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Abstract

Binary analysis facilitates many important applications
like malware detection and automatically fixing vulner-
able software. In this paper, we propose to apply ar-
tificial neural networks to solve important yet difficult
problems in binary analysis. Specifically, we tackle the
problem of function identification, a crucial first step
in many binary analysis techniques. Although neural
networks have undergone a renaissance in the past few
years, achieving breakthrough results in multiple appli-
cation domains such as visual object recognition, lan-
guage modeling, and speech recognition, no researchers
have yet attempted to apply these techniques to problems
in binary analysis. Using a dataset from prior work, we
show that recurrent neural networks can identify func-
tions in binaries with greater accuracy and efficiency than
the state-of-the-art machine-learning-based method. We
can train the model an order of magnitude faster and eval-
uate it on binaries hundreds of times faster. Furthermore,
it halves the error rate on six out of eight benchmarks,
and performs comparably on the remaining two.

1 Introduction

Binary analysis enables many useful applications in
computer security, given the plethora of possible situ-
ations in which the original high-level source code is
unavailable, has been lost, or is otherwise inconvenient
to use. For example, detection of malware, hardening
software against common vulnerabilities, and protocol
reverse-engineering are most useful when the procedures
involved can directly operate on binaries.

The central challenge of binary analysis is perhaps the
lack of high-level semantic structure within binaries, as
compilers discard it from the source code during the pro-
cess of compilation. Malware authors often go a step fur-
ther and obfuscate their output in an attempt to frustrate
any possible analysis by researchers.

Functions are a seemingly basic yet fundamental piece
of structure in all programs, but most binaries come as an
undifferentiated sequence of machine-language instruc-
tions without any information about how parts group
into functions. Therefore, the many binary analysis
techniques which rely on function boundary information
must first attempt to recover it through function identi-
fication. For instance, function identification can assist
the addition of control-flow integrity enforcement to bi-
naries, in restricting jumps appropriately. Similarly, de-
compilers and debuggers need to know the locations of
functions to provide useful output to the user [2].

Several previous works have attempted the function
identification task, ranging from simple heuristics to ap-
proaches using machine learning. The problem might
seem simple at first glance, but Bao et al. showed with
ByteWeight [2], a recently-proposed machine-learning-
based approach, that the simpler techniques used by pop-
ular tools like IDA Pro and the CMU Binary Analysis
Platform have relatively poor accuracy. By construct-
ing signatures of function starts as weighted prefix trees,
ByteWeight greatly improves on the accuracy of function
identification results compared to past work. Neverthe-
less, it leaves much room for improvement, especially
in terms of computational efficiency: the authors report
that training on their dataset of 2,064 binaries required
587 compute-hours, whereas running the method on the
dataset took on the order of several compute-days. Also,
while ByteWeight achieves about 98% accuracy on some
benchmarks, it performs at just 92-93% on some others.

In this paper, we propose a new approach to function
identification leveraging artificial neural networks. First
proposed in the 1940s, artificial neural networks arose
as a simple approximation of interconnected biological
neurons in the central nervous systems of animals, and
have remained an active area of of research since then.
However, in the past few years, neural networks have
experienced a significant surge in popularity (often un-
der the name “deep learning”), largely been driven by
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new empirical results. The vastly larger amounts of pro-
cessing power and storage available today enabled re-
searchers to train much larger networks containing many
more stages of processing (hence the “deep” appellation)
and parameters than before, making full use of the mas-
sive labeled datasets available today; these factors have
led to repeated breakthroughs in benchmarks of the com-
puter vision and speech recognition communities, among
others.

We note some attractive features of neural networks.
First, they can learn directly from the original represen-
tation with minimal preprocessing (or “feature engineer-
ing”) needed. As an example, the preprocessing for im-
ages might discard information about the precise shad-
ing of objects; for binaries, Bao et al. disassembles the
code into instructions and removes immediate operands
from them. Second, neural networks can learn end-to-
end, where each of its constituent stages are trained si-
multaneously in order to best solve the end goal. In con-
trast, other state-of-the-art approaches to tasks like ma-
chine translation or question answering use pipelines of
discrete components trained separately at an unrelated
task, such as parsers or part-of-speech taggers. Empir-
ical evidence suggests that end-to-end learning enables
each stage to directly learn the intermediate representa-
tions necessary to solve the task, with less need for pre-
conceived notions (such as syntax trees) about what they
should look like.

Given the success that neural networks have shown in
other applications, we raise the question of whether they
would also prove adept at problems in binary analysis,
such as function identification. Our search turned up no
other works which attempted using neural networks to
solve problems in binary analysis. Nevertheless, our ex-
perimental results show that they can successfully solve
the function identification task accurately and efficiently.
If the experience in other fields can serve as a guide, they
may also prove useful for more complicated tasks in pro-
gram and binary analysis, especially for those which re-
quire complicated modeling or analysis difficult to spec-
ify by hand. Furthermore, advances with neural networks
in other applications might prove directly adaptable and
lead to “free” gains in performance; this work certainly
relies on general advances within neural networks tar-
geted at entirely different applications.

With our proposed solution, we train a recurrent neu-
ral network to take bytes of the binary as input, and pre-
dict, for each location, whether a function boundary is
present at that location. We found that we did not need
to perform any preprocessing, such as disassembly or
normalization of immediates, in order to obtain good re-
sults. We evaluate our approach using the dataset pro-
vided by Bao et al. [2], enabling a direct comparison.
We found that recurrent neural networks can learn much

more efficiently than ByteWeight, which reported using
587 compute-hours; we can train on the same dataset
in 80 compute-hours, while achieving similar or better
accuracy. Testing the method on the dataset takes only
about 43 minutes of computation, whereas Bao et al. [2]
reported needing over 2 weeks.

In the rest of the paper, we first precisely define the
problem at hand. We explain the necessary background
in neural networks, and describe the particular architec-
ture we chose to use for our method. We give the re-
sults of our empirical evaluation, describe some related
works in the areas of function identification and neural
networks, and then conclude with some discussion.

We make the following contributions in this paper:

• We find that neural networks are a viable approach
towards solving some problems in binary analysis.

• In particular, we show that recurrent neural net-
works can solve the function identification problem
more efficiently than the previous state-of-the-art,
as shown by empirical evaluation on a dataset con-
sisting of multiple operating systems, architectures,
compilers, and compiler options.

• We describe the challenges we faced in correctly ap-
plying neural networks to this problem, and how to
address them.

2 Problem Definition

We first define notation so that we can precisely define
the function identification task that we address in this
paper. We then provide a formal definition of function
identification.

2.1 Notation
We concern ourselves with the machine code contained
within a program binary or library. A typical exe-
cutable contains many different sections containing var-
ious information in addition to the code: for example,
dynamically-linked libraries to load, constant strings,
and statically-allocated variables, all of which we ignore.

We treat the code C itself as a sequence of bytes
C[0],C[1], · · · ,C[l], where C[i] ∈ Z256 is the ith byte in
the sequence. We denote the n functions in the binary
as f1, · · · , fn. We label the indices of the bytes of code
which belong to each function fi (i.e., the bytes corre-
sponding to instructions which might get executed while
running that function) as fi,1, · · · , fi,li , where li is the to-
tal number of bytes in fi. Without loss of generality, we
assume fi,1 < fi,2 < · · ·< fi,k. Each byte may belong to
any number of functions, and functions may contain any
set of bytes, contiguous or not.

2
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Note that we defined the code and functions as sets
of bytes rather than instructions. In the x86 and x86-
64 ISAs, a sequence of bytes can have many plausible
instruction decodings depending on the offset at which
decoding begins; therefore each byte might belong to a
handful of possible instructions. Working in terms of
bytes allows us to avoid this ambiguity.

2.2 Task definition
Let us assume that we have access the code C of a binary,
but no information about the functions f1, · · · , fn within
the code. We define the following tasks:

• Function start identification: Given C, find
{ f1,1, · · · , fn,1}. In other words, recover the location
of the first byte of each function.

• Function end identification: Given C, find
{ f1,l1 , · · · , fn,ln}. In other words, find the bytes
where each of the n functions in the binary ends.
The length of each function is not given.

• Function boundary identification: Given C, find
{( f1,1, f1,l1) · · · ,( fn,1, fn,ln)}. In other words, dis-
cover the location of the first and last byte within
each function. This task is more than a simple com-
bination of function start and end identification. If
the starts and ends of functions have been identi-
fied separately, they need to be paired correctly so
that each pair contains the start and end of the same
function.

• General function identification: Given C, find
{( f1,1, f1,2, · · · , f1,l1) · · · ,( fn,1, fn,2, · · · fn,ln)}; i.e.,
determine the number of functions in the file, and
all of the bytes which make up each function.

Function boundary identification is a superset of func-
tion start and end identification, whereas general func-
tion identification is a superset of all other tasks. In this
paper, we attempt the first three problems, and leave the
fourth to future work.

2.3 Metrics
To evaluate results from the model, we use the precision,
recall, and F1 metrics. They have the following defini-
tions:

Precision =
TP

TP+FP

Recall =
TP

TP+FN

F1 =
2 ·Precision ·Recall
Precision+Recall

where TP is the number of true positive predictions, FP
is the number of false positive predictions, and FN is the
number of false negative predictions. The F1 score is the
harmonic mean of precision and recall and allows us to
conveniently compare different results using one number.

Since most bytes within a program do not begin or end
functions, these metrics can give a better picture of the
effectiveness of the model than the simple accuracy met-
ric. For example, predicting that there exists no func-
tions in the code would give greater than 99.9% accu-
racy, since fewer than 0.1% of the bytes begin or end a
function. The accuracy metric does not reveal that these
predictions would be mostly useless. In contrast, the 0%
recall these predictions would achieve makes it clear.

2.4 Examples

In Figure 1, we show an example of a short C function
and its corresponding binary code after compilation at
two different optimization levels.

The code in Figure 1b contains very clear markers of
function start and end: the function prologue of push
%rbp and mov %rsp,%rbp saves the caller’s stack frame,
and the function ends with retq which occurs nowhere
else within the function. In contrast, Figure 1c does not
use the stack at all, so the function begins with some ac-
cesses to the function arguments passed in edi and esi;
looking for push %rbp would fail. Moreover, similar
accesses to arguments occur again within the body of the
function, making it difficult to solely rely on that as a
marker of the function start. Likewise, retq occurs twice
within the code, and so predicting a function end when
we see this instruction would fail.

This example gives an instance of why function iden-
tification can pose much difficulty, with simple heuristics
unlikely to suffice, contrary to what intuition might sug-
gest.

3 Background

In this section, we describe what neural networks are and
how they are trained. In particular, we focus on the var-
ious forms of recurrent neural networks, which are the
class of model we use for our method.

3.1 Multi-layer perceptrons

A multi-layer perceptron (MLP), also referred to as a
feedforward neural network, is a function L : Rs → Rt

parameterized in a particular way. As its name implies,
a multi-layer perceptron consists of multiple layers Li,

3
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int mul_inv(int a, int b) {
int b0 = b, t, q;
int x0 = 0, x1 = 1;
if (b == 1) return 1;
while (a > 1) {

q = a / b;
t = b, b = a % b, a = t;
t = x0, x0 = x1 - q * x0, x1 = t;

}
if (x1 < 0) x1 += b0;
return x1;

}

(a) A C function which computes the
modular multiplicative inverse.

00000000004005a1 <mul_inv>:
4005a1: push %rbp
4005a2: mov %rsp,%rbp
4005a5: mov %edi,-0x24(%rbp)
4005a8: mov %esi,-0x28(%rbp)
4005ab: mov -0x28(%rbp),%eax

...
400615: jns 40061d <mul_inv+0x7c>
400617: mov -0xc(%rbp),%eax
40061a: add %eax,-0x8(%rbp)
40061d: mov -0x8(%rbp),%eax
400620: pop %rbp
400621: retq

(b) Compiled with gcc -O0.

0000000000400830 <mul_inv>:
400830: cmp $0x1,%esi
400833: mov %edi,%eax
400835: je 400878 <mul_inv+0x48>
400837: cmp $0x1,%edi
40083a: jle 400878 <mul_inv+0x48>
40083c: mov %esi,%ecx
40083e: mov $0x1,%r8d
400844: xor %edi,%edi
400846: jmp 400855 <mul_inv+0x25>
400848: nopl 0x0(%rax,%rax,1)
40084f:

...
400869: jg 400850 <mul_inv+0x20>
40086b: add %edi,%esi
40086d: mov %edi,%eax
40086f: test %edi,%edi
400871: cmovs %esi,%eax
400874: retq
400875: nopl (%rax)
400878: mov $0x1,%eax
40087d: retq
40087e: xchg %ax,%ax

(c) Compiled with gcc -O3. Function
ends at 40087d; 40087e is padding be-
tween this function and the next one.

Figure 1: An example function in C (taken from http://rosettacode.org/wiki/Modular_inverse#C), and its
corresponding machine code (with uninteresting parts omitted for brevity). The function was compiled using GCC
4.9.1 on Linux x86-64. The -O3 version does not contain a conventional function prologue and epilogue which
manipulates the stack or frame pointer.

each of which computes

Li : Rmi−1 → Rmi

G : R→ R
Li(x) = G(Wix+bi)

Wi ∈ Rmi×mi−1

bi ∈ Rmi

then the entirety (consisting of k layers) is simply these
layers composed together:

L(x) = Lk(Lk−1(· · ·(L1(x))))

m0 = s

mk = t

with the dimensions of the output of one layer matching
the dimensions of the input of the subsequent layer. The
mi are the dimensionality of the input and the ultimate
output of the network, as well as the intermediates pro-
duced by each of the layers.

The term “layer” is often used to refer to not the pa-
rameters of the functions Li, but the inputs or outputs of
these functions. In turn, each element of the inputs or
outputs of the functions are often called “units”, or by
analogy, “neurons”.

In this definition, G is referred to as an activation func-
tion or nonlinearity, and computed separately for each el-
ement. Without the activation function, L would simply

be an affine function which we could write as Wx+ b,
which does not enable the expressivity that we need.
Common nonlinearities are the logistic sigmoid function
and the hyperbolic tangent function:

σ(x) =
1

1+ e−x

tanh(x) =
e2x −1
e2x +1

which have the ranges of (0,1) and (−1,1), respectively.
Usually, the final layer will have no activation function

because we do not wish to bound the output to a limited
range, or a softmax function if we want to use the MLP
as a multi-class classifier, so that we can interpret the
values as a probability distribution. The softmax function
is computed as follows:

S(x)i =
exi

∑n
k=1 exk

Note that unlike the other activation functions, it does
not operate elementwise. Due to the normalization term
in the denominator, S(x) sums to 1. A multi-layer per-
ceptron consisting of one layer with a softmax activation
function is equivalent to multi-class logistic regression.

3.2 Loss functions
Now that we have defined multi-layer perceptrons as a
class of parameterized functions, we need a method to

4
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find appropriate parameters so that the neural network
does what we want. First, we define a loss function in
order to quantify how much differently the network be-
haves from our target. A common loss function is the
squared Euclidean distance:

d(y, ŷ) = ‖y− ŷ‖2
2

where y is the “true” output and ŷ is the one produced by
the neural network.

In the multi-class classification case, if y is the correct
class and π(x) is the probability distribution produced
by the neural network, then we can use the negative log
probability:

d(y,π(x)) =− logπ(x)y

Usually, we will have a list of correct input-output
pairs (x1,y1), · · · ,(xn,yn) for the purpose of training the
network. Then we can seek to minimize the mean of the
losses, or 1

n ∑n
i=1 d(yi, f (xi)). We use this type of loss

function throughout this paper.

3.3 Gradient descent and backpropagation
To minimize the loss, and therefore obtain a neural net-
work which performs our desired function, we can con-
sider various standard optimization methods. Specifi-
cally, we wish to minimize D defined as such:

θ = (W1,b1, · · · ,Wk,bk)

D(θ) =
1
n

n

∑
i=1

d(yi, fθ (xi))

min
θ

D(θ)

A typical way to minimize differentiable functions is
gradient descent, which works by repeated applications
of the following update:

θ ′ = θ −α · ∂D(θ)
∂θ

where α is generally a small number. Intuitively, the
derivative allows us to analytically determine which di-
rection we should move in within each dimension of θ
to reduce the value of F . Subtracting a small multiple of
the gradient performs this function.

If D is convex, this procedure is guaranteed to con-
verge at the optimal value of θ given appropriate choices
of α . Many machine learning models and classifiers in-
volve optimizing a convex function in a similar way. Un-
fortunately, neural networks are generally non-convex in
its parameters, allowing for a richer class of possible
functions, but which means that these theoretical guar-
antees do not hold. Instead, the procedure may lead us to

a local optimum or a saddle point where the derivative is
zero.

We now need the derivative of D. Estimating the
derivative numerically seems a simple and straightfor-
ward solution, but it is a highly inefficient one requir-
ing as many evaluations of D as the dimensionality of
θ . Instead, we can use a method called backpropagation
to compute the derivative analytically. We describe the
details of backpropagation in Section A.

3.4 Recurrent neural networks
While multi-layer perceptrons can approximate a wide
variety of functions, they can only operate on inputs of
fixed size and produce an output of fixed size. In princi-
ple, given a large input, we could divide it into fixed-size
pieces and give them separately to a multi-layer percep-
tron. However, the output of each piece depends only
on that input piece, and we cannot represent any depen-
dencies between parts of the input in one piece and the
output for a different piece.

Recurrent neural networks are one paradigm for ad-
dressing this conundrum, and map sequences to se-
quences (recursive neural networks, which have the same
initialism, are an alternative developed for computing on
trees).

We can formally define them in the following way:

L : Rm ×Rn → Rn

G : R→ R
L(x,h) = G(Whxx+Whhh+b)

Whx ∈ Rn×m

Whh ∈ Rn×n

b ∈ Rn

Given an input sequence (x1, · · · ,xT ) (where xi ∈ Rm), we
compute (h1, · · · ,hT ) like this:

h0 = 0
h1 = L(x1,h0)

...
hT = L(xT ,hT−1)

Note that the operation on each elements uses the same
weights. Nevertheless, the use of h enables the network
to remember information from past elements to use while
processing the current element, and propagate informa-
tion into the future.

We can use the hts as inputs to another recurrent neural
network, or apply to them a linear transformation possi-
bly with a softmax activation function (as done in the
final layer of a multi-layer perceptron):

yi = S(Wyhht +b)

5
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To define a loss function for a recurrent neural net-
work, we can apply a loss function for a multi-layer per-
ceptron separately to each input-output pair within the
sequence and simply sum the losses together:

d(y, ŷ) =
T

∑
i=1

d(yt , ŷt)

The input and output sequences of a recurrent neural
network need not have the same lengths. For instance,
we might allow an arbitrary number of inputs but only
one output to summarize the contents of the input in
some way. In this case, we can simply adjust the loss
function to only compute the loss at the relevant parts of
the output sequence. We can also train a recurrent neural
network to map an input sequence to an arbitrary num-
ber of output symbols, if we run the network to obtain
some number of outputs until it produces a special ‘stop’
output.

As with the multi-layer perceptron, we would like to
learn appropriate parameters so that the recurrent neu-
ral network parameterized with them computes a desired
function, using gradient descent. We can compute the
derivative of the RNN with respect to its parameters in
the same way as earlier. In particular, we can unroll
the RNN so that it becomes a long feedforward neu-
ral network which computes on a fixed-length sequence,
and compute the gradient for this network using an ap-
propriate loss function with backpropagation. After un-
rolling, note that the time-dependent layers should share
the same weights This procedure is also called backprop-
agation through time [16].

3.5 Limitations of recurrent neural net-
works

In this section, we point out some limitations of recurrent
neural networks which can limit their usefulness.

As specified in this paper, recurrent neural networks
cannot compute for an arbitrary number of timesteps be-
fore computing the answer. For example, RNNs can eas-
ily compute the parity of an arbitrarily long stream of
bits [15], as this requires a constant number of operations
per input. In contrast, we can reason that a RNN could
not multiply numbers of arbitrary size, as multiplication
is a O(n2) operation on the length of the numbers [22].

Also, h has a fixed size which we cannot easily adapt
if necessary in order to store more information. For ex-
ample, previous works have shown success with using
RNNs for machine translation, in which the RNN first
reads a sentence in the source language and stores its
meaning in h before producing the corresponding words
in the target language using the information in h. While
we can pick a size for h such that it has enough capacity

to store information on a typical-length sentence, we can
imagine that this scheme would break down for a sen-
tence of sufficient length.

The most-studied limitation revolves around difficul-
ties in training a recurrent neural network, due to what
are referred to as the vanishing gradient and exploding
gradient problems [16]. Consider that

∂hv

∂ht
= ∏

v≥i>t

∂hi

∂hi−1
= ∏

v≥i>t
WhhG′(hi−1)

The repeated multiplication with Whh (v− t times) can
cause ∂hv

∂ht
to grow exponentially large (“explodes”) or go

to 0 (“vanishes”) depending on whether the largest eigen-
value of Whh is greater or smaller than 1. Therefore, an
input will often have a very large or vanishingly small ef-
fect on an output which occurs far in the future, in terms
of the gradient computation. For exploding gradients, a
simple solution involves rescaling the gradient to a fixed
norm if its magnitude is too large. On the other hand,
dealing with vanishing gradients can prove more chal-
lenging.

3.6 Long Short-Term Memory and Gated
Recurrent Units

To avoid the exploding and vanishing gradient problems
with recurrent neural networks, previous work has pro-
posed RNN architectures carefully designed to remove
the long-range multiplicative characteristics of RNNs
which lead to these problems.

Long Short-Term Memory (LSTM), one of these ar-
chitectures, have enabled impressive empirical results in
areas such as speech recognition, machine translation,
and image captioning. Within this model, the state which
propagates through time has no multiplicative updates at
each step; instead, it is stored in a memory cell ct which
receives additive updates, combined with a mechanism
for erasing irrelevant information from the previous time
step. The “input modulation gate” (g) and the “forget
gate” ( f ), respectively, control whether the memory cell
receives the additive update or discards (some part of the)
previous memory cell contents.

Following the notation in Zaremba et al. [23], we can
formally define the LSTM:

xt ,ht−1,ct−1 → ht ,ct

i = σ(Wxixt +Whiht−1)

f = σ(Wx f xt +Wh f ht−1)

o = σ(Wxoxt +Whoht−1)

g = tanh(Wxgxt +Whght−1)

ct = f � ct−1 + i�g

ht = o� tanh(ct)

6
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Here, � represents element-wise multiplication.
In principle, these gates enable the gradient to propa-

gate across long time scales, since the LSTM can ignore
irrelevant inputs through the input modulation gate, re-
member information only until necessary using the for-
get gate, and output only relevant information using the
output gate. When the forget gate is “open”, i.e. close
to 1, then the gradient will propagate mostly unchanged.
The input and output at each time step only influences
the gradient when the corresponding gates are open.

Gated Recurrent Units (GRU) have been proposed
more recently as a simpler alternative to LSTMs, while
sharing the same goals of avoiding the long-range depen-
dency problems that have plagued RNNs. The main dif-
ferences lie in that there exists no separate memory state
ct from the hidden state ht , and the network exposes the
entire hidden state at each time step. The forget gate in-
terpolates between the previous hidden state and the new
input i, with no separate input modulation gate. Instead,
g modulates the amount of influence the previous hidden
state has on i.

We define the GRU formally:

xt ,ht−1 → ht

g = tanh(Wxgxt +Whght−1)

i = tanh(Wxixt +Whi(g�ht−1))

f = σ(Wx f xt +Wh f ht−1)

ht = f �ht−1 +(1− f )� i

While the GRU theoretically lacks some of the flexi-
bility provided by the LSTM, it is both simpler to imple-
ment and easier to compute, requiring about half as many
calculations in each time step compared to the LSTM.

4 Methods

In this section, we describe how we built upon the back-
ground in Section 3 to perform the task of function iden-
tification.

4.1 Basic architecture
Our simplest architecture uses a recurrent neural net-
work, described in Section 3.4, to process each byte and
and output a decision for that byte as to whether it begins
a function or not.

Recall that neural networks, as we have defined them,
take real-valued vectors Rm as input, containing m real
values. In contrast, a byte is a single 8-bit integer, which
can have one of 256 (= 28) possible values. We cannot
input a byte into the neural network directly and need to
convert them into a real-valued vector.

Converting the 8-bit integer into a single floating-point
number to input into the neural network might seem like

a reasonable solution; however, neural networks process
their inputs by multiplying them with the weight param-
eters, which only makes sense when the input values rep-
resent intensities (like brightness or loudness).

Instead, we use “one-hot encoding”, which converts a
byte into a R256 vector (since a byte can have 256 distinct
values) where exactly one of the values is 1 and all others
are 0. The byte’s identity determines the location of the
1 within the vector. For example, a NUL byte (0) would
be represented as

[1 0 · · · 0︸ ︷︷ ︸
255 elements

].

and a nop in x86 (0x90, or 144) would be

[ 0 · · · 0︸ ︷︷ ︸
144 elements

1 0 · · · 0︸ ︷︷ ︸
111 elements

].

Multiplying a matrix A with a one-hot vector x is
equivalent to extracting a column from A. In our case,
the RNN multiplies a parameter matrix Whx ∈ Rm×256

with the one-hot input x, which is equivalent to select-
ing a column from Whx. Effectively, each byte of input is
represented with a h-dimensional vector during computa-
tion of the RNN, with the precise representation learned
during training of the neural network. Such a mapping
is often referred to as an embedding. Such embeddings
have proved useful in other fields such as natural lan-
guage processing, with embeddings of words into high-
dimensional spaces showing interesting properties.

We could have instead considered encoding the byte
as a R8 vector, with the elements corresponding to the
eight bits and having values of 0 or 1. However, this rep-
resentation imposes the constraint that the embedding of
a particular byte is the sum of the embeddings of its con-
stituent bits, even though the bits do not have composi-
tional meaning in typical binary code. We do not further
discuss this approach in the paper.

We want our output to serve as a binary classifier at
each byte position. We use the softmax function to pro-
duce a probability distribution over whether the byte be-
gins (or ends) a function or not. During training, the loss
function sums over the error at each position within the
sequence. The error at each position is the negative log
of the probability that the neural network assigned to the
correct answer. We penalize each false positive and false
negative equally, without a weighting to discourage one
at the expense of the other.

4.2 Optimization with stochastic gradient
descent and rmsprop

In the beginning, we initialize the weights of the neural
network randomly, uniformly drawn from a small range

7
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Figure 2: A depiction of the basic architecture of our
approach.

near 0. A normal distribution with small variance and
mean 0 also sees much use for this purpose. Having the
proper initialization can prove crucial to whether we can
successfully learn useful parameters for the neural net-
work. We do not initialize the weights to 0, as this leaves
the loss function on a saddle point and prevents optimiza-
tion.

Recall the form of the loss function from Section 3. If
we have N different items in the training data, then the
loss function for the network requires evaluating the net-
work over all training examples, since it takes the form

1
N

N

∑
i=1

d(yi, ŷi).

Due to how backpropagation works, computing the gra-
dient also requires evaluating the network on all training
data. Since we need to compute the gradient a very large
number of times during optimization, we would like to
avoid performing such an expensive step as a part of it.

Instead of computing the loss over all N items, we
can instead compute it over a randomly-selected one at
a time. The expectation of the gradient computed in this
way equals the gradient averaged over all N examples.
Optimization using these gradients is called stochastic
gradient descent. It is possible to show that given a
well-behaved convex function, stochastic gradient de-
scent will find the minimum value. Even in the case of
neural networks, where we lack such theoretical guaran-
tees, experience shows that stochastic gradient descent
can work quite well; in fact, since computing each gra-
dient takes much less time, results show that stochastic
gradient descent allows for much faster convergence in
practice.

The most elementary gradient descent methods pre-
scribe changing the parameters in the direction of the
gradient each iteration, but optimization of some kinds of
functions can benefit from moving in a slightly different
direction. Consider a two-dimensional function, which
when graphed looks like an elliptical bowl. Then along
the axis in which we are closest to the minimum point,
the gradient will have the largest magnitude, as the sur-
face of the bowl is steeper in that direction, even though
we should move further in the other axis and only a little
bit in this one.

In this work, we use a method called rmsprop [19]; it
involves keeping a running average of the magnitude of
each dimension in the gradients seen so far. It then scales
each dimension in the gradient, enlarging the dimensions
which have a small average and shrinking those which
have a large one. This follows the intuition given in the
previous paragraph about the elliptical bowl.

We also scale the entire gradient each time by a step
size. If the step size is too big, then the optimiza-
tion might fail as the value of the function does not de-
crease; if the step size is too small, then optimization will
progress slowly or get stuck at a local minimum. Often it
makes sense to reduce the learning rate over time, since
in the beginning we expect radically-incorrect weights
(given their random initialization), whereas after some
iterations, the weights should have nearly reached an op-
timum value. For our experiments, we scaled the learn-
ing rate by the inverse square root of the current iteration
number (i.e., halved after 4 iterations, quartered after 16
iterations, and so on), which we found to work well.

4.3 Training with mini-batches
In stochastic gradient descent, we compute the gradient
of the weights with respect to only one example in each
iteration. However, this can cause a large variance in the
gradients since each example might significantly differ
from one to the next. So instead of computing the gradi-
ent over only one example at a time, it can help to average
the gradients from a small number of examples, called a
mini-batch.

While this increases the time needed for each iteration,
it does so more modestly than it may initially seem. Eval-
uating the neural network with a single example involves
a large number of matrix-vector multiplications, so we
can efficiently and simultaneously evaluate for many ex-
amples by replacing these with matrix-matrix multipli-
cations, especially when using highly-optimized linear
algebra libraries.

In our application, since each example is a sequence
of bytes from a binary, one might vary in length from
another. However, to compute with mini-batches effi-
ciently, we need to pack the examples together into a ma-
trix or tensor with padding to extend too-short examples.
Then all examples get evaluated for the same number of
time steps, so it helps to put examples of similar length
together in a mini-batch to avoid wasted computation.
Also, we need to take care as to avoid computing the loss
over those parts of the mini-batch added as padding.

4.4 Data preparation
For the task of function identification, we can intuitively
expect that solving the problem likely does not require
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Figure 3: A bi-directional RNN. Note the horizon-
tal arrows pointing in both directions. The forward-
propagated and backward-propagated hidden states, rep-
resented by the overlapping squares, do not directly in-
teract with each other. However, computing the output
uses a concatenation of the two states.

remembering information from hundreds of thousands of
bytes in the past or in the future. Code calling other func-
tions can occur far away from the location of that func-
tion, and theoretically, we might track such references
to help determine where functions occur. In practice,
functions typically perform some series of steps at entry
and exit, the patterns for which we can learn and should
largely suffice for detecting functions.

Therefore, we use fixed-length subsequences taken
from binaries instead of entire binaries themselves. Ex-
cept in rare cases where functions occur near the bound-
ary of the subsequence, there should be enough infor-
mation to make the determination of the existence of a
function or not. Similar to how stochastic gradient de-
scent enables faster convergence by speeding up each
update, computing the gradient on truncated sequences
takes much less time and enables faster iterations.

We also try reversing the order of bytes in the input
before providing it to the neural network, under the intu-
ition that the function prologue, which identifies the be-
ginning of a function and makes it recognizable as such,
occurs after the position where we want to predict the be-
ginning of a function. Since the RNN only has access to
bytes from before the current position, not after, revers-
ing the order should help the RNN learn.

4.5 Bi-directional RNNs
With the recurrent neural networks discussed in Sec-
tion 3.4, the output at each time step depends only on
the inputs which occur at that time step or before. This
model makes sense in some applications where there ex-
ists an inherent temporal component to the input; for ex-
ample, in real-time speech or handwriting recognition.
For binary analysis, we have access to the entire binary
at once, so there exists no need to confine ourselves in
this way.

An extension which allows access to both the past and
the future in making a prediction for the present is to
combine two recurrent neural networks, one which oper-
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Figure 4: A multi-layer RNN with three bi-directional
hidden layers. In the second and third layers, both
the forward-propagated and backward-propagated states
have access to either state from the previous layer.

ates from the beginning of the sequence to the end, and
another which operates in the other direction. Figure 3
illustrates the approach.

In terms of graphical models, we could say that reg-
ular (unidirectional) RNNs behave like hidden Markov
models, where the hidden state at each time step depends
on only the hidden state of the previous time step. Then
bidirectional RNNs are analogous to a chain conditional
random field, since the hidden state there relates to the
hidden states of both the previous and next time steps.

4.6 Multi-layer RNNs
The approaches we have described so far contain only
one hidden layer. Depending on the complexity of the
pattern we wish to learn, a single hidden layer may prove
insufficient due to its limited capacity. If we limit our-
selves to one hidden layer, achieving good results may
require a very large one, which can significantly increase
the amount of processing power required.

In other applications of neural networks like computer
vision and speech recognition, using many smaller hid-
den layers has worked better than using one hidden layer
of larger size. During the evaluation, we empirically ver-
ify the results of using one versus multiple hidden layers.
Figure 4 illustrates an example architecture.

5 Evaluation

In this section, we describe the empirical results we ob-
tained from training a variety of different models on a
dataset of binaries. We seek to answer the following
questions:

• Can recurrent neural networks successfully solve
the problem of function identification in binaries?

• How much computational power do recurrent neu-
ral networks require for solving this task?

9
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ELF x86 ELF x86-64 PE x86 PE x86-64
Number of binaries 1,032 1,032 68 68

Number of bytes 138,547,936 145,544,012 29,093,888 33,351,168
Number of functions 303,238 295,121 93,288 94,548

Average function length 448.84 499.54 292.85 330.03

Table 1: Characteristics of the binary dataset used for evaluation.

ELF x86 ELF x86-64
P R F1 P R F1

ByteWeight (func. start) 98.41% 97.94% 98.17% 99.14% 98.47% 98.80%
Our models (func. start) 99.56% 99.06% 99.31% 98.80% 97.80% 98.30%
Our models (func. end) 98.69% 97.87% 98.28% 97.45% 95.03% 96.22%

PE x86 PE x86-64
P R F1 P R F1

ByteWeight (func. start) 93.78% 95.37% 94.57% 97.88% 97.98% 97.93%
Our models (func. start) 99.01% 98.46% 98.74% 99.52% 99.09% 99.31%
Our models (func. end) 99.24% 98.35% 98.79% 99.28% 99.20% 99.24%

Table 2: Function start and end identification: summary of our best results, and comparison with previous work. “P”
is precision and “R” is recall. Results of previous work comes from Table 3 of Bao et al. [2]; they did not attempt to
identify function ends independently, so we lack those results here.

• How do variations in the model’s design affect the
performance?

We ran our experiments on Amazon EC2 using
c4.2xlarge instances, each of which contains 8 cores
of a 2.9 GHz Intel Xeon processor and 15 GB of RAM.

5.1 Dataset

Our dataset comes from Bao et al. [2], consisting of
2200 separate binaries. 2064 of the binaries were for
Linux, obtained from the coreutils, binutils, and
findutils packages. The remaining 136 for Windows
consist of binaries from popular open-source projects.
Half of the binaries were for x86, and the other half for
x86-64. Half of the Linux binaries were compiled with
Intel’s icc, while the other half used gcc. The binaries
for Windows were compiled using Microsoft Visual Stu-
dio. Each binary was compiled with one of four different
optimization levels. Table 1 summarizes some statistics
from the dataset.

Following the procedure in Bao et al. we trained a sep-
arate model for each of the four (architecture, OS) con-
figurations. To report comparable results, we also use 10-
fold cross-validation as in Bao et al.; we train ten models
for each of the four configurations, where each of the ten
models uses a different 10% of the binaries as the testing
set.

5.2 Implementation

We implemented our models in Python using Theano [4],
a linear algebra and automatic differentiation library de-
signed to aid in implementation of machine learning and
optimization methods. In Theano, we specify our model
as operations on symbolic variables, allowing for con-
struction of a computation graph that describes the op-
erations necessary to compute the result. It can convert
this graph into C/C++ code and automatically compute
partial derivatives of functions through application of the
chain rule.

While Theano can also compile code for use on the
GPU, we only used the CPU in our experiments for sim-
pler implementation. Also, while both training and eval-
uation of RNNs are amenable to parallelization, we also
did not use multi-threading for our experiments, and in-
stead ran an independent experiment on each core.

5.3 Summary of results

Tables 2 and 3 summarize our main experimental results.
In both tables, we compare to the results as reported by
Bao et al. [2], which are marked as “ByteWeight”.

For the function start identification problem, our meth-
ods consistently obtain F1 scores in the range of 98-99%.
This is in line with the results from Bao et al., except on
the PE x86 dataset where we improve by about 4 per-
centage points in F1 score.

For function boundary identification, we trained two
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ELF x86 ELF x86-64
P R F1 P R F1

ByteWeight 92.78% 92.29% 92.53% 93.22% 92.52% 92.87%
Our models 97.75% 95.34% 96.53% 94.85% 89.91% 92.32%

PE x86 PE x86-64
P R F1 P R F1

ByteWeight 92.30% 93.91% 93.10% 93.04% 93.13% 93.08%
Our models 97.53% 95.27% 96.39% 98.43% 97.33% 97.88%

Table 3: Function boundary identification: summary of our best results, and comparison with previous work. “P” is
precision and “R” is recall.

ELF x86 ELF x86-64 PE x86 PE x86-64
Our models (func. boundary) 1061.76 s 1017.90 s 236.93 s 264.50 s
ByteWeight (func. start only) 3296.98 s 5718.84 s 10269.19 s 11904.06 s
ByteWeight (func. boundary) 367018.53 s 412223.55 s 54482.30 s 87661.01 s

ByteWeight (func. boundary with RFCR) 457997.09 s 593169.73 s 84602.56 s 97627.44 s

Table 4: Computation time for testing on the data set of 2200 binaries. Numbers for ByteWeight are taken from Bao
et al. [2].

models separately for each dataset: one to find function
starts, and the other to find function ends. We combine
the predictions from each model using a simple heuristic:

• If we predict multiple function ends in sequence af-
ter a function start, ignore all but the last.

• If we predict multiple function starts in sequence
before a function end, ignore all but the first.

• Otherwise, pair adjacent function starts and ends
into a function boundary.

Except on the ELF x86-64 dataset, this allows us to ob-
tain 97-98% in F1 score. In contrast, Bao et al. report
92-93%.

To obtain these results, we used bidirectional models
with RNN hidden units (i.e., rather than GRU or LSTM)
and one hidden layer of size 16. We trained each model
on 100,000 randomly-extracted 1000-byte chunks from
the corresponding binaries (or 100 megabytes in total).
To clarify, this means that we run two separate recurrent
neural networks forward and backward on a 1000-byte
sequence from the binary. The forward and backward
RNN each computes a R16 hidden representation, which
are concatenated together and fed into a linear transfor-
mation and the softmax function, producing a probability
distribution (a R2 vector) over whether that byte corre-
sponds to the beginning (or end) of a function or not.

We used rmsprop with a step size of 0.1, which was
scaled by the inverse square root of the current number
of iterations. We used a batch size of 32, which means
that in each iteration, we computed the gradients for 32

of the 1000-byte chunks, averaged them together, and ap-
plied them to the current weights (per the description in
Section 4.3).

These hyper-parameters (like the step size, the batch
size, and the output size of the RNN), unlike the weights
in the neural network, cannot be trained using gradient
descent. They have to be selected manually or through an
exhaustive search. We selected ours informed by some
smaller-scale experiments and our intuition.

5.4 Computation time

Training. In many other applications, neural networks
have gained a reputation as requiring a lot of computa-
tional power to train. Indeed, it has become standard
to train large neural networks using GPUs (graphical
processing units), which excel at the large number of
linear algebra operations that training a neural network
requires. However, the networks we use are relatively
small, so training with the CPU seemed to work fine.

In addition, determining the precise number of itera-
tions to train a neural network remains more of an art
than a science. Due to noisy gradients in stochastic gra-
dient descent, and the non-convex objective, the accuracy
of the neural network does not improve monotonically or
predictably as the number of iterations increases. In fact,
training for too long can cause the parameters to overfit
the training data, and worsen the performance on the test
data.

To avoid the issue, we trained our neural networks for
the fixed time of two hours each, and report the per-
formance after that. We set the duration of training by
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ELF x86 ELF x86-64 PE x86 PE x86-64
Start 98.95% 98.02% 95.56% 98.37%
End 97.83% 95.51% 94.99% 98.06%

Boundary 95.89% 92.67% 92.45% 95.91%

Table 7: Results with when trained on 10% of the data
(F1 scores).

(wall-clock) elapsed time rather than the number of it-
erations or parameter updates, to avoid biasing in favor
of more complicated but powerful architectures which
might make more progress per iteration but also take
longer to compute each one.

Producing the results in Tables 2 and 3 requires train-
ing 40 models, since there are 4 ISA/OS combinations
and we used 10-fold cross-validation. Therefore, in to-
tal, 80 compute-hours were required. In contrast, Bao et
al. [2] report that ByteWeight took 586.44 compute hours
to train, over 7× longer.

Furthermore, we needed to train 40 models only for
the purposes of matching the 10-fold cross-validation
protocol used by Bao et al. We really only need four
models to achieve equivalent results, which would take
just 8 hours to produce. While abandoning cross-
validation for training ByteWeight would presumably
also save a significant amount of time, we can expect
the factor to be less than 10 since much of the compu-
tation (extracting counts of short instruction sequences)
occurs before splitting data for cross-validation, further
widening the gap between ByteWeight and our method.

Testing. Table 4 summarizes the amount of time
needed to run each method on the data set after training
completes. Our method is hundreds of times faster than
the equivalent complete version ByteWeight which com-
putes function boundaries instead of just function ends.

The disparity mainly arises as our method works
without conventional program analysis techniques, such
as the static control-flow graph generation used by
ByteWeight. We trained the neural network to directly
identify both function start and ends, and combine them
together using a simple algorithm to recover plausible
function boundaries. In addition, the neural network op-
erates directly on bytes rather than instructions, avoiding
the need for a disassembly step. In contrast, ByteWeight
computes a CFG starting from each identified function
start both to identify more functions, and to compute the
function boundary. These extra steps require a consider-
able amount of computation time, and yet our approach
gives better results without them.

5.5 Experiments
In this section, we describe some smaller-scale experi-
ments we performed in order to gain insight into how
various choices we made in designing our method affects
the accuracy of results. We trained each model for two
hours, and we did not use cross-validation for these ex-
periments to save on computation time.

Reducing training data. In Table 7, we describe re-
sults from training a randomly-selected 10% of the bina-
ries in the dataset and testing on the remainder (normally,
the fractions were switched), to simulate common appli-
cations of binary analysis where only a small amount of
representative training data is available. Despite this, the
results dropped by 2-3 points at most.

Unidirectional RNNs. For our main model, we used
bidirectional RNNs where the output at each position de-
pends on both previous and future inputs. In Table 5, we
compare how bidirectional RNNs fare against the sim-
pler unidirectional ones. As we might expect, the unidi-
rectional RNNs do significantly worse than the bidirec-
tional ones on every benchmark.

In Section 4.4, we speculated that on unidirectional
RNNs, reversing the order of the input might provide
better results if the bytes which come after, instead of be-
fore, a certain location in the binary provide more infor-
mation about whether that location is the start or end of a
function. We found that reversed inputs help with iden-
tifying ends of functions, and ordinary inputs with iden-
tifying starts. One reason for this may be that with op-
timization turned on, the compiler will insert no-ops be-
tween functions so that function starts occur at an aligned
offset; the model can identify these to help find the start
or the end.

Variations in model architecture. Table 5 also com-
pares how Gated Recurrent Unit (GRU) and Long Short-
term Memory (LSTM) fare against conventional RNNs.
As we might expect, GRU and LSTM perform better than
RNN in most of the benchmarks. The comparison be-
tween GRU and LSTM is more mixed. Since LSTMs
take more time to run each iteration, and we trained for
a fixed amount of computation time, they may not have
converged as much to optimal parameters. Also, while
GRU and LSTM are more powerful models than conven-
tional RNNs, this was not enough to beat the bidirec-
tional RNN.

We can also examine what happens when we vary the
number of hidden layers or the dimensionality of the hid-
den layer. Table 6 shows the different results obtained
using one hidden layer of size 8, two hidden layers of
size 8, or one hidden layer of size 16. The larger models
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Function start identification Function end identification
ELF x86 ELF x86-64 PE x86 PE x86-64 ELF x86 ELF x86-64 PE x86 PE x86-64

RNN 92.36% 86.51% 94.48% 97.07% 54.52% 61.20% 72.32% 77.34%
GRU 95.09% 92.64% 96.46% 98.26% 70.55% 72.21% 83.78% 85.95%

LSTM 94.32% 89.89% 95.72% 97.58% 70.69% 68.21% 79.58% 82.46%
RNN (rev.) 94.74% 76.05% 66.02% 83.47% 91.12% 84.91% 95.52% 95.68%
GRU (rev.) 95.92% 84.93% 78.97% 87.52% 95.33% 89.44% 96.77% 95.86%

LSTM (rev.) 94.18% 94.18% 72.48% 83.43% 94.84% 87.78% 97.09% 95.42%
Bidir. RNN 98.88% 96.06% 98.04% 99.42% 95.93% 92.94% 97.98% 99.25%

Table 5: Comparison of unidirectional RNNs with different hidden unit types and input directionality, on the function
start and end identification problems. “(rev.)” indicates that we trained and tested the model with bytes in the binary
reversed. All models (including the bidirectional RNN) had one layer and 8 hidden units. All percentages are F1
scores.

Function start identification Function end identification
ELF x86 ELF x86-64 PE x86 PE x86-64 ELF x86 ELF x86-64 PE x86 PE x86-64

Separate
h = 8, l = 1 98.88% 96.07% 98.04% 99.42% 95.93% 92.94% 97.98% 99.25%
h = 8, l = 2 99.03% 97.69% 98.00% 99.43% 97.71% 94.49% 98.30% 99.19%
h = 16, l = 1 99.24% 98.13% 98.33% 99.50% 98.09% 95.74% 98.56% 99.24%

Shared
h = 8, l = 1 97.79% 95.28% 97.30% 99.23% 95.86% 91.94% 97.08% 98.90%
h = 8, l = 2 98.60% 96.67% 97.96% 99.45% 97.41% 94.92% 97.58% 99.12%
h = 16, l = 1 98.29% 97.41% 98.42% 99.47% 97.20% 95.51% 98.32% 99.38%

Table 6: Comparison of bidirectional RNNs on the function start and end identification problems. Separate means two
models were trained separately for predicting starts and ends; shared means one model does both. h is the size of the
hidden layer and l is the number of layers. All percentages are F1 scores.

perform better, but it turns out that increasing the hid-
den layer size rather than the number of layers provides
a slightly greater benefit.

Task sharing. In our prior experiments, we trained two
separate neural networks for performing function start
and end identification. However, we could instead train
one model to recognize both; at each byte, the model
would decide among four possibilities instead of two.
This could halve the amount of training time required.
Also, what the network needs to learn in order to rec-
ognize function starts probably overlaps considerably
with learning to recognizing function ends, so a network
which simultaneously performs both tasks may also learn
faster and produce more accurate results.

Table 6 summarizes our experimental results for test-
ing this hypothesis. Overall, the single model which per-
forms both tasks seems to do slightly worse than having
separate neural networks for each task. Perhaps the dis-
advantage incurred from needing to keep track of more
information exceeds the advantages mentioned in the
previous paragraph.

6 Discussion

Limitations. As with most other machine learning ap-
proaches, ours assumes that the same underlying genera-
tive process has created both the training set and the test
set. If similar patterns from the training data do not ex-
hibit themselves in the test data, our approach will fail to
correctly identify the functions.

As a pathological case, consider what would happen if
long sequences of instructions which have no effect were
inserted at arbitrary locations in the binary, including in
the middle of function prologues. Such insertions would
cause the internal structure of the binary to differ from
what the model saw in the training data, even though
it has no affect on the functionality. We might easily
remove these instruction sequences if they were simply
NOPs (0x90 in x86), but we can imagine the ability to
create arbitrarily complicated ones especially if they are
allowed to be long. Results from computability theory,
such as Rice’s theorem, suggest that it could be very dif-
ficult (if not impossible) to filter out such sequences from
the binary through static analysis.
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ELF x86 ELF x86-64
gcc icc gcc icc

P R F1 P R F1 P R F1 P R F1
O0 99.89% 99.95% 99.92% 99.85% 99.94% 99.90% 99.72% 99.56% 99.64% 99.77% 99.51% 99.64%
O1 99.37% 98.29% 98.82% 99.62% 98.22% 98.91% 98.87% 96.80% 97.83% 99.35% 96.97% 98.15%
O2 99.20% 98.45% 98.82% 99.57% 99.28% 99.43% 97.18% 96.58% 96.88% 98.93% 97.76% 98.34%
O3 99.28% 98.77% 99.02% 99.50% 99.31% 99.40% 96.83% 96.69% 96.76% 98.99% 97.66% 98.33%

PE x86 PE x86-64
P R F1 P R F1

Od 98.96% 99.43% 99.19% 99.52% 99.39% 99.45%
O1 98.89% 97.21% 98.04% 99.48% 98.68% 99.08%
O2 99.05% 98.60% 98.82% 99.50% 99.14% 99.32%
Ox 99.16% 98.63% 98.90% 99.61% 99.14% 99.37%

Table 8: Performance of our function start identification model on different subsets of the dataset. Each percentage
value represents the precision, recall, or F1 score on the binaries of a particular architecture, compiler, and optimization
level combination.

As for RNNs, since they accumulate and transfer in-
formation in a sequential manner, the input from these
irrelevant instructions could easily overwrite the parts of
the hidden state necessary for making correct predictions
about the locations of the function boundaries.

In some cases, we can foresee that our approach will
require preprocessing of the data in order to obtain good
results. For example, binaries which decompress or de-
crypt themselves at runtime would not contain recogniz-
able code within the binary stored on disk. Given that
such obfuscations affect all static binary analysis tech-
niques, previous works have addressed the problem of
detecting and reversing such transformations [10, 21].

Segmented results. In Table 8, we delineate how the
accuracy results for function start identification with our
model (as described in Section 5.3) differed among dif-
ferent subsets of the binaries as further segmented by
compiler and optimization level.

As we might expect, the model does best when run on
binaries compiled without any optimizations (labeled as
O0 and Od in the table), given that those tend to have
very clear indications at the beginnings of functions.
Nevertheless, the model’s performance remains roughly
constant on binaries compiled with more optimizations,
with the exception of gcc on Linux for the x86-64 archi-
tecture where the F1 score decreased by about 2.9 per-
centage points. Given that the training data contains ex-
amples with every optimization level and compiler used
for testing, we would hope that the model can learn to
recognize functions in all such cases. However, it seems
that gcc can produce relatively challenging examples
with more optimizations enabled. Since the x86-64 ABI
passes some function arguments in registers, it is possible

to avoid any manipulation of the stack and base pointers
upon function entry.

Error analysis. We randomly sampled some of the bi-
naries to manually inspect the errors made by the model
in them. Specifically, we selected 5 binaries for each
combination of compiler, optimization level, architec-
ture, and OS, then examined the errors to identify some
common features between them.

Here are some observations we made:

• Given the bidirectionality of the model, it seems to
exploit the appearance of frequently-occurring se-
quences at the ends of the previous function in ad-
dition to typical function prologues. One obvious
example are ret and its variants, used to return
from function execution. The compiler also often
inserted padding between functions (such as nop

(0x90) and other no-op instructions with longer en-
codings, or in Windows binaries, int3 which trig-
gers an interrupt), the end of which the model would
use to recognize the beginnings of functions.

• As a consequence of the above, false positives of-
ten occurred after nop, ret, and other instructions
which usually appear at the end of a function. In
fact, it would also find false positives within imme-
diate values encoded into the code if they contained
0x90 or 0xc3, the encodings of those instructions.

• False negatives often occurred when instructions
that would typically occur in the middle of func-
tions occurred at the beginning of a function, as we
might expect. The first byte of the program was of-
ten also falsely not recognized as a function start,
presumably due to the lack of context previous to it.
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• As documented by Bao et al. [2], icc will generate
functions with multiple entry points. Many of the
false negatives occurred at the second entry points
to functions, given that the instructions before it are
not the ones which usually end functions.

• The behavior of the model was not easily character-
ized by simple rules on short sequences of instruc-
tions; for example, while many false positives oc-
curred after nop and ret, this did not mean that
the model marked all (or even a large fraction) of
such positions as function starts. For relatively dif-
ficult cases like these, the precise content of the sur-
rounding bytes might have a complicated effect on
the answer produced by the model.

Future work. Although we have seen some experi-
mental evidence about the performance of the RNN un-
der various conditions, we lack a clear explanation of
the internal mechanics of the model. One potential ap-
proach towards an explanation proceeds through an anal-
ysis of the eigenvector structure by linearizing the state
of the network as it evolves over time and analyzing
which eigenvectors of the linearized systems carry the
task-relevant information [12]. This analysis can provide
an understanding of how the network ignores irrelevant
information while selecting, integrating, and communi-
cating relevant information, and allows identification of
which eigenvector(s) of the linearized system are respon-
sible for these tasks performed by the network. However,
if the neural network’s parameters are available to adver-
saries interested in disrupting the accuracy of the model,
they may be able to use such analyses to more effectively
add extra instructions which are not orthogonal to the
eigenvectors carrying the task-relevant information, thus
preventing its transmission and significantly affecting the
RNN’s performance.

7 Related Work

Function identification. Given that function identifi-
cation serves as a basis for many applications within bi-
nary analysis, it should not surprise that many past papers
have discussed the topic. For example, Kruegel et al. [9]
identify functions as a prelude to static disassembly, and
Theiling [18] for inferring control-flow graphs. How-
ever, these do not focus specifically on function identi-
fication as a specific problem, so here we point out some
other works that do.

Rosenblum et al. [14] first framed the function identi-
fication problem as a task for machine learning. They
combine a logistic regression classifier that uses “id-
ioms” (short patterns of instructions) with a conditional

random field to impose some structure between predic-
tions for related instructions. Karampatziakis [8] tackles
the related problem of accurate static disassembly using
similar machine-learning tools, and Jacobson et al. [7]
extend the prior work by Rosenblum et al. to fingerprint-
ing library wrappers which appear in binaries. Bao et
al. [2] also address function identification using super-
vised learning, but use weighted prefix trees which re-
quire much less computation than Rosenblum et al.’s ap-
proach to train, but still seems to give results with high
accuracy.

Some tools built for binary analysis provide function
identification as part of their functionality, usually us-
ing relatively simple heuristics or hand-coded signatures:
Dyninst [6] and IDA Pro are some examples.

Neural networks. Much research using neural net-
works have focused on domains with continuous input
data, such as vision and speech. In contrast, binary code
contains discrete, multinomial values, where there typi-
cally exists no obvious ordering relationship between the
possible values (unlike intensities of light or sound, for
example).

Natural language processing also involves multino-
mial values (typically sequences of words), and neural
networks have been successfully used for some applica-
tions there. Bengio et al. [3] first used neural networks to
make a language model. Language models give a proba-
bility distribution over the next word in a sentence given
the words so far, and see usage in machine translation
and speech recognition. Mikolov et al. [11] moved to
using a RNN. More recently, Sutskever et al. [17], Bah-
danau et al. [1], and Cho et al. [5] have used RNNs for
machine translation, and Vinyals et al. [20] for parsing.

We could not find any previous works which applied
neural networks to binary code, but some use them on
source code. Zaremba and Sutskever [22] attempt to train
recurrent neural networks to evaluate short Python pro-
grams. Mou et al. [13] learn a vector representation from
ASTs for supervised classification of programs.

8 Conclusion

In this paper, we proposed a new machine-learning-based
approach for function identification in binary code based
on recurrent neural networks. To our knowledge, there
exists no previous works which apply neural networks
to any problems in binary analysis. We address this gap
by demonstrating how to use recurrent neural networks
for function identification, and empirically show drastic
reductions in computation time despite achieving com-
parable or better accuracy on a prior test suite. We hope
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that this work can serve as an inspiration for further ad-
vancements in binary analysis through neural networks.
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A Backpropagation

We can view backpropagation as repeated application of
the chain rule. We sketch how it works using the follow-
ing example of a three-layer network:

h1 = f1(x;θ1)

h2 = f2(h1;θ2)

ŷ = f3(h2;θ3)

where θi = (Wi,bi), and we have named all of the inter-
mediate hidden values for convenience of reference. We
wish to minimize the error between the predicted ŷ and
the true value y. For example:

L = d(y, ŷ) = ‖ŷ− y‖2

Then we can compute the following partial derivatives
using the chain rule:

∂L
∂ ŷ

= 2(ŷ− y)
∂L
∂θ3

=
∂L
∂ ŷ

∂ ŷ
∂θ3

∂L
∂h2

=
∂L
∂ ŷ

∂ ŷ
∂h2

∂L
∂θ2

=
∂L
∂h2

∂h2

∂θ2

∂L
∂h1

=
∂L
∂h2

∂h2

∂h1

∂L
∂θ1

=
∂L
∂h1

∂h1

∂θ1

16


