret (listing 1, line 25), the
input and state of the module is placed in a new blob and
the store state function is called. Listing 2 displays
its implementation. To ensure liveness, a new package is
created with the next counter value and stored on disk.
Finally the monotonic counter is incremented.

When the module needs to be re-loaded in memory,
its on load function is called implicitly (listing 1, line
7) and the retrieve state library function is called to
retrieve its fresh state. A package is read from disk and
only accepted as being fresh iff its MAC value is verified
successfully and its enclosed counter value matches with
the value of the monotonic counter (listing 2, line 13-19).

1#include <libariadne/interface.h>
2

3void store state(Blob ∗blob, String f format){
4 Package ∗pkg = create pkg(blob, hwcntr.value() + 1)
5 hdd.write(pkg, f format, hwcntr.value() + 1);
6 hwcntr.inc();
7}
8

9Blob ∗retrieve state(String f format){
10 Package ∗pkg;
11 Blob ∗blob;
12

13 pkg = hdd.read(f format, hwcntr.value());
14

15 if (pkg == NULL || !auth(pkg, get mac key()))
16 return NULL;
17

18 if (pkg−>cntr != hwcntr.value())
19 return NULL;
20

21 blob = decrypt(pkg, get enc key());
22

23 // ∀pkg ∈ hdd : pkg−> counter ≤ hwcntr.value()+1
24 pkg = create pkg(blob, hwcntr.value() + 1);
25 hdd.write(pkg, f format, hwcntr.value() + 1);
26 hwcntr.inc();
27

28 // ∀pkg ∈ hdd : pkg−> counter ≤ hwcntr.value()
29 pkg = create pkg(blob, hwcntr.value() + 1);
30 hdd.write(pkg, f format, hwcntr.value() + 1);
31 hwcntr.inc();
32

33 // ∀pkg ∈ hdd : pkg−> counter ≤ hwcntr.value()
34 // ∀pkg ∈ hdd : pkg−> counter = hwcntr.value()→

pkg−> contents = blob
35 return blob;
36}
37

38void purge state(Blob ∗ init blob, String f format){
39 hwcntr.inc();
40

41 Package ∗pkg = create pkg(blob, hwcntr.value() + 1);
42 hdd.write(pkg, f format, hwcntr.value() + 1);
43 hwcntr.inc();
44}

Listing 2: Ariadne: State-Continuity based on a
monotonic counter

Now that we determined that the package read from
disk is fresh, we can resume the execution of the mod-
ule. But before doing so, we need to guarantee that no
other packages exist with the same counter value. We al-
ready observed that an attacker may have packages with
an encapsulated counter value of one increment larger
than the monotonic counter. Incrementing the monotonic
counter twice will thus guarantee that all attacker’s pack-

5

880  25th USENIX Security Symposium	 USENIX Association

ages are seen as stale in the future. Only incrementing
the counter once is not sufficient. We describe an attack
against this scheme in Appendix A.3. To guarantee live-
ness, new packages are written to disk before the mono-
tonic counter is incremented.

To restart a module from a known-good state,
purge state can be called (listing 2, line 38). Similar
to the retrieve state function, we need to guarantee
that when the function returns, there only exists a sin-
gle package that will be accepted as being fresh. Hence,
in this function too we need to increment the monotonic
counter twice. However, since this function can always
be restarted, liveness is no longer a concern. We can
therefore omit storing a new package before we incre-
ment the monotonic counter for the first time (line 39).

Skipping Unprocessed Input A careful reader may
have noticed that it is possible for an attacker to force
the creation of packages with the same enclosed counter
value but with different user input. We will show that
this does not break state continuity.

Let’s use the PIN-protected module again as an exam-
ple. The attempted attack goes as follows: the attacker
calls the get secret function and provides a PIN p. Af-
ter the module assembled a Blob structure containing the
current state of the module, the provided input and the
entry point used (listing 1, line 27), the store state

library function is called. There the attacker crashes
the system right before the monotonic counter is incre-
mented (listing 2, line 6). Since a new package was al-
ready written to disk, she now possesses a package with
enclosed the next value of the monotonic counter and the
provided PIN p.

The attacker now has two options. Neither will break
state continuity. The first option is to resume the system
without any interference. As the newly written package
is not seen as being fresh (the monotonic counter in non-
volatile memory was not yet incremented) PIN guess p
will be discarded. As this guess was never compared
to the real PIN code, the attacker did not learn any new
information and state-continuity remains guaranteed.

Alternatively, the attacker lets the system reboot
but crashes the module immediately after the non-
volatile counter is incremented for the first time in the
retrieve state function (Listing 2, line 26). When
the system now recovers again, the package with PIN
guess p will be seen as being fresh. As no input was
processed by the module after this guess was made,
state-continuity is also guaranteed in this case. As in-
put can only be skipped until the module completes
its retrieve state function, repeated crashes during
retrieve state will also not break state continuity.

4.2 State-Continuity by Flipping Bits
Related work [32,46] relied on the irreversibility of hash
values to keep track of freshness information. In order
to avoid that unexpected loss of power while the hash
value is being updated may lead to corrupted non-volatile
memory, both approaches required a 2-phase commit
protocol. We take a different approach. We use the state-
continuity approach based on monotonic counters in the
previous section, but use a counter encoding that only
requires a single bit flip per state update. In the next sec-
tion we will show that in practical implementations we
can guarantee that these operations can be implemented
atomically, and we thus avoid a need of a 2-phase commit
protocol altogether. As every solution to state-continuity
requires at least a single flip to be recorded, we reached
a theoretical lower limit.

Balanced Gray codes provides such an encoding, with
the additional benefit that every bit is (almost) equally
used. Construction of these codes with arbitrary lengths
is non-trivial. In 2008 a constructive proof of their exis-
tence was presented by Mary Flahive [14] but to the best
of our knowledge never implemented. We present a fast
algorithm with fixed, limited, memory consumption.

4.2.1 Terminology

Gray codes ensure that two adjacent code words differ in
only a single digit. For example:

{00,01,11,10} (1)

and

{000,001,011,010,110,111,101,100} (2)

are two- and three-digit Gray codes, respectively. More-
over, these encodings are cyclic as the same property
applies to the last and first code word. The underlined
digits in encoding 1 and 2 are the transition digits and
show which digit is changed in the next code word. The
transition count of a digit is the number of times that
digit is used. For example, digit 0 in encoding 2 is
used twice.2 The collection of these transition counts
is called the transition spectrum of the Gray code (i.e.,
(2,2) and (2,2,4) for encoding 1 and 2 respectively).
When all transition counts are equal (t.i. 2n/n with n the
length of the Gray code), the encoding is said to be uni-
form or completely balanced. Obviously this can only be
achieved when 2n/n is an integer. In other cases cyclic
balanced Gray Codes can be constructed where the dif-
ference of any pair of transition counts is at most two:

∀0 ≤ i, j < n : |TCn(j)−TCn(i)| ≤ 2 (3)
2We follow the convention that Gray codes start with digit 0 on the

left hand side.

6

USENIX Association 	 25th USENIX Security Symposium  881

4.2.2 Construction

Let’s use the construction of a 5-bit balanced Gray code
as a running example. The algorithm is displayed in Fig-
ure 2. Balanced Gray Codes of length n are constructed
recursively from n − 2 bit balanced Gray Codes. The
balanced 2 and 3-bit Gray codes of encoding 1 and 2
are used as base cases. Each iteration consists of three
steps. In the first step, a 2n−2 × 22 grid is constructed.
The rows are annotated with all n− 2 digit Gray codes.
The number of columns is fixed for any n and columns
are annotated with 2-digit codes. A given vertex now
represents an n-bit Gray code by concatenating the Gray
code of the row and the column. By construction, two
(toroidally) adjacent vertices will now represent adjacent
Gray codes. Every Hamiltonian cycle found in this grid
now represents an encoding, but care needs to be taken
to ensure that it is balanced.

In the second step we partition the grid such that the
transition counts within each partition can be easily cal-
culated. Partitions are represented as black boxes in Fig-
ure 2. Calculation where a new partition needs to be
started is discussed in Section 4.2.3. For now note that
we will ensure that (1) new partitions will always start at
the first and last row and (2) the number of partitions is
even.

Finally, the Hamiltonian cycle is constructed starting
with Gray code 00000. With the exception of the last two
partitions, each partition is traversed in the same way:
visit every vertex in the column before moving to the next
column. Whenever an edge of a partition is reached, the
horizontal/vertical direction is inverted.

Let’s take the fourth partition – the first partition con-
taining more than one row – as an example. The partition
is started at vertex with Gray code word 01011 when we
were in the third column and going from right to left. The
graph is continued by first traversing all rows down the
current partition. The digit on the edge is the transition
digit used to create the next Gray code. When the par-
tition’s end is reached (vertex 11011), we move to the
next column (vertex 11001) and the rows in the partition
are revisited in reversed order. When the start of the par-
tition is reached again (vertex 01001), the last column is
selected and each row is again traversed. Finally, the end
of the partition is reached (vertex 11000).

The last and second to last partition are constructed
differently as shown in Figure 2. We will show that the
created notch in the last two partitions ensures that each
partition has exactly the same properties.

4.2.3 Computing Partition Sizes

Based on the construction of the Hamiltonian cycle, we
can easily derive the transition counts TCn(i) of each
transition digit i of the resulting n-digit Gray code. We

000

001

011

010

110

111

101

100

01 11 10

2

2

2

2

0

0

1

1

4 43 3

4

4

4

4

4 4

3

3

3

3

3

33

0 0 0

00

1 1 1

1 1

2 2

1

2 2

22

22

0
010 || 11

00

starting point

Figure 2: Balanced n-bit Gray Codes can be constructed
from n−2 balanced Gray Codes

apply a separate reasoning for digits i smaller than n−2
(vertical arrows) and digits n− 2 and n− 1 (horizontal
arrows).

Within a partition vertical arrows are always used 4
times. When a vertical arrow is used as a connecting digit
– connecting two partitions – it is used twice. This totals
the transition counts for these digits to: 4(TCn−2(i)−
mn−2(i))+2mn−2(i) where mn−2(i) is the multiplicity of
digit i; the number of times transition digit i is used as a
connecting digit.

Transition digits n − 2 and n − 1 are represented by
horizontal arrows in Figure 2. For standard partitions
each is used once per partition. The second to last par-
tition uses n− 2 twice, but n− 1 isn’t used. In the last
partition the opposite happens; n− 1 is used twice, but
n− 2 isn’t used. For the entire graph, transition digits
n−2 and n−1 are thus used L times, with L the number

7

882  25th USENIX Security Symposium	 USENIX Association

of partitions. As each partition is connected to the next
with a connecting digit, we know that L = ∑n−2

i=0 mn−2(i).
The transition counts for the generated Gray code is thus:

TCn(i) =

{
4TCn−2(i)−2mn−2(i) if i < n−2

∑n−2
i=0 mn−2(i) if i ≥ n−2

(4)

Flahive [14] showed that a set of connecting digits can
always be found such that a balanced Gray code is con-
structed.

4.2.4 Generating Balanced Gray Codes

Flahive’s construction guarantees that we will generate
a balanced Gray code when transition digit i is used
as a connecting digit between partitions exactly mn−2(i)
times. Unfortunately implementing it directly is not pos-
sible for large n; keeping track of each partition would
quickly consume too much memory. Instead we only
precompute mn−2(i) for each 0 ≤ i < n − 2 and apply
a greedy algorithm that will exhaust each mi as fast as
possible.

Let’s reuse the construction of a 5-digit balanced Gray
code as an example. Solving equation 4 so that a bal-
anced Gray code is constructed (see equation 3), we get
TCn(i) = (6,6,8,6,6) with mn−2(i) = (1,1,4).

In order to find a graph that fulfills these requirements,
we keep track of the size of the current partition, at which
row and column we are currently at, in which horizontal
and vertical direction we are going and for each transi-
tion digit how many connecting digits are still available.
Starting at vertex 00000 going in a downwards and right
direction (see Figure 2), we calculate (recursively) the
transition digit going downward (t.i. 2). As transition
digit 2 still needs to be used (4 times) as a connecting
digit, we decide to stop the current partition immediately,
revert the vertical direction taken and switch columns in-
stead.

Similarly, at vertex 01011 we determine that 0 would
be used as a transition digit if we do not terminate the
partition. While this transition digit was not yet used as
a connecting digit and it should be used once, we do not
stop the current partition. Indeed, by construction transi-
tion digit 0 is always used as a connecting digit between
the last and first partition.

It is important to note that the metadata (in the order
of KB) used to generate the next Gray codes, can be in-
cluded in the package written do disk. Close examination
of libariadne’s implementation shows that in order to
determine whether a package is fresh, we only need to
compare the package’s counter with the hardware mono-
tonic counter (listing 2, line 18). In other words, we only
need access to the Gray codes’ metadata after we have
already determined that the package is fresh.

4.3 Optimizing for Program-Erase Cycles

Being able to provide state-continuity guarantees by only
flipping a single bit per state update, isn’t just a theoret-
ical result. It enables various additional optimizations.
Let’s assume that we use EEPROM/NAND flash mem-
ory to store the monotonic counter as an example.

EEPROM is 1980s technology that is still used in
some TPM chips [4, 43, 44]. For most applications how-
ever it has been replaced by flash memory (e.g., Intel’s
Management Engine (ME) [37]) because it is cheaper
to manufacture for bigger memory sizes. This how-
ever comes at a cost; while EEPROM is byte accessi-
ble, NAND flash memory needs to be addressed in bigger
units. Read and write operations are page-based of usu-
ally 2KB to 8KB. Erase commands on the hand operate
on blocks of 32-128 pages. [55]

Both EEPROM and flash memory have the disadvan-
tage that they age. Every time the memory is written
to or erased, high voltages are applied that eventually
will damage the device oxide. Eventually memory cells
will be in a stuck-at state, or fail to retain their infor-
mation over longer periods of time. The number of
program/erase (P/E) cycles that can reliably be issued,
depends heavily on the manufacturing process (density,
single/multi-layer cells, etc.), but typically ranges be-
tween 5,000 and 500,000 cycles. [42]

Being provided with different commands to write and
erase memory gives us an opportunity to optimize our en-
coding scheme further. Erasing a block will set all mem-
ory cells to 1, while subsequent write commands will set
the selected cells to 0. This implies that we can keep is-
suing write commands until all bits are zeroed out. This
significantly reduces the number of erase cycles required
and thus increases the memory’s longevity.

Our encoding scheme works in two steps and is dis-
played in Figure 3. First, we apply a Gray code encoding
of the monotonic counter used in Section 4.1. In the sec-
ond step each bit of the resulting Gray code is stored over
b blocks of p pages each containing c memory cells and
encoded as the number of bits set modulo 2. Each bit flip
of the Gray code thus only requires a single write com-
mand to one of the pages, which will only touch a single
memory cell.

At this low level we must also take unexpected loss
of power into consideration; a write/erase command may
be interrupted. For write commands this is a non-issue.
Since they only affect a single memory cell (t.i. 1 bit),
loss of power during their execution will always have a
similar effect as a loss of power before or after the com-
mand was issued. Both cases are handled at the higher
level of the algorithm.

Erase commands in contrast, may not be atomic. Loss
of power may leave a memory block in an inconsistent

8

USENIX Association 	 25th USENIX Security Symposium  883

n

7869monotonic counter

n-bit Gray code

non-volatile memory

1 0 0 1 0 0 1 10 0 1 0 0 1 1

n

7870monotonic counter

n-bit Gray code

non-volatile memory

1 0 0 1 0 0 1 10 0 0 1 0 0 1 1

next counter value

1111111 1111111 1111111 0000000

c p b

1111111 1111111 1111111 1000000

c p b

1

Figure 3: We optimize for write-limited non-volatile
memory in two steps: (1) encoding the monotonic
counter as an n-bit Gray code and (2) storing each bit
in b blocks of p pages each containing c memory cells.

state and gaps in the bit pattern shown in Figure 3 may
emerge. As memory content is aggregated to a single
bit of a Gray code, such events are at the level of the
Ariadne algorithm similar to a crash of the system before
or after the counter was incremented. We only need to
ensure that each (non-interrupted) write command flips a
bit. This can be achieved easily by keeping a local copy
of non-volatile memory that is read during the recovery
phase.

5 Security Evaluation

Rollback prevention To verify that Ariadne ensures
state-continuous execution, we modeled the execution of
a module ϕ:

ϕ(Stateϕ, Input)→ Stateϕ

and proved that even under attack steps, ϕ is never called
with a stale state, or with the same state with different
input.

More specifically, we modeled the state of a machine
S as a tuple (H,C, t,P,ϕ,g) containing a set of packages
written to disk H and a monotonic counter C. A term t
represents a small program that calls the Ariadne pro-
tected module ϕ in an infinite loop. A set of packages P
is kept representing all packages generated by Ariadne.
Ghost state g keeps track of (gstate,gi), the last module
state and input that was provided to ϕ as input.

Based on the state space S , we built a state machine
with a step relation SM ⊆ S ×S where every step is

either a program step or an attack step:

SM = {(s,s′) ∈ S ×S |program step s s’
∨ inc counter step s s’
∨modify hdd step s s’
∨ crash s s}

Program steps simply take one evaluation step of term t.
Attack steps on the other hand include:

• inc counter step s s’: An attacker may ad-
vance the monotonic counter. This may prevent the
module from ever resuming its state, but it must not
break state continuity.

• modify hdd step s s’: An attacker can modify
the contents of the hard disk drive. When the pro-
gram t reads a package from disk after a crash, it
may not receive the last, fresh package.

• crash s s’: The system may crash at any point in
time. This will immediately reset the program t to
its initial state.

Our proof uses rely-guarantee reasoning [20] to show
that starting from a known good state s0 and taking any
number of steps in SM , we will only take allowed steps.
A step is allowed when the module ϕ is called with as
input state (ϕ(s))(g(s)), the resulting state of the last call
to ϕ . By definition not calling the module (g′(s) = g(s))
or purging the module (g(s′) = (s0, i0)) are also allowed:

A = {(s,s′) ∈ SM|state(g(s′)) = (ϕ(s))(g(s))
∨g′(s) = g(s)

∨g(s′) = (s0, i0)}

In total the proof3 consists of 74 definitions, 74 lem-
mas and totals 4,823 lines. The optimizations proposed
in Sections 4.2 and 4.3 were not modeled.

Liveness property Recall that we also required that an
unexpected crash should never let the system end up in a
state where it could never advance from. This property
is trivially met: the system can only get stuck when it
requires access to a package it did not yet store. Since
Ariadne ensures that the package with the next counter
value is always committed to disk before the counter
in non-volatile memory is updated, such situations can
never occur.

3The proof is available for download at https://distrinet.cs.
kuleuven.be/software/sce/ariadne.html

9

884  25th USENIX Security Symposium	 USENIX Association

6 Applications

We already showed that by relying only on a monotonic
counter, we can easily optimize our solution, but which
optimizations are best applied, depends heavily on the
platform and the security guarantees required. We pro-
vide two examples, both on the x86 platform.

6.1 TPM NVRAM to Store Freshness In-
formation

On the x86 platform the TPM chip provides an obvious
location to store freshness information: it offers many
security primitives, is already widely available on com-
modity devices and is secure against all but sophisticated
hardware attacks. Especially the latter is important in
a digital rights management (DRM) setting where the
client may not be fully trusted, or when the device may
get physically stolen by an attacker.

6.1.1 Platform Considerations

Using the TPM, we have two options. We could use
the monotonic counters that are directly provided by the
TPM to implement the basic Ariadne algorithm from
Section 4.1. Unfortunately, in order to ensure that “[the
counter does] not wear out in the first 7 years of opera-
tion”, TPM chips may throttle the speed at which it may
be incremented. To comply to the TPMv1.2 specifica-
tion [53], TPMs only “must be able to increment at least
once every 5 seconds.” Fortunately TPMs already report
on their throttling mechanism, but timeouts between in-
crements may render it unacceptable for some use cases.

Alternatively, we could use TPM NVRAM to store
the monotonic counter. While the specification does not
require writing operations to be throttled, many TPM
implementations rely on EEPROM for NVRAM stor-
age [4,43,44], which may cause repeated NVRAM write
operations to “prematurely wear out the TPM.” [53] The
counter encodings presented in Sections 4.2 and 4.3 can
optimize for longevity of this type of memory, but TPM
firmware may need to be updated to report the type of
memory used, their access granularity and the number of
program/erase cycles that are supported.

Independent of whether we use the TPM’s native
monotonic counters or NVRAM, the number of sup-
ported counters is extremely limited. We take the same
approach as related work [32, 46] and introduce an indi-
rection. Only a unique Theseus module will access the
TPM chip directly to store freshness information. Other
modules link to a libariadne n library – a slightly
modified version of libariadne – that uses the The-
seus instance to (state-continuously) store a monotonic
counter. We elaborate on this construct in Appendix B.

Care must be taken that only a single instance of the
Theseus module exists at any point in time. Failure to do
so may enable race conditions on the monotonic counter
and the same module state may be recovered by multi-
ple module instances. From that point on, an attacker is
able to break state continuity trivially by providing dif-
ferent input to the various instances with identical state.
Many protected-module architectures [8, 30, 48] allow
modules to access their module ID; a unique ID per boot
cycle starting at value 0. This makes it trivial to ensure
that only a single (Theseus) module exists; if Theseus at
initialization-time determines that it received an ID dif-
ferent from zero, it could simply abort.

Intel SGX is a particular case that does not provide
such functionality. In this case a static TPM PCR register
could be used instead. When the Theseus module starts,
it could first extend a static PCR (e.g., PCR 8) with a ran-
dom value. As static PCRs can never be set to a specific
value and only be reset by rebooting the platform, any
deviation of the expected resulting value would indicate
that a previous instance may have started already.

6.1.2 Implementation

We implemented4 our prototype on top of Fides [48],
an open-source, hypervisor-based protected-module ar-
chitecture. Table 1 displays the breakdown of the
Theseus module and the libariadne n library. It is
shown that Ariadne’s algorithm is fairly small with only
503 LoCs [56]. The use of balanced Gray codes adds
908 LoCs in total of which 583 LoCs are used to provide
static, precomputed metadata. As could be expected, the
implementation to balance writes to non-volatile mem-
ory is with only 163 LoCs much smaller. Most source
code is required to access the TPM chip (1,934 LoCs),
perform cryptographic computations (3,237 LoCs), or
use basic functions on top of Fides (3,442 LoCs). This
results in a total line count for Theseus of 10,399 LoCs.
libariadne n is with 7,291 LoCs a bit smaller.

6.1.3 Performance Evaluation

To benchmark TPM operations, libariadne n and the
Theseus module, we used a Dell Optiplex 7010 desktop
system. It is equipped with an Intel Core i7-3770 CPU
(Ivy Bridge) running at 3.40GHz, a TPMv1.2 chip and an
SSD drive. It used the generic 3.16.0-31 Linux kernel.

TPM Microbenchmarks We performed benchmarks
of various TPM operations (see Figure 4). To force the
TPM into a defensive mode and protect itself against
possibly wearing out non-volatile memory, we executed

4Our prototype is available for download at https://distrinet.
cs.kuleuven.be/software/sce/ariadne.html

10

USENIX Association 	 25th USENIX Security Symposium  885

libariadne n C x86-64
Fides tools 1,687 1,755
libcrypto 1,661 1,576
libariadne base 503 0
other 109 0
Total 3,960 3,331

Theseus C x86-64
Fides tools 1,687 1,755
libcrypto 1,661 1,576
libariadne base 503 0
libtpm 1,934 10
libnv optimize 163 0
libgray codes 908 0
other 202 0
Total 7,058 3,341

Table 1: Breakdown of the source code of
libariadne n and Theseus.

every operation 1,050 times. The first 50 timings were
later discarded to avoid recording timing results before
any defense mechanism kicked in. As expected, com-
mands that do not require access to non-volatile memory,
performed well. Polling the TPM for hardware specific
information using a TPM GetCapability command fin-
ished with only 12.00ms (stdev 2.43) per command sig-
nificantly faster than any other command. Reading and
extending a PCR value took with 24.00ms twice as long
(stdev 4.55 and 0.01, resp.).

Other commands such as incrementing a monotonic
counter and reading and writing to TPM NVRAM re-
quire the creation of an OIAP session. For each bench-
mark we created a single authorization session and kept
the session open for the entire benchmark. Creating and
closing a session are thus not included in the measure-
ments, but cost 24.05ms (stdev 0.66) and 23.95ms (stdev
0.01) respectively. Incrementing the same monotonic
counter 1,050 times without any interruption between in-
crements, cost with 95.99ms (stdev 5.79) significantly
more. To determine whether its performance was throt-
tled to protect against wearing out, we re-executed the
same benchmark but with a 5 seconds interval between
increments. As expected given that the TPM reports that
it does not throttle its speed, the new benchmark pro-
vided similar results (95.91ms/inc, stdev 5.41).

We performed similar benchmarks for writing to TPM
NVRAM. Each write command only wrote a single zero
byte and finished in 144.00ms (stdev 4.26). Introducing
a 5 second interval between two write operations did not
increase performance and finished in 143.91ms (stdev
3.96). Even though none of these recorded write opera-
tions actually required physical writes to TPM NVRAM

Figure 4: Microbenchmark results (in ms) of various
TPM, ME and SSD operations.

as the same data was provided in every command, read-
ing from TPM NVRAM performed much better at “only”
84.00ms (stdev 2.11). The extremely slow operation of
our TPM chips is best illustrated by the performance
of the SSD drive. Creating a 1 byte file is with only
8.68 ms (stdev 3.08) significantly faster than accessing
TPM NVRAM.

Incrementing a monotonic counter is much faster than
writing to TPM NVRAM. We attribute this difference to
a wear leveling mechanism within the TPM chip. We
tested the presence of such a mechanism on an unused
Broadcom TPM chip. We allocated 4 regions of 64 bytes
and wrote intermittent 0x00 and 0xff bytes until these
regions failed to retain their contents. Regions broke re-
spectively after 1,450K, 621K, 493K and 301K writes.
Without the presence of a wear leveling mechanism, we
would have expected that all regions would have failed
after an equal amount of write cycles.

In Sections 4.2 and 4.3 we showed that we can mini-
mize the number of program/erase cycles required to im-
plement a counter. Most importantly, we showed that a
2-phase commit protocol to address sudden loss of power
during increments is not required. Using these optimiza-
tions, we expect that we can further reduce the time re-
quired to increment a monotonic counter. We recom-
mend TPM vendors to enable TPM owners to take re-
sponsibility of TPM NVRAM wear leveling and expose
write/erase commands explicitly.

Benchmarking Theseus and libariadne n We im-
plemented a state-continuous module that keeps track of
a virtual counter. The module was advanced 1,050 times,
and we again discarded the first 50 timing results.

When this module accessed TPM NVRAM directly,
advancing the counter took 152.01ms (stdev 3.73) in to-
tal (see Table 2). As expected, updating freshness in-
formation in TPM NVRAM is with 93.68% of the total
time by far the most time-costly operation. Calculating
the next Gray code, creating the package to store on disk

11

886  25th USENIX Security Symposium	 USENIX Association

(in ms) TPM SSD Comp.
Virt. Cntr. (NVRAM) 142.40 9.36 0.25
Virt. Cntr. (Thesius) 145.68 21.91 0.40

Table 2: Benchmark results of Theseus and
libariadne n

and the overhead introduced by our protected-module ar-
chitecture, is with 0.25ms negligible.

When the same module used the Theseus module to
store freshness information, performance was impacted
marginally. Writing the state update of Theseus to TPM
NVRAM is with 145.68ms still responsible for 86.72%
of the total time required. Communication with the The-
seus module caused the time attributed to computation to
increase to 0.40ms, but remains negligible. Now that not
one but two packages need to be stored on the SSD drive,
time lost due to SSD overhead increased from 9.36ms to
21.91ms.

6.2 Intel ME to Provide State-Continuity
to Intel SGX

In contrast to earlier provided specifications [18], it be-
came clear with the publication of the Intel SGX SDK
[19] in December 2015, that SGX enclaves can easily
access monotonic counters. It appears that these coun-
ters are stored on the management engine (ME) [37], not
on non-volatile memory within the CPU package.

Platform Considerations With Intel ME readily avail-
able on recent Intel systems it is an interesting location
to keep freshness information. Unfortunately it comes
with significant downsides compared to an SGX/TPM
approach, at least from an academic point of view. First,
Intel ME uses a separate processor on the platform con-
trol hub (PCH) running its own kernel and processes
(e.g., Intel AMT, EPID, etc.). SGX enclaves can ac-
cess the ME by calling a platform-specific enclave (PSE)
that uploads a Java applet through the generic Dynamic
Application Loader (DAL) interface [37]. Unfortunately,
this re-introduces a TCB of probably a considerable size.

Second, it is unclear how the ME is protected against
physical attacks, one of the key selling points of Intel
SGX. Related work showed [57] that the ME firmware
is only integrity protected and may be accessed through
physical attacks [52]. It is unclear how sensitive data
stored in the ME is replay protected and whether addi-
tional security measures were added in the last genera-
tion of PCHs.

Unfortunately Intel SGX/ME does not provide a
mechanism for enclaves to determine whether they are
the first/only instance. To protect against forking-attacks,

we must make sure that only a single instance of a
state-continuous enclave is running. Similarly to the
Fides/TPM platform, we could use a PCR register to de-
tect the presence of other enclaves. On systems that lack
a discrete, hardware TPM chip, similar functionality is
provided by the ME engine.

This approach has the obvious disadvantage that two
enclaves need to store their state on disk for every state
update. Benchmarks of the Fides/TPM architecture (Sec-
tion 6.1.3) show that this results in a non-negligible per-
formance impact. This additional overhead could eas-
ily be avoided when a (volatile) in-use bit would be kept
with the ME monotonic counters. When the enclave state
is being recovered, Ariadne should check this bit: when
the counter is not in use, the enclave should set this bit –
using an atomic test and set operation – and continue
its recovery. When the bit is already set, another instance
of the same enclave may still be running and the newly
created instance of the enclave should be destroyed to
prevent forking attacks. The Theseus module described
in Section B uses the same approach.

Benchmarks In the previous section we determined
that on the Fides/TPM architecture at least 99.76% of
Ariadne’s execution time was spent on TPM and disk
accesses. We are thus especially interested in the cost
of ME monotonic counter increments. We performed
microbenchmarks on a recent Dell Inspiron 13 7359
equipped with a Skylake Core i7-6500U processor run-
ning Windows 10. As with TPM benchmarks, we dis-
carded the first 50 calls to account for warm-up time
for each test. Calling an enclave that returned a static
integer value 1,050 times took 0.013ms (stdev 0.003).
When the enclave established a single PSE session and
incremented a monotonic counter upon each call, perfor-
mance decreased to 97.38ms (stdev 21.04) with outliers
ranging between 71.34 and 251.66ms. Time required
to increment an ME monotonic counter is thus compa-
rable to incrementing a monotonic counter in our TPM
chip (95.99ms, see Figure 4). When the ME counter was
only read, not incremented, performance increased signi-
ficantly to 35.21ms (stdev 1.17). This leads us to expect
that the slow operation of counter increments may be at-
tributed to a throttling mechanism to avoid wearing out
ME non-volatile memory.

7 Related Work

Many security architectures have been proposed in recent
years. Some rely on a huge TCB making state continu-
ity a much easier problem to solve. Other architectures
have ignored the problem altogether and are susceptible
to rollback attacks and/or cannot guarantee that the sys-

12

USENIX Association 	 25th USENIX Security Symposium  887

tem will always be able to advance after power is lost.
State-continuity is a problem that has not gained a lot of
research attention. Only Parno et al. [32] and we in ear-
lier work [46] proposed solutions to the problem. Others
provided more application-specific approaches.

7.1 Systems with a Large TCB
Many systems require state-continuity guarantees in one
way or another. These include early designs of protected-
module architectures such as Terra [15], AppCores [41]
and Proxos [51], but also more conventional systems.
Cloud providers must also ensure that the entire state of
a virtual machine [16, 58] cannot be rolled back. Simi-
larly, applications on modern operating systems must be
restarted from their most recent state.

State-continuity on such platforms can be easily pro-
vided as the kernel and/or hypervisor is trusted to iso-
late disk accesses. It is assumed that an attacker cannot
gain access to previously stored states and thus also can-
not roll back the state. Since this assumption relies on
the correct implementation of the access control logic,
this is hard to guarantee in practice. Interestingly, the
same applies to many formally verified systems such as
seL4 [21], HyperV [24] and XMHF [54]. While the most
privileged layer is verified, the file system’s implementa-
tion usually is not and these systems are still susceptible
to attack. Obviously, such designs can also not defend
against hardware-level attacks where an attacker is able
to physically access the disk to copy and restore stale
states.

7.2 Hardware Modifications
Systems such as XOM [26] try to defend against attack-
ers snooping on memory buses by confidentiality and in-
tegrity protecting data before it is stored in main memory.
Suh et al. [50] show that without anti-replay protection,
stale memory contents could be presented as being fresh.
Their Aegis architecture and subsequent platforms [9,29]
defend against such attacks by including a freshness tag.

Defense mechanisms against memory replay attacks,
do not have to take unexpected loss of power into consid-
eration, nor do they have to consider limitations of non-
volatile memory. This enables very different approaches.

7.3 Protected-Module Architectures
Many protected-module architectures have been pro-
posed over the recent years. [9,22,27,28,30,31,38,41,48]
Interestingly, many do not address the state-continuity
problem. To the best of our knowledge only two pa-
pers directly addressed the problem. Parno et al. [32]
were the first to highlight the problem. They proposed

two mechanisms to provide state-continuity guarantees.
Memoir-Basic uses a cryptographic hash to keep track of
the fresh state. Unfortunately storing this freshness tag in
TPM NVRAM would wear out its memory too quickly
to be of any practical use. The authors acknowledge this
limitation and propose a solution. Memoir-Opt uses a
similar freshness tag, but it relies on TPM PCR registers
to protect the most recent value while the system is up
and running. When power is lost unexpectedly, an unin-
terruptible power source ensures that it is written to TPM
NVRAM.

In earlier work we proposed ICE [46, 47], an alter-
native design that assumes “guarded memory”: volatile
memory within the CPU package that is written to un-
trusted, non-volatile memory when power is lost. By
avoiding TPM/ME accesses for each state update alto-
gether, we achieve better performance results.

Both Memoir and ICE avoid the significantly con-
strained TPM NVRAM and rely on some kind of unin-
terruptible power source to provide state-continuity guar-
antees. While this leads to better performance, these so-
lutions cannot be readily applied in practice. In contrast
Ariadne can be used to protect stateful enclaves against
rollback attacks on commodity devices.

7.4 Special-Purpose Applications

Many applications have been proposed that provide
special-purpose solutions. We can easily provide simi-
lar guarantees, but in a much more general way.

Chun et al. proposed a construct called append-only
memory [10] to prevent nodes in a distributed network
from making conflicting claims to different nodes. A
practical implementation was left as future work. In sub-
sequent work Levin et al. [25] provided similar guaran-
tees by only relying on a trusted incrementer (TrInc) that
is able to locally store attestation request of monotonic
counters.

Schellekens et al. [39] addressed the problem of lim-
ited TPM NVRAM. They show that sensitive data can be
stored in non-volatile memory off-chip. A light-weight
authentication protocol ensures a secure channel between
the trusted module and untrusted, non-volatile memory.
However, a monotonic counter needs to be incremented
for each write instruction and stored in the modified TPM
chip. How this counter can be stored efficiently, is not
discussed. We achieve similar results without requiring
any modification to the TPM chip.

Kotla et al. [23] propose a system to enable offline use
of sensitive data. Once sensitive data is accessed, it can-
not be denied by the user. Alternatively, if the user at-
tests that the data was never accessed, she will no longer
be able to do so in the future. Interestingly, only a very
limited TCB needs to be trusted.

13

888  25th USENIX Security Symposium	 USENIX Association

The Intel SGX SDK Manual for Windows [19] also
discusses how enclaves can be used to implement
limited-use policies. Their approach is similar to the
inc-then-store discussed in Section A.1. While their ap-
proach guarantees that enclave states cannot be rolled
back, they fail to guarantee continuous execution of an
enclave and liveness of the system. We provide stronger
guarantees in a more general way.

8 Conclusion

Protected module architectures enable protected module
writers to guarantee formally provable security proper-
ties of their code while the system is up and running. But
without support for state-continuity, stateful modules are
prone to rollback attacks.

Existing solutions relied on the irreversibility property
of hash functions and required an uninterruptible power
source or risked wearing out non-volatile TPM NVRAM.

We presented Ariadne, the first solution that achieves
state continuity based on a counter. By relying on bal-
anced Gray codes to encode this counter, we achieved
the theoretical lower limit of requiring only a single bit
flip per state update.

Embedded devices can use Ariadne to minimize their
total bill of materials. On SGX-enabled x86 platforms
Ariadne can be readily applied by relying on the TPM’s
monotonic counters, TPM NVRAM or the management
engine’s monotonic counters. We showed that the choice
depends on the specific TPM chip on the platform, attack
model and use case.

Acknowledgments

This work has been supported in part by the Intel Lab’s
University Research Office, by the Research Fund KU
Leuven, and by the Research Foundation - Flanders
(FWO).

References
[1] AGTEN, P., JACOBS, B., AND PIESSENS, F. Sound modular ver-

ification of C code executing in an unverified context. In Proceed-
ings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL’15) (Jan. 2015).

[2] AGTEN, P., STRACKX, R., JACOBS, B., AND PIESSENS, F. Se-
cure compilation to modern processors. In Proceedings of the
25th Computer Security Foundations Symposium (Los Alamitos,
CA, USA, 2012), CSF’12, IEEE Computer Society, pp. 171–185.

[3] ANATI, I., GUERON, S., JOHNSON, S., AND SCARLATA, V.
Innovative technology for CPU based attestation and sealing. In
Proceedings of the 2nd International Workshop on Hardware and
Architectural Support for Security and Privacy (New York, NY,
USA, 2013), vol. 13 of HASP’13, ACM.

[4] ATMEL. At97sc3204. http://www.atmel.com/images/

atmel-5295s-tpm-at97sc3204-lpc-interface-

datasheet-summary.pdf.

[5] AVONDS, N., STRACKX, R., AGTEN, P., AND PIESSENS, F.
Salus: Non-hierarchical memory access rights to enforce the
principle of least privilege. In Security and Privacy in Com-
munication Networks (SecureComm’13) (Sept. 2013), T. Zia,
A. Zomaya, V. Varadharajan, and M. Mao, Eds., vol. 127 of Lec-
ture Notes of the Institute for Computer Sciences, Social Infor-
matics and Telecommunications Engineering, Springer Interna-
tional Publishing, pp. 252–269.

[6] AZAB, A., NING, P., AND ZHANG, X. SICE: a hardware-level
strongly isolated computing environment for x86 multi-core plat-
forms. In Proceedings of the 18th ACM Conference on Computer
and communications security (2011), CCS’11, ACM.

[7] BAUMANN, A., PEINADO, M., AND HUNT, G. Shielding ap-
plications from an untrusted cloud with Haven. In USENIX
Symposium on Operating Systems Design and Implementation
(OSDI’14) (2014).

[8] BRASSER, F., EL MAHJOUB, B., SADEGHI, A.-R., WACHS-
MANN, C., AND KOEBERL, P. Tytan: Tiny trust anchor for tiny
devices. In Proceedings of the 52Nd Annual Design Automation
Conference (New York, NY, USA, 2015), DAC’15, ACM.

[9] CHAMPAGNE, D., AND LEE, R. Scalable architectural support
for trusted software. In Proceedings of the 16th International
Symposium on High Performance Computer Architecture (2010),
HPCA’10, IEEE Computer Society, pp. 1–12.

[10] CHUN, B.-G., MANIATIS, P., SHENKER, S., AND KUBIATOW-
ICZ, J. Attested append-only memory: Making adversaries stick
to their word. In Proceedings of Twenty-first ACM SIGOPS Sym-
posium on Operating Systems Principles (New York, NY, USA,
2007), SOSP’07, ACM, pp. 189–204.

[11] COSTAN, V., LEBEDEV, I., AND DEVADAS, S. Sanctum: Min-
imal hardware extensions for strong software isolation. Cryptol-
ogy ePrint Archive, Report 2015/564, 2015.

[12] EL DEFRAWY, K., AURÉLIEN FRANCILLON, D., AND TSUDIK,
G. SMART: Secure and minimal architecture for (establishing a
dynamic) root of trust. In Proceedings of the Network & Dis-
tributed System Security Symposium (Feb. 2012), NDSS’12.

[13] EVTYUSHKIN, D., ELWELL, J., OZSOY, M., PONOMAREV, D.,
GHAZALEH, N. A., AND RILEY, R. Iso-X: A flexible architec-
ture for hardware-managed isolated execution. In 47th Annual
IEEE/ACM International Symposium on Microarchitecture (Dec.
2014).

[14] FLAHIVE, M. Balancing cyclic R-ary Gray codes II. The Elec-
tronic Journal of Combinatorics 15 (2008), R128.

[15] GARFINKEL, T., PFAFF, B., CHOW, J., ROSENBLUM, M., AND
BONEH, D. Terra: A virtual machine-based platform for trusted
computing. In Operating Systems Review (New York, NY, USA,
2003), vol. 37 of OSR’03, ACM, pp. 193–206.

[16] GARFINKEL, T., AND ROSENBLUM, M. When virtual is harder
than real: security challenges in virtual machine based comput-
ing environments. In Proceedings of the 10th conference on Hot
Topics in Operating Systems (Berkeley, CA, USA, 2005), HO-
TOS’05, USENIX Association, pp. 20–25.

[17] HOOGSTRATEN, H., PRINS, R., NIGGEBRUGGE, D., HEP-
PENER, D., GROENEWEGEN, F., WETTINCK, J., STROOY, K.,
ARENDS, P., POLS, P., KOUPRIE, R., MOORREES, S., VAN
PELT, X., AND HU, Y. Z. Black Tulip - report of the investi-
gation into the DigiNotar certificate authority breach. Tech. rep.,
FoxIT, 2012.

[18] INTEL CORPORATION. Software Guard Extensions Program-
ming Reference, 2013.

14

USENIX Association 	 25th USENIX Security Symposium  889

[19] INTEL CORPORATION. Intel Software Guard Extensions Evalu-
ation SDK for Windows OS, 2015.

[20] JONES, C. Tentative steps toward a development method for in-
terfering programs. In ACM Transactions on Programming Lan-
guages and Systems (TOPLAS) (New York, NY, USA, 1983),
vol. 5, ACM, pp. 596–619.

[21] KLEIN, G., ELPHINSTONE, K., HEISER, G., ANDRONICK, J.,
COCK, D., DERRIN, P., ELKADUWE, D., ENGELHARDT, K.,
KOLANSKI, R., NORRISH, M., ET AL. seL4: Formal verifica-
tion of an OS kernel. In Proceedings of the ACM SIGOPS 22nd
Symposium on Operating Systems Principles (2009), SOSP’09,
ACM.

[22] KOEBERL, P., SCHULZ, S., SADEGHI, A.-R., AND VARAD-
HARAJAN, V. Trustlite: a security architecture for tiny embed-
ded devices. In Proceedings of the Ninth European Conference
on Computer Systems (2014), EuroSys’14, ACM, p. 10.

[23] KOTLA, R., RODEHEFFER, T., ROY, I., STUEDI, P., AND
WESTER, B. Pasture: secure offline data access using commod-
ity trusted hardware. In Proceedings of the 10th USENIX confer-
ence on Operating Systems Design and Implementation (2012),
OSDI’12, USENIX Association, pp. 321–334.

[24] LEINENBACH, D., AND SANTEN, T. Verifying the microsoft
hyper-v hypervisor with vcc. In FM 2009: Formal Methods.
Springer, 2009, pp. 806–809.

[25] LEVIN, D., DOUCEUR, J. R., LORCH, J. R., AND MOSCI-
BRODA, T. Trinc: Small trusted hardware for large distributed
systems. In Proceedings of the 6th USENIX symposium on Net-
worked systems design and implementation (Berkeley, CA, USA,
2009), vol. 9 of NSDI’09, USENIX Association, pp. 1–14.

[26] LIE, D., CHANDRAMOHAN, T., MARK, M., PATRICK, L.,
DAN, B., JOHN, M., AND MARK, H. Architectural support
for copy and tamper resistant software. In Proceedings of the
9th International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (2000), vol. 35 of
ASPLOS’00, ACM, pp. 168–177.

[27] MCCUNE, J. M., LI, Y., QU, N., ZHOU, Z., DATTA, A.,
GLIGOR, V., AND PERRIG, A. TrustVisor: Efficient TCB re-
duction and attestation. In Proceedings of the IEEE Symposium
on Security and Privacy (Washington, DC, USA, May 2010),
S&P’10, IEEE Computer Society, pp. 143–158.

[28] MCCUNE, J. M., PARNO, B., PERRIG, A., REITER, M. K.,
AND ISOZAKI, H. Flicker: An execution infrastructure for TCB
minimization. In Proceedings of the ACM European Conference
in Computer Systems (Apr. 2008), EuroSys’08, ACM.

[29] MCKEEN, F., ALEXANDROVICH, I., BERENZON, A., ROZAS,
C. V., SHAFI, H., SHANBHOGUE, V., AND SAVAGAONKAR,
U. R. Innovative instructions and software model for isolated
execution. In Proceedings of the 2nd International Workshop
on Hardware and Architectural Support for Security and Privacy
(New York, NY, USA, 2013), HASP’13, ACM, p. 8.

[30] NOORMAN, J., AGTEN, P., DANIELS, W., STRACKX, R.,
HERREWEGE, A. V., HUYGENS, C., PRENEEL, B., VER-
BAUWHEDE, I., AND PIESSENS, F. Sancus: Low-cost trust-
worthy extensible networked devices with a zero-software trusted
computing base. In 22nd USENIX Security Symposium (2013).

[31] OWUSU, E., GUAJARDO, J., MCCUNE, J., NEWSOME, J., PER-
RIG, A., AND VASUDEVAN, A. OASIS: on achieving a sanctuary
for integrity and secrecy on untrusted platforms. In Proceedings
of the 2013 ACM SIGSAC conference on Computer & communi-
cations security (2013), CCS’13, ACM, pp. 13–24.

[32] PARNO, B., LORCH, J. R., DOUCEUR, J. R., MICKENS, J.,
AND MCCUNE, J. M. Memoir: Practical state continuity for
protected modules. In Proceedings of the IEEE Symposium on
Security and Privacy (May 2011), S&P’11, IEEE, pp. 379–394.

[33] PATRIGNANI, M., AGTEN, P., STRACKX, R., JACOBS, B.,
CLARKE, D., AND PIESSENS, F. Secure compilation to pro-
tected module architectures. In Transactions on Programming
Languages and Systems (TOPLAS) (New York, NY, USA, Apr.
2015), vol. 37, ACM, pp. 6:1–6:50.

[34] PATRIGNANI, M., CLARKE, D., AND PIESSENS, F. Secure
Compilation of Object-Oriented Components to Protected Mod-
ule Architectures. In Proceedings of the 11th Asian Symposium
on Programming Languages and Systems (APLAS’13) (2013),
C.-c. Shan, Ed., vol. 8301 of Lecture Notes in Computer Science,
Springer International Publishing, pp. 176–191.

[35] RAJ, H., SAROIU, S., WOLMAN, A., AIGNER, R., COX, J.,
ENGLAND, P., FENNER, C., KINSHUMANN, K., LOESER, J.,
MATTOON, D., NYSTROM, M., ROBINSON, D., SPIGER, R.,
THOM, S., AND WOOTEN, D. fTPM: A firmware-based TPM
2.0 implementation. Tech. Rep. MSR-TR-2015-84, Microsoft,
Nov. 2015.

[36] RAJ, H., SAROIU, S., WOLMAN, A., AIGNER, R., COX, J.,
ENGLAND, P., FENNER, C., KINSHUMANN, K., LOESER, J.,
MATTOON, D., NYSTROM, M., ROBINSON, D., SPIGER, R.,
THOM, S., AND WOOTEN, D. fTPM: A firmware-based TPM
2.0 implementation. In Proceedings of the 25th USENIX security
symposium (Aug. 2016), SSYM’16, USENIX Association.

[37] RUAN, X. Platform Embedded Security Technology Revealed:
Safeguarding the Future of Computing with Intel Embedded Se-
curity and Management Engine, 1 ed., vol. 1. Apress, 2014.

[38] SAHITA, R., WARRIER, U., AND DEWAN, P. Protecting Critical
Applications on Mobile Platforms. Intel Technology Journal 13,
2 (June 2009), 16–35.

[39] SCHELLEKENS, D., TUYLS, P., AND PRENEEL, B. Embedded
trusted computing with authenticated non-volatile memory. In
First International Conference on Trusted Computing and Trust
in Information Technologies (TRUST’08) (2008), P. Lipp, A.-R.
Sadeghi, and K.-M. Koch, Eds., Lecture Notes in Computer Sci-
ence, Springer-Verlag, pp. 60–74.

[40] SCHUSTER, F., COSTA, M., FOURNET, C., GKANTSIDIS, C.,
PEINADO, M., MAINAR-RUIZ, G., AND RUSSINOVICH, M.
VC3: Trustworthy data analytics in the cloud using SGX. In 36th
IEEE Symposium on Security and Privacy (May 2015), IEEE In-
stitute of Electrical and Electronics Engineers.

[41] SINGARAVELU, L., PU, C., HÄRTIG, H., AND HELMUTH,
C. Reducing TCB complexity for security-sensitive applications:
three case studies. In Proceedings of the 1st ACM SIGOPS/Eu-
roSys European Conference on Computer Systems (New York,
NY, USA, 2006), EuroSys’06, ACM, pp. 161–174.

[42] SOLID STATE STORAGE INITIATIVE. NAND flash solid
state storage for the enterprise – an in-depth look at relia-
bility. http://www.vikingtechnology.com/uploads/NV_

DIMM_ROI.pdf.

[43] STMICROELECTRONICS. St19np18-tpm. http://www.bdtic.
com/DownLoad/ST/ST19NP18-TPM.pdf.

[44] STMICROELECTRONICS. St33tpm12lpc. http://

datasheet.octopart.com/ST33ZP24AR28PVSP-

STMicroelectronics-datasheet-16348175.pdf.

[45] STRACKX, R., AGTEN, P., AVONDS, N., AND PIESSENS, F.
Salus: Kernel support for secure process compartments. In En-
dorsed Transactions on Security and Safety (2015), vol. 15, ICST.

[46] STRACKX, R., JACOBS, B., AND PIESSENS, F. ICE: A pas-
sive, high-speed, state-continuity scheme. In Annual Computer
Security Applications Conference (2014), ACSAC’14.

[47] STRACKX, R., JACOBS, B., AND PIESSENS, F. ICE: A pas-
sive, high-speed, state-continuity scheme (extended version). CW
Reports CW672, Department of Computer Science, KU Leuven,
September 2014.

15

890  25th USENIX Security Symposium	 USENIX Association

[48] STRACKX, R., AND PIESSENS, F. Fides: Selectively hardening
software application components against kernel-level or process-
level malware. In Proceedings of the 19th ACM conference on
Computer and Communications Security (New York, NY, USA,
October 2012), CCS’12, ACM, pp. 2–13.

[49] STRACKX, R., PIESSENS, F., AND PRENEEL, B. Efficient Iso-
lation of Trusted Subsystems in Embedded Systems. In Secu-
rity and Privacy in Communication Networks (SecureComm’10)
(2010), S. Jajodia and J. Zhou, Eds., vol. 50 of Lecture Notes
of the Institute for Computer Sciences, Social Informatics and
Telecommunications Engineering, Springer Berlin Heidelberg.

[50] SUH, G. E., CLARKE, D., GASSEND, B., VAN DIJK, M.,
AND DEVADAS, S. AEGIS: architecture for tamper-evident and
tamper-resistant processing. In Proceedings of the 17th annual
international conference on Supercomputing (New York, NY,
USA, 2003), ICS’03, ACM, pp. 160–171.

[51] TA-MIN, R., LITTY, L., AND LIE, D. Splitting interfaces:
Making trust between applications and operating systems con-
figurable. In Proceedings of the 7th symposium on Operating
systems design and implementation (Berkeley, CA, USA, 2006),
OSDI’06, USENIX Association, pp. 279–292.

[52] TERESHKIN, A., AND WOJTCZUK, R. Introducing ring -3 rootk-
its. In Black Hat USA (July 2009).

[53] TRUSTED COMPUTING GROUP. Design Principles Specification
Version 1.2, 2011.

[54] VASUDEVAN, A., CHAKI, S., JIA, L., MCCUNE, J., NEW-
SOME, J., AND DATTA, A. Design, implementation and veri-
fication of an extensible and modular hypervisor framework. In
Proceedings of the 2013 IEEE Symposium on Security and Pri-
vacy (Washington, DC, USA, 2013), S&P’13, IEEE Computer
Society, pp. 430–444.

[55] WANG, Y., KEI YU, W., XU, S., KAN, E., AND SUH, G. Hiding
information in flash memory. In Security and Privacy (SP), 2013
IEEE Symposium on (May 2013), pp. 271–285.

[56] WHEELER, D. A. SLOCCount. http://www.dwheeler.com/
sloccount/.

[57] WOJTCZUK, R., AND TERESHKIN, A. Attacking intel BIOS. In
Black Hat USA (July 2009).

[58] XIA, Y., LIU, Y., CHEN, H., AND ZANG, B. Defending against
vm rollback attack. In 42nd International Conference on Depend-
able Systems and Networks Workshops (DSN-W) (June 2012).

[59] XU, Y., CUI, W., AND PEINADO, M. Controlled-channel at-
tacks: Deterministic side channels for untrusted operating sys-
tems. In 36th Symposium on Security and Privacy (May 2015).

A State-Continuity Based on a Monotonic
Counter: Strawman Attempts

State continuity is a hard problem. Solutions borrowed
directly from anti-replay defenses fail to provide the re-
quired security guarantees. We discuss three approaches.

A.1 Inc, then Store
Listing 3 displays a first – but flawed – implemen-
tation. Its implementation is straightforward. Recall
the PIN-protected module from Section 3.3. When a
user tries to retrieve the module’s secret, she calls the
get secret entry point and supplies a PIN. Before this

1#include <libariadne/interface.h>
2

3void store state(Blob ∗blob, String f format){
4 hwcntr.inc();
5 hdd.write(create pkg(blob, hwcntr.value()), f format);
6}
7

8Blob ∗retrieve state(String f format){
9 Package ∗pkg = hdd.read(f format, hwcntr.value());

10

11 if (pkg == NULL || !auth(pkg, get mac key()))
12 return NULL;
13

14 if (pkg−>cntr != hwcntr.value())
15 return NULL;
16

17 return decrypt(pkg, get enc key());
18}
19

20void purge state(Blob ∗ init blob, String f format){...}

Listing 3: Incrementing the counter before writing the
package to disk will fail to guarantee liveness.

PIN is checked, the module collects the state of the mod-
ule and passes it together with the provided PIN and
called function, to the store state library function.
There the (hardware) monotonic counter is incremented
first (listing 3, line 4). Afterwards a new package is cre-
ated containing the incremented counter value and writ-
ten to disk.

When the system is rebooted and the module needs
to be reloaded in memory, the on load function is
called implicitly (listing 1, line 7) which in turn calls
the retrieve state library function. Next, the library
searches for the filename of the last package written to
disk. When this package is read and its integrity verified,
the counter value enclosed in the package is compared to
the hardware monotonic counter (listing 3, line 9 - 14).
If both counter values match, the package is determined
fresh. After decryption, it is returned to the on load

module function where the module’s state is restored and
the execution of the called function is restarted (listing 1,
line 11). If the read package from disk is not fresh or it’s
integrity check failed, NULL is returned and the module
is reset losing the stored secret indefinitely.

Attack 1: Breaking Liveness
Unfortunately, the provided scheme is flawed. Imagine
an unexpected loss of power immediately after the mono-
tonic counter was incremented (i.e., after listing 3, line
4). When the module is reloaded, the retrieve state

library function will only accept packages containing a
counter value equal to the hardware counter as being
fresh. But this package was never stored and the sys-

16

USENIX Association 	 25th USENIX Security Symposium  891

1#include <libariadne/interface.h>
2

3void store state(Blob ∗blob, String f format){
4 hdd.write(create pkg(blob, hwcntr.value() + 1),

f format);
5 hwcntr.inc();
6}
7

8Blob ∗retrieve state(String f format){
9 Package ∗pkg = hdd.read(f format, hwcntr.value());

10

11 if (pkg == NULL || !auth(pkg, get mac key()))
12 return NULL;
13

14 if (pkg−>cntr != hwcntr.value())
15 return NULL;
16

17 return decrypt(pkg, get enc key());
18}
19

20void purge state(Blob ∗ init blob, String f format){...}

Listing 4: Writing a package to disk before incrementing
the monotonic counter will leave the system susceptible
to dictionary-style attacks.

tem ends up in a state from where it can never advance.
As this situation may also occur even when the system is
not under attack, this breaks our liveness requirement.

A.2 Store, then Inc

One may be tempted to quickly fix the design flaw of
the scheme presented in the previous section by ensur-
ing that packages are written to disk before the hardware
monotonic counter is incremented. We will show that
also this design does not guarantee the required security
properties.

Listing 4 displays the updated scheme. When the
module requests the libariadne module to store a new
state, the store state function will first create a new
package with the next counter value and write it to disk
(line 4-5) before she increments the hardware counter.
The retrieve state function is unchanged.

With these changes in place, a package has always
been written to disk that matches the value of the mono-
tonic counter. Therefore the module is always able to
recover its state under benign conditions and liveness of
this scheme is ensured. Unfortunately, this mitigation
enables an attacker to execute a dictionary-style attack.

Attack 2: Dictionary Attack
Let’s reuse the module from Section 3.3 as an example.
Assume that the attack starts when the module still grants

the attacker with three attempts to guess the correct PIN,
and that the monotonic counter has value c. Let’s call
this state s0.

In the preliminary step of the attack, the attacker it-
erates over all entries of her dictionary. For each PIN,
she calls the get secret entry point of the module,
but crashes the system after the new package – enclosed
counter value c+ 1 – has been written to disk (listing 4,
line 4). Since the module could not yet commit to the
new input by incrementing the monotonic counter, the
module will recover its previous state and once again
wait for user input from state s0. At that point, the at-
tacker continues the same process with the next entry in
her dictionary.

When the attacker has reached the end of her dictio-
nary, she finally allows the module to commit to the
provided input by incrementing the monotonic value to
c+1. Afterwards she crashes the system again.

This marks the start of the second step of her attack.
When the module is reloaded in memory, it needs to re-
trieve its state from disk. Its integrity and freshness is
verified before it is used to resume its state. But for
every dictionary entry, the attacker possesses a package
that will be accepted as being authentic and fresh. She
completes her dictionary attack by selecting any package
and let the module recover its state based on the enclosed
guessed PIN. When she learns the PIN is incorrect, she
crashes the system, and selects another “fresh” package.

A.3 Inc once during recovery
In order to defend against dictionary attacks, one must
ensure that no other packages with the same fresh
counter value exist when the module is being resumed.
Incrementing the counter once during recovery does not
provide this guarantee. We show an attack against such
an implementation.

For completeness we show in Listing 5 the (vulnera-
ble) implementation of the state-continuity security mea-
sure. The implementation is identical to that of listing 4,
but lines 23 to 25 were added. The main issue is that
an attacker is able to abuse the creation and storage of
packages during recovery (lines 23 and 24) to keep stale
packages fresh. This enables attacks similar to the dic-
tionary attack of Section A.2. Since the attack is much
harder to grasp completely, we show a simpler version:
an attacker is able to provide a guess of the PIN without
it being (permanently) recorded, breaking rollback pre-
vention.

Attack 3: Oblivious Steps
For simplicity say that the PIN-protected module is in
a state s0 with 3 PIN-guesses left and the monotonic

17

892  25th USENIX Security Symposium	 USENIX Association

counter is at value 42. The attack is executed in 4 steps.
In step I an authentic package is created. This means that
an attacker provides a guess ‘‘guess’’, but crashes the
module immediately after it wrote the package pkg(43

|| get secret || ‘‘guess’’ || s0) to disk (list-
ing 5, line 5). As the module only increments the mono-
tonic counter after the state is stored successfully, it still
remains at value 42.

Next in step II, the module is recovered to its previ-
ous state, leading to a new package pkg(43 || ...

)5 and an incremented counter (listing 5 lines 23 to 25).
At this moment in time two different packages with en-
closed counter value 43 exist.

In step III the implementation of the retrieve state

is abused to create a (soon-to-be-fresh) package pkg(

44 || ...) as follows: First, the module is
crashed. During recovery the package pkg(43 || ...

) is provided and accepted as being fresh. As the
retrieve state first writes a new package with an in-
cremented counter value (line 24) the required package is
created. Immediately after the package is written to disk,
the module is crashed before the monotonic counter can
be incremented.

In step IV the module is resumed based on the fresh
package pkg(43 || get secret || ‘‘guess’’ ||

s0) and the monotonic counter is incremented to 44. At
this moment the attacker learns the outcome of her guess.
If she guessed wrongly, she can choose to crash the sys-
tem and let the module recover its state from “fresh”
package pkg(44 || ...). As the module didn’t
record her guess, state-continuity is broken.

B State-continuous storage for n modules

libariadne as described in Section 4 provides state-
continuous storage, at the cost of secure, non-volatile
memory. Storing freshness information for every pos-
sible protected module in limited-sized, secure non-
volatile memory (e.g., TPM NVRAM), is practically in-
feasible. We resolve the situation using an indirection.

A protected-module “Theseus” is introduced to the
system and uses – as the only module in the system – the
secure non-volatile memory to store its state. It provides
virtual, monotonic counters to other modules executing
on the system. Its interface is shown in listing 6.

The new counter entry point to the module, creates a
new monotonic counter and protects it with the provided
key. It returns the index of the monotonic counter. To

5We use the notation pkg(43 || ...) here for clarity. We
should have introduced a previous state s−1, entrypoint f and input i
such that f (s−1, i) = s0. Providing such input to the module will have
created the package pkg(43 || f || i || s−1). As f , i and s−1
are irrelevant for the attack, we omit these arguments.

1#include <libariadne/interface.h>
2

3void store state(Blob ∗blob, String f format){
4 Package ∗pkg = create pkg(blob, hwcntr.value() + 1)
5 hdd.write(pkg, f format, hwcntr.value() + 1);
6 hwcntr.inc();
7}
8

9Blob ∗retrieve state(String f format){
10 Package ∗pkg;
11 Blob ∗blob;
12

13 pkg = hdd.read(f format, hwcntr.value());
14

15 if (pkg == NULL || !auth(pkg, get mac key()))
16 return NULL;
17

18 if (pkg−>cntr != hwcntr.value())
19 return NULL;
20

21 blob = decrypt(pkg, get enc key());
22

23 pkg = create pkg(blob, hwcntr.value() + 1);
24 hdd.write(pkg, f format, hwcntr.value() + 1);
25 hwcntr.inc();
26

27 return blob;
28}
29

30void purge state(Blob ∗ init blob, String f format){...}

Listing 5: When the counter is only incremented once
during recovery, an attacker can force the module to keep
stale states fresh, enabling rollback attacks.

1 int new counter(uint64 t key);
2 int counter set in use(int idx, uint64 t key, bool in use);
3 int counter increment(int idx, uint64 t key);
4uint64 t counter value(int idx, uint64 t key);

Listing 6: Theseus’ public interface.

protect against inappropriate use, this (index, key)-pair
will need to be provided for any subsequent operation
on the counter. We assume that communication between
the caller and the Theseus module, is confidentiality, in-
tegrity and anti-replay protected.

An important feature is the ability to mark a counter
to be “in use.” This volatile flag, is used to ensure that
only a single instance of a protected module can be re-
sumed after a crash. Hence, counter increment and
counter value will return an error code if they are
called on a counter that was not previously marked as
“in use”.

18

