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Abstract
It is well-known that static disassembly is an unsolved

problem, but how much of a problem is it in real software—

for instance, for binary protection schemes? This work

studies the accuracy of nine state-of-the-art disassemblers

on 981 real-world compiler-generated binaries with a

wide variety of properties. In contrast, prior work focuses

on isolated corner cases; we show that this has led to a

widespread and overly pessimistic view on the prevalence

of complex constructs like inline data and overlapping

code, leading reviewers and researchers to underestimate

the potential of binary-based research. On the other hand,

some constructs, such as function boundaries, are much

harder to recover accurately than is reflected in the litera-

ture, which rarely discusses much needed error handling

for these primitives. We study 30 papers recently pub-

lished in six major security venues, and reveal a mismatch

between expectations in the literature, and the actual ca-

pabilities of modern disassemblers. Our findings help

improve future research by eliminating this mismatch.

1 Introduction

The capabilities and limitations of disassembly are not

always clearly defined or understood, making it difficult

for researchers and reviewers to judge the practical fea-

sibility of techniques based on it. At the same time, dis-

assembly is the backbone of research in static binary

instrumentation [5, 19, 32], binary code lifting to LLVM

IR (for reoptimization or analysis) [38], binary-level vul-

nerability search [27], and binary-level anti-exploitation

systems [1, 8, 29, 46]. Disassembly is thus crucial for

analyzing or securing untrusted or proprietary binaries,

where source code is simply not available.

The accuracy of disassembly strongly depends on the

type of binary under analysis. In the most general case,

the disassembler can make very few assumptions on the

structure of a binary—high-level concepts like functions

and loops have no real significance at the binary level [3].

Moreover, the binary may contain complex constructs,

such as overlapping or self-modifying code, or inline

data in executable regions. This is especially true for ob-

fuscated binaries, making disassembly of such binaries

extremely challenging. Disassembly in general is unde-

cidable [43]. On the other hand, one might expect that

compilers emit code with more predictable properties,

containing a limited set of patterns that the disassembler

may try to identify.

Whether this is true is not well recognized, leading

to a wide range of views on disassembly. These vary

from the stance that disassembly of benign binaries is

a solved problem [48], to the stance that complex cases

are rampant [23]. It is unclear which view is justified in

a given situation. The aim of our work is thus to study

binary disassembly in a realistic setting, and more clearly

delineate the capabilities of modern disassemblers.

It is clear from prior work that obfuscated code may

complicate disassembly in a myriad of ways [18, 21].

We therefore limit our study to non-obfuscated binaries

compiled on modern x86 and x64 platforms (the most

common in binary analysis and security research). Specif-

ically, we focus on binaries generated with the popular

gcc, clang and Visual Studio compilers. We explore a

wide variety of 981 realistic binaries, including stripped,

optimized, statically linked, and link-time optimized bi-

naries, as well as library code that includes handcrafted

assembly. We disassemble these binaries using nine state-

of-the-art research and industry disassemblers, studying

their ability to recover all disassembly primitives com-

monly used in the literature: instructions, function start ad-

dresses, function signatures, Control Flow Graphs (CFG)

and callgraphs. In contrast, prior studies focus strongly

on complex corner cases in isolation [23, 25]. Our results

show that such cases are exceedingly rare, even in opti-

mized code, and that focusing on them leads to an overly

pessimistic view on disassembly.

We show that many disassembly primitives can be re-

covered with better accuracy than previously thought. For
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instance, instruction accuracy often approaches 100%,

even using linear disassembly. On the other hand, we

also identify some primitives which are more difficult to

recover—most notably, function start information.

To facilitate a better match between the capabilities of

disassemblers and the expectations in the literature, we

comprehensively study all binary-based papers published

in six major security conferences in the last three years.

Ironically, this study shows a focus in the literature on

rare complex constructs, while little attention is devoted

to error handling for primitives that really are prone to in-

accuracies. For instance, only 25% of Windows-targeted

papers that rely on function information discuss potential

inaccuracies, even though the accuracy of function detec-

tion regularly drops to 80% or less. Moreover, less than

half of all papers implement mechanisms to deal with

inaccuracies, even though in most cases errors can lead to

malignant failures like crashes.

Contributions & Outline

The contributions of our work are threefold.

(1) We study disassembly on 981 full-scale compiler-

generated binaries, to clearly define the true capa-

bilities of modern disassemblers (Section 3) and the

implications on binary-based research (Section 4).

(2) Our results allow researchers and reviewers to ac-

curately judge future binary-based research—a task

currently complicated by the myriad of differing opin-

ions on the subject. To this end, we release all our raw

results and ground truth for use in future evaluations

of binary-based research1.

(3) We analyze the quality of all recent binary-based

work published in six major security venues by com-

paring our results to the requirements and assump-

tions of this work (Section 5). This shows where

disassembler capabilities and the literature are mis-

matched, and how this mismatch can be resolved

moving forward (Section 6).

2 Evaluating Real-World Disassembly

This section outlines our disassembly evaluation approach.

We discuss our results, and the implications on binary-

based research, in Sections 3–4. Sections 5–6 discuss how

closely expectations in the literature match our results.

2.1 Binary Test Suite

We focus our analysis on non-obfuscated x86 and x64 bi-

naries generated with modern compilers. Our experiments

are based on Linux (ELF) and Windows (PE) binaries,

generated with the popular gcc v5.1.1, clang v3.7.0 and

1https://www.vusec.net/projects/disassembly/

Visual Studio 2015 compilers—the most recent versions

at the time of writing. The x86/x64 instruction set is

the most common target in binary-based research. More-

over, x86/x64 is a variable-length instruction set, allowing

unique constructs such as overlapping and “misaligned”

instructions which can be difficult to disassemble. We

exclude obfuscated binaries, as there is no doubt that they

can wreak havoc on disassembler performance and we

hardly need confirm this in our experiments.

We base our disassembly experiments on a test suite

composed of the SPEC CPU2006 C and C++ benchmarks,

the widely used and highly optimized glibc-2.22 li-

brary, and a set of popular server applications consisting

of nginx v1.8.0, lighttpd v1.4.39, opensshd v7.1p2,

vsftpd v3.0.3 and exim v4.86. This test suite has several

properties which make it representative: (1) It contains a

wide variety of realistic C and C++ binaries, ranging from

very small to large; (2) These correspond to binaries used

in evaluations of other work, making it easier to relate

our results to the literature; (3) The tests include highly

optimized library code, containing handwritten assembly

and complex corner cases which regular applications do

not; (4) SPEC CPU2006 compiles on both Linux and

Windows, allowing a fair comparison of results between

gcc, clang, and Visual Studio.

To study the impact of compiler options on disassembly,

we compile the SPEC CPU2006 part of our test suite

multiple times with a variety of popular configurations.

Specifically: (1) Optimization levels O0, O1, O2 and O3

for gcc, clang and Visual Studio; (2) Optimization for

size (Os) on gcc and clang; (3) Static linking and link-

time optimization (-flto) on 64-bit gcc; (4) Stripped

binaries, as well as binaries with symbols. We compile the

servers for both x86 and x64 with gcc and clang, leaving

all remaining settings at the Makefile defaults. Finally,

we compile glibc-2.22 with 64-bit gcc, to which it is

specifically tailored. In total, our test suite contains 981

binaries and shared objects.

2.2 Disassembly Primitives

We test all five common disassembly primitives used in

the literature (see Section 5). Some of these go well

beyond basic instruction recovery, and are only supported

by a subset of the disassemblers we test.

(1) Instructions: The pure assembly-level instructions.

(2) Function starts: Start addresses of the functions

originally defined in the source code.

(3) Function signatures: Parameter lists for functions

found by the disassembler.

(4) Control Flow Graph (CFG) accuracy: The sound-

ness and completeness of the CFG digraphs Gc f g =
(Vbb,Ec f ), which describe how control flow edges Ec f ⊆
Vbb ×Vbb connect the basic blocks Vbb. In practice, dis-
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assemblers deviate from the traditional CFG; typically

by omitting indirect edges, and sometimes by defining

a global CFG rather than per-function CFGs. Therefore,

we define the Interprocedural CFG (ICFG): the union of

all function-level CFGs, connected through interprocedu-

ral call and jump edges. This allows us to abstract from

the disassemblers’ varying CFG definitions, by focusing

our measurement on the coverage of basic blocks in the

ICFG. We pay special attention to hard-to-resolve basic

blocks, such as the heads of address-taken functions and

switch/case blocks reached via jump tables.

(5) Callgraph accuracy: The correctness of the digraph

G = (Vcs ∪Vf ,Ecall) linking the set Vcs of call sites to

the function starts Vf through call edges Ecall ⊆Vcs ×Vf .

Similarly to the CFG, disassemblers deviate from the

traditional callgraph definition by including only direct

call edges. In our experiments, we therefore measure the

completeness of this direct callgraph, considering indirect

calls and tailcalls separately in our complex case analysis.

2.3 Complex Constructs

We also study the prevalence in real-world binaries of

complex corner cases which are often cited as particularly

harmful to disassembly [5, 23, 34].

(1) Overlapping/shared basic blocks: Basic blocks may

be shared between different functions, hindering disas-

semblers from properly separating these functions.

(2) Overlapping instructions: Since x86/x64 uses

variable-length instructions without any enforced memory

alignment, jumps can target any offset within a multi-byte

instruction. This allows the same code bytes to be in-

terpreted as multiple overlapping instructions, some of

which may be missed by disassemblers.

(3) Inline data and jump tables: Data bytes may be

mixed in with instructions in a code section. Examples of

potential inline data include jump tables or local constants.

Such data can cause false positive instructions, and can

desynchronize the instruction stream if the last few data

bytes are mistakenly interpreted as the start of a multi-

byte instruction. Disassembly then continues parsing this

instruction into the actual code bytes, losing track of the

instruction stream alignment.

(4) Switches/case blocks: Switches are a challenge for

basic block discovery, because the switch case blocks are

typically indirect jump targets (encoded in jump tables).

(5) Alignment bytes: Some code (i.e., nop) or data

bytes may have no semantic meaning, serving only to

align other code for optimization of memory accesses.

Alignment bytes may cause desynchronization if they do

not encode valid instructions.

(6) Multi-entry functions: Functions may have multiple

basic blocks used as entry points, which can complicate

function start recognition.

<BB0>
    cmp ecx, edx
    jl <BB2>
    jmp <BB1>

<BB1>
    mov eax,[fptr+ecx]
    call eax

<BB2>
    mov eax,[fptr+edx]
    call eax

<f1>
  
<f2>
  

<f0>
  

<inline data>

<BB0>
    cmp ecx, edx
    jl <BB2>
    jmp <BB1>

<BB1>
    mov eax,[fptr+ecx]
    call eax

<BB2>
    mov eax,[fptr+edx]
    call eax

<f1>
  
<f2>
  

<f0>
  

<inline data>

Recursive Linear

Figure 1: Disassembly methods. Arrows show disassem-

bly flow. Gray blocks show missed or corrupted code.

(7) Tail calls: In this common optimization, a function

ends not with a return, but with a jump to another function.

This makes it more difficult for disassemblers to detect

where the optimized function ends.

2.4 Disassembly & Testing Environment

We conducted all disassembly experiments on an Intel

Core i5 4300U machine with 8GB of RAM, running

Ubuntu 15.04 with kernel 3.19.0-47. We compiled our

gcc and clang test cases on this same machine. The

Visual Studio binaries were compiled on an Intel Core i7

3770 machine with 8GB of RAM, running Windows 10.

We tested nine popular industry and research dis-

assemblers: IDA Pro v6.7, Hopper v3.11.5, Dyninst

v9.1.0 [5], BAP v0.9.9 [7], ByteWeight v0.9.9 [4], Jakstab

v0.8.4 [17], angr v4.6.1.4 [36], PSI v1.1 [47] (the suc-

cessor of BinCFI [48]), and objdump v2.22. ByteWeight

yields only function starts, while Dyninst and PSI sup-

port only ELF binaries (for Dyninst, this is due to our

Linux testing environment). Jakstab supports only x86

PE binaries. We omit angr results for x86, as angr is opti-

mized for x64. PSI is based on objdump, with added error

correction. Section 3 shows that PSI (and all linear dis-

assemblers) perform equivalently to objdump; therefore,

we group these under the name linear disassembly.

All others are recursive descent disassemblers, illus-

trated in Figure 1. These follow control flow to avoid

desynchronization by inline data, and to discover com-

plex cases like overlapping instructions. In contrast, linear

disassemblers like objdump simply decode all code bytes

consecutively, and may be confused by inline data, possi-

bly causing garbled code like BB1 in the figure. Recursive

disassemblers avoid this problem, but may miss indirect

control flow targets, such as f1 and f2 in the figure.
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2.5 Ground Truth

Our disassembly experiments require precise ground truth

on instructions, basic blocks and function starts, call sites,

function signatures and switch/case addresses. This in-

formation is normally only available at the source level.

Clearly, we cannot obtain our ground truth from any dis-

assembler, as this would bias our experiments.

We base our ELF ground truth on information collected

by an LLVM analysis pass, and on DWARF v3 debug-

ging information. Specifically, we use LLVM to collect

source-level information, such as the source lines belong-

ing to functions and switch statements. We then compile

our test binaries with DWARF information, and link the

source-level line numbers to the binary-level addresses us-

ing the DWARF line number table. We also use DWARF

information on function parameters for our function sig-

nature analysis. We strip the DWARF information from

the binaries before our disassembly experiments.

The line number table provides a full mapping of source

lines to binary, but not all instructions correspond directly

to a source line. To find these instructions, we use Cap-

stone v3.0.4 to start a conservative linear disassembly

sweep from each known instruction address, stopping

at control flow instructions unless we can guarantee the

validity of their destination and fall-through addresses.

For instance, the target of a direct unconditional jump

instruction can be guaranteed, while its fall-through block

cannot (as it might contain inline data).

This approach yields ground truth for over 98% of

code bytes in the tested binaries. We manually analyze

the remaining bytes, which are typically alignment code

unreachable by control flow. The result is a ground truth

file for each binary test case, that specifies the type of

each code byte, as well as instruction and function starts,

switch/case addresses, and function signatures.

We use a similar method for the Windows PE tests,

but based on information from PDB (Program Database)

files produced by Visual Studio instead of DWARF. This

produces files analogous to our ELF ground truth format.

We release all our ground truth files and our test suite,

to aid in future evaluations of binary-based research and

disassembly.

3 Disassembly Results

This section describes the results of our disassembly ex-

periments, using the methodology outlined in Section 2.

We first discuss application binaries (SPEC and servers),

followed by a separate discussion on highly optimized

libraries. Finally, we discuss the impact of static linking

and link-time optimization. We release all our raw results,

and present aggregated results here for space reasons.

3.1 Application Binaries

This section presents disassembly results for application

code. We discuss accuracy results for all primitives, and

also analyze the prevalence of complex cases.

3.1.1 SPEC CPU2006 Results

Figures 2a–2e show the accuracy for the SPEC CPU2006

C and C++ benchmarks of the recovered instructions,

function starts, function signatures, CFGs and callgraphs,

respectively. We show the percentage of correctly recov-

ered (true positive) primitives for each tested compiler

at optimization levels O0–O3. Note that the legend in

Figure 2a applies to Figures 2a–2e. All lines are geo-

metric mean results (simply referred to as “mean” from

this point); arithmetic means and standard deviations are

discussed in the text where they differ significantly. We

show separate results for the C and C++ benchmarks, to

expose variations in disassembly accuracy that may result

from different code patterns.

Some disassemblers support only a subset of the tested

primitives. For instance, linear disassembly provides only

instructions, and IDA Pro is the only tested disassembler

that provides function signatures. Moreover, some disas-

semblers only support a subset of the tested binary types,

and are therefore only shown in the plots where they are

applicable. For clarity, the graphs only show results for

stripped binaries; our tests with standard symbols (not

DWARF information) are discussed in the text.

3.1.1.1 Instruction boundaries

Figure 2a shows the percentage of correctly recovered

instructions. Interestingly, linear disassembly consistently

outperforms all other disassemblers, finding 100% of the

instructions for gcc and clang binaries (without false

positives), and 99.92% in the worst case for Visual Studio.

Linear disassembly. The perfect accuracy for linear

disassembly with gcc and clang owes to the fact that

these compilers never produce inline data, not even for

jump tables. Instead, jump tables and other data are placed

in the .rodata section.

Visual Studio does produce inline data, typically jump

tables. This leads to some false positives with linear disas-

sembly (data treated as code), amounting to a worst-case

mean of 989 false positive instructions (0.56% of the dis-

assembled code) for the x86 C++ tests at O3. The number

of missed instructions (false negatives, due to desynchro-

nization) is much lower, at a worst-case mean of 0.09%.

This is because x86/x64 disassembly automatically resyn-

chronizes within two or three instructions [21].

4
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Figure 2: Disassembly results. The legend in Figure 2a applies to Figures 2a–2e. Section 2.4 describes which platforms

are supported by each tested disassembler.
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(a) Correctly disassembled instructions.
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(b) Correctly detected function start addresses.
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(c) Correctly detected non-empty function argument lists (IDA Pro only).

5



588 25th USENIX Security Symposium USENIX Association

 0

 20

 40

 60

 80

 100

O0 O1 O2 O3

%
 c

o
rr

e
c

t 
(g

e
o

m
e

tr
ic

 m
e

a
n

)
gcc-5.1.1 x86

 

 

 

 

 

 

O0 O1 O2 O3

gcc-5.1.1 x64

 

 

 

 

 

 

O0 O1 O2 O3

clang-3.7.0 x86

 

 

 

 

 

 

O0 O1 O2 O3

clang-3.7.0 x64

 

 

 

 

 

 

O0 O1 O2 O3

Visual Studio '15 x86

 

 

 

 

 

 

O0 O1 O2 O3

Visual Studio '15 x64

(d) Correct and complete basic blocks for the ICFG.
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(e) Correctly resolved direct function calls (indirect calls discussed separately).

Recursive disassembly. The most accurate recursive

disassembler in terms of instruction recovery is IDA Pro

6.7, which closely follows linear disassembly with an

instruction coverage exceeding 99% at optimization lev-

els O0 and O1, dropping to a worst case mean of 96%

for higher optimization levels. The majority of missed in-

structions at higher optimization levels are alignment code

for functions and basic blocks, which is quite common in

optimized binaries. It consists of various (long) nop in-

structions for gcc and clang, and of int 3 instructions

for Visual Studio, and accounts for up to 3% of all code

at O2 and O3. Missing these instructions is not harmful

to common binary analysis operations, such as binary

instrumentation, manual analysis or decompilation.

False positives in IDA Pro are less prevalent than in lin-

ear disassembly. On gcc and clang, they are extremely

rare, amounting to 14 false positives in the worst test

case, with a mean of 0. Visual Studio binaries produce

more false positives, peaking at 0.16% of all recovered in-

structions. Overall, linear disassembly provides the most

complete instruction listing, but at a relatively high false

positive rate for Visual Studio. IDA Pro finds only slightly

fewer instructions, with significantly fewer false positives.

These numbers were no better for binaries with symbols.

Dyninst and Hopper achieve best case accuracy com-

parable to IDA, but not quite as consistently. Some disas-

semblers, notably BAP, appear to be optimized for gcc,

and show large performance drops when used on clang.

The BAP authors informed us that BAP’s results depend

strongly on the disassembly starting points (i.e., function

starts), provided by ByteWeight. We used the default ELF

and PE signature files shipped with ByteWeight v0.9.9.

Our angr results are based on the CFGFast analysis rec-

ommended to us by the angr authors.

Overall, IDA Pro, Hopper, Dyninst and linear disas-

sembly show arithmetic mean results which are extremely

close to the geometric means, exhibiting standard devia-

tions below 1%. Other disassemblers have larger standard

deviations, typically around 15%, with outliers up to 36%

(for BAP on clang x86, as visible in Figure 2a).

6
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6caf10 <ix86 fp compare mode>:
6caf10: mov 0x3f0dde(%rip),%eax
6caf16: and $0x10,%eax
6caf19: cmp $0x1,%eax
6caf1c: sbb %eax,%eax
6caf1e: add $0x3a,%eax
6caf21: retq

Listing 1: False negative indirectly called function for

IDA Pro in gcc, compiled with gcc at O3 for x64 ELF.

480970 <autohelperowl defendpat156>:
480970: push %rbp
480971: push %r15
480973: push %r14
480975: push %rbx
480976: push %rax

Listing 2: False positive function (shaded) for Dyninst,

due to misapplied prologue signature, gobmk compiled

with clang at O1 for x64 ELF.

C versus C++. Accuracy between C and C++ differs

most in the lower scoring disassemblers, but the difference

largely disappears in the best performing disassemblers.

The largest relative difference appears for clang.

3.1.1.2 Function starts

The results for function start detection are far more diffuse

than those for instruction recovery. Consider Figure 2b,

which shows the mean percentage of correctly recovered

function start addresses. No one disassembler consistently

dominates these results, though Hopper is at the upper

end of the spectrum for most compiler configurations

in terms of true positives. Dyninst also provides high

true positive rates, though not as consistently as Hopper.

However, as shown in Figure 3, both Hopper and Dyninst

suffer from high false positive rates, with worst case mean

false positive rates of 28% and 19%, respectively. IDA

Pro provides lower false positive rates of under 5% in

most cases (except for x86 Visual Studio, where it peaks

at 20%). However, its true positive rate is substantially

lower than those of Hopper and Dyninst, regularly miss-

ing 20% or more of functions even at low optimization

levels. As with instruction recovery, the results for BAP

and ByteWeight depend heavily on the compiler config-

uration, ranging from over 90% accuracy on gcc x86 at

O0, to under 20% on clang x64.

Even for the best performing disassemblers, function

start identification is far more challenging than instruction

recovery. Accuracy drops particularly as the optimization

level increases, repeatedly falling from close to 99% true

positives at O0, to only 82% at O3, and worsened by high

false positive rates. For IDA Pro, the worst case mean true

positive rate is even lower, falling to 62% for C++ on x64

gcc at O3. Moreover, the standard deviation increases to

over 15% even for IDA Pro.

8060985: pop %ebx
8060986: pop %esi
8060987: ret
8060988: nop
8060989: lea 0x0(%esi,%eiz,1),%esi

Listing 3: False positive function (shaded) for Dyninst,

due to code misinterpreted as epilogue, sphinx compiled

with gcc at O2 for x86 ELF.

46b990 <Perl pp enterloop>:
[...]

46ba02: ja 46bb50 <Perl pp enterloop+0x1c0>
46ba08: mov %rsi,%rdi
46ba0b: shl %cl,%rdi
46ba0e: mov %rdi,%rcx
46ba11: and $0x46,%ecx
46ba14: je 46bb50 <Perl pp enterloop+0x1c0>

[...]
46bb47: pop %r12
46bb49: retq
46bb4a: nopw 0x0(%rax,%rax,1)
46bb50: sub $0x90,%rax

Listing 4: False positive function (shaded) for Dyninst,

due to code misinterpreted as epilogue, perlbench com-

piled with gcc at O3 for x64 ELF.

False negatives. The vast majority of false nega-

tives is caused by indirectly called or tailcalled functions

(reached by a jmp instead of a call), as shown in List-

ing 1. This explains why the true positive rate drops

steeply at high optimization levels, where tail calls and

functions lacking standard prologues are common (see

Section 3.1.3). Symbols, if available, help greatly in im-

proving accuracy. They are used especially effectively

by IDA Pro, which consistently yields over 99% true

positives for binaries with symbols, even at higher opti-

mization levels.

False positives. Several factors contribute to the false

positive rate. We analyzed a random sample of 50 false

positives for Dyninst, Hopper and IDA Pro, the three best

performing disassemblers in function detection.

For Dyninst, false positives are mainly due to erro-

neously applied signatures for function prologues and

epilogues. As an example, Listing 2 shows a false posi-

tive in Dyninst due to a misidentified prologue: Dyninst

scans for the push %r15 instruction (as well as several

other prologue signatures), missing preceding instructions

in the function. We observe similar cases for function

epilogues. For instance, as shown in Listings 3 and 4,

Dyninst assumes a new function following a ret; nop

instruction sequence. This is not always correct: as shown

in the examples, the same code pattern can result from

a multi-exit function with padding between basic blocks.

Note that both examples could be handled correctly by

control flow and semantics-aware disassemblers. In List-

ing 4, there are intraprocedural jumps towards the basic

block at 0x46bb50, showing that it is not a new function.

7
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Figure 3: False positives for function start detection (percentage of total detected functions).

42cec3: movss %xmm0,-0x340(%rbp)
42cecb: jmpq 42cfc8 <P7PriorifyTransitionVector+0x622>
42ced0: mov -0x344(%rbp),%eax

Listing 5: False positive function (shaded) for Hopper,

due to misclassified switch case block, hmmer compiled

with gcc at O0 for x64 ELF.

The false positive in Listing 3 is in effect a nop instruction,

emitted for padding by gcc on x86.

All false positives we sampled for Hopper are located

directly after padding code, or after a direct jmp (with-

out a fallthrough edge), and are not directly reached by

other instructions. An example is shown in Listing 5.

Since these instructions are never reached directly, Hop-

per assumes that they represent function starts. This is not

always correct; for instance, the same pattern frequently

results from case blocks belonging to switch statements,

as seen in Listing 5.

Similarly, the majority of false positives for IDA Pro

is also caused by unreachable code assumed to be a new

function. However, these cases are far less common in

IDA Pro than in Hopper, as IDA Pro more accurately

resolves difficult control flow constructs such as switches.

Interestingly, the false positive rate for IDA Pro drops

to a mean of under 0.3% for x64 Visual Studio 2015.

This is because 64-bit Visual Studio uses just one well-

defined calling convention, while other compilers use a

variety [22].

3.1.1.3 Function signatures

Of the tested disassemblers, only IDA Pro supports func-

tion signature analysis. Figure 2c shows the percentage

of non-empty function argument lists where IDA Pro cor-

rectly identified the number of arguments. We focus on

non-empty argument lists because IDA Pro defaults to an

empty list, skewing our results if counted as correct.

Argument recovery is far more accurate on x86 code,

where parameters are typically passed on the stack, than

it is on the register-oriented x64 architecture. For x86

code generated by gcc and clang, IDA Pro correctly

identifies between 64% and 81% of the argument lists

on non-optimized binaries, dropping to 48% in the worst

case at O3. Results for Visual Studio are slightly worse,

ranging from 36% worst case to 59% in the best case.

As for function starts, the standard deviation is just over

15%. On x64 code, IDA Pro recovers almost none of the

argument lists, with accuracy between 0.38% and 1.87%.

Performance is significantly better for binaries with

symbols, even on x64, but only for C++ code. For in-

stance, IDA Pro’s accuracy for gcc x64 increases to a

mean of 44% for C++, peaking at 75% correct argument

lists. This is because IDA Pro parses mangled function

names that occur in C++ symbols, which encode signature

information in the function name.

3.1.1.4 Control Flow Graph accuracy

Figure 2d presents the accuracy of basic blocks in the

ICFG, the union of all function-level CFGs. We found

these results to be representative of the per-function CFG

accuracy. The accuracy of the ICFG is strongly correlated

with instruction discovery; indeed, recursive disassem-

blers typically find instructions through the process of

expanding the ICFG itself. Thus, the disassemblers that

perform well in instruction recovery also perform well in

CFG construction. For some disassemblers, such as IDA

Pro, the basic block true positive rate at high optimization

levels even exceeds the raw instruction recovery results

(Figure 2a). This is because for the ICFG, we did not

count missing nop instructions as false negatives.

8
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IDA Pro consistently achieves a basic block recovery

rate of between 98–100%, even at high optimization lev-

els. Even at moderate optimization levels, the results

for Hopper and Dyninst are considerably less complete,

regularly dropping to 90% or less. For the remaining

disassemblers, basic block recovery rates of 75% or less

are typical.

All disassemblers except IDA Pro show a considerable

drop in accuracy on gcc and clang for x64, compared

to the x86 results. This is strongly correlated with the

diminishing instruction and function detection results for

these disassembler/architecture combinations (see Fig-

ures 2a–2b). This implies that when functions are missed,

these disassemblers also fail to recover the instructions

and basic blocks contained in the missed functions. In

contrast, IDA Pro disassembles instructions even when

it cannot attribute them to any function. The difference

between x86/x64 and C/C++ results is less pronounced

for Visual Studio binaries than for gcc/clang.

3.1.1.5 Callgraph accuracy

Like ICFG accuracy, callgraph accuracy depends strongly

on the completeness of the underlying instruction analy-

sis. As mentioned, the callgraphs returned by the tested

disassemblers contain only the direct call edges, and do

not deal with address-taken functions. For this reason,

Figure 2e presents results for the direct component of the

callgraph only. We study the impact of indirect calls on

function identification accuracy in our complex case anal-

ysis instead (Section 3.1.3). The direct callgraph results in

Figure 2e again show IDA Pro to be the most accurate at

a consistent 99% function call resolve rate (linking func-

tion call edges to function starts), in most cases followed

closely by Dyninst and Hopper. This illustrates that the

lower accuracy for function starts (Figure 2b) is mainly

due to indirectly called functions (such as those called via

function pointers or in tail call optimizations).

3.1.2 Server Results

Table 1 shows disassembly results for the servers from

our test suite. For space reasons, and because the rel-

ative accuracy of the disassemblers is the same as for

SPEC, we only show results for IDA Pro, the best overall

disassembler. All other results are available externally,

as mentioned at the start of Section 3. We compiled all

servers for both x86 and x64 with gcc and clang, using

their default Makefile optimization levels.

The server tests confirm that the SPEC results from

Section 3.1.1 are representative; all results lie well within

the established bounds. As with SPEC, linear disassembly

achieved 100% correctness. The nginx results warrant

closer inspection; given its optimization level O1, the
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x86 x64

gcc-5.1.1

nginx 99.9 65.5 49.6 100 100 99.9 59.2 0.9 99.9 100
lighttpd 99.9 99.5 85.9 99.9 100 99.9 99.5 0.0 99.9 100

vsftpd 95.4 93.4 73.6 95.9 99.5 93.0 92.5 4.3 99.9 100
opensshd 99.9 86.2 74.9 100 100 99.9 86.2 0.0 100 100

exim 99.9 90.1 58.2 99.9 100 99.9 89.9 4.5 99.9 100

clang-3.7.0

nginx 98.5 57.5 44.0 99.5 100 98.6 53.0 0.7 99.4 100
lighttpd 98.7 99.5 87.9 99.9 100 99.0 99.5 0.0 99.9 100

vsftpd 96.8 93.3 72.9 99.8 100 97.0 92.0 6.6 99.5 99.9
opensshd 98.9 86.5 78.1 100 100 99.2 86.3 0.0 100 100

exim 99.0 82.7 54.6 99.3 100 99.1 81.7 5.4 99.4 100

Table 1: IDA Pro 6.7 disassembly results for server tests

(% correct, per test case).

function start and argument information is on the low

end of the accuracy spectrum. Closer analysis shows that

this results from extensive use in nginx of indirect calls

through function pointers; Section 3.1.1 shows that this

negatively affects function information. Indeed, for all

tested servers, the accuracy of function start detection is

inversely proportional to the ratio of address-taken func-

tions to the total number of instructions. This shows that

coding style can carry through the compilation process to

have a strong effect on disassembler performance.

3.1.3 Prevalence of Complex Constructs

Figure 4 shows the prevalence of complex constructs in

SPEC CPU2006, which pose special disassembly chal-

lenges. We also analyzed these constructs in the server

binaries, finding no significantly different results.

We did not encounter any overlapping or shared basic

blocks in either the SPEC or server tests on any compiler.

This is surprising, as these constructs are frequently cited

in the literature [5, 17, 23]. Closer inspection showed

that all the cited cases of overlapping blocks are due to

constructs which we classify more specifically, namely

overlapping instructions and multi-entry functions. These

constructs are exceedingly rare, and occur almost exclu-

sively in library code (discussed in Section 3.2.2). This

finding fits with the examples seen in the literature, which

all stem from library code, most commonly glibc.

No overlapping instructions occur in Linux applica-

tion code, and only a handful in Windows code (with a

mean of zero, and a maximum of 3 and 10 instructions

for x86 and x64 Visual Studio, respectively). Multi-entry

functions are somewhat more common. All cases we

found consisted of functions with optional basic blocks

that can execute before the main function body, and finish

by jumping over the main function body prologue. Fig-

ure 4 lists such jumps as multi-entry jumps, and shows

9
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Figure 4: Prevalence of complex constructs in SPEC CPU2006 binaries.

the targeted main function bodies as multi-entry targets.

In binaries compiled with gcc and clang, we found up

to 18 multi-entry jumps for C code, and up to 64 for C++,

with the highest prevalence in x64 binaries. Visual Studio

produced up to 172 multi-entry jumps for C, and up to

88 for C++, the construct being most prevalent in x86

code. This kind of multi-entry function is handled well by

disassemblers in practice, producing no notable decrease

in disassembly accuracy compared to other functions.

Tailcalls form the most prevalent complex case, and

do negatively affect function start detection if the target

function is never called normally (see Section 3.1.1). The

largest number of tailcalls (listed as tailcall jumps in Fig-

ure 4) is found in clang x64 C++ binaries, at a mean

of 545 cases. Visual Studio produces a similar number

of tailcalls. For clang, the number of tailcalls peaks at

optimization level O1, while Visual Studio peaks at O3.

For clang (and to a lesser extent gcc), higher optimiza-

tion levels can lead to a decrease in tailcalls through other

modifications like code merging and code elimination.

Jump tables (due to switches) are by far the most com-

mon case of inline data. They occur as inline data only

on Visual Studio (gcc and clang place jump tables in

the .rodata section). As seen in Section 3.1.1, inline

data causes false positive instructions especially in linear

disassembly (peaking at 0.56% false positives).

Another challenge due to jump tables is locating all

case blocks belonging to the switch; these are typically

reached indirectly via a jump that loads its target ad-

dress from the jump table. Linear disassembly covers

100% of case blocks correctly on gcc and clang (see

Section 3.1.1), and also achieves very high accuracy for

Visual Studio. The best performing recursive disassem-

blers, most notably IDA Pro, also achieved very high

coverage of switch/case blocks; coverage of these blocks

is comparable to the overall instruction/basic block recov-

ery rates. This is because many recursive disassemblers

have special heuristics for identifying and parsing stan-

dard jump tables.

3.1.4 Optimizing for Size

At optimization levels O0–O3, no overlapping or shared

basic blocks occur. A reasonable hypothesis is that com-

pilers might more readily produce such blocks when op-

timizing for size (optimization level Os) rather than for

performance. To verify this, we recompiled the SPEC C

and C++ benchmarks with size optimization, and repeated

our disassembly tests.

Even for size-optimized binaries, we did not find any

overlapping or shared blocks. Moreover, the accuracy of

the instruction boundaries, callgraph and ICFG did not

significantly differ from our results for O0–O3. Function

starts and argument lists were comparable in precision to

those for performance-optimized binaries (O2–O3).

3.2 Shared Library Objects

This section discusses our disassembly results and com-

plex case analysis for library code. Libraries are often

highly optimized, and therefore contain more complex

(handcrafted) corner cases than application code. We fo-

cus our analysis on glibc-2.22, the standard C library

used in GNU systems, compiled in its default configura-

tion (gcc with optimization level O2). This is one of the

most widespread and highly optimized libraries, and is

often cited as a highly complex case [5, 23].

3.2.1 Disassembly Results

Table 2 shows disassembly results for glibc-2.22, for

all tested disassemblers that support 64-bit ELF bina-

ries. Nearly all disassemblers display significantly lower

10
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gcc-5.1.1 x64

angr 64.4 75.6 — 70.2 87.9
BAP 65.3 79.6 — 72.4 84.8

ByteWeight — 29.3 — — —
Dyninst 79.7 85.2 — 87.6 95.5
Hopper 84.3 93.3 — 90.6 93.9

IDA Pro 96.0 92.0 5.4 99.9 99.9
Linear 99.9 — — — —

Table 2: Disassembly results for glibc (% correct).

accuracy on instruction boundaries than the mean for ap-

plication binaries in equivalent compiler configurations.

Only IDA Pro and linear disassembly are on par with their

performance on application code, achieving very good

accuracy without any false positives. Note that objdump

achieves 99.9% accuracy instead of the usual 100% for

ELF binaries. This is because unlike IDA Pro, it does not

explicitly separate the overlapping instructions that occur

in glibc (see Section 3.2.2).

Function start results are on par with, or even exceed

the mean for application binaries; this holds true for all

disassemblers. Moreover, the accuracy of function argu-

ment lists (5.4%) is much higher than one would expect

from the x64 SPEC CPU2006 results (under 1% accu-

racy). This is because IDA Pro comes with a set of code

signatures designed to recognize standard library func-

tions that are statically linked into binaries.

For the ICFG, we see the same pattern as for instruc-

tions: all disassemblers perform worse than for applica-

tion code, while IDA Pro delivers comparable accuracy.

Callgraph accuracy is below the mean for most disassem-

blers, though IDA Pro and Dyninst perform very close to

the mean, and BAP well exceeds it.

3.2.2 Complex Constructs

Overall, we found the glibc-2.22 code to be surpris-

ingly well-behaved. Our analysis found no overlapping

or shared basic blocks, and no inline data. Indeed, the

glibc developers have taken special care to prevent this,

explicitly placing data and jump tables in the .rodata

section even when manually declared in handwritten as-

sembly code. Prior work has analysed earlier versions

of glibc, showing that inline jump tables are present in

glibc-2.12 [23]. Moreover, inline zero-bytes used for

function padding are confirmed in versions up to 2.21.

This is worth noting, as older glibc versions may still be

encountered in practice. Our analysis of glibc versions

ranging from 2.12 to 2.22 shows consistently improving

disassembler-friendliness over time.

We did find some complex constructs that do not occur

in application code, the most notable being overlapping

7b05a: cmpl $0x0,%fs:0x18
7b063: je 7b066
7b065: lock cmpxchg %rcx,0x3230fa(%rip)

Listing 6: Overlapping instruction in glibc-2.22.

e9a30 <splice>:
e9a30: cmpl $0x0,0x2b9da9(%rip)
e9a37: jne e9a4c < splice nocancel+0x13>

e9a39 < splice nocancel>:
e9a39: mov %rcx,%r10
e9a3c: mov $0x113,%eax
e9a41: syscall
e9a43: cmp $0xfffffffffffff001,%rax
e9a49: jae e9a7f < splice nocancel+0x46>
e9a4b: retq
e9a4c: sub $0x8,%rsp
e9a50: callq f56d0 < libc enable asynccancel>
[...]

Listing 7: Multi-entry function in glibc-2.22.

instructions. We found 31 such instructions in glibc. All

of these are instructions with optional prefixes, such as the

one shown in Listing 6. These overlapping instructions

are defined manually in handcrafted assembly code, and

typically use a conditional jump to optionally skip a lock

prefix. They correspond to frequently cited complex cases

in the literature [5, 23].

In addition, we found 508 tailcalls resulting from the

compiler’s normal optimization; a number comparable

to application binaries of similar size as glibc. We also

found significantly more multi-entry functions than in

the SPEC benchmarks. Most of these belong to the

nocancel family, explicitly defined in glibc, an ex-

ample of which is shown in Listing 7. These functions

provide optional basic blocks which can be prefixed to

the main function body to choose a threadsafe variant of

the function. These prefix blocks end by jumping over

the prologue of the main function body, a pattern also

sometimes seen in application code.

Given that all non-standard complex constructs in

glibc are due to handwritten assembly, we manually

analyzed all assembly code in libc++ and libstdc++.

However, the amount of assembly in these libraries is

very limited and revealed no new complex constructs.

This suggests that the optimization constructs in glibc

are typical for low-level libraries, and less common in

higher-level ones such as the C++ standard libraries.

3.3 Static Linking & Linker Optimization

Static linking can reduce disassembler performance on

application binaries by merging complex library code into

the binary. Link-time optimization performs intermodu-

lar optimization at link-time, as opposed to more local

compile-time optimizations. It is a relatively new feature

that is gaining in popularity, and could worsen disassem-

bler performance if combined with static linking, by opti-

mizing application and library code as a whole. To study

11
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gcc-5.1.1 x64 with -static

SPEC/C O0 96.2 69.4 0.1 98.3 98.2
SPEC/C O1 96.2 68.4 0.2 98.6 98.4
SPEC/C O2 95.5 67.1 0.2 98.8 98.9
SPEC/C O3 95.6 65.7 0.2 98.7 98.7
SPEC/C Os 95.9 67.8 0.2 98.7 98.4

gcc-5.1.1 x64 with -static and -flto

SPEC/C O0 96.3 69.3 0.2 98.5 98.3
SPEC/C O1 96.0 68.6 0.3 98.6 98.4
SPEC/C O2 95.0 67.4 0.3 98.3 98.0
SPEC/C O3 95.2 66.9 0.3 98.3 98.4
SPEC/C Os 95.5 67.8 0.2 98.4 97.7

Table 3: IDA Pro 6.7 disassembly results for static and

link-time optimized SPEC C benchmarks (% correct, ge-

ometric mean).

the effects of these options, we recompiled the SPEC

CPU2006 C benchmarks, statically linking them with

glibc-2.22 using gcc’s -static flag. Subsequently,

we repeated the process with both static linking and link-

time optimization (gcc’s -flto) enabled.

As expected, static linking merges complex cases from

glibc into SPEC, including overlapping instructions.

The effect on disassembly performance is shown in Ta-

ble 3 for IDA, the overall best performing disassembler in

our glibc tests. The impact is slight but noticeable, with

an instruction accuracy drop of up to 3 percentage points

compared to baseline SPEC; about the same as for glibc.

As can be seen in Table 3, link-time optimization does not

significantly decrease disassembly accuracy compared to

static linking only.

Function start detection suffers from static linking

mostly at lower optimization levels, dropping from a

mean of 80% to just under 70% for O0; at level O3 the per-

formance is not significantly reduced. Again, link-time

optimization does not worsen the situation compared to

pure static linking. For the ICFG and callgraph tests, a

small accuracy drop is again seen at lower optimization

levels, again with no more adverse effects due to link-time

optimization. For instance, ICFG accuracy drops from

close to 100% mean in baseline SPEC to just over 98%

in statically linked SPEC at O0, while the results at O2

and O3 show no negative impact. We suspect that this is

a result of optimized library code being linked in even

at lower optimization levels. Overall, we do not expect

any significant adverse impact on binary-based research

as link-time optimization gains in popularity.

4 Implications of Results

This section discusses the implications of our results for

three popular directions in binary-based research: (1)

Control-Flow Integrity, (2) Decompilation, and (3) Auto-

matic bug search. A detailed comparison of our results to

assumptions in the literature is given in Section 5.

4.1 Control-Flow Integrity

Control-Flow Integrity (CFI) is currently one of the most

popular research directions in systems security, as shown

in Table 6. Binary-level CFI typically relies on binary

instrumentation to insert control flow protections into pro-

prietary or legacy binaries [1, 10, 24, 29, 41, 45, 46, 48].

Though a wide variety of CFI solutions has been proposed,

most of these have similar binary analysis requirements,

due to their common aim of protecting indirect jumps,

indirect calls, and return instructions. We structure our

discussion around what is needed to analyze and protect

each of these control edge types.

Indirect calls. Typically, protecting an indirect call

requires instrumenting both the call site (the call in-

struction itself, possibly including parameters), and the

call target (the called function). Finding call sites relies

mainly on accurate and complete disassembly of the ba-

sic instructions. As shown in Figure 2a, these can be

recovered with extremely high accuracy, even 100% ac-

curacy for linear disassembly on gcc and clang binaries.

Thus, a binary-level CFI solution is unlikely to encounter

problems analyzing and instrumenting call sites.

For Visual Studio binaries, there is a chance that a small

percentage of call sites may be missed. Depending on the

specific CFI solution, it may be possible to detect calls

from uninstrumented sites in the target function, trigger-

ing a runtime error handling mechanism (see Section 5).

Since these cases are rare, it is then feasible to perform

more elaborate (slow path) alternative security checks.

The main challenge is to accurately detect all possible

target functions for each indirect call. As a basic prereq-

uisite, this requires finding the complete set of indirectly

called functions. As shown in Section 3.1.1 and Figure 2b,

this is one of the most challenging problems in disassem-

bly — at high optimization levels, 20% or more of all

functions are routinely missed.

Moreover, fine-grained CFI systems must perform even

more elaborate analysis to decide which functions are le-

gal targets for each indirect call site. Overestimating the

set of legal targets leads to attacks which redirect indirect

calls to unexpected functions [12]. Matching call sites to

a set of targets typically requires an accurate (I)CFG, so

that control-flow and data-flow analysis can be performed

to determine which function pointers are passed to each

call site. Figure 2d and Sections 3.1.1–3.1.3 show that an

accurate and complete ICFG is typically available, includ-

ing accurate resolution of switch/jump tables in the best

disassemblers. Although this type of analysis remains

12
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extremely challenging, especially if done interprocedu-

rally (requiring accurate indirect call resolution), it is at

least not limited by the accuracy of basic blocks or direct

control edges.

Additionally, fine-grained CFI systems can benefit

from function signature information, to further narrow

down the set of targets per call site by matching the func-

tion prototype to parameters passed at the call site [39].

Though signature information is often far from complete

(Figure 2c), especially on x64, the information which is

available can still be useful — even with incomplete infor-

mation, the target set can be reduced, directly leading to

security improvements. However, care must be taken to

make the analysis as conservative as possible; if this is not

done, the inaccuracy of function signature information

can easily cause illegal function calls to be allowed, or

worse, can cause legal calls to be inadvertently blocked.

Indirect jumps. Protecting indirect jumps requires

analysis similar to the requirements for indirect calls.

However, as indirect jumps are typically intraprocedu-

ral, protecting them usually does not rely on function

detection. Instead, accurate switch/jump table resolution

is required, which is available in disassemblers like IDA

Pro (Section 3.1.3).

Return instructions. Return instructions are typi-

cally protected using a shadow stack, which requires in-

strumenting all call and return sites (and jumps, to handle

tailcalls) [8]. Given the accurate instruction recovery pos-

sible with modern disassemblers (Figure 2a), it is possible

to accurately and completely instrument these sites.

Summarizing, the main challenge for modern CFI lies

in accurately and completely protecting indirect call sites.

The reasons for this are twofold: (1) Function detection

is one of the most inaccurate primitives (especially for

indirectly called functions), even in state of the art disas-

semblers, and (2) It is currently very difficult to recover

rich information, such as function signature information,

through disassembly. This makes it extremely challenging

to accurately couple indirect call sites with valid targets.

4.2 Decompilation

Instead of translating a binary into assembly instructions,

decompilers lift binaries to a higher-level language, typ-

ically (pseudo-) C. Decompilers are typically built on

top of a disassembler, and therefore rely heavily on the

quality of the disassembly [33, 44].

As most decompilers operate at function granularity,

they rely on accurate function start information. More-

over, they must translate all basic blocks belonging to

a function, requiring knowledge of the function’s CFG.

In effect, this requires not only accurate function start

detection, but accurate function boundary detection. As

described in related work, function boundary detection

is even more challenging than function start detection, as

it additionally requires locating the end address of each

function [4]. This is difficult, especially in optimized bi-

naries, where tailcalls often blur the boundaries between

functions (since the jmp instructions used in tailcalls can

easily be mistaken for intraprocedural control transfers).

In addition to function detection, decompilers rely on

accurate instruction disassembly, and can also greatly

benefit from function signature/type information. More-

over, switch detection is required to correctly attribute all

switch case blocks to their parent function. Finally, call-

graph information is useful to understand the connections

between decompiled functions.

The impact of inaccuracies for decompilation is not

as severe as for CFI systems, since decompiled code is

typically intended for use in manual reverse engineering

rather than automated analysis. However, disassembly

errors can still affect the decompilation process itself,

especially in later passes (such as stack frame analysis

or data type analysis passes) over the raw decompiled

function. Such analysis phases, as well as human reverse

engineers, must take into account the high probability of

errors in function boundary and signature information.

4.3 Automatic Bug Search

The binary analysis requirements of automatic bug search

systems depend on the type of bug being searched for,

and the granularity of the search. In practice, many such

systems operate at the function level, both for ease of

analysis, and because it is a suitable search-granularity

for common bugs, such as stack-based bugs [14, 27, 50].

Operating at the function level is also useful for interop-

erability with other binary analysis primitives, such as

symbolic execution, which are powerful tools for seman-

tic analysis but do not scale to full binaries [14].

Thus, like decompilation, many automatic bug search

systems rely on accurate function boundary information

and per-function CFGs. Fortunately, despite the relatively

large inaccuracies in the input information, the output

of bug detection systems tends to degrade gracefully —

input inaccuracies may lead to bugs being missed, but

typically do not affect the correctness of the analysis for

other parts of the code. Quantifying the accuracy of the

inputs (disassembly, CFG, function boundaries) helps

users to determine the expected output completeness of

automatic bug search systems.

5 Disassembly in the Literature

Given our disassembly results, we studied recent binary-

based research to determine how well the capabilities

13
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BAP 2 1 2 1 2 0

ByteWeight 0 0 0 0 0 0
Dyninst 1 1 0 0 1 1
Hopper 0 0 0 0 0 0

IDA Pro 13 11 6 2 11 4
Jakstab 0 0 0 0 0 0

PSI/BinCFI 4 3 3 0 3 2
Linear 2 2 1 0 1 1

Other/Custom 8 7 2 0 6 3

Total 30 25 14 3 24 11

Table 4: Primitives/disassemblers used in the literature.

of disassemblers match the expectations in the literature.

Our study covers research published between 2013 and

2015 in all top-tier systems security conferences, namely

S&P (Oakland), CCS, NDSS and USENIX Security. In

addition, we cover research published in these same years

at RAID and ACSAC, two other major conferences which

are popular targets for such research.

We found 30 papers on binary-based research published

in these venues, summarized in Table 6. The rest of this

section presents aggregated findings to provide a degree

of anonymization for these papers.

Table 4 shows the primitives and disassemblers used

in these papers. IDA Pro is by far the most popular, for

all primitives; our disassembly results (Section 3) justify

this choice. Despite its good accuracy, linear disassembly

is among the least used, even for papers that handle only

ELF binaries. This may result from the widespread belief

that inline data causes far more problems than we found.

Instructions are the most often needed primitive, used

by 25 of the 30 papers. It is followed by the CFG (24

papers) and function starts (14 papers). Function signature

information is needed by only 3 of the analyzed papers.

One paper used linear disassembly as a basis for building

a CFG and callgraph, and scanning for function starts.

Table 5 provides a more detailed insight into the prop-

erties of the papers we analyzed. We distinguish between

papers that target Windows PE binaries, and those that

target Linux ELF. This is because some complex cases,

such as inline data, are more often generated by Visual

Studio, deserving closer attention in Windows papers.

Most papers that support obfuscated binaries target

Windows (33% of papers versus 10% for Linux). This is

because obfuscation typically occurs in malware, which is

more prevalent on Windows. Though we do not consider

obfuscated binaries in our tests, it is still interesting to

know how many papers target such binaries. After all,

these papers should pay special attention to disassembly

errors and complex corner cases. Unfortunately, this is

not the case; only 50% of papers that support obfusca-

tion discuss potential errors, while 33% implement error

All papers Top-tier
Property Subproperty # % # %

Windows PE x86/x64 (16 papers, 12 top-tier)

Obfuscated code 5 31% 4 33%
Optimized binaries 14 88% 11 92%
Stripped binaries 15 94% 11 92%
Recursive disassembly 16 100% 12 100%
Needs relocation info 2 12% 2 17%
Primitive errors discussed Instructions 5 (13) 38% 5 (9) 56%

Functions 1 (5) 20% 1 (4) 25%
Signatures 0 (2) 0% 0 (2) 0%
Callgraph 4 (5) 80% 4 (5) 80%
CFG 5 (13) 38% 5 (10) 50%

Complex cases discussed 5 31% 5 42%
Primitive errors handled Overestimate 4 25% 4 33%

Underestimate 3 19% 2 17%
Runtime 1 6% 1 8%

Errors are fatal 13 81% 11 92%

Linux ELF x86/x64 (14 papers, 10 top-tier)

Obfuscated code 1 7% 1 10%
Optimized binaries 13 93% 9 90%
Stripped binaries 11 79% 7 70%
Recursive disassembly 12 86% 8 80%
Primitive errors discussed Instructions 6 (12) 50% 6 (9) 67%

Functions 3 (9) 33% 3 (6) 50%
Signatures 1 (1) 100% 1 (1) 100%
Callgraph 2 (6) 33% 2 (4) 50%
CFG 5 (11) 45% 5 (8) 62%

Complex cases discussed 1 7% 1 10%
Primitive errors handled Overestimate 4 29% 3 30%

Underestimate 0 0% 0 0%
Runtime 1 7% 1 10%

Errors are fatal 8 57% 6 60%

Table 5: Properties of binary-based papers (number and

percentage of papers). Numbers in parentheses indicate

the total number of papers that use this primitive.

handling. This is no better than the overall number. More-

over, only 17% of these papers explicitly discuss complex

cases; far below the overall rate for Windows.

Nearly all papers support optimized binaries (90% or

more for both Linux and Windows, overall as well as

top-tier). Stripped binaries are supported by an equally

large majority of papers on Windows, and by a slightly

smaller majority on Linux. Curiously, the number of top-

tier papers that support stripped binaries on Linux (70%)

is significantly less than the overall number (79%).

The vast majority of papers use recursive disassembly

(100% on Windows and 86% on Linux), with IDA Pro

being the most popular disassembler. The few papers

that do use linear disassembly are based on objdump, and

augment it with a layer of error correction. Interestingly,

these papers claim perfect (100% accurate) or close to

perfect disassembly. As shown in Section 3.1.1, this

precision on Linux binaries owes entirely to the core linear

disassembly, making any error correction redundant other

than for a few corner cases in library code (and obfuscated

code, which these papers do not consider).

A relatively small percentage of Windows papers use

relocation information to find disassembly starting points.

At 17%, this number is slightly higher for top-tier papers.

Discussion on disassembly errors and complex cases is

somewhat lacking in the analyzed papers. For most prim-

14
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Title Authors Venue Year Top-tier

A Principled Approach for ROP Defense [30] Qiao et al. ACSAC 2015
Binary Code Continent: Finer-Grained Control Flow Integrity (...) [41] Wang et al. ACSAC 2015
Blanket Execution: Dynamic Similarity Testing for Program (...) [11] Egele et al. USENIX Sec 2014 ✓
BYTEWEIGHT: Learning to Recognize Functions in Binary Code [4] Bao et al. USENIX Sec 2014 ✓
CoDisasm: Medium Scale Concatic Disassembly of Self-Modifying (...) [6] Bonfante et al. CCS 2015 ✓
Control Flow and Code Integrity for COTS binaries [49] Zhang et al. ACSAC 2015
Control Flow Integrity for COTS Binaries [48] Zhang et al. USENIX Sec 2013 ✓
Cross-Architecture Bug Search in Binary Executables [27] Pewny et al. S&P 2015 ✓
DUET: Integration of Dynamic and Static Analyses for Malware (...) [15] Hu et al. ACSAC 2013
Dynamic Hooks: Hiding Control Flow Changes within (...) [40] Vogl et al. USENIX Sec 2014 ✓
Hardware-Assisted Fine-Grained Control-Flow Integrity (...) [10] Davi et al. RAID 2015
Heisenbyte: Thwarting Memory Disclosure Attacks using (...) [37] Tang et al. CCS 2015 ✓
High Accuracy Attack Provenance via Binary-based (...) [20] Hyung Lee et al. NDSS 2013 ✓
Improving Accuracy of Static Integer Overflow Detection in Binary [50] Zhang et al. RAID 2015
Leveraging Semantic Signatures for Bug Search in Binary Programs [28] Pewny et al. ACSAC 2014
Native x86 Decompilation Using Semantics-Preserving (...) [33] Schwartz et al. USENIX Sec 2013 ✓
No More Gotos: Decompilation Using Pattern-Independent (...) [44] Yakdan et al. NDSS 2015 ✓
Opaque Control-Flow Integrity [24] Mohan et al. NDSS 2015 ✓
Oxymoron Making Fine-Grained Memory Randomization Practical (...) [2] Backes et al. USENIX Sec 2014 ✓
Practical Context-Sensitive CFI [1] Andriesse et al. CCS 2015 ✓
Practical Control Flow Integrity & Randomization for (...) [46] Zhang et al. S&P 2013 ✓
Reassembleable Disassembling [42] Wang et al. USENIX Sec 2015 ✓
Recognizing Functions in Binaries with Neural Networks [35] Chul et al. USENIX Sec 2015 ✓
ROPecker: A Generic and Practical Approach for Defending (...) [9] Cheng et al. NDSS 2014 ✓
StackArmor: Comprehensive Protection from Stack-based (...) [8] Chen et al. NDSS 2015 ✓
Towards Automated Integrity Protection of C++ Virtual Function (...) [13] Gawlik et al. ACSAC 2014
Towards Automatic Software Lineage Inference [16] Jang et al. USENIX Sec 2013 ✓
vfGuard: Strict Protection for Virtual Function Calls (...) [29] Prakash et al. NDSS 2015 ✓
VTint: Protecting Virtual Function Tables’ Integrity [45] Zhang et al. NDSS 2015 ✓
X-Force: Force-Executing Binary Programs for Security (...) [26] Peng et al. USENIX Sec 2014 ✓

Table 6: Set of papers discussed in the literature study.

itives on Windows, at best 50% of papers discuss what

happens if the primitive is not recovered perfectly. This

number applies to the top-tier papers; overall, the num-

ber is even lower. The number for Linux-based papers is

slightly better, though even here only a small majority of

papers devote significant attention to potential problems.

One would expect more thorough discussion, especially

given that between 80% and 90% of Windows papers,

and around 60% of Linux papers, may suffer malignant

failures given imperfect primitives. The issue is most

apparent in the Windows papers that require function start

information. Only 25% of the top-tier papers that require

function starts consider potential errors in this informa-

tion, even though Section 3.1.1 shows that function starts

are quite challenging to recover accurately.

The percentage of Windows papers that discuss com-

plex cases such as inline data varies from 31% overall

to 42% for top-tier papers. Again, this is less than we

would expect given the prevalence of inline jump tables

generated by Visual Studio. The number for papers that

target Linux is even lower, though this causes fewer issues

as complex cases in ELF binaries are rare.

There is a strong correlation within all papers between

discussion of errors and complex cases, and support for

error handling. Papers that discuss such cases also tend

to implement some mechanism for dealing with errors

if they occur. Conversely, papers that do not implement

error handling nearly always fail to discuss errors at all.

We identified three popular and recurring categories of

error handling mechanisms.

(1) Overestimation: For instance, CFG and callgraph

overestimation are popular in papers that build binary-

level security; it minimizes the risk of accidentally pro-

hibiting valid edges, though the precision of security poli-

cies may suffer slightly.

(2) Underestimation: This is used in papers where

soundness is more important than completeness.

(3) Runtime augmentation: Some papers use static

analysis to approximate a primitive, and use low-cost

runtime checks to fix errors in the primitive where needed.

Overestimation is the most popular error handling strat-

egy, used in around 30% of top-tier papers. It is followed

by underestimation and runtime augmentation.

6 Discussion

Our findings show a dualism in the stance on disassem-

bly in the literature. On the one hand, the difficulty

of pure (instruction-level) disassembly is often exagger-

ated. The prevalence of complex constructs like overlap-

ping basic blocks, inline data, and overlapping instruc-

tions is frequently overestimated, especially for gcc and

clang [5, 23]. This leads reviewers and researchers to

underestimate the effectiveness of binary-based research.

We showed that unless binaries are deliberately ob-

fuscated, instruction recovery is extremely accurate, es-
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pecially in ELF binaries generated with gcc or clang.

We did not find any inline data for these binaries, even

in optimized library code; even jump tables are explic-

itly placed in the .rodata section. Moreover, in Visual

Studio binaries with jump tables in the code section, mod-

ern disassemblers like IDA Pro recognize and resolve

them quite accurately. The rare overlapping instructions

in handcrafted library code take on a limited number of

forms, typically using a direct conditional jump over a

prefix. These are resolved without problems by IDA Pro

and Dyninst, among others. The same is true for multi-

entry functions, which are also rare. Moreover, overlap-

ping/shared basic blocks (commonly cited as particularly

challenging for binary analysis), do not appear in our

findings at all.

On the other hand, some primitives really do often suf-

fer from inaccuracies. Some recursive disassemblers used

for binary instrumentation (notably Dyninst) regularly

miss up to 10% of basic blocks in optimized binaries, call-

ing for special attention in systems which rely on basic

block-level binary instrumentation. Additionally, func-

tion signatures in 64-bit code are extremely inaccurate;

fortunately, they are also rarely used in the literature.

However, function starts are regularly needed, though

the false negative rate regularly rises to 20% or more

even for the best performing disassemblers. This is es-

pecially true in optimized binaries, or in coding styles

that make extensive use of function pointers. Worse, false

positive function starts are almost as common. This can

lead to problems in some binary-based research, espe-

cially binary instrumentation, if care is not taken to en-

sure graceful failure in the event of misdetected function

starts. Symbols offer a great deal of help, especially in

reducing the false negative rate. Unfortunately, they are

rarely available in practice.

It is surprising then, to find that only 20% to 25%

(top-tier) of Windows papers that use function starts, and

33% to 50% (top-tier) of the Linux papers, devote any

attention to discussing these problems. A similarly small

number of papers implement error handling, even though

errors can cause malignant failures in a majority of pa-

pers. While it is not impossible to base well-functioning

binary-based systems on function start information (or

other primitives), it is crucial that such work implement

mechanisms for handling inaccuracies. Three effective

classes of error handling (depending on the situation) have

already been proposed in the literature: overestimation,

underestimation, and runtime augmentation.

We hope our study will facilitate a better match be-

tween expectations on disassembly in future research, and

the performance actually delivered by modern disassem-

blers. Moreover, we believe our findings can be used to

better judge where problems are to be expected, and to

implement effective mechanisms for dealing with them.

7 Related Work

Prior work on disassembly precision focused on complex

corner cases [5, 23, 25] or obfuscated code [18, 34], show-

ing that these can strongly reduce disassembly accuracy.

We focus instead on the performance of modern disas-

semblers given realistic full-scale binaries without active

anti-disassembly techniques.

Miller et al. center their analysis around complex cases

in glibc-2.12 [23]. Their findings largely correspond

to our own, though we found no inline jump tables in

glibc-2.22. In addition to their glibc analysis, Miller

et al. find complex cases in SPEC CPU2006; however,

this analysis focuses exclusively on statically linked bina-

ries. We show in Section 3.3 that these cases are entirely

due to embedded library code, and are extremely rare in

non-statically linked applications.

Our finding that function starts are among the most

challenging primitives to recover is in agreement with

results by Bao et al. [4].

Paleari et al. study instruction decoders in disassem-

blers [25], which parse individual x86 instructions. Spe-

cific instructions that are sometimes wrongly parsed have

also been outlined by the authors of Capstone [31].

Complex constructs in obfuscated code are discussed

by Schwarz et al. [34], Linn et al. [21] and Kruegel et

al. [18]. We show that these worst-case complex con-

structs are exceedingly rare in non-obfuscated code.

8 Conclusion

Our study contradicts the widespread belief that complex

constructs severely limit the usefulness of binary-based

research. Instead, we show that modern disassemblers

achieve close to 100% instruction disassembly accuracy

for compiler-generated binaries, and that constructs like

inline data and overlapping code are very rare. Errors in

areas where disassembly is truly lacking, such as function

start recovery, are not discussed nearly as often in the

literature. By analyzing discrepancies between disassem-

bler capabilities and the literature, our work provides a

foundation for guiding future research.
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[2] BACKES, M., AND NÜRNBERGER, S. Oxymoron Making Fine-

Grained Memory Randomization Practical by Allowing Code

Sharing. In Proceedings of the 23rd USENIX Security Symposium

(USENIX Sec’14) (2014).

[3] BALAKRISHNAN, G., AND REPS, T. WYSINWYX: What You

See is Not What You eXecute. ACM Transactions on Program-

ming Languages and Systems 32, 6 (Aug. 2010), 23:1–23:84.

[4] BAO, T., BURKET, J., WOO, M., TURNER, R., AND BRUMLEY,

D. BYTEWEIGHT: Learning to Recognize Functions in Binary

Code. In Proceedings of the 23rd USENIX Security Symposium

(USENIX Sec’14) (2014).

[5] BERNAT, A. R., AND MILLER, B. P. Anywhere, Any-Time Bi-

nary Instrumentation. In Proceedings of the 10th ACM SIGPLAN-

SIGSOFT Workshop on Program Analysis for Software Tools

(2011).

[6] BONFANTE, G., FERNANDEZ, J., MARION, J.-Y., ROUXEL, B.,

SABATIER, F., AND THIERRY, A. CoDisasm: Medium Scale Con-

catic Disassembly of Self-Modifying Binaries with Overlapping

Instructions. In Proceedings of the 22nd Conference on Computer

and Communications Security (CCS’15) (2015).

[7] BRUMLEY, D., JAGER, I., AVGERINOS, T., AND SCHWARTZ,

E. J. BAP: A Binary Analysis Platform. In Proceedings of the

23rd International Conference on Computer Aided Verification

(CAV’11) (2011).

[8] CHEN, X., SLOWINSKA, A., ANDRIESSE, D., BOS, H., AND

GIUFFRIDA, C. StackArmor: Comprehensive Protection from

Stack-Based Memory Error Vulnerabilities for Binaries. In Pro-

ceedings of the Network and Distributed System Security Sympo-

sium (NDSS’15) (San Diego, CA, USA, February 2015), Internet

Society.

[9] CHENG, Y., ZHOU, Z., YU, M., DING, X., AND DENG, R. H.

ROPecker: A Generic and Practical Approach for Defending

Against ROP Attacks. In Proceedings of the Network and Dis-

tributed System Security Symposium (NDSS’14) (2014).

[10] DAVI, L., KOEBERL, P., AND SADEGHI, A.-R. Hardware-

Assisted Fine-Grained Control-Flow Integrity: Towards Efficient

Protection of Embedded Systems Against Software Exploitation.

In Proceedings of the 18th International Symposium on Research

in Attacks, Intrusions, and Defenses (RAID’15) (2015).

[11] EGELE, M., WOO, M., CHAPMAN, P., AND BRUMLEY, D. Blan-

ket Execution: Dynamic Similarity Testing for Program Binaries

and Components. In Proceedings of the 23rd USENIX Security

Symposium (USENIX Sec’14) (2014).

[12] EVANS, I., LONG, F., OTGONBAATAR, U., SHROBE, H., RI-

NARD, M., OKHRAVI, H., AND SIDIROGLOU-DOUSKOS, S.

Control Jujutsu: On the Weaknesses of Fine-Grained Control

Flow Integrity. In Proceedings of the 22nd Conference on Com-

puter and Communications Security (CCS’15) (Denver, CO, USA,

2015), ACM.

[13] GAWLIK, R., AND HOLZ, T. Towards Automated Integrity Pro-

tection of C++ Virtual Function Tables in Binary Programs. In

Proceedings of the 30th Annual Computer Security Applications

Conference (ACSAC’14) (2014).

[14] HALLER, I., SLOWINSKA, A., NEUGSCHWANDTNER, M., AND

BOS, H. Dowsing for Overflows: A Guided Fuzzer to Find Buffer

Boundary Violations. In Proceedings of the 22nd USENIX Security

Symposium (USENIX Sec’13) (2013).

[15] HU, X., AND SHIN, K. G. DUET: Integration of Dynamic and

Static Analyses for Malware Clustering with Cluster Ensembles.

In Proceedings of the 29th Annual Computer Security Applications

Conference (ACSAC’13) (2013).

[16] JANG, J., WOO, M., AND BRUMLEY, D. Towards Automatic

Software Lineage Inference. In Proceedings of the 22nd USENIX

Security Symposium (USENIX Sec’13) (2013).

[17] KINDER, J. Static Analysis of x86 Executables. PhD thesis,

Technische Universität Darmstadt, 2010.

[18] KRUEGEL, C., ROBERTSON, W., VALEUR, F., AND VIGNA, G.

Static Disassembly of Obfuscated Binaries. In Proceedings of the

13th USENIX Security Symposium (USENIX Sec’04) (2004).

[19] LAURENZANO, M., TIKIR, M. M., CARRINGTON, L., AND

SNAVELY, A. PEBIL: Efficient Static Binary Instrumentation

for Linux. In Proceedings of the International Symposium on

Performance Analysis of Systems and Software (2010).

[20] LEE, K. H., ZHANG, X., AND XU, D. High Accuracy Attack

Provenance via Binary-based Execution Partition. In Proceed-

ings of the Network and Distributed System Security Symposium

(NDSS’13) (2013).

[21] LINN, C., AND DEBRAY, S. Obfuscation of Executable Code to

Improve Resistance to Static Disassembly. In Proceedings of the

10th ACM Conference on Computer and Communications Security

(CCS’03) (2003).

[22] MICROSOFT DEVELOPER NETWORK. Overview of x64 Calling

Conventions, 2015. https://msdn.microsoft.com/en-us/

library/ms235286.aspx.

[23] MILLER, B. P., AND MENG, X. Binary Code is Not Easy, 2015.

Technical report, University of Wisconsin-Madison.

[24] MOHAN, V., LARSEN, P., BRUNTHALER, S., HAMLEN, K. W.,

AND FRANZ, M. Opaque Control-Flow Integrity. In Proceed-

ings of the Network and Distributed System Security Symposium

(NDSS’15) (2015).

[25] PALEARI, R., MARTIGNONI, L., FRESI ROGLIA, G., AND BR-

USCHI, D. N-Version Disassembly: Differential Testing of x86

Disassemblers. In Proceedings of the 19th International Sympo-

sium on Software Testing and Analysis (2010), ISSTA’10.

[26] PENG, F., DENG, Z., ZHANG, X., XU, D., LIN, Z., AND SU, Z.

X-Force: Force-Executing Binary Programs for Security Applica-

tions. In Proceedings of the 23rd USENIX Security Symposium

(USENIX Sec’14) (2014).

[27] PEWNY, J., GARMANY, B., GAWLIK, R., ROSSOW, C., AND

HOLZ, T. Cross-Architecture Bug Search in Binary Executables.

In Proceedings of the 36th IEEE Symposium on Security and

Privacy (S&P’15) (2015).

[28] PEWNY, J., SCHUSTER, F., ROSSOW, C., BERNHARD, L., AND

HOLZ, T. Leveraging Semantic Signatures for Bug Search in

Binary Programs. In Proceedings of the 30th Annual Computer

Security Applications Conference (ACSAC’14) (2014).

17



600 25th USENIX Security Symposium USENIX Association

[29] PRAKASH, A., HU, X., AND YIN, H. vfGuard: Strict Protection

for Virtual Function Calls in COTS C++ Binaries. In Proceed-

ings of the Network and Distributed System Security Symposium

(NDSS’15) (San Diego, CA, USA, February 2015), Internet Soci-

ety.

[30] QIAO, R., ZHANG, M., AND SEKAR, R. A Principled Approach

for ROP Defense. In Proceedings of the 31st Annual Computer

Security Applications Conference (ACSAC’15) (2015).

[31] QUYNH, N. A. Capstone: Next-Gen Disassembly Framework. In

Blackhat USA (2014).

[32] ROMER, T., VOELKER, G., LEE, D., WOLMAN, A., WONG, W.,

LEVY, H., BERSHAD, B., AND CHEN, B. Instrumentation and

Optimization of Win32/Intel Executables Using Etch. In Proceed-

ings of the USENIX Windows NT Workshop (NT’97) (1997).

[33] SCHWARTZ, E. J., LEE, J., WOO, M., AND BRUMLEY, D. Na-

tive x86 Decompilation Using Semantics-Preserving Structural

Analysis and Iterative Control-Flow Structuring. In Proceedings of

the 22nd USENIX Security Symposium (USENIX Sec’13) (2013).

[34] SCHWARZ, B., DEBRAY, S., AND ANDREWS, G. Disassembly

of Executable Code Revisited. In Proceedings of the 9th Working

Conference on Reverse Engineering (WCRE’02) (2002).

[35] SHIN, E. C. R., SONG, D., AND MOAZZEZI, R. Recognizing

Functions in Binaries with Neural Networks. In Proceedings of

the 24th USENIX Security Symposium (USENIX Sec’15) (2015).

[36] SHOSHITAISHVILI, Y., WANG, R., HAUSER, C., KRUEGEL, C.,

AND VIGNA, G. Firmalice - Automatic Detection of Authentica-

tion Bypass Vulnerabilities in Binary Firmware.

[37] TANG, A., SETHUMADHAVAN, S., AND STOLFO, S. Heisenbyte:

Thwarting Memory Disclosure Attacks using Destructive Code

Reads. In Proceedings of the 22nd Conference on Computer and

Communications Security (CCS’15) (2015).

[38] TRAIL OF BITS. A Preview of McSema, 2014. Techni-

cal report. http://blog.trailofbits.com/2014/06/23/a-

preview-of-mcsema/.
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