
This paper is included in the Proceedings of the 
24th USENIX Security Symposium

August 12–14, 2015 • Washington, D.C.

ISBN 978-1-931971-232

Open access to the Proceedings of  
the 24th USENIX Security Symposium 

is sponsored by USENIX

TaintPipe: Pipelined Symbolic Taint Analysis
Jiang Ming, Dinghao Wu, Gaoyao Xiao, Jun Wang, and Peng Liu,  

The Pennsylvania State University

https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/ming



USENIX Association  24th USENIX Security Symposium 65

TaintPipe: Pipelined Symbolic Taint Analysis

Jiang Ming, Dinghao Wu, Gaoyao Xiao, Jun Wang, and Peng Liu
College of Information Sciences and Technology

The Pennsylvania State University
{jum310, dwu, gzx102, jow5222, pliu}@ist.psu.edu

Abstract

Taint analysis has a wide variety of compelling applica-
tions in security tasks, from software attack detection to
data lifetime analysis. Static taint analysis propagates
taint values following all possible paths with no need
for concrete execution, but is generally less accurate than
dynamic analysis. Unfortunately, the high performance
penalty incurred by dynamic taint analyses makes its de-
ployment impractical in production systems. To amelio-
rate this performance bottleneck, recent research efforts
aim to decouple data flow tracking logic from program
execution. We continue this line of research in this paper
and propose pipelined symbolic taint analysis, a novel
technique for parallelizing and pipelining taint analy-
sis to take advantage of ubiquitous multi-core platforms.
We have developed a prototype system called TaintPipe.
TaintPipe performs very lightweight runtime logging to
produce compact control flow profiles, and spawns mul-
tiple threads as different stages of a pipeline to carry
out symbolic taint analysis in parallel. Our experiments
show that TaintPipe imposes low overhead on applica-
tion runtime performance and accelerates taint analysis
significantly. Compared to a state-of-the-art inlined dy-
namic data flow tracking tool, TaintPipe achieves 2.38
times speedup for taint analysis on SPEC 2006 and 2.43
times for a set of common utilities, respectively. In ad-
dition, we demonstrate the strength of TaintPipe such as
natural support of multi-tag taint analysis with several
security applications.

1 Introduction

Taint analysis is a kind of program analysis that tracks
some selected data of interest (taint seeds), e.g., data
originated from untrusted sources, propagates them
along program execution paths according to a cus-
tomized policy (taint propagation policy), and then
checks the taint status at certain critical location (taint

sinks). It has been shown to be effective in dealing
with a wide range of security problems, including soft-
ware attack prevention [25, 40], information flow control
[45, 34], data leak detection [49], and malware analy-
sis [43], to name a few.

Static taint analysis [1, 36, 28] (STA) is performed
prior to execution and therefore it has no impact on run-
time performance. STA has the advantage of consider-
ing multiple execution paths, but at the cost of poten-
tial imprecision. For example, STA may result in either
under-tainting or over-tainting [32] when merging results
at control flow confluence points. Dynamic taint analysis
(DTA) [25, 13, 27], in contrast, propagates taint as a pro-
gram executes, which is more accurate than static taint
analysis since it only considers the actual path taken at
run time. However, the high runtime overhead imposed
by dynamic taint propagation has severely limited its
adoption in production systems. The slowdown incurred
by conventional dynamic taint analysis tools [25, 13] can
easily go beyond 30X times. Even with the state-of-the-
art DTA tool based on Pin [20], typically it still intro-
duces more than 6X slowdown.

The crux of the performance penalty comes from
the strict coupling of program execution and data flow
tracking logic. The original program instructions min-
gle with the taint tracking instructions, and usually it
takes 6–8 extra instructions to propagate a taint tag in
shadow memory [11]. In addition, the frequent “con-
text switches” between the original program execution
and its corresponding taint propagation lead to register
spilling and data cache pollution, which add further pres-
sure to runtime performance. The proliferation of multi-
core systems has inspired researchers to decouple taint
tracking logic onto spare cores in order to improve per-
formance [24, 31, 26, 15, 17, 9]. Previous work can
be classified into two categories. The first category is
hardware-assisted approaches. For example, Speck [26]
needs OS level support for speculative execution and
rollback. Ruwase et al. [31] employ a customized hard-



66 24th USENIX Security Symposium USENIX Association

ware for logging a program trace and delivering it to
other idle cores for inspection. Nagarajan et al. [24] uti-
lize a hardware first-in first-out buffer to speed up com-
munication between cores. Although they can achieve an
appealing performance, the requirement of special hard-
ware prevents them from being adopted using commod-
ity hardware.

The second category is software-only methods that
work with binary executables on commodity multi-core
hardware [15, 17, 9]. These software-only solutions rely
on dynamic binary instrumentation (DBI) to decouple
dynamic taint analysis from program execution. The pro-
gram execution and parallelized taint analysis have to
be properly synchronized to transfer the runtime values
that are necessary for taint analysis. Although these ap-
proaches look promising, they fail to achieve expected
performance gains due to the large amounts of commu-
nication data and frequent synchronizations between the
original program execution thread (or process) and its
corresponding taint analysis thread (or process). Recent
work ShadowReplica [17] creates a secondary shadow
thread from primary application thread to run DTA in
parallel. ShadowReplica conducts an offline optimiza-
tion to generate optimized DTA logic code, which re-
duces the amount of information that needs to be com-
municated, and thus dramatically improves the perfor-
mance. However, as we will show later, the performance
improvement achieved by this “primary & secondary”
thread model is fixed and cannot be improved further
when more cores are available. Furthermore, in many se-
curity related tasks (e.g., binary de-obfuscation and mal-
ware analysis), precise static analysis for the offline opti-
mization needed by ShadowReplica may not be feasible.

In this paper, we exploit another style of parallelism,
namely pipelining. We propose a novel technique, called
TaintPipe, for parallel data flow tracking using pipelined
symbolic taint analysis. In principle, TaintPipe falls
within the second category of taint decoupling work clas-
sified above. Essentially, in TaintPipe, threads form mul-
tiple pipeline stages, working in parallel. The execution
thread of an instrumented application acts as the source
of pipeline, which records information needed for taint
pipelining, including the control flow data and the con-
crete execution states when the taint seeds are first intro-
duced. To further reduce the online logging overhead, we
adopt a compact profile format and an N-way buffering
thread pool. The application thread continues executing
and filling in free buffers, while multiple worker threads
consume full buffers asynchronously. When each logged
data buffer becomes full, an inlined call-back function
will be invoked to initialize a taint analysis engine, which
conducts taint analysis on a segment of straight-line code
concurrently with other worker threads. Symbolic mem-
ory access addresses are determined by resolving indirect

control transfer targets and approximating the ranges of
the symbolic memory indices.

To overcome the challenge of propagating taint tags
in a segment without knowing the incoming taint state,
TaintPipe performs segmented symbolic taint analysis.
That is, the taint analysis engine assigned to each seg-
ment calculates taint states symbolically. When a con-
crete taint state arrives, TaintPipe then updates the re-
lated taint states by replacing the relevant symbolic taint
tags with their correct values. We call this symbolic
taint state resolution. According to the segment order,
TaintPipe sequentially computes the final taint state for
every segment, communicates to the next segment, and
performs the actual taint checks. Optimizations such as
function summary and taint basic block cache offer en-
hanced performance improvements. Moreover, differ-
ent from previous DTA tools, supporting bit-level and
multi-tag taint analysis are straightforward for TaintPipe.
TaintPipe does not require redesign of the structure of
shadow memory; instead, each taint tag can be naturally
represented as a symbolic variable and propagated with
negligible additional overhead.

We have developed a prototype of TaintPipe, a
pipelined taint analysis tool that decouples program ex-
ecution and taint logic, and parallelizes taint analysis on
straight-line code segments. Our implementation is built
on top of Pin [23], for the pipelining framework, and
BAP [5], for symbolic taint analysis. We have evalu-
ated TaintPipe with a variety of applications such as the
SPEC CINT2006 benchmarks, a set of common utilities,
a list of recent real-life software vulnerabilities, malware,
and cryptography functions. The experiments show that
TaintPipe imposes low overhead on application runtime
performance. Compared with a state-of-the-art inlined
dynamic taint analysis tool, TaintPipe achieves overall
2.38 times speedup on SPEC CINT2006, and 2.43 times
on a set of common utility programs, respectively. The
efficacy experiments indicate that TaintPipe is effective
in detecting a wide range of real-life software vulnera-
bilities, analyzing malicious programs, and speeding up
cryptography function detection with multi-tag propa-
gation. Such experimental evidence demonstrates that
TaintPipe has potential to be employed by various appli-
cations in production systems. The contributions of this
paper are summarized as follows:

• We propose a novel approach, TaintPipe, to effi-
ciently decouple conventional inlined dynamic taint
analysis by pipelining symbolic taint analysis on
segments of straight-line code.

• Unlike previous taint decoupling work, which suf-
fers from frequent communication and synchroniza-
tion, we demonstrate that with very lightweight run-
time value logging, TaintPipe rivals conventional in-
lined dynamic taint analysis in precision.



USENIX Association  24th USENIX Security Symposium 67

• Our approach does not require any specific hard-
ware support or offline preprocessing, so TaintPipe
is able to work on commodity hardware instantly.

• TaintPipe is naturally a multi-tag taint analysis
method. We demonstrate this capability by detect-
ing cryptography functions in binary with little ad-
ditional overhead.

The remainder of the paper is organized as fol-
lows. Section 2 provides background information and an
overview of our approach. Section 3 and Section 4 de-
scribe the details of the system design, online logging,
and pipelined segmented symbolic taint analysis. We
present the evaluation and application of our approach
in Section 5. We discuss a few limitations in Section 6.
We then present related work in Section 7 and conclude
our paper in Section 8.

2 Background

In this section, we discuss the background and context
information of the problem that TaintPipe seeks to solve.
We start by comparing TaintPipe with the conventional
inlined taint analysis approaches, and we then present
the differences between the previous “primary & sec-
ondary” taint decoupling model and the pipelined decou-
pling style in TaintPipe.

2.1 Inlined Analysis vs. TaintPipe
Figure 1 (“Inlined DTA”) illustrates a typical dynamic
taint analysis mechanism based on dynamic binary in-
strumentation (DBI), in which the original program code
and taint tracking logic code are tightly coupled. Es-
pecially, when dynamic taint analysis runs on the same
core, they compete for the CPU cycles, registers, and
cache space, leading to significant performance slow-
down. For example, “context switch” happens fre-
quently between the original program instructions and
taint tracking instructions due to the starvation of CPU
registers. This means there will be a couple of instruc-
tions, mostly inserted per program instruction, to save
and restore those register values to and from memory.
At the same time, taint tracking instructions themselves
(e.g., shadow memory mapping) are already complicated
enough. One taint shadow memory lookup operation
normally needs 6–8 extra instructions [11].

Our approach, analogous to the hardware pipelin-
ing, decouples taint logic code to multiple spare cores.
Figure 1 (“TaintPipe”) depicts TaintPipe’s framework,
which consists of two concurrently running parts: 1) the
instrumented application thread performing lightweight
online logging and acting as the source of the pipeline;
2) multiple worker threads as different stages of the

pipeline to perform symbolic taint analysis. Each hor-
izontal bar with gray color indicates a working thread.
We start online logging when the predefined taint seeds
are introduced to the application. The collected profile
is passed to a worker thread. Each worker thread con-
structs a straight-line code segment and then performs
taint analysis in parallel. In principle, fully parallelizing
dynamic taint analysis is challenging because there are
strong serial data dependencies between the taint logic
code and application code [31]. To address this prob-
lem, we propose segmented symbolic taint analysis in-
side each worker thread whenever the explicit taint in-
formation is not available, in which the taint state is sym-
bolically calculated. The symbolic taint state will be up-
dated later when the concrete data arrive. In addition to
the control flow profile, the explicit execution state when
the taint seeds are introduced is recorded as well. The
purpose is to reduce the number of fresh symbolic taint
variables.

We use a motivating example to introduce the idea
of segmented symbolic taint analysis. Figure 2 shows
an example for symbolic taint analysis on a straight-
line code segment, which is a simplified code snippet of
the libtiff buffer overflow vulnerability (CVE-2013-
4231). Assume when a worker thread starts taint anal-
ysis on this code segment (Figure 2(a)), no taint state
for the input data (“size” and “num” in our case) is de-
fined. Instead of waiting for the explicit information, we
treat the unknown values as taint symbols (symbol1 for
“size” and symbol2 for “num”, respectively) and sum-
marize the net effect of taint propagation in the segment.
The symbolic taint states are shown in Figure 2(b). When
the explicit taint states are available, we resolve the sym-
bolic taint states by replacing the taint symbols with their
real taint tags or concrete values (Figure 2(c)). After that,
we continue to perform concrete taint analysis like con-
ventional DTA. Note that here we show pseudo-code for
ease of understanding, while TaintPipe works on binary
code.

Compared with inlined DTA, the application thread
under TaintPipe is mainly instrumented with control flow
profile logging code, which is quite lightweight. There-
fore, TaintPipe results in much lower application runtime
overhead. On the other hand, the execution of taint logic
code is decoupled to multiple pipeline stages running in
parallel. The accumulated effect of TaintPipe’s pipeline
leads to a substantial speedup on taint analysis.

2.2 “Primary & Secondary” Model

Some recent work [15, 17, 9] offloads taint logic code
from the application (primary) thread to another shadow
(secondary) thread and runs them on separate cores. At
the same time, the primary thread communicates with



68 24th USENIX Security Symposium USENIX Association

Taint seeds  & 
 execution state

DBI Concrete taint 
analysisApplication Control flow 

profiling
Resolving symbolic 

taint state

Application speedup

Taint speedup

Inlined DTA

TaintPipe

Time

Threads

Symbolic taint 
analysis

Figure 1: Inlined dynamic taint analysis vs. TaintPipe.

size = getc(infile); 
A = -1;
B = size + 1;
C = (1 << size) - 1;
D = num & C;

(a) Code segment (b) Symbolic taint state (c) Resolving symbolic taint state

A 
B 
C 
D 

Output

0
symbol1 + 1

(1 << symbol1) – 1
symbol2 & ((1 << symbol1) – 1)

Taint state

A 
B 
C 
D 

Output

0
tag1 + 1

(1 << tag1) – 1
 (1 << tag1) – 1

Taint state

Figure 2: An example of symbolic taint analysis on a code segment: (a) code segment; (b) symbolic taint states, the
input value size and num are labeled as symbol1 and symbol2, respectively; (c) resolving symbolic taint states when
size is tainted as tag1 and num is a constant value (num = 0xffffffff).

the secondary thread to convey the necessary informa-
tion (e.g., the addresses of memory operations and con-
trol transfer targets) for performing taint analysis. How-
ever, this model suffers from frequent communication
between the primary and secondary thread. In principle,
every memory address that is loaded or stored has to be
logged and transferred. Due to the frequent synchroniza-
tion with the primary thread and the extra instructions
to access shadow memory, taint logic execution in the
secondary thread is typically slower than the application
execution. As a result, the delay for each taint operation
could be accumulated, leading to an delay proportional
to the original execution. ShadowReplica [17] partially
addresses this drawback by performing advanced offline
static optimizations on the taint logic code to reduce the
runtime overhead. However, in many security analysis
scenarios, precise static analysis and optimizations over
taint logic code are not feasible, e.g., reverse engineer-
ing and malware forensics. In such cases, program static
features such as control flow graphs are possibly obfus-
cated.

In TaintPipe, we record compact control flow infor-
mation to reconstruct straight-line code, in which all the

targets of direct and indirect jumps have been resolved.
However, we do not record or transfer the addresses of
memory operations. Our key observation is that most
addresses of memory operations can be inferred from
the straight-line code. For example, if a basic block is
ended with an indirect jump instruction jmp eax, we
can quickly know the value of eax from the straight-line
code. In this way, all the other memory indirect access
calculated through eax (before it is updated) can be de-
termined. For instance, we can infer the memory load
address for the instruction: mov ebx, [4*eax + 16].
Even when the index of a memory lookup is a symbol,
with the taint states and path predicates of the straight-
line code, we can often narrow down the symbolic mem-
ory addresses to a small range in most cases.

Since TaintPipe’s data communication is lightweight,
TaintPipe can achieve nearly constant delay given
enough number of worker threads. The upper limit num-
ber of worker threads is also bounded, which equals
roughly the ratio of the taint analysis execution time over
the application thread execution time for each segment.

Due to TaintPipe’s pipelining design, it is possible that
TaintPipe may detect an attack some time after the real



USENIX Association  24th USENIX Security Symposium 69

attack has happened. However, this trade-off does not
prevent TaintPipe from practically supporting a broad va-
riety of security applications, such as attack forensic in-
vestigation and post-fact intrusion detection, which do
not require strict runtime security enforcement. It is
worth noting that different from ShadowReplica, Taint-
Pipe does not depend on extensive static analysis to re-
duce data communication. Therefore, TaintPipe has a
wider range of applications in speeding up analyzing ob-
fuscated binaries, as static analysis of obfuscated bina-
ries is of great challenge.

3 Design

3.1 Architecture

Figure 3 illustrates the architecture of TaintPipe. We
have built the pipelining framework on top of a dynamic
binary instrumentation tool, enabling TaintPipe to work
with unmodified program binaries. The steps followed
by TaintPipe for pipelining taint analysis are:

1. TaintPipe takes in a binary along with the taint seeds
as input. The instrumented application thread starts
execution with lightweight online logging for con-
trol flow and other information (Section 4.1.1).

2. Then the instrumented program is executed together
with a multithreaded logging tool to efficiently de-
liver the logged data to memory (Section 4.1.2).

3. When the profile buffer becomes full, a taint analy-
sis engine will be invoked for online pipelined taint
analysis (Section 4.2.1).

4. The generated log data are then used to construct
straight-line code, which helps to solve many pre-
cision loss problems in static taint analysis. In
this stage, we generate a segment of executed code
blocks for each logged data buffer. The memory
addresses that are accessed through indirect jump
targets are also resolved (Section 4.2.2).

5. The taint analysis engine will further translate
straight-line code to taint operations, which avoid
precision loss and support both multi-tag and bit-
level taint analysis (Section 4.2.3).

6. With the constructed taint operations, TaintPipe per-
forms pipelined symbolic taint analysis. When a
thread finishes taint analysis with an explicit taint
state, it synchronizes with its following thread to re-
solve the symbolic taint state (Section 4.2.4).

3.2 Segmented Symbolic Taint Analysis
In this section, we analyze symbolic taint analysis from
a theoretical point of view to justify the correctness of
our pipelining scheme. In order to formalize segmented
symbolic taint analysis, we use the following notations:

1. Let σ denote a taint state, which maps variables to
their taint tags.

2. Let A (σ ,S) denote a symbolic taint analysis A on
a straight-line code segment S, with an initial taint
state σ . We use Aσ (S) for convenience.

Note that the straight-line code segment S has no con-
trol transfer statement. Conceptually, S only contains one
type of statements, namely assignment statements. Of
course, from the implementation point of view, there may
be other types of statements, but they can all be regarded
as assignment statements. For example, as we will show
in Section 4.2.3, our taint operations contain assignment
operations, laundering operations, and arithmetic opera-
tions. The latter two operations can be derived from taint
assignment operations.

Based on the semantics of assignment statements, we
define symbolic taint analysis for an assignment state-
ment as follows:

Aσ (x := e) = σ [x �→ et ] (1)

where et denotes the taint tag of e, and [·] is the taint state
update operator. If x is a new variable, the taint state
σ is extended with a new mapping from x to its taint.
If x occurs in the taint state σ , for the variables in the
domain of σ whose symbolic taint expressions depend
on x, their symbolic taint expressions will be updated or
recomputed with the new taint value of x.

Assume σ1 = Aσ (i1) for a statement i, then the sym-
bolic taint analysis for two sequential statements i1; i2 is:

Aσ (i1; i2) = Aσ1(i2) (2)

Assume straight-line code segment S1 = (i1;S′1). We
can then deduce the symbolic taint analysis on two se-
quential segments S1;S2 as follows:

Aσ (S1;S2)

=Aσ ((i1;S′1);S2)

=Aσ (i1;(S′1;S2))

= · · ·
=AAσ (S1)(S2)

(3)

That is, given Aσ (S1) = σ1 and Aε(S2) = σ2, where ε is
an empty taint state, Eq. 3 leads to:

Aσ (S1;S2) = σ2[σ1] (4)



70 24th USENIX Security Symposium USENIX Association

Instrumented 
Program 

Execution
Logged 

Control Flow
Multithreaded 
Logging Tool Straight-line 

Code 
Construciton

Pipelined  
Symbolic Taint 

Analysis

Figure 3: Architecture.

Here, we misuse the taint state update operator [·] and
apply it to a taint state map, instead of a single taint vari-
able update. With Eq. 4, we can perform segmented taint
analysis in parallel or in a pipeline style. For two seg-
ments S1;S2, assume the starting taint state is σ0. We
start two threads, one compute Aσ0(S1) and the other
computes Aε(S2), where ε is an empty taint state. As-
sume the result of the first thread analysis is σ1 and the
result of the second is σ2. The symbolic taint analysis of
S1;S2 is σ2[σ1], that is, the right hand side of Eq. 4. Eq. 4
forms the foundation of our segmented taint analysis in a
pipeline style.

4 Implementation

To demonstrate the efficacy of TaintPipe, we have devel-
oped a prototype on top of the dynamic binary instru-
mentation framework Pin [23] (version 2.12) and the bi-
nary analysis platform BAP [5] (version 0.8). The on-
line logging and pipelining framework are implemented
as Pin tools, using about 3,100 lines of C/C++ code. The
taint operation constructors are built on BAP IL (inter-
mediate language). TaintPipe’s taint analysis engine is
based on BAP’s symbolic execution module, using about
4,400 lines of Ocaml and running concurrently with Pin
tools. We utilize Ocaml’s functor polymorphism so that
taint states can be instantiated in either concrete or sym-
bolic style. All of the functionality implemented in taint
analysis engine are wrapped as function calls. To sup-
port communication between Pin tools and taint analysis
engine, we develop a lightweight RPC interface so that
each worker thread can directly call Ocaml code. The
saving and loading of the taint cache lookup table is im-
plemented using the Ocaml Marshal API, which encodes
IL expressions as sequences of compact bytes and then
stores them in a disk file.

Dynamic binary instrumentation tools tend to inline
compact and branch-less code to the final translated
code. For the code with conditional branches, DBI emits
a function call instead, which introduces additional over-
head. Therefore, we carefully design our instrumenta-
tion code to favor DBI’s code inlining. To fully reduce
online logging overhead, we also utilize Pin-specific
optimizations. We leverage Pin’s fast buffering APIs
for efficient data buffering. For example, the inlined
INS InsertFillBuffer() writes the control flow pro-

file directly to the given buffer; the callback function
registered in PIN DefineTraceBuffer() processes the
buffer when it becomes full or thread exits. Besides,
we force Pin to use the fastcall x86 calling convention
to avoid emitting stack-based parameter loading instruc-
tions (i.e., push and pop). Currently Pin-tools do not sup-
port the Pthreads library. Thus we employ Pin Thread
API to spawn multiple worker threads. We also im-
plement a counting semaphore based on Pin’s locking
primitives to assist thread synchronization. Addition-
ally, TaintPipe can be extended to support multithreaded
applications with no difficulty by assigning one taint
pipeline for each application thread.

4.1 Logging
TaintPipe’s pipeline stages consist of multiple threads.
The thread of instrumented application (producer) serves
as the source of pipeline, and a number of Pin inter-
nal threads act as worker threads to perform symbolic
taint analysis on the data collected from the applica-
tion thread. Note that unlike application threads, worker
threads are not JITed and therefore execute natively. One
of the major drawbacks of previous dynamic taint anal-
ysis decoupling approaches is the large amount of in-
formation collected in the application thread and the
high overhead of communication between the applica-
tion thread and analysis thread. To address these chal-
lenges, TaintPipe performs lightweight online logging to
record information required for pipelined taint analysis.
The logged data comprise control flow profile and the
concrete execution state when taint seeds are first intro-
duced, which is the starting point of our pipelined taint
analysis. The initial execution state, consisting of con-
crete context of registers and memory, (e.g., CR0∼CR4,
EFLAGS and addresses of initial taint seeds), is used to
reduce the number of fresh symbolic taint variables.

We take major two steps to reduce the application
thread slowdown: First, we adopt a compact profile
structure so that the profile buffer contains logged data
as much as possible, and it is quite simple to recover
the entry address of each basic block as well. Second,
we apply the “one producer, multiple consumers” model
and N-way buffering scheme to process full buffers asyn-
chronously, which allows application to continue execu-
tion while pipelined taint analysis works in parallel. We
will discuss each step in the following sub-sections.



USENIX Association  24th USENIX Security Symposium 71

4.1.1 Lightweight Online Logging

Besides the initial execution state when the taint seeds
are introduced, TaintPipe collects control flow informa-
tion, which is represented as a sequence of basic blocks
executed. Conceptually, we can use a single bit to record
the direction of conditional jump [29], which leads to
a much more compact profile. However, reconstruction
straight-line code from 1 bit profile is more complicated
to make it fit for offline analysis. Zhao et al. [47] pro-
posed Detailed Execution Profile (DEP), a 2-byte profile
structure to represent 4-byte basic block address on x86-
32 machine. In DEP, a 4-byte address is divided into
two parts: H-tag for the 2 high bytes and L-tag for 2
low bytes. If two successive basic blocks have the same
H-tag, only L-tag of each basic block enters the profile
buffer; otherwise a special tag 0x0000 followed by the
new H-tag will be logged into the buffer.

We extend DEP’s scheme to support REP-prefix in-
structions. A number of x86 instructions related to string
operations (e.g., MOVS, LODS) with REP-prefix are exe-
cuted repeatedly until the counter register (ecx) counts
down to 0. Dynamic binary instrumentation tools [23, 4]
normally treat a REP-prefixed instruction as an implicit
loop and generate a single instruction basic block in each
iteration. In our evaluation, there are several cases that
unrolling such REP-prefix instructions would be a perfor-
mance bottleneck. We address this problem by adding
additional escape tags to represent such implicit loops.
Figure 4 presents an example of the control flow profile
we adopted. The left part shows a segment of straight-
line code containing 1028 basic blocks, and 1024 out
of them are due to REP-prefixed instruction repetitions.
Our profile (the right side of Figure 4) encodes such case
with two consecutive escape tags (0xffff), followed by
the number of iterations (0x0400).

We note that it is usually unnecessary to turn on the
logging all the time. For example, when application
starts executing, many functions are only used during
loading. At that time, no sensitive taint seed is intro-
duced. Therefore we perform on-demand logging to
record control flow profile when necessary. As applica-
tion starts running, we only instrument limited functions
to inspect the various input channels that taint could be
introduced into the application (taint seeds). Such taint
seeds include standard input, files and network I/O. Be-
sides, users can customize other values as taint seeds,
such as function return values or parameters. When the
pre-defined taint seeds are triggered, we turn on the con-
trol flow profile logging. At the same time, we save the
current execution state to be used in the pipelined taint
analysis. Many well-known library functions have ex-
plicit semantics, which facilitates us to selectively turn
off logging inside these functions and propagate taint

0x804fffa

BB_2

0x8050004

BB_3

0x8050016

BB_4
rep movsd 

0xfffa
0x0000
0x0805

0x8050030

BB_1028

0x0004
0x0016

0xffff
0xffff

0x0400

4-byte tag 
profile

0x8050028
rep movsd 

0x804fff0

BB_1

0xfff0

... 
rep movsd 

0x0030

2-byte tag 
profile

Repetition 
Count: 1024

Figure 4: An example of 2-byte tag profile.

correspondingly at function level. We will discuss this
issue further in Section 4.2.3.

4.1.2 N-way Buffering Scheme

Since TaintPipe’s online logging is lightweight, appli-
cation (producer) thread’s execution speed is typically
faster than the processing speed of worker threads.
To mitigate this bottleneck, we employed “one pro-
ducer, multiple consumers” model and N-way buffering
scheme [46]. At the center of our design is a thread pool,
which is subdivided into n linked buffers, and the pro-
ducer thread and multiple worker threads work on differ-
ent buffers simultaneously. More specifically, when the
instrumented application thread starts running, we first
allocate n linked empty buffers (n> 1). At the same time,
n Pin internal threads (worker threads) are spawned.
Each worker thread is bound to one buffer and communi-
cates with the application thread via semaphores. When
a buffer becomes full, the application thread will release
the full buffer to its corresponding worker thread and
then continue to fill in the next available empty buffer.
Given a full profile buffers, a worker thread will send it to
a taint analysis engine to perform concrete/symbolic taint
analysis in parallel. After that, the worker thread will re-
lease the profile buffer back to the application thread and
wait for processing the next full buffer.

It is apparent that the availability of unused worker



72 24th USENIX Security Symposium USENIX Association

threads and the size of profile buffer will affect over-
all performance of TaintPipe (both application execution
time and pipelined taint analysis) significantly. In Sec-
tion 5.1, we will conduct a series of experiments to find
the optimal values for these two factors.

4.2 Symbolic Taint Analysis
4.2.1 Taint Analysis Engine

When the application thread releases a full profile buffer,
a worker thread is waked up to capture the profile buffer
and then communicates with a taint analysis engine for
pipelined taint analysis. The taint analysis engine will
first convert the control flow profile to a segment of
straight-line intermediate language (IL) code and then
translates the IL code to even simpler taint logic oper-
ations. The translations are cached for efficiency at taint
basic block level. The key components of taint analysis
engine are illustrated in Figure 5.

The core of TaintPipe’s taint analysis engine is an ab-
stract taint analysis processor, which simulates a segment
of taint operations and updates the taint states accord-
ingly. The taint state structure contains two contexts: vir-
tual registers keeping track of symbolic taint tags for reg-
ister, and taint symbolic memory for symbolic taint tags
in memory. The taint symbolic memory design is like the
two-level page table structure and each page of memory
consists of symbolic taint formulas rather than concrete
values. After the initialization of the symbolic taint in-
puts, the engines perform taint analysis either concretely
or symbolically in a pipeline style.

4.2.2 Straight-line Code Construction

Given the control flow profiles, recovering each basic
block’s H-tag and L-tag is quite straightforward. A basic
block’s entry address is the concatenation of its corre-
sponding H-tag and L-tag [47]. The taint analysis engine
should only execute the instructions required for taint
propagation. Otherwise, the work thread may run much
slower than the application thread. On the other side, due
to the cumbersome x86 ISA, precisely propagating taint
for the complex x86 instructions is an arduous work, es-
pecially for some instructions with side effect of condi-
tional taint (e.g., CMOV). To achieve these two goals, we
first extract the x86 instructions sequence from the ap-
plication binary and then lift them to BIL [5], a RISC-
like intermediate language. Since we know exactly the
execution sequence, the sequence is a straight-line code.
We have removed all the direct and indirect control trans-
fer instructions and substituted them with control transfer
target assertion statements.

After resolving an indirect control transfer, we go one
step further to determine all the memory operation ad-

Figure 6: A path predicate constrains symbolic memory
access within the boundary of 7 < i < 10.

dresses which depend on this indirect control transfer tar-
get. For example, after we know the target of jmp eax,
we continue to trace the use-def chain of eax for each
memory load or store operation whose address is calcu-
lated through this eax. With the initial execution state
(containing addresses of taint seeds) and indirect control
transfer target resolving, we are able to decide most of
the memory operation addresses.

For some applications such as word processing, a sym-
bolic taint input may be used as a memory lookup index.
Without any constraint, a symbolic memory index could
point to any memory cell. Inspired by the index-based
memory model proposed by Cha et al. [8], we attempt to
narrow down the symbolic memory accesses to a small
range with symbolic taint states and path predicates. We
first leverage value set analysis [2] to limit the range of
a symbolic memory access and then refine the range by
querying a constraint solver. The path predicate along
the straight-line code usually limits the scope of sym-
bolic memory access. Figure 6 shows such an example
where the path predicate restricts the symbolic memory
index i within a range such that 7 < i < 10. When propa-
gating a taint tag to the memory cell referenced by i, we
conservatively taint all the possible memory slots, that
is, A[8] and A[9] in Figure 6 will be tainted as tag1. In
Section 5.3, we will demonstrate that our symbolic mem-
ory index solution only introduces marginal side effects.

4.2.3 Taint Operation Generation

Based on BIL statements, we construct taint operations.
Taint operations inside a basic block are formed as “taint
basic block” [37], which are cached for efficiency. To
make the best of cache effect, we merge the basic blocks
with only one predecessor and one successor. Since BIL
explicitly reveals the side effect of intricate x86 instruc-
tions, it is easy to perform intra-block optimizations to
get rid of redundant taint operations. Therefore, our taint



USENIX Association  24th USENIX Security Symposium 73

Control flow
profile

Taint analysis engine

 Taint 
operations 
constructor

Taint seeds + 
abstract state

Abstract taint 
analysis processor 

Taint state

Taint symbolic 
memory

 Virtual registers

Worker threads

Taint basic 
block cache

Figure 5: The structure of taint analysis engine.

operations are simple and accurate. Currently our taint
operations mainly consist of three types of operations for
tracking taint data:

1. Assignment operations: The operations in this cate-
gory are involved in copying values between reg-
isters and registers/memory. We simply assign
the taint tag of source operand to the destination
operand.

2. Laundering operations: The operations are used to
clean the taint tag of the destination operand. For
example, xor eax,eax will clean the taint result of
eax. We identify all laundering operations in taint
basic blocks and substitute them with assignment
operations.

3. Arithmetic and logic operations: This category of
operations are the most difficult to handle. We emu-
late arithmetic and logic operations on the taint tags
to capture their real semantics.

Figure 7 presents an example of taint operations for a
basic block. TaintPipe’s symbolic taint operations out-
perform conventional DTA approaches in three ways.
First and foremost, multi-tag taint analysis is straight-
forward for TaintPipe. Each symbolic variable can nat-
urally represent a taint tag (see Line 1 and Line 2 in
Figure 7). Second, previous DTA tools mostly adopted
a “short circuiting” method to handle arithmetic opera-
tions, that is, the destination is tainted if at least one of
the source operands is tainted regardless of the real se-
mantics. However, in many scenarios, it will lead to
precision loss. Check the code at Line 4 and 5 in Fig-
ure 7, value d will always be zero since b is the nega-
tion of a. Unfortunately, some previous work may la-
bel d as tainted incorrectly [41]. Third, different from
related work [20, 17], TaintPipe supports bit-level taint
for EFLAGS register, representing whether a bit of the
EFLAGS is tainted or not due to side effects. Recent
work has demonstrated the value of bit-level taint in bi-
nary code de-obfuscation [42].

int a, b, c, d;
1: a = read ();
2: c = read ();
3: c = c xor c;
4: b = ~ a;
5: d = a & b;

(a) a basic block (b) a taint basic block

1: Taint (a) = tag1;
2: Taint (c) = tag2;
3: Taint (c) = 0;
4: Taint (b) = ~ tag1;
5: Taint (d) = 0;

Figure 7: Example: taint operations.

Table 1: Function summary.
Category Function

No tainting strcmp, strncmp, memcmp, strlen, strchr,
strstr, strpbrk, strcspn, qsort, rand,

time, clock, ctime
Function level strcat, strncat, strcpy, strncpy, memcpy,

memmove, strtok, atoi, itoa, abs
tolower, toupper

Another major optimization we adopt is so called
“function summary”. As many well-known library func-
tions have explicit semantics (e.g., atoi, strlen), we gener-
ate a summary of each function and propagate taint cor-
respondingly at function level. Table 1 lists two types
of function summary TaintPipe supports: 1) Functions
within “no tainting” category do not have any side effect
on taint state. We can safely turn off logging when exe-
cuting them. 2) Some functions do propagate taint from
an input parameter to output. We still turn off logging
and update taint state correspondingly when these func-
tions return.

4.2.4 Symbolic Taint State Resolution

In TaintPipe’s pipeline framework, a worker thread may
perform taint analysis concretely or symbolically in par-
allel. When a worker thread completes taint analysis with
concrete taint tags, the final taint state it maintains is de-
terministic. Then it synchronizes with the subsequent
worker thread to resolve the symbolic taint state main-



74 24th USENIX Security Symposium USENIX Association

tained by the latter. Taint states are allocated in a shared
memory area so that multiple threads can access them
easily. Basically, given the concrete taint state at the be-
ginning of a code segment, we replace a symbolic taint
tag with the appropriate starting value (either a taint tag
or a concrete value). We further update all the symbolic
formula containing that symbolic taint tag. For example,
the logic AND formula in Figure 2(b) will be simplified
to a single taint tag. After that, the subsequent thread
switches to the concrete taint analysis and continue pro-
cessing the left segment code.

In this order, the taint states of each segment will be
resolved and updated one by one. The defined taint pol-
icy (e.g., a function return value should not be tainted)
is checked along the concrete taint analysis as well. A
tainted sink is identified if it contains a symbolic for-
mula; multiple tags are determined by counting the num-
ber of different symbols in the formula. Note that a pre-
vious hardware-assisted approach [31] utilized a separate
“master” processor to update each segment’s taint status
sequentially. However, as pointed out by the paper, when
there are more than a few “worker” processors, the mas-
ter processor will become the bottleneck. Our approach
amortizes the workload of the master processor to each
worker thread.

5 Experimental Evaluation

We conducted experiments with several goals in mind.
First, we wanted to choose optimal values for two factors
that may affect TaintPipe’s performance, namely control
flow profile buffer size and the number of worker threads.
Then we studied overall runtime overhead when running
TaintPipe on the SPEC2006 int benchmarks and a num-
ber of common utilities. We also compared TaintPipe
with a highly optimized inline dynamic taint analysis
tool. At the same time, we wanted to make sure TaintPipe
is effective in speeding up various security analysis tasks
and can compete with conventional inlined dynamic taint
analysis in precision. To this end, we demonstrated three
compelling applications: 1) detecting software attacks;
2) tracking information flow in obfuscated malicious pro-
grams; and 3) identifying cryptography functions with
multi-tag propagation.

5.1 Experiment Setup

Our experiment platform contains two Intel Xeon E5-
2690 processors, 128GB of memory and a 250GB solid
state drive, running Ubuntu12.04. Each processor is
equipped with 8 2.9GHz cores, 16 hyper threads and
20MB L3 cache. The performance data reported in this
section are all mean values with 5 repetitions.

2
4

6
8
10

12
14

16
18

20

4

8

12

16

20

24

28

32

36

40

8
16

32
64

Sl
ow

do
w

 (n
or

m
al

iz
ed

 ru
nt

im
e)

 Profile buffer size (MB)

# W
orker threads

Figure 8: Optimal buffer size and number of worker
threads.

TaintPipe’s performance is affected by the size of the
profile buffers and the number of worker threads. Gener-
ally, the more worker threads and larger profile buffers,
the less possibility that an application is suspended to
wait for a free buffer. On the other hand, our taint anal-
ysis engine has to take longer time to process larger
segment code. We conducted a series of tests with the
SPEC CPU2006 int benchmarks, under different settings
of these two variables. We dynamically adjust the num-
ber of worker threads from 2 to 20 (2, 4, 6, 8, 12, 16 and
20), and profile size from 8MB to 64MB (8MB, 16MB,
32MB and 64MB). Figure 8 displays the experimental
results. Roughly, as number of worker threads and buffer
size increase, the application slowdown reduces. That
is mainly because large buffer sizes allow application
thread continue to fill up and worker threads spend less
time on synchronization. After a certain point (buffer
size ≥ 32MB and number of worker threads > 16), over-
head increases slightly. Two factors prevent TaintPipe
from achieving more speedup. First, taint analysis en-
gine slows down when processing large code segment.
Second, more worker threads introduce larger communi-
cation latency when resolving symbolic taint states. Ac-
cording to the results, we set the two factors as their op-
timal values (32MB buffer size and 16 worker threads),
which will be used in the following experiments.

5.2 Performance
To evaluate the performance gains achieved by pipelin-
ing taint logic, we compared TaintPipe with a state-of-
the-art tool, libdft [20], which performs inlined dynamic
taint analysis based on Pin (“libdft” bar). In addition, we
developed a simple tool to measure the slowdown im-



USENIX Association  24th USENIX Security Symposium 75

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

average

xalancbmmk

astar
omnetpp

h264ref

libquantum

sjeng
hmmer

gobmk

mcf
gcc

bzip2
perlbench

 

 

S
lo

w
do

w
n 

(n
or

m
al

iz
ed

 ru
nt

im
e)

 nullpin
 libdft
 TaintPipe - application 
 TaintPipe - overall

Figure 9: Slowdown on SPEC CPU2006.

posed exclusively by TaintPipe. It runs a program under
Pin without any form of analysis (“nullpin” bar). The
“TaintPipe - application” bar represents the running time
of instrumented application thread alone, and “TaintPipe
- overall” corresponds to the overall overhead when both
the application thread and pipelined worker threads are
running. The major reason we reported “TaintPipe -
application” and “TaintPipe - overall” time separately
is to show the two improvements, namely “Application
speedup” and “Taint speedup” (see Figure 1). Since the
application thread typically runs faster than the worker
threads, the “TaintPipe - overall” time is actually dom-
inated by the worker threads. Therefore, usually the
“TaintPipe - overall” time represents the relative time
spent by worker threads as well. The times reported in
this section are all normalized to native execution, that
is, application running time without dynamic binary in-
strumentation.

SPEC CPU2006. Figure 9 shows the normalized ex-
ecution times when running the SPEC CPU2006 int
benchmark suite under TaintPipe. On average, the in-
strumented application thread enforces a 2.60X slow-
down to native execution, while the overall slowdown of
TaintPipe is 4.14X. If we take Pin’s environment run-
time overhead (“nullpin” bar) as the baseline, we can see
TaintPipe imposes 2.67X slowdown (“TaintPipe - over-
all” / “nullpin”) and libdft introduces 6.4X slowdown—
this number is coincident to the observation that prop-
agating a taint tag normally requires extra 6–8 instruc-
tions [30, 11]. In summary, TaintPipe outperforms in-
lined dynamic taint analysis drastically: 2.38X faster
than the inlined dynamic taint analysis, and 3.79X faster
in terms of application execution. In the best case

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

  tar
archive

  bzip2
decompress

 scp
1Gbps

 tar
untar

  gzip
compress

 bzip2
compress

 average  gzip
decompress

   
 

 

 

 nullpin
 libdft
 TaintPipe - application
 TaintPipe - overall

S
lo

w
do

w
n 

(n
or

m
al

iz
ed

 ru
nt

im
e)

Figure 10: Slowdown on common Linux utilities.

(h264ref ), the application speedup under TaintPipe ex-
ceeds 4.18X.

Utilities. We also evaluated TaintPipe on four common
Linux utilities, which were not chosen randomly. These
four utilities represent three kinds of workloads: I/O
bounded (tar), CPU bounded (bzip2 and gzip), and
the case in-between (scp). We applied tar to archive
and extract the GNU Core utilities package (version
8.13) (∼50MB), then we employed bzip2 and gzip to
compress and decompress the archive file. Finally we
utilized scp to copy the archive file over a 1Gbps link.
As shown in Figure 10, TaintPipe reduced slowdown of
dynamic taint analysis from 7.88X to 3.24X, by a factor
of 2.43 on average.

Effects of Optimizations. In this experiment, we
quantify the effects of taint logic optimizations we pre-
sented in Section 4.2, which are paramount for optimized
TaintPipe performance. Figure 11 shows the impact of
these optimizations when applied cumulatively on SPEC
CPU2006 and the set of common utilities. The “un-
opt” bar approximates an un-optimized TaintPipe, which
does not adopt any optimization method. The “O1” bar
indicates the optimization of function summary, reduc-
ing application slowdown notably by 26.6% for SPEC
CPU2006 and 25.0% for the common utilities. The “O2”
bar captures the effect of taint basic block cache, leading
to a further reduction by 19.0% and 22.9% for SPEC and
utilities, respectively. Intra-block optimizations, denoted
by “O3”, offer further improvement, 12.0% with SPEC
and 11.6% with the utilities).



76 24th USENIX Security Symposium USENIX Association

Table 2: Tested software vulnerabilities.

Program Vulnerability CVE ID # Taint Bytes
libdft Temu TaintPipe

Nginx Validation Bypass CVE-2013-4547 45 45 45
Micro httpd Validation Bypass CVE-2014-4927 80 85 80
Tiny Server Validation Bypass CVE-2012-1783 125 126 125
Regcomp Validation Bypass CVE-2010-4052 1,124 1,148 1,180
Libpng Denial Of Service CVE-2014-0333 72 72 72
Gzip Integer Underflow CVE-2010-0001 94 112 96
Grep Integer Overflows CVE-2012-5667 608 682 653

Coreutils Buffer Overflow CVE-2013-0221 252 260 256
Libtiff Buffer Overflow CVE-2013-4231 268 286 290

WaveSurfer Buffer Overflow CVE-2012-6303 384 418 406
Boa Information Leak CVE-2009-4496 164 164 164

Thttpd Information Leak CVE-2009-4491 328 328 328

0

1

2

3

4

5

6

7

8

9

 

 

 

S
lo

w
do

w
n 

(n
or

m
al

iz
ed

 ru
nt

im
e)

 Unopt
 O1
 O2
 O3

SPEC CPU2006  Common utilities

Figure 11: The impact of optimizations to speed up
TaintPipe when applied cumulatively: O1 (function sum-
mary), O2 (O1 + taint basic block cache), O3 (O2 + intra-
block optimizations).

5.3 Security Applications

Software Attack Detection. One important applica-
tion of taint analysis is to define taint policies, and en-
sure they are not violated during taint propagation. We
tested TaintPipe with 12 recent software exploits listed
in Table 2, which covers a wide range of real-life soft-
ware vulnerabilities. For example, the vulnerabilities in
nginx, micro httpd, and tiny server allow remote
attackers to bypass input validation and crash the pro-
gram. The libtiff buffer overflow vulnerability leads
to an out of bounds loop limit via a malformed gif image.
Both boa and thttpd write data to a log file without san-
itizing non-printable characters, which may be exploited
to execute arbitrary commands. Since we have detailed

Table 3: Malware samples and taint graphs.

Sample Type
Taint Graph Control Flow

Node # Edge # Obfuscation
Svat Virus 90 62
RST Virus 154 82
Agent Rootkit 624 402 �
KeyLogger Trojan 554 368 �
Subsevux Backdoor 1648 764 �
Tsunami Backdoor 734 534 �
Keitan Backdoor 618 482 �
Fireback Backdoor 1038 620 �

vulnerability reports, we can easily mark the locations of
taint sinks in the straight-line code and set corresponding
taint policies.

In our evaluation, TaintPipe did not generate any false
positives and successfully identified taint policy viola-
tions while incurring only small overhead. At the same
time, we evaluated the accuracy of TaintPipe. To this
end, we counted the total number of tainted bytes in the
taint state when taint analysis hit the taint sinks. Col-
umn 4 ∼ 6 of Table 2 show the number of taint bytes
when running libdft, Temu [44] and TaintPipe, respec-
tively. Compared with the inlined dynamic taint anal-
ysis tools (libdft and Temu), TaintPipe’s symbolic taint
analysis achieves almost the same results in 8 cases and
introduces only a few additional taint bytes in the other
4 cases. We attribute this to our conservative approach
to handling of symbolic memory indices. The evalu-
ation data show that TaintPipe does not result in over-
tainting [32] and rivals the inlined dynamic taint analysis
at the same level of precision.



USENIX Association  24th USENIX Security Symposium 77

Table 4: Cryptographic function detection time.
Algorithm TaintPipe (s) Temu (s)

TEA 3.8 (<1.1X) 15.2 (2.2X)
AES-CBC 12.3 (1.2X) 125.6 (3.8X)
Blowfish 4.5 (<1.1X) 21.4 (2.5X)

MD5 7.4 (<1.1X) 35.1 (2.6X)
SHA-1 8.8 (1.1X) 40.2 (3.3X)

Generating Taint Graphs for Malware. We ran 8
malware samples collected from VX Heavens1 with
TaintPipe.2 Similar to Panorama [43], we tracked infor-
mation flow and generated a taint graph for each sam-
ple. In a taint graph, nodes represent taint seeds or in-
structions operating on taint data, and a directed edge
indicates an explicit data flow dependency between two
nodes. Taint graph faithfully describes intrinsic mali-
cious intents, which can be used as malware specification
to detect suspicious samples [12]. The statistics of our
testing results are presented in Table 3. It is worth noting
that 6 out of 8 malware samples are applied with vari-
ous control flow obfuscation methods (the fifth column),
such as opaque predicates, control flow flattening, obfus-
cated control transfer targets, and call stack tampering.
As a result, the control flow graphs are heavily cluttered.
For example, malware samples Keitan and Fireback

have a relatively high ratio of indirect jumps (e.g., jmp
eax). Typically it is hard to precisely infer the destina-
tion of an indirect jump statically. Thus, the taint logic
optimization methods that rely on accurate control flow
graph [17, 18] will fail. In contrast, our approach does
not rely on control flow graph and therefore we analyzed
these obfuscated malware samples smoothly.

Cryptography Function Detection. Malware authors
often use cryptography algorithms to encrypt malicious
code, sensitive data, and communication. Detecting
cryptography functions facilitates malware analysis and
forensics. Recent work explored the avalanche effect
to quickly identify possible cryptography functions by
observing the input-output dependency with multi-tag
taint analysis. That is, each byte in the encrypted mes-
sage is dependent on almost all bytes of input data or
key [7, 21, 48]. However, multi-tag dynamic taint anal-
ysis normally has to sacrifice more shadow memory and
imposes much higher runtime overhead than single-tag
dynamic taint analysis. Recall that multi-tag propagation
is handled transparently in TaintPipe. In this experiment,
we applied TaintPipe to detect such avalanche effects in
binary code. We utilized the test case suite of Crypto++

1http://vxheaven.org
2All these 8 samples are not packed. To analyze packed binaries, we

can start TaintPipe when the unpacking procedure arrives at the original
entry point.

library3 and tested 5 cryptography algorithms. Each byte
of the plain messages was labeled as a different taint tag.
We compared TaintPipe with Temu [44], which supports
multiple byte-to-byte taint propagation as well.4 The de-
tection time is shown in Table 4. We also reported the ra-
tio of multi-tag’s running time to single-tag’s. The results
show that TaintPipe is able to detect cryptographic func-
tions with little additional overhead (less than 1.1X on
average), while Temu’s multi-tag propagation imposes a
significant slowdown (2.9X to single-tag propagation on
average).

6 Discussions and Limitations

Since TaintPipe’s pipelining design leads to an asyn-
chronous taint check, TaintPipe may detect a violation
of taint policy after the real attack happens. One possible
solution is to provide synchronous policy enforcement at
critical points (e.g., indirect jump and system call sites).
In that case, we can explicitly suspend the application
thread, and wait for the worker threads to complete. Our
current design spawns worker threads in the same pro-
cess of running both Pin and the application. In the fu-
ture, we plan to replace the worker threads with different
processes to increase isolation.

As TaintPipe may perform symbolic taint analysis
when explicit taint states are not available, TaintPipe ex-
hibits similar limitations as symbolic execution of bi-
naries. Recent work MAYHEM [8] proposes an ad-
vanced index-based memory model to deal with sym-
bolic memory index. We plan to extend our symbolic
memory index handling in the future. TaintPipe recovers
the straight-line code by logging basic block entry ad-
dress. However, with malicious self-modifying code, the
entry address may not uniquely identify a code block. To
address this issue, we can augment TaintPipe by logging
the real executed instructions at the expense of runtime
performance overhead.

Our focus is to demonstrate the feasibility of pipelined
symbolic taint analysis. We have not fully optimized
the symbolic taint analysis part which we believe can
be greatly improved in terms of performance based on
our current prototype. As our taint analysis engine simu-
lates the semantics of taint operations, the speed of taint
analysis is slow. One future direction is to execute con-
crete taint analysis natively like micro execution [16] and
switch to the interpretation-style when performing sym-
bolic taint analysis. Currently TaintPipe requires large
share memory to reduce communication overhead be-
tween different pipeline stages. Therefore, our approach
is more suitable for large servers with sufficient memory.

3http://www.cryptopp.com/
4libdft does not support multi-tag taint analysis.



78 24th USENIX Security Symposium USENIX Association

7 Related Work

In this section we first present previous work on static
and dynamic taint analysis. Our work is a hybrid of
these two analyses. Then we introduce previous efforts
on taint logic code optimization, which benefits our taint
operation generation. Finally, we describe recent work
on decoupling taint tracking logic from original program
execution, which is the closest to TaintPipe’s method.

Static and Dynamic Taint Analysis. Since static taint
analysis (STA) is performed prior to execution by con-
sidering all possible execution paths, it does not affect
application runtime performance. STA has been applied
to data lifetime analysis for Android applications [1], ex-
ploit code detection [36], and binary vulnerability test-
ing [28]. Dynamic taint analysis (DTA) is more pre-
cise than static taint analysis as it only propagates taint
following the real path taken at run time. DTA has
been widely used in various security applications, includ-
ing data flow policy enforcement [25, 40, 27], revers-
ing protocol data structures [33, 38, 6], malware anal-
ysis [39] and Android security [14]. However, an in-
trinsic limitation of DTA is its significant performance
slowdown. Schwartz et al. [32] formally defined the op-
erational semantics for DTA and forward symbolic exe-
cution (FSE). Our approach is in fact a hybrid of these
techniques. Worker thread conducts concrete taint anal-
ysis (like DTA) whenever explicit taint information is
available; otherwise symbolic taint analysis (like STA
and FSE) is performed.

Taint Logic Optimization. Taint logic code, deciding
whether and how to propagate taint, require additional in-
structions and “context switches”. Frequently executing
taint logic code incurs substantial overhead. Minemu [3]
achieved a decent runtime performance at the cost of sac-
rificing memory space to speed up shadow memory ac-
cess. Moreover, Minemu utilized spare SSE registers to
alleviate the pressure of general register spilling. As a
result, Minemu only worked on 32-bit program. Tain-
tEraser [49] developed function summaries for Windows
programs to propagate taint at function level. Libdft [20]
introduced two guidelines to facilitate DBI’s code inlin-
ing: 1) tag propagation code should have no branch; 2)
shadow memory updates should be accomplished with
a single assignment. Ruwase et al. [30] applied com-
piler optimization techniques to eliminate redundant taint
logic code in hot paths. Jee et al. [19] proposed Taint
Flow Algebra to summarize the semantics of taint logic
for basic blocks. All these efforts to generate optimized
taint logic code are orthogonal and complementary to
TaintPipe.

Decoupling Dynamic Taint Analysis. A number
of researchers have considered the high performance
penalty imposed by inlined dynamic taint analysis. They
proposed various solutions to decouple taint tracking
logic from application under examination [24, 31, 26, 15,
17, 9], which are close in spirit to our proposed approach.
Speck [26] forked multiple taint analysis processes from
application execution to spare cores by means of specula-
tive execution, and utilized record/replay to synchronize
taint analysis processes. Speck required OS level support
for speculative execution and rollback. Speck’s approach
sacrifices processing power to achieve acceleration. Sim-
ilar to TaintPipe’s segmented symbolic taint analysis,
Ruwase et al. [31] proposed symbolic inheritance track-
ing to parallelize dynamic taint analysis. TaintPipe dif-
fers from Ruwase et al.’s approach in three ways: 1)
Their approach was built on top of a log-based archi-
tecture [10] for efficient communication with idle cores,
while TaintPipe works on commodity multi-core hard-
ware directly. 2) To achieve better parallelization, they
adopted a relaxed taint propagation policy to set a bi-
nary operation as untainted, while TaintPipe performs
full-fledged taint propagation so that we provide stronger
security guarantees. 3) They used a separate “master”
processor to update each segment’s taint status sequen-
tially, while TaintPipe resolves symbolic taint states be-
tween two consecutive segments. Our approach could
achieve better performance when there are more than a
few “worker” processors.

Software-only approaches [15, 17, 9] are the most re-
lated to TaintPipe. They decouple dynamic taint anal-
ysis to a shadow thread by logging the runtime values
that are needed for taint analysis. However, as we have
pointed out, these methods [15, 9] may suffer from high
overhead of frequent communication between the appli-
cation thread and shadow thread. Recent work Shad-
owReplica [17] ameliorates this drawback by adopting
fine-grained offline optimizations to remove redundant
taint logic code. In principle, it is possible to remove
redundant taint logic by means of static offline optimiza-
tions. Unfortunately, even static disassembly of stripped
binaries is still a challenge [22, 35]. Therefore, the
assumption by ShadowReplica that an accurate control
flow graph can be constructed may not be feasible in cer-
tain scenarios, such as analyzing control flow obfuscated
software. We take a different angle to address this issue
with lightweight runtime information logging and seg-
mented symbolic taint analysis. We demonstrate the ca-
pability of TaintPipe in speeding up obfuscated binary
analysis, which ShadowReplica may not be able to han-
dle. Furthermore, ShadowReplica does not support bit-
level and multi-tag taint analysis, while TaintPipe han-
dles them naturally.



USENIX Association  24th USENIX Security Symposium 79

8 Conclusion

We have presented TaintPipe, a novel tool for pipelin-
ing dynamic taint analysis with segmented symbolic taint
analysis. Different from previous parallelization work on
taint analysis, TaintPipe uses a pipeline style that relies
on straight-line code with very few runtime values, en-
abling lightweight online logging and much lower run-
time overhead. We have evaluated TaintPipe on a num-
ber of benign and malicious programs. The results show
that TaintPipe rivals conventional inlined dynamic taint
analysis in precision, but with a much lower online ex-
ecution slowdown. The performance experiments indi-
cate that TaintPipe can speed up dynamic taint analysis
by 2.43 times on a set of common utilities and 2.38 times
on SPEC2006, respectively. Such experimental evidence
demonstrates that TaintPipe is both efficient and effective
to be applied in real production environments.

9 Acknowledgments

We thank the Usenix Security anonymous reviewers and
Niels Provos for their valuable feedback. This research
was supported in part by the National Science Foun-
dation (NSF) grants CNS-1223710 and CCF-1320605,
and the Office of Naval Research (ONR) grant N00014-
13-1-0175. Liu was also partially supported by ARO
W911NF-09-1-0525.

References
[1] ARZT, S., RASTHOFER, S., FRITZ, C., BODDEN, E., BARTEL,

A., KLEIN, J., LE TRAON, Y., OCTEAU, D., AND MCDANIEL,
P. FlowDroid: Precise context, flow, field, object-sensitive and
lifecycle-aware taint analysis for android apps. In Proceedings of
the 35th ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI’14) (2014).

[2] BALAKRISHNAN, G., AND REPS, T. WYSINWYX: What You
See Is Not What You eXecute. ACM transactions on program-
ming languages and systems 32, 6 (2010).

[3] BOSMAN, E., SLOWINSKA, A., AND BOS, H. Minemu: The
world’s fastest taint tracker. In Proceedings of the 14th Inter-
national Symposium on Recent Advances in Intrusion Detection
(RAID’11) (2011).

[4] BRUENING, D., GARNETT, T., AND AMARASINGHE, S. An in-
frastructure for adaptive dynamic optimization. In Proceedings
of the 2003 international symposium on code generation and op-
timization (CGO’03) (2003).

[5] BRUMLEY, D., JAGER, I., AVGERINOS, T., AND SCHWARTZ,
E. J. BAP: A binary analysis platform. In Proceedings of
the 23rd international conference on computer aided verification
(CAV’11) (2011).

[6] CABALLERO, J., POOSANKAM, P., KREIBICH, C., AND SONG,
D. Dispatcher: Enabling active botnet infiltration using automatic
protocol reverse-engineering. In Proceedings of the 16th ACM
Conference on Computer and Communication Security (CCS’09)
(2009).

[7] CABALLERO, J., POOSANKAM, P., MCCAMANT, S., BABI Ć,
D., AND SONG, D. Input generation via decomposition and
re-stitching: Finding bugs in malware. In Proceedings of the
17th ACM Conference on Computer and Communications Secu-
rity (CCS’10) (2010).

[8] CHA, S. K., AVGERINOS, T., REBERT, A., AND BRUMLEY, D.
Unleashing mayhem on binary code. In Proceedings of the 2012
IEEE Symposium on Security and Privacy (2012).

[9] CHABBI, M., PERIYANAYAGAM, S., ANDREWS, G., AND DE-
BRAY, S. Efficient dynamic taint analysis using multicore ma-
chines. Tech. rep., The University of Arizona, May 2007.

[10] CHEN, S., GIBBONS, P. B., KOZUCH, M., AND MOWRY, T. C.
Log-based architectures: Using multicore to help software be-
have correctly. ACM SIGOPS Operating Systems Review 45, 1
(2011), 84–91.

[11] CHENG, W., ZHAO, Q., YU, B., AND HIROSHIGE, S. Taint-
Trace: Efficient flow tracing with dynamic binary rewriting. In
Proceedings of the 11th IEEE Symposium on Computers and
Communications (ISCC’06) (2006).

[12] CHRISTODORESCU, M., JHA, S., AND KRUEGEL, C. Mining
specifications of malicious behavior. In Proceedings of the 6th
Joint Meeting of the European Software Engineering Conference
and the ACM SIGSOFT Symposium on The Foundations of Soft-
ware Engineering (ESEC-FSE’07) (2007).

[13] CLAUSE, J., LI, W. P., AND ORSO, A. Dytan: A generic dy-
namic taint analysis framework. In Proceedings of the ACM SIG-
SOFT International Symposium on Software Testing and Analysis
(ISSTA 2007) (2007).

[14] ENCK, W., GILBERT, P., CHUN, B.-G., COX, L. P., JUNG,
J., MCDANIEL, P., AND SHETH, A. N. TaintDroid: An
information-flow tracking system for realtime privacy monitoring
on smartphones. In Proceedings of the 2010 USENIX Symposium
on Operating Systems Design and Implementation (OSDI’10),
(2010).

[15] ERMOLINSKIY, A., KATTI, S., SHENKER, S., FOWLER, L. L.,
AND MCCAULEY, M. Towards practical taint tracking. Tech.
rep., EECS Department, University of California, Berkeley, Jun
2010.

[16] GODEFROID, P. Micro execution. In Proceedings of the 36th
International Conference on Software Engineering (ICSE’14)
(2014).

[17] JEE, K., KEMERLIS, V. P., KEROMYTIS, A. D., AND POR-
TOKALIDIS, G. ShadowReplica: Efficient parallelization of dy-
namic data flow tracking. In Proceedings of the 2013 ACM
SIGSAC conference on Computer & communications security
(CCS’13) (2013).

[18] JEE, K., PORTOKALIDIS, G., KEMERLIS, V. P., GHOSH, S.,
AUGUST, D. I., AND KEROMYTIS, A. D. A general approach
for efficiently accelerating software-based dynamic data flow
tracking on commodity hardware. In Proceedings of the 19th
Internet Society (ISOC) Symposium on Network and Distributed
System Security (NDSS) (2012).

[19] JEE, K., PORTOKALIDIS, G., KEMERLIS, V. P., GHOSH, S.,
AUGUST, D. I., AND KEROMYTIS, A. D. A general approach
for efficiently accelerating software-based dynamic data flow
tracking on commodity hardware. In Proceedings of the 2012
Network and Distributed System Security Symposium (NDSS’12)
(2012).

[20] KEMERLIS, V. P., PORTOKALIDIS, G., JEE, K., AND
KEROMYTIS, A. D. libdft: Practical dynamic data flow track-
ing for commodity systems. In Proceedings of the 8th ACM
SIGPLAN/SIGOPS International Conference on Virtual Execu-
tion Environments (VEE’12) (2012).



80 24th USENIX Security Symposium USENIX Association

[21] LI, X., WANG, X., AND CHANG, W. CipherXRay: Exposing
cryptographic operations and transient secrets from monitored bi-
nary execution. IEEE Transactions on Dependable and Secure
Computing 11, 2 (2014).

[22] LINN, C., AND DEBRAY, S. Obfuscation of executable code to
improve resistance to static disassembly. In Proceedings of the
10th ACM Conference on Computer and Communications Secu-
rity (CCS’03) (2003).

[23] LUK, C.-K., COHN, R., MUTH, R., PATIL, H., KLAUSER, A.,
LOWNEY, G., WALLACE, S., REDDI, V. J., AND HAZELWOOD,
K. Pin: building customized program analysis tools with dy-
namic instrumentation. In Proceedings of the 2005 ACM SIG-
PLAN conference on Programming language design and imple-
mentation (PLDI’05) (2005).

[24] NAGARAJAN, V., KIM, H.-S., WU, Y., AND GUPTA, R. Dy-
namic information flow tracking on multicores. In Proceedings of
the 2008 Workshop on Interaction between Compilers and Com-
puter Architectures (2008).

[25] NEWSOME, J., AND SONG, D. Dynamic taint analysis for auto-
matic detection, analysis, and signature generation of exploits on
commodity software. In Proceedings of the 2005 Network and
Distributed System Security Symposium (NDSS’05) (2005).

[26] NIGHTINGALE, E. B., PEEK, D., CHEN, P. M., AND FLINN,
J. Parallelizing security checks on commodity hardware. In
Proceedings of the 13th International Conference on Architec-
tural Support for Programming Languages and Operating Sys-
tems (ASPLOS’08) (2008).

[27] QIN, F., WANG, C., LI, Z., SEOP KIM, H., ZHOU, Y., AND
WU, Y. LIFT: A low-overhead practical information flow track-
ing system for detecting security attacks. In Proceedings of the
39th Annual IEEE/ACM International Symposium on Microar-
chitecture (MICRO’06) (2006).

[28] RAWAT, S., MOUNIER, L., AND POTET, M.-L. Static taint-
analysis on binary executables. http://stator.imag.fr/

w/images/2/21/Laurent_Mounier_2013-01-28.pdf, Oc-
tober 2011.

[29] RENIERIS, M., RAMAPRASAD, S., AND REISS, S. P. Arith-
metic program paths. In Proceedings of the 10th European soft-
ware engineering conference held jointly with 13th ACM SIG-
SOFT international symposium on Foundations of software engi-
neering (ESEC/FSE-13) (2005).

[30] RUWASE, O., CHEN, S., GIBBONS, P. B., AND MOWRY, T. C.
Decoupled lifeguards: Enabling path optimizations for online
correctness checking tools. In Proceedings of the ACM SIGPLAN
2010 Conference on Programming Language Design and Imple-
mentation (PLDI’10) (2010).

[31] RUWASE, O., GIBBONS, P. B., MOWRY, T. C., RAMACHAN-
DRAN, V., CHEN, S., KOZUCH, M., AND RYAN, M. Paralleliz-
ing dynamic information flow tracking lifeguards. In Proceed-
ings of the 20th ACM Symposium on Parallelism in Algorithms
and Architectures (SPAA’08) (2008).

[32] SCHWARTZ, E. J., AVGERINOS, T., AND BRUMLEY, D. All you
ever wanted to know about dynamic taint analysis and forward
symbolic execution (but might have been afraid to ask). In Pro-
ceedings of the 2010 IEEE Symposium on Security and Privacy
(2010).

[33] SLOWINSKA, A., STANCESCU, T., AND BOS, H. Howard: A
dynamic excavator for reverse engineering data structures. In
Proceedings of the 2011 Network and Distributed System Secu-
rity Symposium (NDSS’11) (2011).

[34] VACHHARAJANI, N., BRIDGES, M. J., CHANG, J., RANGAN,
R., OTTONI, G., BLOME, J. A., REIS, G. A., VACHHARAJANI,
M., AND AUGUST, D. I. RIFLE: An architectural framework

for user-centric information-flow security. In Proceedings of the
37th Annual IEEE/ACM International Symposium on Microar-
chitecture (MICRO’37) (2004).

[35] WANG, S., WANG, P., AND WU, D. Reassembleable disassem-
bling. In Proceedings of the 24th USENIX Security Symposium
(2015), USENIX Association.

[36] WANG, X., JHI, Y.-C., ZHU, S., AND LIU, P. STILL: Ex-
ploit code detection via static taint and initialization analyses. In
Proceedings of the 24th Annual Computer Security Applications
Conference (ACSAC’08) (2008).

[37] WHELAN, R., LEEK, T., AND KAELI, D. Architecture-
independent dynamic information flow tracking. In Proceedings
of the 22nd international conference on Compiler Construction
(CC’13) (2013).

[38] WONDRACEK, G., COMPARETTI, P. M., KRUEGEL, C., AND
KIRDA, E. Automatic network protocol analysis. In Proceed-
ings of the 15th Annual Network and Distributed System Security
Symposium (NDSS’08) (2008).

[39] XU, M., MALYUGIN, V., SHELDON, J., VENKITACHALAM,
G., AND WEISSMAN, B. ReTrace: Collecting execution trace
with virtual machine deterministic replay. In Proceedings of
the 2007 Workshop on Modeling, Benchmarking and Simulation
(2007).

[40] XU, W., BHATKAR, S., AND SEKAR, R. Taint-enhanced pol-
icy enforcement: A practical approach to defeat a wide range of
attacks. In Proceedings of the 15th Conference on USENIX Secu-
rity Symposium (USENIX’06) (2006).

[41] YADEGARI, B., AND DEBRAY, S. Bit-level taint analysis. In
Proceedings of the 14th IEEE International Working Conference
on Source Code Analysis and Manipulation (2014).

[42] YADEGARI, B., JOHANNESMEYER, B., WHITELY, B., AND
DEBRAY, S. A generic approach to automatic deobfuscation of
executable code. In Proceedings of the 36th IEEE Symposium on
Security and Privacy (2015).

[43] YIN, H., AMD M. EGELE, D. S., KRUEGEL, C., AND KIRDA,
E. Panorama: Capturing system-wide information flow for mal-
ware detection and analysis. In ACM Conference on Computer
and Communications Security (CCS’07) (2007).

[44] YIN, H., AND SONG, D. TEMU: Binary code analysis
via whole-system layered annotative execution. Tech. Rep.
UCB/EECS-2010-3, EECS Department, University of California,
Berkeley, Jan 2010.

[45] YIP, A., WANG, X., ZELDOVICH, N., AND KAASHOEK, M. F.
Improving application security with data flow assertions. In Pro-
ceedings of the ACM SIGOPS 22nd symposium on Operating sys-
tems principles (2009), ACM, pp. 291–304.

[46] ZHAO, Q., CUTCUTACHE, I., AND WONG, W.-F. PiPA:
Pipelined profiling and analysis on multi-core systems. In Pro-
ceedings of the 2008 International Symposium on Code Genera-
tion and Optimization (CGO’08) (2009).

[47] ZHAO, Q., SIM, J. E., RUDOLPH, L., AND WONG, W.-F. DEP:
Detailed execution profile. In Proceedings of the 15th Inter-
national Conference on Parallel Architectures and Compilation
Techniques (PACT’06) (2006).

[48] ZHAO, R., GU, D., LI, J., AND ZHANG, Y. Automatic detection
and analysis of encrypted messages in malware. In Proceedings
of the 9th China International Conference on Information Secu-
rity and Cryptology (INSCRYPT’13) (2013).

[49] ZHU, D. Y., JUNG, J., SONG, D., KOHNO, T., AND WETHER-
ALL, D. TaintEraser: Protecting sensitive data leaks using
application-level taint tracking. ACM SIGOPS Operating Sys-
tems Review 45 (January 2011), 142–154.


