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Abstract
Modern web applications are increasingly moving pro-
gram code to the client in the form of JavaScript. With the
growing adoption of HTML5APIs such as postMessage,
client-side validation (CSV) vulnerabilities are conse-
quently becoming increasingly important to address as
well. However, while detecting and preventing attacks
against web applications is a well-studied topic on the
server, considerably less work has been performed for
the client. Exacerbating this issue is the problem that de-
fenses against CSVsmust, in the general case, fundamen-
tally exist in the browser, rendering current server-side
defenses inadequate.
In this paper, we present ZigZag, a system for hard-

ening JavaScript-based web applications against client-
side validation attacks. ZigZag transparently instru-
ments client-side code to perform dynamic invariant de-
tection on security-sensitive code, generating models
that describe how – and with whom – client-side com-
ponents interact. ZigZag is capable of handling tem-
plated JavaScript, avoiding full re-instrumentation when
JavaScript programs are structurally similar. Learned in-
variants are then enforced through a subsequent instru-
mentation step. Our evaluation demonstrates that ZigZag
is capable of automatically hardening client-side code
against both known and previously-unknown vulnerabil-
ities. Finally, we show that ZigZag introduces acceptable
overhead in many cases, and is compatible with popular
websites drawn from the Alexa Top 20 without developer
or user intervention.

1 Introduction

Most of the over 2 billion Internet users [1] regularly ac-
cess the World Wide Web, performing a wide variety of
tasks that range from searching for information to the pur-
chase of goods and online banking transactions. Unfortu-
nately, the popularity of web-based services and the fact

that the web is used for business transactions has also at-
tracted a large number of malicious actors. These actors
compromise both web servers and end-user machines to
steal sensitive information, to violate user privacy by spy-
ing on browsing habits and accessing confidential data,
or simply to turn them into “zombie” hosts as part of a
botnet.
As a consequence, significant effort has been invested

to either produce more secure web applications, or to de-
fend existing web applications against attacks. Examples
of these approaches include applying static and dynamic
program analyses to discover vulnerabilities or prove
the absence of vulnerabilities in programs [2, 3, 4, 5],
language-based approaches to render the introduction of
certain classes of vulnerabilities impossible [6, 7, 8],
sandboxing of potentially vulnerable code, and signature-
and anomaly-based schemes to detect attacks against
legacy programs.
However, despite the large amount of research on pre-

venting attacks against web applications, vulnerabilities
persist. This is due to a combination of factors, including
the difficulty of training developers to make use of more
secure development frameworks or sandboxes, as well as
the continuing evolution of the web platform itself.
In particular, advances in browser JavaScript engines

and the adoption of HTML5 APIs has led to an explo-
sion of highly complex web applications where the ma-
jority of application code has been pushed to the client.
Client-side JavaScript components from different origins
often co-exist within the same browser, and make use of
HTML5 APIs such as postMessage to interact with each
other in highly dynamic ways.

postMessage enables applications to communicate
with each other purely within the browser, and are not
subject to the classical same origin policy (SOP) that de-
fines how code from mutually untrusted principals are
separated. While SOP automatically prevents client-side
code from distinct origins from interfering with each oth-
ers’ code and data, code that makes use of postMessage
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is expected to define and enforce their own security pol-
icy. While this provides much greater flexibility to appli-
cation developers, it also opens the door for vulnerabili-
ties to be introduced into web applications due to insuf-
ficient origin checks or other programming mistakes.

postMessage is but one potential vector for the more
general problem of insufficient client-side validation
(CSV) vulnerabilities. These vulnerabilities can be ex-
ploited by input from untrusted sources – e.g., the cross-
window communication interface, referrer data, and oth-
ers. An important property of these vulnerabilities is that
attacks cannot be detected on the server side, and there-
fore any framework for defending against them at run-
time must execute within the browser. Also, in contrast
to other popular web attack classes such as Cross-Site
Scripting (XSS), CSVs represent application logic flaws
that are closely tied to the intended behavior of the appli-
cation and, consequently, can be difficult to identify and
defend against in a generic, automated fashion.
In this paper, we propose ZigZag, a system for hard-

ening JavaScript-based web applications against client-
side validation attacks. ZigZag transparently instruments
client-side code to perform dynamic invariant detection
over live browser executions. From this, it derives mod-
els of the normal behavior of client-side code that capture
essential properties of how – and with whom – client-side
web application components interact, as well as proper-
ties related to control flows and data values within the
browser. Using these models, ZigZag can then automati-
cally detect deviations from these models that are highly
correlated with client-side validation attacks.
We describe an implementation of ZigZag as a proxy,

and demonstrate that it can effectively defend against vul-
nerabilities found in the wild against real web applica-
tions without modifications to the browser or application
itself aside from automated instrumentation. In addition,
we show that ZigZag is efficient, and can be deployed in
realistic environments without a significant impact on the
user experience.
In summary, this paper makes the following contribu-

tions:

• We present a novel in-browser anomaly detection
system based on dynamic invariant detection that
defends clients against previously unknown client-
side validation attacks.

• We present a new technique we term invariant
patching for extending dynamic invariant detection
to server-side JavaScript templates, a very common
technique for lightweight parameterization of client-
side code.

• We extensively evaluate both the performance and
security benefits of ZigZag, and show that it can
be effectively deployed in several real scenarios, in-

cluding as a transparent proxy or through direct ap-
plication integration by developers.

The rest of the paper is organized as follows. In Sec-
tion 2, we motivate the need for defending against client-
side validation vulnerabilities through the introduction of
a running example and define our threat model. In Sec-
tion 3, we present the high-level design of ZigZag. Sec-
tions 4 and 5 describe the details of ZigZag’s invariant
detection and enforcement. We then evaluate a proto-
type implementation of ZigZag in Section 6. Finally,
Sections 7 and 8 discuss related work and conclude the
paper.

2 Motivation and Threat Model

To contextualize ZigZag and motivate the problem of
client-slide validation vulnerabilities, we consider a hy-
pothetical webmail service. This application is composed
of code and resources belonging both to the application
itself as well as advertisements from multiple origins.
Since these origins are distinct, the same origin policy
applies, and code from each of these origins cannot inter-
fere with the others. This type of origin-based separation
is typical for modern web applications.
However, in this example, the webmail compo-

nent communicates with the advertising network via
postMessage to request targeted ads given a profile it
has generated for its users. The ad network can respond
that it has successfully placed ads, or else request fur-
ther information in the case that a suitable ad could not
be found. Figure 1 shows one side of this communica-
tion channel, where the advertising component both reg-
isters an onMessage event listener to receive messages
from the webmail component, as well as sends responses
using the postMessagemethod. In this case, because the
ad network does not verify the origin of the messages
it receives, it is vulnerable to a client-side validation at-
tack [9].
To tamper with the ad network, an attacker must be

able to invoke postMessage in the same context. This
can be achieved by exploiting XSS vulnerabilities from
user content, framing the webmail service, or exploiting
a logic vulnerability. Hence, the attacker has to send an
email to a victim user that contains XSS code, or lure the
victim to a site that will frame the webmail service.
Despite the fact that the ad network component is

vulnerable, ZigZag prevents successful exploitation of
the vulnerability. With ZigZag, the webmail service is
used through a transparent proxy that instruments the
JavaScript code, augmenting each component with mon-
itoring code. The webmail service then runs in a training
phase where execution traces of the JavaScript programs
are collected. Collected data points include function pa-
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1 // Handle a received message
2 var receiveMessage = function(e) {
3 // Missing check on e.origin!
4 }
5
6 var sendMessage = function(e) {
7 // Send data to window ‘w’
8 w.postMessage(data, ’*’);
9 }

10
11 // Register for messages
12 window.addEventListener(”message”, receiveMessage, false);

Figure 1: Insecure usage of the postMessage API in a
hypothetical webmail client-side component.

rameters, caller/callee pairs, and return values. Once
enough execution traces have been collected, ZigZag
uses invariant detection to establish a model of normal
behavior. Next, the original program is extended with
enforcement code that detects deviations from the base-
line established during training. Execution is compared
against this baseline, and violations are treated as attacks.
In this example, ZigZag would recognize that mes-

sages received by the ad network must originate from the
webmail component’s origin, and would terminate exe-
cution if a message is received from another origin – for
instance, from the user content origin. Due to the na-
ture of CSV vulnerabilities, this attack would go unno-
ticed for server-side invariant detection systems such as
Swaddler [10] as they focus on more traditional web at-
tacks against server-side code. These attacks can either
happen on the client alone, where such systems have no
visibility, or when server interaction is triggered through
exploitation of a CSV vulnerability. In addition, these
requests are indistinguishable from benign user interac-
tion. We stress that this protection requires no changes to
the browser or application on the server, and is therefore
transparent to both developers and users alike.
We expand upon this example service with more vul-

nerabilities and learned invariants in following sections.

2.1 Threat model
The threat model we assume for this work is as follows.
ZigZag aims to defend benign-but-buggy JavaScript ap-
plications against attacks targeting client-side validation
vulnerabilities, where CSV vulnerabilities represent bugs
in JavaScript programs that allow for unauthorized ac-
tions via untrusted input.
The attacker can provide input to JavaScript programs

through cross-window communication (e.g., postMes-
sage), or window/frame cross-domain properties. This
can be performed by operating in an otherwise iso-
lated JavaScript context within the same browser. How-
ever, the attacker cannot run arbitrary code in a ZigZag-
protected context without first bypassing ZigZag, an
eventuality we aim to prevent. In particular, we presume

the presence of complementary defenses against XSS-
based code injection attacks such as Content Security
Policy (CSP) [11] or rigorous template auto-sanitization.
Therefore, we assume that attackers cannot directly tam-
per with ZigZag invariant learning and enforcement by,
for instance, overwriting these functions in the JavaScript
context without first evading the system.
Because ZigZag depends on a training set to learn

dynamic invariants, we assume that the training data is
trusted and, in particular, attack-free. This is a general
limitation of anomaly-based detection schemes, though
one that also has partial solutions [12].

3 System Overview

ZigZag is an in-browser anomaly detection system that
defends against client-side validation (CSV) vulnerabil-
ities in JavaScript applications. ZigZag operates by in-
terposing between web servers and browsers in order to
transparently instrument JavaScript programs. This in-
strumentation process proceeds in two phases.
Learning phase. First, ZigZag rewrites programs

withmonitoring code to collect execution traces of client-
side code. These traces are fed to a dynamic invariant de-
tector that extracts likely invariants, or models. The in-
variants that ZigZag extracts are learned over data such
as function parameters, variable types, and function caller
and callee pairs.
Enforcement phase. In the second phase, the invari-

ants that were learned in the initial phase are used to
harden the client-side components of the application. The
hardened version of the web application preserves the
semantics of the original, but also incorporates runtime
checks to enforce that execution does not deviate from
what was observed during the initial learning phase. If a
deviation is detected, the system assumes that an attack
has occurred and execution is either aborted or the viola-
tion is reported to the user.
An overview of this system architecture is shown in

Figure 2. We note that instrumentation for both the learn-
ing phase and enforcement phase is performed once, and
subsequent accesses of an already instrumented program
re-use a cached version of that program.
In the following sections, we describe in detail each

phase of ZigZag’s approach to defending against client-
side validation vulnerabilities in web applications.

4 Invariant Detection

In this section, we focus on describing the invariants
ZigZag learns, why we selected these invariants to en-
force, and how we extract these invariants from client-
side code.
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Learning Phase

Instrumentation Invariant
Detection

Execution
Traces

Invariants

Browser

Web Server

(a) Learning phase. A JavaScript program is instrumented in
order to collect execution traces. Invariant detection is then
performed on the trace collection in order to produce a set of
likely invariants.

Enforcement Phase

Instrumentation Invariant
Violations

Browser

Web Server

Alerts Termination

Attacker

(b) Enforcement phase. Given a JavaScript program and the
invariants previously learned, instrumentation is again used to
enforce those invariants.

Figure 2: ZigZag overview. Instrumentation is used in both the learning and enforcement phases to produce and enforce
likely invariants, respectively. Note that instrumentation is only performed once in each case; subsequent loads use a
cached instrumented version of the program.

Data Type Invariants

All Types
Numbers Equality, inequality, oneOf
String Length, equality, oneOf, isJSON,

isPrintable, isEmail, isURL, isNumber
Boolean Equality
Objects All of the above for object properties
Functions Calling function, return value

Table 1: Invariants supported by ZigZag.

4.1 Invariant Detection

Dynamic program invariants are statistically-likely asser-
tions established by observing multiple program execu-
tions. We capture program state at checkpoints and com-
pare subsets of these states for each individual checkpoint
(we define checkpoints in further detail in Section 4.2).
The underlying assumption is that invariants should hold
not only for the observed executions, but also for future
ones.
However, there is no guarantee that invariants will also

hold in the future. Therefore, ZigZag only uses invariants
which should hold with a high probability. These invari-
ants are later used to decide whether a program execu-
tion is to be considered anomalous. By capturing state
dynamically, ZigZag has insight into user behavior that
purely static systems lack.
ZigZag uses program execution traces to generate

Daikon [13] dtrace files. These dtrace files are then gen-
eralized into likely invariants with a modified version of
Daikon we have developed. Daikon is capable of gen-
erating both univariate and multivariate invariants. Uni-
variate invariants describe properties of a single variable;
examples of this include the length of a string, the per-
centage of printable characters in a string, and the parity
of a number. Multivariate models, on the other hand, de-
scribe relations between two or more variables, for ex-
ample x== y, x+5 == y, or x < y.
ZigZag analyzes multivariate relationships within

function parameters, return values, and invoking func-
tions. In addition, we extended the invariants provided
by Daikon with additional ones, including checks on
whether a string is a valid JSON object, URL, or email
address.
For example, when used on a website with postMes-

sage, ZigZag could learn that the origin attribute of the
onMessage event is both printable and a URL, or equal to
a string. Depending on the number of different origins,
the system could also learn the legitimate set of sending
origins

v0.origin ∈ {o1, . . . ,on}.

As another example, since JavaScript is a dynamically
typed language, it has no type annotations in function sig-
natures. This language feature can lead to runtime errors
or be exploited by an attacker. By learning likely type in-
variants over function parameters and return values that
are checked during the enforcement phase, ZigZag can
(partially) retrofit types into JavaScript programs. For
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example, this can become security-relevant when devel-
opers use numeric values for input, and do not consider
other values during input sanitization. We describe an
example of parameter injection, and how the attack is
thwarted by ZigZag in Section 6.1.
One pitfall of anomaly detection is undertraining. To

reduce the impact on our system, we check function cov-
erage before issuing invariants for enforcement. We only
allow for enforcement of a particular function after exe-
cution traces from four or more training sessions were
collected, which was sufficient for the examples we con-
sidered. This threshold, however, is configurable and can
easily be increased if greater variability is observed dur-
ing invariant learning.
The full set of invariants supported by ZigZag is shown

in Table 1.

4.2 Program Instrumentation
Trace collection and enforcement code is inserted at pro-
gram points we refer to as checkpoints. The finest sup-
ported granularity is to insert checkpoints for every state-
ment. However, while this is possible, statement granu-
larity introduces unacceptable overhead with little bene-
fit. The CSV vulnerabilities we have observed in the wild
can be detected with a coarser and more efficient level of
granularity. Since events such as receiving cross-window
communication are handled by functions, function entry
and exit points are natural program points to analyze in-
put and return data. Consequently, for our prototype we
opted to insert checkpoints at function prologues and epi-
logues.
During instrumentation, ZigZag performs a

lightweight static analysis on the program’s abstract
syntax tree (AST) to prune the set of checkpoints that
must be injected. Functions which contain eval sinks,
XHR requests, access to the document object, and other
potentially harmful operations are labeled as important.
Only these functions are used in data collection and en-
forcement mode. As a consequence, large programs that
only have few potentially harmful operations will have
significantly less overhead as compared to instrumenting
the entire program, while at the same time preserving the
security of the overall approach. Aside from increased
performance, whitelisting functions that are known not
to be security-relevant also leads to a reduced risk of
false positives.
Each function labeled as important during the static

analysis phase is instrumented with pre- and post-
function body hooks called calltrace and exittrace.
The original return statement is inlined in the exittrace
function call and returned by it. These functions access
the instrumented function’s parameters through the stan-
dard arguments variable, and either records a program

1 function x(a, b) {
2 // function body
3 ...
4 return a+b;
5 }

(a) Function body before instrumentation

1 function x(a, b) {
2 var callcounter = __calltrace(functionid,
3 codeid,
4 sessionid);
5 // function body
6 ...
7 return __exittrace(functionid,
8 callcounter,
9 subexitid,

10 codeid,
11 sessionid,
12 a+b);
13 }

(b) Function body after instrumentation

Figure 3: Function instrumentation example.

state for invariant detection (learning phase) or checks
for an invariant violation (enforcement phase).
ZigZag uses a number of identifiers to label pro-

gram states at checkpoints. functionid uniquely iden-
tifies functions within a program, codeid labels distinct
JavaScript programs, and sessionid labels program exe-
cutions. The variables functionid and codeid are hard-
coded during program instrumentation, while sessionid
is generated for each request.
The callcounter variable is used instead to connect

call chains. Every invocation of calltrace increments
and returns a global callcounter to provide a unique
identifier such that calltrace and exittrace invoca-
tions can be matched. This is necessary since JavaScript
is re-entrant, and therefore multiple threads of execution
can invoke a function and yield before returning, po-
tentially resulting in out-of-order pre- and post-function
hook invocations.
ZigZag can not only instrument the code initially

loaded by a site, but also code dynamically downloaded
during execution. JavaScript programs can potentially
modify themselves at runtime, since a program can gen-
erate code for its own execution. We address this by
wrapping eval invocations, script tag insertion, and
writes to the DOM. Our wrapper sends the new program
code to the proxy and calls the original function with the
instrumented program. This technique has been shown
to be effective in prior work [14].
In our prototype implementation, each of these calls in-

curs a roundtrip to the server, where such code is treated
the same way as non-eval code. As a possible optimiza-
tion, the instrumented version of previously observed
data passed to eval could be inlined with the enclos-
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ing (instrumented) program, removing the need for sub-
sequent separate roundtrips. Furthermore, we often ob-
served eval to be used for JSON deserialization. If such
a use case is detected, instrumentation could be bypassed
entirely. However, we did not find it necessary to imple-
ment these features in our research prototype.
The calltrace and exittrace functions reside in the

same scope since theymust be callable from all functions.
An example of uninstrumented and instrumented code is
shown in Figures 3a and 3b, respectively.

5 Invariant Enforcement

Given a set of invariants collected during the learning
phase, ZigZag then instruments JavaScript programs to
enforce these invariants. Since templated JavaScript is a
prevalent technique on the modern web for lightweight
parameterization of client-side code, we then present a
technique for adapting invariants to handle this case. Fi-
nally, we discuss possible deployment scenarios and lim-
itations of the system.
Daikon supports invariant output for several lan-

guages, including C++, Java, and Perl. However, it
does not support JavaScript by default. Groeneveld et
al. implemented extensions to Daikon to support invari-
ant analysis using Daikon [15]. However, we found
that their implementation was not capable of generating
JavaScript for all of the invariants ZigZag must support,
and therefore we wrote our own implementation.
In our implementation, the calltrace and exittrace

functions perform a call to an enforcement function gen-
erated for each function labeled important during the
static analysis step. calltrace examines the function in-
put state, while exittrace examines the return value of
the original function. These functions are generated auto-
matically by ZigZag for each important function. Based
on the invoking program point, assertions corresponding
to learned invariants are executed. Should an assertion
be violated, a course of action is taken depending on the
system configuration. Options include terminating exe-
cution by navigating away from the current site, or alter-
natively reporting to the user that a violation occurred and
continuing execution. Figure 4 shows a possible instance
of the calltrace function, abbreviated for clarity.

5.1 Program Generalization

Modern web applications often make use of lightweight
templates on the server, and sometimes within the
browser as well. These templates usually take the form
of a program snippet or function that largely retains the
same structure with respect to the AST, but during instan-
tiation placeholders in the template are substituted with

1 __calltrace = function(functionid, codeid, sessionid) {
2 // Enforcement
3 var v0 = arguments.callee.caller.caller.arguments[0];
4 var v1 = ...
5
6 if ( functionid === 0 ) {
7 __assert(typeof(v0) === ’number’ && v0 > 5);
8 __assert(typeof(v1) === ’string’ && v1 === ”x”);
9 ...

10 } else if ( functionid === 1 ) {
11 ...
12 }
13 ...
14 return __incCallCounter();
15 }

Figure 4: Example of invariant enforcement over a func-
tion’s input state.

1 // Server-side JavaScript template
2 var state = {
3 user: {{username}},
4 session: {{sessionid}}
5 };
6
7 // Client-side JavaScript code after template instantiation
8 var state = {
9 user: ”UserX”,

10 session: 0
11 };

Figure 5: Example of a JavaScript template.

concrete data – for instance, a timestamp or user iden-
tifier. This is often done for performance, or to reduce
code duplication on the server. As an example, consider
the templated version of the webmail example shown in
Figure 5.
Due to the cost of instrumentation and the prevalence

of this technique, this mix of code and data poses a fun-
damental problem for ZigZag since a templated program
causes – in the worst case – instrumentation on every
resource load. Additionally, each template instantiation
would represent a singleton training set, leading to arti-
ficial undertraining. Therefore, it was necessary to de-
velop a technique for both recognizing when templated
JavaScript is present and, in that case, to generalize in-
variants from a previously instrumented template instan-
tiation to keep ZigZag tractable for real applications.
ZigZag handles this issue by using efficient structural

comparisons to identify cases where templated code is in
use, and then performing invariant patching to account
for the differences between template instantiations in a
cached instrumented version of the program.
Structural comparison. ZigZag defines two pro-

grams as structurally similar and, therefore, candidates
for generalization if they differ only in values assigned to
either primitive variables such as strings or integers, or as
members of an array or object. Objects play a special role
as in template instantiation properties can be omitted or
ordered non-deterministically. As a result ASTs are not
equal in all cases, only similar. Determining whether this
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Invariant Patching

JavaScript
template

instantiations
Structurally-similar

ASTs
Script A invariants patched

for Script A’ using
merge description

Script A

Script A’

Invariants,
merge description

Patched invariants

Figure 6: Invariant patching overview. If ZigZag detects
that two JavaScript programs are structurally isomorphic
aside from constant assignments, a merge description is
generated that allows for efficient patching of previously-
generated invariants. This scheme allows ZigZag to
avoid re-instrumentation of templated JavaScript on each
load.

is the case could be performed by pairwise AST equal-
ity that ignores constant values in assignments and nor-
malizes objects. However, this straightforward approach
does not scale when a large number of programs have
been instrumented.
Therefore, we devised a string equality-based tech-

nique. From an AST, ZigZag extracts a string-based
summary that encodes a normalized AST that ignores
constant assignments. In particular, normalization strips
all constant assignments of primitive data types encoun-
tered in the program. Also, assignments to object proper-
ties that have primitive data types are removed. Objects,
however, cannot be removed completely as they can con-
tain functions which are important for program structure.
Removing primitive types is important as many websites
generate programs that depend on the user state – e.g.,
setting {logged_in: 1} or omitting that property de-
pending on whether a user is logged in or not. Removing
the assignment allows ZigZag to correctly handle cases
such as these.
Furthermore, normalization orders any remaining

object properties such as functions or enclosed ob-
jects, in order to avoid comparison issues due to non-
deterministic property orderings. Finally, the structural
summary is the hash of the reduced, normalized program.
As an optimization, if the AST contains no func-

tion definitions, ZigZag skips instrumentation and serves
the original program. This check is performed as part
of structural summary generation, and is possible since
ZigZag performs function-level instrumentation.
Code that is not enclosed by a function will not be

considered. Such code cannot be addressed through
event handlers and is not accessible through postMes-
sage. However, calls to eval would invoke a wrapped
function, which is instrumented and included in enforce-
ment rules.

Fast program merging. The first observed program
is handled as every other JavaScript program because
ZigZag cannot tell from one observation whether a pro-
gram represents a template instantiation. However, once
ZigZag has observed two structurally similar programs,
it transparently generates amerge description and invari-
ant patches for the second and future instances.
Themerge description represents an abstract version of

the observed template instantiation that can be patched
into a functional equivalent of new instantiations. To
generate a merge description, ZigZag traverses the full
AST of structurally similar programs pairwise to extract
differences between the instantiations. Matching AST
nodes are preserved as-is, while differences are replaced
with placeholders for later substitution. Next, ZigZag
compiles the merge description with our modified ver-
sion of the Closure compiler [16] to add instrumentation
code and optimize.
The merge description is then used every time the tem-

plated resource is subsequently accessed. The ASTs of
the current and original template instantiations are com-
pared to extract the current constant assignments, and the
merge description is then patched with these values for
both the program body as well as any invariants to be
enforced. By doing so, we bypass repeated, possibly ex-
pensive, compilations of the code.

5.2 Deployment Models

Wenote that several scenarios for ZigZag deployment are
possible. First, application developers or providers could
perform instrumentation on-site, protecting all users of
the application against CSV vulnerabilities. Since no
prior knowledge is necessary in order to apply ZigZag
to an application, this approach is feasible even for third
parties. And, in this case there is no overhead incurred
due to re-instrumentation on each resource load.
On the other hand, it is also possible to deploy ZigZag

as a proxy. In this scenario, network administrators
could transparently protect their users by rewriting all
web applications at the network gateway. Or, individ-
ual users could tunnel their web traffic through a personal
proxy, while sharing generated invariants within a trusted
crowd.

5.3 Limitations

ZigZag’s goal is to defend against attackers that desire to
achieve code execution within an origin, or act on behalf
of the victim. The system was not designed to be stealthy
or protect its own integrity if an attacker manages to gain
JavaScript code execution in the same origin. If attack-
ers were able to perform arbitrary JavaScript commands,
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any kind of in-program defense would be futile without
support from the browser.
Therefore, we presume (as discussed in Section 2.1)

the presence of complementary measures to defend
against XSS-based code injection. Examples of such
techniques that could be applied today include Content
Security Policy (CSP), or any of the number of template
auto-sanitization frameworks that prevent code injection
in web applications [17, 18, 6].
Another important limitation to keep in mind is that

anomaly detection relies on a benign training set of suffi-
cient size to represent the range of runtime behaviors that
could occur. If the training set contains attacks, the re-
sulting invariants might be prone to false negatives. We
believe that access to, or the ability to generate, benign
training data is a reasonable assumption in most cases.
For instance, traces could be generated from end-to-end
tests used during application development, or might be
collected during early beta testing using a population of
well-behaving users. However, in absence of absolute
ground truth, solutions to sanitize training data exist. For
instance, Cretu et al. present an approach that can sanitize
polluted training data sets [12].
If the training set is too small, false positives could oc-

cur. To limit the impact of undertraining, we only gen-
erate invariants for functions if we have more than four
sessions, whichwe found to be sufficient for the test cases
we evaluated. We note that the training threshold is con-
figurable, however, and can easily be increased if greater
variability is observed at invariant checkpoints. Under-
training, however, is not a limitation specific to ZigZag,
but rather a limitation of anomaly detection in general.
With respect to templated JavaScript, while ZigZag

can detect templates of previously observed programs by
generalizing, entirely new program code can not be en-
forced without previous training.
In cases where multiple users share programs instru-

mented by ZigZag, users might have legitimate privacy
concerns with respect to sensitive data leaking into in-
variants generated for enforcement. This can be ad-
dressed in large part by avoiding use of the oneOf invari-
ant, or by heuristically detecting whether an invariant ap-
plies to data that originates from password fields or other
sensitive input and selectively disabling the oneOf invari-
ant. Alternatively, oneOf invariants could be hashed to
avoid leaking user data in the enforcement code.

6 Evaluation

To evaluate ZigZag, we implemented a prototype of
the approach using the proxy deployment scenario. We
wrote Squid [19] ICAPmodules to interpose on HTTP(S)
traffic, and modified the Google Closure compiler [16] to
instrument JavaScript code.

1 // Dispatches received messages to appropriate function
2 if (e.data.action == ’markasread’) {
3 markEmailAsRead(e.data);
4 }
5
6 // Communication with the server to mark emails as read
7 function markEmailAsRead(data) {
8 var xhr = new XMLHttpRequest();
9 xhr.open(’POST’, serverurl, true);

10 xhr.send(’markasread=’ + data.markemail);
11 }
12
13 // Communication with the ad network iframe
14 function sendAds(e) {
15 adWindow.postMessage({
16 ’topic’: ’ads’,
17 ’action’: ’showads’,
18 ’content’: ’{JSON␣string}’
19 }, ”*”);
20 }

Figure 7: Vulnerable webmail component.

1 // Receive JSON object from webmail component
2 function showAds(data) {
3 var received = eval(’(’ + data.content + ’)’);
4 // Work with JSON object...
5 }

Figure 8: Vulnerable ad network component.

Our evaluation first investigates the security benefits
that ZigZag can be expected to provide to potentially
vulnerable JavaScript-based web applications. Second,
we evaluate ZigZag’s suitability for real-world deploy-
ment by measuring its performance overhead over mi-
crobenchmarks and real applications.

6.1 Synthetic Applications
Webmail service. We evaluated ZigZag on the hypo-
thetical webmail system first introduced in Section 2.
This application is composed of three components, each
isolated in iframeswith different origins that containmul-
tiple vulnerabilities. These iframes communicate with
each other using postMessage on window.top.frames.
We simulate a situation in which an attacker is able to

control one of the iframes, and wants to inject malicious
code into the other origins or steal personal information.
The source code snippets are described in Figures 7 and 8.
From the source code listings, it is evident that the

webmail component is vulnerable to parameter injection
through the markemail property. For instance, inject-
ing the value 1&deleteuser=1 could allow an attacker
to delete a victim’s profile. Also, the ad network uses an
eval construct for JSON deserialization. While highly
discouraged, this technique is still commonly used in the
wild and can be trivially exploited by sending code in-
stead of a JSON object.
We first used the vulnerable application through the

ZigZag proxy in a learning phase consisting of 30 ses-
sions over the course of half an hour. From this, ZigZag
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extracted statistically likely invariants from the resulting
execution traces. ZigZag then entered the enforcement
phase. Using the site in a benign fashion, we verified
that no invariants were violated in normal usage.
For the webmail component, and specifically the func-

tion handling the XMLHttpRequest, ZigZag generated
the following invariants.

1. The function is only called by one parent function
2. v0.topic === ’control’
3. v0.action === ’markasread’
4. typeof(v0.markemail) === ’number’

&& v0.markemail >= 0
5. typeof(v0.topic) === typeof(v0.action)

&& v0.topic < v0.action

For the ad network, ZigZag generated the following
invariants.

1. The function is only called by one parent function
2. v0.topic === ’ads’
3. v0.action === ’showads’
4. v0.content is JSON
5. v0.content is printable
6. typeof(v0.topic) === typeof(v0.action)

&& v0.topic < v0.action
7. typeof(v0.topic) === typeof(v0.content)

&& v0.topic < v0.content
8. typeof(v0.action) === typeof(v0.content)

&& v0.action < v0.content

Next, we attempted to exploit the webmail component
by injecting malicious parameters into the markemail
property. This attack generated an invariant violation
since the injected parameter was not a number greater
than or equal to zero.
Finally, we attempted to exploit the vulnerable ad net-

work component by sending JavaScript code instead of a
JSON object to the eval sink. However, this also gen-
erated an invariant violation, since ZigZag learned that
data.content should always be a JSON object – i.e., it
should not contain executable code.
URL fragments. Before postMessage became a

standard for cross-origin communication in the browser,
URL fragments were used as a workaround. The URL
fragment portion of a URL starts after a hash sign. A dis-
tinct difference between URL fragments and the rest of
the URL is that changes to the fragment will not trigger
a reload of the document. Furthermore, while SOP gen-
erally denies iframes of different origin mutual access to
resources, the document location can nevertheless be ac-
cessed. The combination of these two properties allows
for a channel of communication between iframes of dif-
ferent origins.
We evaluated ZigZag on a demo program that com-

municates via URL fragments. The program expects as

1 function getFragment ( ) {
2 return window.location.hash.substring(1);
3 }
4
5 function fetchEmailAddress() {
6 var email = getFragment();
7 document.write(”Welcome␣” + email);
8 // ...
9 }

Figure 9: Vulnerable fragment handling.

input an email address and uses it without proper sani-
tization in document.write. Another iframe could send
unexpected data to be written to the DOM. The code is
described in Figure 9.
After the training phase, we generated the following

invariants for the getFragment function.

1. The function is only called by one parent function
2. The return value is an email address
3. The return value is printable

6.2 Real-World Case Studies
In our next experiment, we tested ZigZag on four real-
world applications that contained different types of vul-
nerabilities. These vulnerabilities are a combination of
previously documented bugs as well as newly discovered
vulnerabilities.1
These applications are representative of different,

previously-identified classes of CSV vulnerabilities. In
particular, Son et al. [9] examined the prevalence of CSV
vulnerabilities in the Alexa Top 10K websites, found 84
examples, and classified them. The aim of this experi-
ment is to demonstrate that the invariants ZigZag gener-
ates can prevent exploitation of these known classes of
vulnerabilities.
For each of the following case studies, we first trained

ZigZag by manually browsing the application with one
user for five minutes, starting with a fresh browser state
four times. Next, we switched ZigZag to the enforcement
phase and attempted to exploit the applications. We con-
sider the test successful if the attacks are detected with no
false alarms. In each case, we list the relevant invariants
responsible for attack prevention.
Janrain. A code snippet used by janrain.com for

user management is vulnerable to a CSV attack. The
application checks the format of the string, but does not
check the origin of messages. Therefore, by iframing the
site, an attacker can execute arbitrary code if the message
has a specific format, such as capture:x;alert(3):.
This is due to the fact that the function that acts as a mes-
sage receiver will, under certain conditions, call a han-
dler that evaluates part of the untrusted message string

1For each vulnerability we discovered, we notified the respective
website owners.
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as code. Both functions were identified as important
by ZigZag’s lightweight static analysis. We note that
this vulnerability was previously reported in the litera-
ture [9]. As of writing, ten out of the 13 listed sites re-
main vulnerable, including wholefoodsmarket.com and
ladygaga.com.
For the event handler, ZigZag generated the following

invariants.

1. The function is only invoked from the global scope
or as an event handler

2. typeof(v0) === ’object’ && v0.origin ===
’https://dpsg.janraincapture.com’

3. v0.data === ’s1’ || v0.data === ’s2’2

4. v0.data is printable

For the function that is called by the event handler,
ZigZag generated the following invariants.

1. The function is only called by the receiver function
2. v0 === ’s1’ || v0 === ’s2’3

The attack is thwarted by restricting the receiver ori-
gin, only allowing two types of messages to be received,
and furthermore restricting control-flow to the dangerous
sink.
playforex.ru. This application contains an incor-

rect origin check that only tests whether the mes-
sage origin contains the expected origin (using in-
dexOf), not whether the origin equals or is a sub-
domain of the allowed origin. Therefore, any ori-
gin containing the string “playforex.ru” such as “play-
forex.ru.attacker.com” would be able to iframe the site
and evaluate arbitrary code in that context. We reported
the bug and it was promptly fixed. However, this is not
an isolated case. Related work [9] has shown that such
a flawed origin check was used by 71 hosts in the top
10,000 websites.
ZigZag generated the following relevant invariants.

1. The function is only invoked from the global scope
or as an event handler

2. typeof(v0) === ’object’
&& v0.origin === ’http://playforex.ru’

3. v0.data === ”$(’#right_buttons’).hide();”
|| v0.data === ’calculator()’

ZigZag detected that the onMessage event handler only
receives two types of messages, which manipulate the UI
to hide buttons or show a calculator. By only accepting
these two types of messages, arbitrary execution can be
prevented.
Yves Rocher. This application does not perform an

origin check on received messages, and all received code
2s1 and s2 were long strings, which we omitted for brevity.
3s1 and s2 were long strings, which we omitted for brevity.

is executed in an eval sink. The bug has been reported
to the website owners. 43 out of the top 10,000 web-
sites had previously been shown to be exploitable with
the same technique. ZigZag generated the following rel-
evant invariant.

1. v0.origin === ’http://static.ak.facebook.
com’ || v0.origin === ’https://s-static.
ak.facebook.com’

From our manual analysis, this program snippet is only
intended to communicate with Facebook, and therefore
the learned invariant above is correct in the sense that it
prevents exploitationwhile preserving intended function-
ality.
adition.com. This application is part of a European

ad network. It used a new Function statement to parse
untrusted JSON data, which is highly discouraged as it
is equivalent to an eval. In addition, no origin check is
performed. This vulnerability allows attackers that are
able to send messages in the context of the site to replace
ads without having full JavaScript execution.
ZigZag learned that only valid JSON data is received

by the function, which would prevent the attack based on
the content of received messages. This is different than
the Yves Rocher example, as data could be transferred
from different origins while still securing the site. The
bug was reported and fixed.
Summary. These are four attacks against CSV

vulnerabilities representative of the wider population.
postMessage receivers are used on 2,245 hosts out of
the top 10,000 websites. Such code is often included
through third-party libraries that can be changed without
the knowledge of website owners.

6.3 Performance Overhead
Instrumentation via a proxy incurs performance over-
head in terms of latency in displaying the website in the
browser. We quantify this overhead in a series of exper-
iments to evaluate the time required for instrumentation,
the worst-case runtime overhead due to instrumentation,
and the increase in page load latency for real web appli-
cations incurred by the entire system.
Instrumentation overhead. We tested the instrumen-

tation time of standalone files to measure ZigZag’s im-
pact on load times. As samples, we selected a range
of popular JavaScript programs and libraries: Mozilla
pdf.js, an in-browser pdf renderer; jQuery, a popular
client-side scripting library; and, d3.js, a library for data
visualization. Where available, we used compressed,
production versions of the libraries. As Mozilla pdf.js
is not minified by default, we applied the yui com-
pressor for simple minification before instrumenting.
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Figure 10: Instrumentation overhead for individual files.
While the initial instrumentation can take a significant
amount of time for large files, subsequent instrumenta-
tions have close to no overhead.

The worker file is at 1.5 MB uncompressed and repre-
sents an atypically large file. Additionally, we instru-
mented a simple function that returns the value of docu-
ment.cookie. We performed 10 runs for cold and warm
testing each. For cold runs, the database was reset after
every run.
Figure 10 shows that while the initial instrumentation

can be time-consuming for larger files, subsequent calls
will incur low overhead.
Microbenchmark. To measure small-scale runtime

enforcement overhead, we created a microbenchmark
consisting of a repeated postMessage invocation where
one iframe (A) sends a message to another iframe (B),
and B responds to A. Specifically, A sends a message
object containing a property process set to the constant
20. B calculates the Fibonacci number for process, and
responds with another object that contains the result.
We trained ZigZag on this simple program and then

enabled enforcement mode. Next, we ran the program in
both uninstrumented and instrumented forms. The sub-
ject of measurement was the elapsed time between send-
ing a message from A to B and reception of the response
from B to A. We used the high resolution timer API win-
dow.performance.now to measure the round trip time,
and ran the test 100 times each. The results of this bench-
mark are shown in Table 2.
ZigZag learned and enforced the following invariants

for the receiving side.

1. The function is only invoked from the global scope
or as an event handler

2. typeof(v0) === ’object’ &&
v0.origin === ’http://example.com’

3. v0.data.process === 20
4. typeof(v0) === typeof(v0.data)

Uninstrumented Instrumented

Average Runtime 3.11 ms 3.77 ms
Standard Deviation 1.80 0.54
Confidence (0.05) 0.11 0.35

Table 2: Microbenchmark overhead.

5. typeof(v0.timeStamp) === typeof(v0.data.
process) && v0.timeStamp > v0.data.process

For the message receiver that calculates the response,
ZigZag learned and enforced the following invariants.

1. The function is only invoked from the global scope
or as an event handler

2. typeof(v0) === ’object’
&& v0.origin === ’http://example.com’

3. typeof(v0.data.process) === ’number’
&& v0.data.process === 20

4. typeof(v0.timestamp) === typeof(v0.data.
process)

Finally, for the receiver of the response, ZigZag
learned and enforced the following invariants.

1. The function is only invoked from the global scope
or as an event handler

2. typeof(v0) === ’object’ &&
v0.origin === ’http://example.com’

3. v0.data.response === 6765
4. typeof(v0) === typeof(v0.data)
5. typeof(v0.timeStamp) === typeof(v0.data.

response) && v0.timeStamp > v0.data.
response

The above invariants represent a tight bound on the al-
lowable data types and values sent across between each
origin.
End-to-end benchmark. To quantify ZigZag’s im-

pact on the end-to-end user experience, we measured
page load times on the Alexa Top 20. First, we manu-
ally inspected the usability of the sites and established a
training set for enforcement mode. To do so, we browsed
the target websites for half an hour each.
We used Chrome to load the site and measure the

elapsed time from the initial request to the window.load
event, when the DOM completed loading (including all
sub-frames).4 The browser was unmodified, with only
one extension to display page load time.
Uninstrumented sites are loaded through the same

HTTP(S) proxy ZigZag resides on, but the program text
4We note, however, that websites can become usable before that

event fires.
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(a) Absolute load times for uninstrumented and instrumented
programs.
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Figure 11: End-to-end performance benchmark on the Alexa 20 most popular websites (excluding hao123.com as it
is incompatible with our prototype). A site is considered to be done loading content when the window.load event is
fired, indicating that the entire contents of the DOM has finished loading.

is not modified. Instrumented programs are loaded from
a ZigZag cache that has been previously filled with in-
strumented code and merge descriptions. However, we
do not cache original web content, which is freshly
loaded every time.
The performance overhead in absolute and relative

terms is depicted in Figure 11. We excluded hao123.com
from the measurement as it was incompatible with our
prototype.5 On average, load times took 4.8 seconds, rep-
resenting an overhead of 180.16%, with median values
of 2.01 seconds and an overhead of 112.10%. We found
server-side templated JavaScript to be popular with the
top-ranked websites. In particular, amazon.com served
15 such templates, and only 6 out of 19 serve no such
templates.

sina.com.cn is an obvious outlier, with an abso-
lute average overhead of 45 seconds. With 115 inlined
JavaScript snippets and 112 referenced JavaScript files,
this is also the strongest user of inline script. Further-
more, we noticed that the site fires the DOMContent-
Loaded event in less than 6 seconds. Hence, the web-
site appears to become usable quickly even though not
all sub-resources have finished loading.
In percentages, the highest overhead of 593.36% is in-

troduced for blogspot.com, which forwards to Google.
This site has the shortest uninstrumented loading time
(0.226 seconds) in our data set, hence an absolute over-
headwill have the strongest implications on relative over-

5We discovered, as others have before, that hao123.com does not
interact well with Squid. We attempted to work around the problem by
adjusting Squid’s configuration as suggested by Internet forum posts,
but this did not succeed. Due to time constraints, we did not expend
further effort in dealing with this particular site.

head. That is, in relative numbers, it seems higher than
the actual impact on end-users.
We note that we measure the load event, which means

that all elements (including ads) have been loaded. Web-
sites typically become usable before that event is fired.
Our research prototype could be further optimized to
reduce the impact of our technique for performance-
critical web applications, for example by porting our
ICAP Python code, including parsing libraries, to an
ECAP C module. However, generally speaking we be-
lieve that trading off some performance for improved se-
curity would be acceptable for high assurance web appli-
cations and security-conscious users.

6.4 Program Generalization
As discussed in Section 3, ZigZag supports structural
similarity matching and invariant patching for templated
JavaScript to avoid singleton training sets and exces-
sive instrumentation when templated code is used. We
measured the prevalence of templated JavaScript in the
Alexa Top 50, and found 185 instances of such code.
In addition, the median value per site was three. With-
out generalization and invariant patching, ZigZag would
not have generated useful invariants and, furthermore,
would perform significantly worse due to unnecessary re-
instrumentation on template instantiations.

6.5 Compatibility
To check that ZigZag is compatible with real web ap-
plications, we ran ZigZag on several complex, benign
JavaScript applications. Since ZigZag relies on user in-
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teraction and the functionality of a complex web applica-
tion is not easily quantifiable, we added manual quantita-
tive testing to augment automated tests. The testers were
familiar with the websites before using the instrumented
version, and we performed live instrumentation using the
proxy-based prototype.
For YouTube and Vimeo, the testers browsed the sites

and watched multiple videos, including pausing, resum-
ing, and restarting at different positions. Facebook was
tested by scrolling through several timelines and using
the chat functionality in a group setting. The testers also
posted to a timeline and deleted posts. For Google Docs,
the testers created and edited a document, closed it, and
re-opened it. For d3.js, the testers opened several of
the example visualizations and verified that they ran cor-
rectly. Finally, the testers sent and received emails with
Gmail and live.com.
In all cases, no enforcement violations were detected

when running the instrumented version of these web ap-
plications.

7 Related Work

In this section, we discuss ZigZag in the context of related
work.
Client-side validation vulnerabilities. CSV vulnera-

bilities were first highlighted by Saxena et al. [3]. In their
work, the authors propose FLAX, a framework for CSV
vulnerability discovery that combines dynamic taint anal-
ysis and fuzzing into taint-enhanced blackbox fuzzing.
The system operates in two steps. JavaScript programs
are first translated into a simplified intermediate language
called JASIL. Then, the JavaScript application under test
is executed to dynamically identify all data flows from
untrusted sources to critical sinks such as cookie writes,
eval, or XMLHttpRequest invocations. This flow in-
formation is processed into small executable programs
called acceptor slices. These programs accept the same
inputs as the original program but are reduced in size.
Second, the acceptor slices are fuzzed using an input-
aware technique to find inputs to the original program
that can be used to exploit a bug. A program is consid-
ered to be vulnerable when a data flow from an untrusted
source to a critical sink can be established.
Later, the same authors improved FLAX by replacing

the dynamic taint analysis component with a dynamic
symbolic execution framework [4]. Again, the goal of
the static analysis is to find unchecked data flows from
inputs to critical sinks. This method provides no com-
pleteness and can hence miss vulnerabilities.
The main difference between ZigZag and FLAX is

that FLAX focuses on detecting vulnerabilities in appli-
cations, while ZigZag is intended to defend unknown vul-
nerabilities against attacks.

DOM-based XSS. Cross-site scripting (XSS) is of-
ten classified as either stored, reflected, or DOM-based
XSS [20]. In this last type of XSS, attacks can be per-
formed entirely on the client-side such that no malicious
data is ever sent to the server. Programs become vul-
nerable to such attacks through unsafe handling of DOM
properties that are not controlled by the server; examples
include URL fragments or the referrer.
As a defense, browser manufacturers employ client-

side filtering, where the state-of-the-art is represented
by the Chrome XSS Auditor. However, the auditor has
shortcomings in regards to DOM-based XSS. Stock et
al. [21] have demonstrated filter evasion with a 73% suc-
cess rate and proposed a filter with runtime taint tracking.
DexterJS [22] rewrites insecure string interpolation

in JavaScript programs into safe equivalents to prevent
DOM-based XSS. The system executes programs with
dynamic taint analysis to identify vulnerable program
points and verifies them by generating exploits. DexterJS
then infers benign DOM templates to create patches that
can mitigate such exploits.
JavaScript code instrumentation. Proxy-based

instrumentation frameworks have been proposed be-
fore [23, 14]. JavaScript can be considered as self-
modifying code since a running program can generate in-
put code for its own execution. This renders complete in-
strumentation prior to execution impossible since writes
to code cannot be covered. Hence, programs must be in-
strumented before execution and all subsequent writes to
program code must be processed by separate instrumen-
tation steps.
Anomaly detection. Anomaly detection has found

wide application in security research. For instance,
Daikon [13] is a system that can infer likely invariants.
The system applies machine learning to make observa-
tions at runtime. Daikon supports multiple programming
languages, but can also be used over arbitrary data as
CSV files. In ZigZag, we extended Daikon with new
invariants specific to JavaScript applications for runtime
enforcement.
DIDUCE [24] is a tool that instruments Java bytecode

and builds hypotheses during execution. When violations
to these hypotheses occur, they can either be relaxed or
raise an alert. The program can be used to help in tracking
down bugs in programs semi-automatically.
ClearView [25] uses a modified version of DAIKON

to create patches for high-availability binaries based on
learned invariants. The focus of the system is to de-
tect and preventmemory corruption through changing the
program code at runtime. However, the embedded mon-
itors do not extend to detecting errors in program logic.
Attacks on the workflow of PHP applications have

been addressed by Swaddler [10]. Not all attacks on sys-
tems produce requests or, more generally, external be-
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havior that can be detected as anomalous. These attacks
can be detected by instrumenting the execution environ-
ment and generating models that are representative of be-
nign runs. Swaddler can be operated in three modes:
training, detection, and prevention. To model program
execution, profiles for each basic block are generated, us-
ing univariate and multivariate models. During training,
probability values are assigned to each profile by storing
themost anomalous score for benign data, a level of “nor-
mality” is established. In detection and prevention mode,
an anomaly score is calculated based on the probability of
the execution data being normal using a preset threshold.
Violations are assumed to be attacks. The results sug-
gest that anomaly detection on internal application state
allows a finer level of attack detection than exclusively
analyzing external behavior.
While Swaddler focuses on the server component of

web applications, ZigZag characterizes client-side be-
havior. ZigZag can protect against cross-domain at-
tacks within browsers that Swaddler has no visibility into.
Swaddler invokes detection for every basic block, while
we use a dynamic level of granularity based on the types
of sinks in the program, resulting in a dramatic reduction
in enforcement overhead.
Client-side policy enforcement. ICESHIELD [26] is

a policy enforcement tool for rules based on manual anal-
ysis. By adding JavaScript code before all other content,
ICESHIELD is invoked by the browser before other code
is executed. Through ECMAScript 5 features, DOM
properties are frozen to maintain the integrity of the de-
tection code. ICESHIELD protects users from drive-by
downloads and exploit websites. In contrast, ZigZag per-
forms online invariant detection and prevents previously
unknown attacks.
ConScript [27] allows developers to create fine-

grained security policies that specify the actions a script
is allowed to perform andwhat data it is allowed to access
or modify. Conscript can generate rules from static anal-
ysis performed on the server as well as by inspecting dy-
namic behavior on the client. However, it requires modi-
fications to the JavaScript engine, which ZigZag aims to
avoid.
The dynamic nature of JavaScript renders a purely

static approach infeasible. Chugh et al. propose a staged
approach [28] where they perform an initial analysis of
the program given a list of disallowed flow policies,
and then add residual policy enforcement code to pro-
gram points that dynamically load code. The analysis of
dynamically loaded code can be performed at runtime.
These policies can enforce integrity and confidentiality
properties, where policies are a list of tuples of disal-
lowed flows (from, to).
Content Security Policy (CSP) [29, 11] is a frame-

work for restricting JavaScript execution directly in the

browser. CSP can be effective at preventing signifi-
cant classes of code injection in web applications if ap-
plied correctly (e.g., without the use of unsafe-inline
and unsafe-eval) and if appropriate rules are enforced.
However, CSP does not defend against general CSV at-
tacks, and therefore we view it and other systems with
similar goals as complementary to ZigZag. In particular,
CSP could be highly useful to prevent code injection and
thereby protect the integrity of ZigZag in the browser.
Web standards. Although Barth et al. [30] made the

HTML5 postMessage API more secure, analysis of web-
sites suggests that it is nevertheless used in an insecure
manner. Authentication weaknesses of popular websites
have been discussed by Son et al. [9]. They showed that
84 of the top 10,000 websites were vulnerable to CSV
attacks, and moreover these sites often employ broken
origin authentication or no authentication at all. Their
proposed defenses rely on modifying either the websites
or the browser.
In ZigZag, we aim for a fine-grained, automated,

annotation-free approach that dynamically secures appli-
cations against unknown CSV attacks in an unmodified
browser.

8 Conclusion

Most websites rely on JavaScript to improve the user ex-
perience on the web. With new HTML5 communica-
tion primitives such as postMessage, inter-application
communication in the browser is possible. However,
these new APIs are not subject to the same origin policy
and, through software bugs such as broken or missing in-
put validation, applications can be vulnerable to attacks
against these client-side validation (CSV) vulnerabilities.
As these attacks occur on the client, server-side secu-
rity measures are ineffective in detecting and preventing
them.
In this paper, we present ZigZag, an approach to au-

tomatically defend benign-but-buggy JavaScript applica-
tions against CSV attacks. Our method leverages dy-
namic analysis and anomaly detection techniques to learn
and enforce statistically-likely, security-relevant invari-
ants. Based on these invariants, ZigZag generates as-
sertions that are enforced at runtime. ZigZag’s design
inherently protects against unknown vulnerabilities as it
enforces learned, benign behavior. Runtime enforcement
is carried out only on the client-side code, and does not
require modifications to the browser.
ZigZag can be deployed by either the website oper-

ator or a third party. Website owners can secure their
JavaScript applications by replacing their programs with
a version hardened by ZigZag, thereby protecting all
users of the application. Third parties, on the other hand,
can deploy ZigZag using a proxy that automatically hard-
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ens any website visited using it. This usage model of
ZigZag protects all users of the proxy, regardless of the
web application.
We evaluated ZigZag using a number of real-world

web applications, including complex examples such as
online word processors and video portals. Our evalua-
tion shows that ZigZag can successfully instrument com-
plex applications and prevent attacks while not impair-
ing the functionality of the tested web applications. Fur-
thermore, it does not incur an unreasonable performance
overhead and, thus, is suitable for real-world usage.
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