Verified Correctness and Security of OpenSSL HMAC

Lennart Beringer, Princeton University; Adam Petcher, Harvard University and MIT Lincoln Laboratory; Katherine Q. Ye and Andrew W. Appel, Princeton University

https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/beringer
Verified correctness and security of OpenSSL HMAC

Lennart Beringer  
Princeton Univ.  
Adam Petcher  
Harvard Univ. and MIT Lincoln Laboratory  
Katherine Q. Ye  
Princeton Univ.  
Andrew W. Appel  
Princeton Univ.

Abstract

We have proved, with machine-checked proofs in Coq, that an OpenSSL implementation of HMAC with SHA-256 correctly implements its FIPS functional specification and that its functional specification guarantees the expected cryptographic properties. This is the first machine-checked cryptographic proof that combines a source-program implementation proof, a compiler-correctness proof, and a cryptographic-security proof, with no gaps at the specification interfaces.

The verification was done using three systems within the Coq proof assistant: the Foundational Cryptography Framework, to verify crypto properties of functional specs; the Verified Software Toolchain, to verify C programs w.r.t. functional specs; and CompCert, for verified compilation of C to assembly language.

1 Introduction

HMAC is a cryptographic authentication algorithm, the “Keyed-Hash Message Authentication Code,” widely used in conjunction with the SHA-256 cryptographic hashing primitive. The sender and receiver of a message $m$ share a secret session key $k$. The sender computes $s = \text{HMAC}(k, m)$ and appends $s$ to $m$. The receiver computes $s' = \text{HMAC}(k, m)$ and verifies that $s' = s$. In principle, a third party will not know $k$ and thus cannot compute $s$. Therefore, the receiver can infer that message $m$ really originated with the sender.

What could go wrong?

Algorithmic/cryptographic problems. The compression function underlying SHA might fail to have the cryptographic property of being a pseudorandom function (PRF); the SHA algorithm might not be the right construction over its compression function; the HMAC algorithm might fail to have the cryptographic property of being a PRF; we might even be considering the wrong crypto properties.

Implementation problems. The SHA program (in C) might incorrectly implement the SHA algorithm; the HMAC program might incorrectly implement the HMAC algorithm; the programs might be correct but permit side channels such as power analysis, timing analysis, or fault injection.

Specification mismatch. The specification of HMAC or SHA used in the cryptographic-properties [15] proof might be subtly different from the one published as the specification of computer programs [28, 27]. The proofs about C programs might interpret the semantics of the C language differently from the C compiler.

Based on Bellare and Rogaway's probabilistic game framework [16] for cryptographic proofs, Halevi [30] advocates creating an “automated tool to help us with the mundane parts of writing and checking common arguments in [game-based] proofs.” Barthe et al. [13] present such a tool in the form of CertiCrypt, a framework that “enables the machine-checked construction and verification” of proofs using the same game-based techniques, written in code. Barthe et al.'s more recent EasyCrypt system [12] is a more lightweight, user-friendly version (but not foundational, i.e., the implementation is not proved sound in any machine-checked general-purpose logic). In this paper we use the Foundational Cryptography Framework (FCF) of Petcher and Morrisett [38].

But the automated tools envisioned by Halevi—and built by Barthe et al. and Petcher—address only the “algorithmic/cryptographic problems.” We also need machine-checked tools for functional correctness of C programs—not just static analysis tools that verify the absence of buffer overruns. And we need the functional-correctness tools to connect, with machine-checked proofs of equivalence, to the crypto-algorithm proofs. By 2015, proof systems for formally reasoning about crypto algorithms and C programs have come far enough that it is now possible to do this.
Here we present machine-checked proofs, in Coq, of many components, connected and checked at their specification interfaces so that we get a truly end-to-end result: Version 0.9.1c of OpenSSL’s HMAC and SHA-256 correctly implements the FIPS 198-1 and FIPS 180-4 standards, respectively; and that same FIPS 198-1 HMAC standard is a PRF, subject to certain standard (unproved) assumptions about the SHA-256 algorithm that we state formally and explicitly.

Software is large, complex, and always under maintenance; if we “prove” something about a real program then the proof (and its correspondence to the syntactic program) had better be checked by machine. Fortunately, as Gödel showed, checking a proof is a simple calculation. Today, proof checkers can be simple trusted (and trustworthy) kernel programs [7].

A proof assistant comprises a proof-checking kernel with an untrusted proof-development system. The system is typically interactive, relying on the user to build the overall structure of the proof and supply the important invariants and induction hypotheses, with many of the details filled in by tactical proof automation or by decision procedures such as SMT or Omega.

Coq is an open-source proof assistant under development since 1984. In the 21st century it has been used for practical applications such as Leroy’s correctness proof of an optimizing C compiler [34]. But note, that compiler was not itself written in C; the proof theory of C makes life harder, and only more recently have people done proofs of substantial C programs in proof assistants [32, 29].

Our entire proof (including the algorithmic/cryptographic proofs, the implementation proofs, and the specification matches) is done in Coq, so that we avoid misunderstandings at interfaces. To prove our main theorem, we took these steps (cf. Figure 1):

2. Formalized.* We have formalized the FIPS 198-1 Keyed-Hash Message Authentication Code [27] as a specification of HMAC. (Henceforth, the * indicates new work first reported in this paper; otherwise we provide a citation to previous work.)
3. Formalized.* We have formalized Bellare’s functional characterization of the HMAC algorithm.
4. Proved.* We have proved the equivalence of FIPS 198-1 with Bellare’s functional characterization of HMAC.
5. Formalized.[6] We use Verifiable C, a program logic (embedded in Coq) for specifying and proving functional correctness of C programs.
6. Formalized.[35] Leroy has formalized the operational semantics of the C programming language.
7. Proved. Verifiable C has been proved sound. That is, if you specify and prove any input-output property of your C program using Verifiable C, then that property actually holds in Leroy’s operational semantics of the C language.

8. Formalized. Leroy has formalized the operational semantics of the Intel x86 (and PowerPC and ARM) assembly language.

9. Proved. If the CompCert optimizing C compiler translates a C program to assembly language, then input-output property of the C program is preserved in the assembly-language program.

10. Formalized. We rely on a formalization (in Verifiable C) of the API interface of the OpenSSL header file for SHA-256, including its semantic connection to the formalization of the FIPS Secure Hash Standard.

11. Proved. The C program implementing SHA-256, lightly adapted from the OpenSSL implementation, has the input-output (API) properties specified by the formalized API spec of SHA-256.

12. Formalized. We have formalized the API interface of the OpenSSL header file for HMAC, including its semantic connection to our FIPS 198-1 formalization.

13. Proved. Our C program implementing HMAC, lightly adapted from the OpenSSL implementation, has the input-output (API) properties specified by our formalization of FIPS 198-1.

14. Formalized. Bellare et al. proved properties of HMAC subject to certain assumptions about the underlying cryptographic compression function (typically SHA). We have formalized those assumptions.

15. Formalized. Bellare et al. proved that HMAC implements a pseudorandom function (PRF); we have formalized what exactly that means. (Bellare’s work is “formal” in the sense of rigorous mathematics and \( \LaTeX \); we formalized our work in Coq so that proofs of these properties can be machine-checked.)

16. Proved. We prove that, subject to these formalized assumptions about SHA, Bellare’s HMAC algorithm is a PRF; this is a mechanization of a variant of the 1996 proof [15] using some ideas from the 2006 proofs [14].

**Theorem.** The assembly-language program, resulting from compiling OpenSSL 0.9.1c using CompCert, correctly implements the FIPS standards for HMAC and SHA, and implements a cryptographically secure PRF subject to the usual assumptions about SHA.


The trusted code base (TCB) of our system is quite small, comprising only items 1, 2, 8, 12, 14, 15. Items 4, 7, 9, 11, 13, 16 need not be trusted, because they are proofs checked by the kernel of Coq. Items 3, 5, 6, 10 need not be trusted, because they are specification interfaces checked on both sides by Coq, as Appel [5, §8] explains.

One needs to trust the Coq kernel and the software that compiles it; see Appel’s discussion [5, §12].

We do not analyze timing channels or other side channels. But the programs we prove correct are standard C programs for which standard timing and side-channel analysis tools and techniques can be used.

The HMAC brawl. Bernstein [19] and Koblitz and Menezes [33] argue that the security guarantees proved by Bellare et al. are of little value in practice, because these guarantees do not properly account for the power of precomputation by the adversary. In effect, they argue that item 15 in our enumeration is the wrong specification for desired cryptographic properties of a symmetric-key authentication algorithm. This may well be true; here we use Bellare’s specification in a demonstration of end-to-end machine-checked proof. As improved specifications and proofs are developed by the theorists, we can implement them using our tools. Our proofs are sufficiently modular that only items 15 and 16 would change.

Which version of OpenSSL. We verified HMAC_SHA from OpenSSL 0.9.1c, dated March 1999, which does not include the home-brew object system “engines” of more recent versions of OpenSSL. We further simplified the code by specializing OpenSSL’s use of generic “envelopes” to the specific hash function SHA-256, thus obtaining a statically linked code. Verifiable C is capable of reasoning about function pointers and home-brew object systems [6, Chapter 29]—it is entirely plausible that a formal specification of “engines” and “envelopes” could be written down—but such proofs are more complex.
2 Formalizing functional specifications

(Items 1, 2 of the architecture.) The FIPS 180-4 specification of the SHA function can be formalized in Coq as this mathematical function:

Definition SHA.256 (str : list Z) : list Z :=
    hash.blocks init.registers (generate.and.pad str).

where hash.blocks, init.registers, and generate.and.pad are translations of the FIPS standard. Z is Coq’s type for (mathematical) integers; the (list Z) is the contents of a string of bytes, considered as their integer values. SHA-256 works internally in 32-bit unsigned modular arithmetic; intlist.to.Zlist converts a sequence of 32-bit machine ints to the mathematical contents of a byte-sequence. See Appel [5] for complete details. The functional spec of SHA-256, including definitions of all these functions, comes to 169 lines of Coq, all of which is in the trusted base for the security/correctness proof.

In this paper we show the full functional spec for HMAC256, the HMAC construction applied to hash function SHA_256:

Definition mkKey (l:list Z):list Z :=
    zeropad (if |l| > 64 then SHA_256 l else l).

Definition KeyPreparation (k: list Z):list byte :=
    map Byte.repr (mkKey k).

Definition HASH l m := SHA_256 (l++m)

Definition HmacCore m k :=
    HASH (opad ⊕ k) (HASH (ipad ⊕ k) m)

Definition HMAC256 (m k : list Z) : list Z :=
    HmacCore m (KeyPreparation k)

where zeropad right-extends\(^1\) its argument to length 64 (i.e. to SHA256’s block size, in bytes), ipad and opad are the padding constants from FIPS198-1, ⊕ denotes byte-wise XOR, and ++ denotes list concatenation.

3 API specifications of C functions

(Items 10, 12 of the architecture.) Hoare logic [31], dating from 1969, is a method of proving correctness of imperative programs using preconditions, postconditions, and loop invariants. Hoare’s original logic did not handle pointer data structures well. Separation logic, introduced in 2001 [37], is a variant of Hoare logic that encapsulates “local actions” on data structures.

\(^1\)The more recent RFC4868 mandates that when HMAC is used for authentication, a fixed length equal to the output length of the hash functions MUST be supported, and key lengths other than the output length of the associated hash function MUST NOT be supported. Our specification clearly separates KeyPreparation from HmacCore, but at the top level follows the more permissive standards RFC2104/FIPS198-1 as well as the implementation reality of even contemporary snapshots of OpenSSL and its clones.

Verifiable C [6] is a separation logic that applies to the real C language. Verifiable C’s rules are complicated in some places, to capture C’s warts and corner cases.

The FIPS 180 and FIPS 198 specifications—and our definitions of SHA_256 and HMAC256—do not explain how the “mathematical” sequences of bytes are laid out in the arrays and structs passed as parameters to (and used internally by) the C functions. For this we need an API spec. Using Verifiable C, one specifies the API behavior of each function: the data structures it operates on, its preconditions (what it assumes about the input data structures available in parameters and global variables), and the postcondition (what it guarantees about its return value and changes to data structures). Appel [5, §7] explains how to build such API specs and shows the API spec for the SHA_256 function.

Here we show the API spec for HMAC. First we define a Coq record type.

Record DATA := { LEN:Z; CONT: list Z }.

If key has type DATA, then LEN(key) is an integer and CONT(key) is “contents” of the key, a sequence of integers. We do not use Coq’s dependent types here to enforce that LEN corresponds to the length of the CONT field, but see the has.lengthK constraint below.

To specify the API of a C-language function in Verifiable C, one writes

DECLARE f WITH \(\forall\)

where \(f\) is the name of the function, params are the formal parameters (of various C-language types), and ret is the C return type. The precondition Pre and postcondition Post have the form PROP P LOCAL Q SEP R, where P is a list of pure propositions (true independent of the current program state), Q is a list of local/global variable bindings, and R is a list of separation logic predicates that describe the contents of memory. The WITH clause describes logical variables \(\forall\), abstract mathematical values that can be referred to anywhere in the precondition and postcondition.

In our HMAC256.spec, shown below, the first “abstract mathematical value” listed in this WITH clause is the key-pointer kp, whose “mathematical” type is “C-language value’, or val. It represents an address in memory where the HMAC session key is passed. In the LOCAL part of the PREcondition, we say that the formal parameter .key actually contains the value kp on entry to the function, and in the SEP part we say that there’s a data_block at location kp containing the actual key bytes. In the postcondition we refer to kp again, saying that the data_block at address kp is still there, unchanged by the HMAC function.
The next WITH value is key, a DATA value, that is, a mathematical sequence of byte values along with its (supposed) length. In the PROP clause of the precondition, we enforce this supposition with has_lengthK (LEN key) (CONT key).

The function Int.repr injects from the mathematical integers into 32-bit signed/unsigned numbers. So temp .n (Vint (Int.repr (LEN msg)) means, take the mathematical integer (LEN msg), smash it into a 32-bit signed number, inject that into the space of C values, and assert that the parameter .n contains this value on entry to the function. This makes reasonable sense if 0 ≤ LEN msg < 2^32, which is elsewhere enforced by has_lengthD. Such 32-bit range constraints are part of C’s “warts and all,” which are rigorously accounted for in Verifiable C. Both has_lengthK and has_lengthD are user-defined predicates within the HMAC API spec.

The precondition contains an uninitialized 32-byte memory.block at address md, and the .md parameter of the C function contains the value md. In the postcondition, we find that at address md the memory block has become an initialized data block containing a representation of HMAC256 (CONT msg) (CONT key).

For stating and proving these specifications, the following characteristics of separation logic are crucial:

1. The SEP lists are interpreted using the separating conjunction \* which (in contrast to ordinary conjunction ∧) enforces disjointness of the memory regions specified by each conjunct. Thus, the precondition requires—and the postcondition guarantees—that keys, messages, and digests do not overlap.

2. Implicit in the semantic interpretation of a separation logic judgment is a safety guarantee of the absence of memory violations and other runtime errors, apart from memory exhaustion. In particular, verified code is guaranteed to respect the specified footprint: it will neither read from, nor modify or free any memory outside the region specified by the SEP clause of PRE. Moreover, all heap that is locally allocated is either locally freed, or is accounted for in POST. Hence, memory leaks are ruled out.

3. As a consequence of these locality principles, separation logic specifications enjoy a frame property: a verified judgment remains valid whenever we add an arbitrary additional separating conjunct to both SEP-clauses. The corresponding proof rule, the frame rule, is crucial for modular verification, guaranteeing, for example, that when we call SHA-256, the HMAC data structure remains unmodified.

The HMAC API spec has the 25 lines shown here plus a few more for definitions of auxiliary predicates (has_lengthK 3 lines, has_lengthD 3 lines, etc.); plus the API spec for SHA-256, all in the trusted base.

**Incremental hashing.** OpenSSL’s HMAC and SHA functions are incremental. One can initialize the hasher with a key, then incrementally append message-fragments (not necessarily block-aligned) to be hashed, then finalize to produce the message digest. We fully support this incremental API in our correctness proofs. For simplicity we did not present it here, but Appel [5] presents the incremental API for SHA-256. The API spec for fully incremental SHA-256 is 247 lines of Coq; the simple (nonincremental) version has a much smaller API spec, similar to the 25+6 lines shown here for the nonincremental HMAC.

**Once every function is specified,** we use Verifiable C to prove that each function’s body satisfies its specification. See Section 6.

## 4 Cryptographic properties of HMAC

(Items 14, 15, 16 of the architecture.) This section describes a mechanization of a cryptographic proof of security of HMAC. The final result of this proof is similar to the result of Bellare et al. [15], though the structure of the proof and some of the definitions are influenced...
4.1 The Foundational Cryptography Framework

This proof of security was completed using the Foundational Cryptography Framework (FCF), a Coq library for reasoning about the security of cryptographic schemes in the computational model [38]. FCF provides a probabilistic programming language for describing all cryptographic constructions, security definitions, and problems that are assumed to be hard. Probabilistic programs are described using Gallina, the purely functional programming language of Coq, extended with a computational monad that adds sampling uniformly random bit vectors. The type of probabilistic computations that return values of type $A$ is $\text{Comp } A$. The code uses $\{0,1\}^n$ to describe sampling a bit vector of length $n$. Arrows ($\langle -$) denote sequencing (i.e. bind) in the monad.

Listing 1 contains an example program implementing a one-time pad on bit vectors of length $c$ (for any natural number $c$). The program produces a random bit vector and stores it in $p$, then returns the $\text{xor}$ (using the standard Coq function $\text{BVxor}$) of $p$ and the argument $x$.

The language of FCF has a denotational semantics that relates programs to discrete, finite probability distributions. A distribution on type $A$ is modeled as a function in $A \rightarrow \mathbb{Q}$ which should be interpreted as a probability mass function. FCF provides a theory of distributions, a program logic, and a library of tactics that can be used to complete proofs without appealing directly to the semantics. We can use FCF to prove that two distributions are equivalent, that the distance between the probabilities of two events is bounded by some value, or that the probability of some event is less than some value. Such claims enable cryptographic proofs in the “sequence of games” style [16].

In some cryptographic definitions and proofs, an adversary is allowed to interact with an “oracle” that maintains state while accepting queries and providing responses. In FCF, an oracle has type $S \rightarrow A \rightarrow \text{Comp } (B \ast S)$ for types $S$, $A$, and $B$, of state, input, and output, respectively. The $\text{OracleComp}$ type is provided to allow an adversary to interact with an oracle without viewing or modifying its state. By combining an $\text{OracleComp}$ with an oracle and a value for the initial state of the oracle, we obtain a computation returning a pair of values, where the first value is produced by the $\text{OracleComp}$ at the end of its interaction with the oracle, and the second value is the final state of the oracle.

4.2 HMAC Security

We mechanized a proof of the following fact. If $h$ is a compression function, and $h^\ast$ is a Merkle-Damgård hash function constructed from $h$, then HMAC based on $h^\ast$ is a pseudorandom function (PRF) assuming:

1. $h$ is a PRF.
2. $h^\ast$ is weakly collision-resistant (WCR).
3. The dual family of $h$ (denoted $\tilde{h}$) is a PRF against $\oplus$-related-key attacks.

The formal definition of a PRF is shown in Listing 2. In this definition, $f$ is a function in $K \rightarrow D \rightarrow \mathbb{R}$ that should be a PRF. That is, for a key $k : K$, an adversary who does not know $k$ cannot gain much advantage in distinguishing $fk$ from a random function in $D \rightarrow \mathbb{R}$.

The adversary $A$ is an $\text{OracleComp}$ that interacts with either an oracle constructed from $f$ or with randomFunc,
a random function constructed by producing random values for
outputs and memoizing them so they can be repeated the next time
the same input is provided. The randomFunc oracle uses a list of pairs
as its state, so an empty list is provided as its initial state. The value tt
is the “unit” value, where unit is a placeholder type much like “void
in the C language. This definition uses alternative arrows (such as
<-2) to construct sequences in which the first computation produces
a tuple, and a name is given to each value in the tuple. The size of the
tuple is provided in the arrow in order to assist the parser.

**Definition** \( f.\text{oracle} \) \( (k : K) (x : \text{unit}) \) \( (d : D) \)
: \text{Comp} \((R \times \text{unit}) \) :=
\[ \text{ret} \; (f \; k \; d, \; \text{tt}). \]

**Definition** \( \text{PRF.G0} \) : \text{Comp} \; \text{bool} :=
\[ k < -$ \text{RndKey}; \]
\[ [b, .] < -$2 \; A \; (f.\text{oracle} \; k) \; \text{tt}; \; \text{ret} \; b. \]

**Definition** \( \text{PRF.G1} \) : \text{Comp} \; \text{bool} :=
\[ [b, .] < -$2 \; A \; (\text{randomFunc}) \; \text{nil}; \; \text{ret} \; b. \]

**Definition** \( \text{PRF.Advantage} \) : \text{Rat} :=
\[ | \; \text{Pr}[\text{PRF.G0}] \; - \text{Pr}[\text{PRF.G1}] \; |. \]

Listing 2: Definition of a PRF. The \( f.\text{oracle} \) function wraps
the function \( f \) (closed over key \( k \)) and turns it into
an oracle. \( A \) is an adversary. \text{Comp} \; \text{bool} is the type of
probabilistic computations that produce a bool. \text{Rat} is
the type of (unary, nonnegative) rational numbers.

This security definition is provided in the form of
a “game” in which the adversary tries to determine
whether the oracle is \( f \) (in game 0) or a random function
(in game 1). After interacting with the oracle, the
adversary produces a bit, and the adversary “wins” if this bit
is likely to be different in the games. We define the advantage
of the adversary to be the difference between the
probability that it produces “true” in game 0 and in game
1. We can conclude that \( f \) is a PRF if this advantage is
sufficiently small.

**Definition** \( \text{Adv.WCR.G} \) : \text{Comp} \; \text{bool} :=
\[ k < -$ \text{RndKey}; \]
\[ [d_1, d_2, .] < -$3 \; A \; (f.\text{oracle} \; k) \; \text{tt}; \]
\[ \text{ret} \; ((d_1 != d_2) \; & \& \; ((f \; k \; d_1) \; ?= \; (f \; k \; d_2))). \]

**Definition** \( \text{Adv.WCR} \) : \text{Rat} := \text{Pr}[\text{Adv.WCR.G}].

Listing 3: Definition of Weak Collision-Resistance.

Listing 3 defines a weakly collision-resistant function.
This definition uses a single game in which the adversary
is allowed to interact with an oracle defined by a keyed
function \( f \). At the end of this interaction, the adversary
attempts to produce a collision, or a pair of different
input values that produce the same output. In this game, we
use \( ?= \) and \(!= \) to denote tests for equality and inequality,
respectively. The advantage of the adversary is the
probability with which it is able to locate a collision.

Finally, the security proof assumes that a certain keyed
function is a PRF against \( \oplus \)-related-key attacks \( \text{(RKA)}. \)
This definition (Listing 4) is similar to the definition of
a PRF, except the adversary is also allowed to provide a
value that will be xored with the unknown key before the
PRF is called. Note that this assumption is applied to the
dual family of \( h \), in which the roles of inputs and keys are reversed.
So a single input value is chosen at random and
fixed, and the adversary queries the oracle by providing
values which are used as keys.

**Definition** \( \text{RKA.F} \) \( (k : \text{Bvector} \; b) (s : \text{unit}) \)
\[ (p : \text{Bvector} \; b \times \text{Bvector} \; c) \]
\[ : (\text{Bvector} \; c \times \text{unit}) := \]
\[ \text{ret} \; (f \; ((\text{fst} \; p) \; \text{xor} \; k) \; \text{snd} \; p), \; \text{tt}). \]

**Definition** \( \text{RKA.R} \) \( (k : \text{Bvector} \; b) \)
\[ (s : \text{list} \; (\text{Bvector} \; c \times \text{Bvector} \; c)) \]
\[ (p : \text{Bvector} \; b \times \text{Bvector} \; c) \]
\[ : (\text{Bvector} \; c \times \text{list} \; (\text{Bvector} \; c \times \text{Bvector} \; c) := \]
\[ \text{randomFunc} \; s \; ((\text{fst} \; p) \; \text{xor} \; k, \; \text{snd} \; p)) \]

**Definition** \( \text{RKA.G0} \) : \text{Comp} \; \text{bool} :=
\[ k < -$ \text{RndKey}; \; [b, .] < -$2 \; A \; (\text{RKA.F} \; k) \; \text{tt}; \; \text{ret} \; b. \]

**Definition** \( \text{RKA.G1} \) : \text{Comp} \; \text{bool} :=
\[ k < -$ \text{RndKey}; \; [b, .] < -$2 \; A \; (\text{RKA.R} \; k) \; \text{tt}; \; \text{ret} \; b. \]

**Definition** \( \text{RKA.Advantage} \) : \text{Rat} :=
\[ | \; \text{Pr}[\text{RKA.G0}] \; - \text{Pr}[\text{RKA.G1}] \; |. \]

Listing 4: Definition of Security against \( \oplus \)-Related-Key
Attacks. \( b \) is the key length of the compression function,
\( c \) is the input length of the compression function; \( \text{Bvector} \; b \)
the type of bit-vectors of length \( b \).

The proof of security has the same basic structure
(Figure 2) as Bellare’s more recent HMAC proof \[14\],
though we simplify the proof significantly by assum-
ing \( h^* \) is WCR. The proof makes use of a nested MAC
(NMAC) construction that is similar to HMAC, but it
uses \( h^* \) in a way that is not typically possible in
implementations of hash functions. The proof begins by show-
ing that NMAC is a PRF given that \( h \) is a PRF and \( h^* \) is
WCR. Then we show that HMAC and NMAC are “close”
(that no adversary can effectively distinguish them) un-
der the assumption that \( \bar{h} \) is a \( \oplus \)-RKA-secure PRF. Fi-
nally, we combine these two results to derive that HMAC
is a PRF.
We also mirror Bellare’s proof by reasoning about slightly generalized forms of HMAC and NMAC (called GHMAC and GNMAC) that require the input to be a list of bit vectors of length \( b \). The proof also makes use of a “two-key” version of HMAC that uses a bit vector of length \( 2b \) as the key. To simplify the development of this proof, we build HMAC on top of these intermediate constructions in the abstract specification (Listing 5).

**Definition** \( \text{h}_{\text{star}} \) \( k \) \( (m : \text{list} (\text{Bvector} \ b)) \) := fold.left \( h \ m \ k \).

**Definition** \( \text{hash}_{\text{words}} := \text{h}_{\text{star}} \) \( \text{iv} \).

**Definition** \( \text{GNMAC} \) \( k \) \( m := \) let \( (k, \text{Out}, k, \text{In}) := \text{splitVector} \ c \ c \ k \) in \( h \) \( k, \text{Out} := (\text{app}_{\text{fpad}} (h, \text{star} \ k, \text{In} :: m)) \).

**Definition** \( \text{GHMAC}.2K \) \( k \) \( m := \) let \( (k, \text{Out}, k, \text{In}) := \text{splitVector} \ b \ b \ k \) in let \( h, \text{In} := (\text{hash}_{\text{words}} (k, \text{In} :: m)) \) in \( \text{hash}_{\text{words}} (k, \text{Out} :: (\text{app}_{\text{fpad}} h, \text{In}) :: \text{nil}) \).

**Definition** \( \text{HMAC}.2K \) \( k \) \( (m : \text{list} \ \text{bool}) := \) \( \text{GHMAC}.2K \ k \) \( (\text{splitAndPad} \ m) \).

**Definition** \( \text{HMAC} \) \( k : \text{Bvector} \ b \) := \( \text{HMAC}.2K \ ((k \text{xor} \text{opad}) ++ (k \text{xor} \text{ipad})) \).

Listing 5: HMAC Abstract Specification.

**Proof outline.** There are seven main differences between the concrete and abstract specs:

(0) The abstract spec, as its name suggests, leaves several variables as parameters to be instantiated. Thus, in order to compute with the abstract HMAC, one must pass it “converted” variables and “wrapped” functions from the concrete HMAC.

(1) The abstract spec operates on bits, whereas the concrete spec operates on bytes.

(2) The abstract spec uses the dependent type Bvector \( n \), which is a length-constrained bit list of length \( n \), whereas the concrete spec uses byte lists and int lists, whose lengths are unconstrained by definition.

**Theorem** \( \text{HMAC}.\text{PRF} \): \( \text{PRF}_{\text{Advantage}} ((0, 1)^c) ((0, 1)^c) \) \( \text{HMAC A} \) \( \leq \) \( \text{PRF}_{\text{Advantage}} ((0, 1)^c) ((0, 1)^c) \) \( h \) \( B1 + \text{Adv}_{\text{WCR}} ((0, 1)^c) \) \( h, \text{star} \) \( B2 + \) \( \text{RKA}_{\text{Advantage}} ((0, 1)^c) ((0, 1)^c) \) \( (\text{BVxor} \ b) \) \( (\text{dual.f}) \) \( h \) \( B3 \).

Listing 6: Statement of Security for HMAC.
(3) Due to its use of dependent types, the abstract spec must pad its input twice in an ad-hoc manner, whereas the concrete spec uses the SHA-256 padding function consistently.

(4) The concrete spec treats the hash function (SHA-256) as a black box, whereas the abstract spec exposes various parts of its functionality, such as its initialization vector, internal compression function, and manner of iteration. (It does this because the Bellare-style proofs rely on the Merkle-Damgård structure of the hash function.)

(5) The abstract spec pads the message and splits it into a list of blocks so that it can perform an explicit fold over the list of lists. However, the concrete spec leaves the message as a list of bytes and performs an implicit fold over the list, taking a new block at each iteration.

(6) The abstract spec defines HMAC via the HMAC\_2K and GHMAC\_2K structures, not directly.

**Instantiating the abstract specification.** The abstract HMAC spec leaves the following parameters abstract:

```
Variable c p : nat.
```

```
(* compression function *)
Variable h : Bvector c → Bvector b → Bvector c.
```

```
(* initialization vector *)
Variable iv : Bvector c.
Variable splitAndPad : Blist → list (Bvector b).
Variable fpad : Bvector c → Bvector p.
Variable opad : Bvector c → Bvector b.
```

The abstract HMAC spec is also more general than the concrete spec, since it operates on bit vectors, not byte lists, and does not specify a block size or output size. After “replacing” the vectors with lists (see the explanation of difference (2)) and specializing \(c = p = 256\) (resulting in \(b = 512\)), we may instantiate abstract parameters with concrete parameters or functions from SHA-256, wrapped in `bytesToBits` and/or `intlist_to_Zlist` conversion functions. For example, we instantiate the block size to 256 and the output size to 512, and define `iv` and `h` as:

```
Definition intsToBits := bytesToBits o intlist_to_Zlist.
```

```
Definition sha.iv := intsToBits SHA256.init_registers.
```

```
Definition sha.h (regs : Blist) (block : Blist) : Blist :=
intsToBits (SHA256.hash_block (bitsToInts regs)
(bitsToInts block)).
```

The `intlist_to_Zlist` conversion function is necessary because portions of the SHA-256 spec operate on lists of `Integers`, as specified in our bytes-and-words formalization of FIPS 180-4. (\(Z\) in Coq denotes arbitrary-precision mathematical integers. Our SHA-256 spec represents byte values as \(Z\). An `Integer` is four byte-Zs packed big-endian into a 32-bit integer.)

We are essentially converting the types of the functions from functions on `intlists (intlist → ... → intlist)` to functions on `Blists (Blist → ... → Blist)` by converting their inputs and outputs.

Let us denote by `HmacAbs256` the instantiation of function HMAC from Listing 5 to these parameters. Since Bellare’s proof assumes that the given key is of the right length (the block size), our formal equivalence result relates `HmacAbs256` to the function `HmacCore` from Section 2, i.e. to the part of HMAC256 that is applied after key length normalization. (Unlike Bellare, FIPS 198 includes steps to first truncate or pad the key if it is too long or short.)

**Theorem.** For key vector `kv` of type `Bvector 256` and message `m` of type list bool satisfying \(|l| ≡ 0 \ (mod \ 8)\),

```
HmacAbs256 kv m ≈ HmacCore m (map Bytes.repr kv).
```

where \((\overline{\_})\)` denotes `bitsToBytes` conversion, and \(\approx\) is equality modulo conversion between lists and vectors.

**Reconciling other differences.** The last difference (6) is easily resolved by unfolding the definitions of HMAC\_2K and GHMAC\_2K. We solve the other six problems by changing definitions and massaging the two specs toward each other, proving equality or equivalence each time.

Bridging (5) is basically the proof of correctness of a deforestation transformation. Consider a message `m` as a list of bits `b_i`. First, split it into 512-bit blocks `B_i`, then “fold” (the “reduce” operation in map-reduce) the hash operation `H` over it, starting with the initialization vector `iv`: \(H(H(H(iv, B_0), B_1),...,B_{n-1})\). Alternatively, express this as a recursive function on the original bit-sequence `b`: grab the first 512 bits, hash with `H`, then do a recursive call after skipping the first 512 bits:

```
Function F (r: list bool) (b: list bool)
{measure length b} : list bool :=
match msg with
| nil ⇒ r
| _ ⇒ F (H r (firstn 512 b)) (skipn 512 b)
end.
```

Provided that \(|b|\) is a multiple of 512 (which we prove elsewhere), \(F(iv, b) = H(H(H(iv, B_0), B_1),...,B_{n-1})\).

We bridge (4) by using the fact that SHA-256 is a Merkle-Damgård construction over a compression function. This is a simple matter of matching the definition of SHA-256 to the definition of an MD hash function.
Bridging (3) is a proof that two different views of the SHA padding function are equivalent. Before iterating the compression function on the message, SHA-256 pads it in a standard, one-to-one fashion such that its length is a multiple of the block size. It pads it as such:
\[
\text{msg} \overset{\mid 1 \mid 0, 0, \ldots 0 \mid}{\rightarrow} \text{L}
\]
where \( \mid \) denotes list concatenation and \( \text{L} \) denotes the 64-bit representation of the length of the message. The number of 0s is calculated such that the length of the entire padded message is a multiple of the block size.

The abstract spec accomplishes this padding in two ways using the functions \( \text{fpad} \) and \( \text{splitAndPad} \). \( \text{fpad} \) pads a message of known length of the output size \( c \) to the block size \( b \), since \( c \) is specified to be less than \( b \). \( \text{splitAndPad} \) breaks a variable-length message (of type list bool) into a list of blocks, each size \( b \), padding it along the way. \( \text{fpad} \) is instantiated as a constant, since we know that the length of the message is \( c < b \). \( \text{splitAndPad} \) is instantiated as the normal SHA padding function, but tweaked to add one block size to the length appended in \( [l_1, l_2] \), since \( k_m \) (with a length of one block) will be prepended to the padded message later.

To eliminate these two types of ad-hoc padding, we rewrite the abstract spec to incorporate \( \text{fpad} \) and \( \text{splitAndPad} \) into a single padding function \( \text{split-and-pad} \) included in the hash function, in the style of SHA-256.
\[
\text{hash-words-padded} := \text{hash-words} \circ \text{split-and-pad}.
\]

We then remove \( \text{fpad} \) and \( \text{splitAndPad} \) from subsequent versions of the specification. We can easily prove equality by unfolding definitions.

**Bridging bytes and bits.** The abstract and concrete HMAC functions have different types, so we cannot prove them equal, only equivalent. \( \text{HMAC} \) operates on (lists of) bits and \( \text{HMAC}_a \) operates on (lists of) bytes. \( \text{HMAC} \) used to operate on vectors, but recall that we replaced them with lists earlier.) To bridge gap (1) we prove, given that the inputs are equivalent, the outputs will be equivalent:
\[
k_c \approx n_a \Rightarrow m_c \approx n_a \Rightarrow \text{HMAC}_c(k_c, m_c) \approx \text{HMAC}_a(k_a, n_a).
\]
The equivalence relation \( \approx \) can be defined either computationally or inductively, and both definitions are useful.

To reason about the behavior of the wrapped functions with which we instantiated the abstract HMAC spec, we use the computational equivalence relation \( \approx_c \) instantiated with a generic conversion function. This allows us to build a framework for reasoning about the asymmetry of converting from bytes to bits versus from bits to bytes, as well as the behavior of repeatedly applied wrapped functions.

**Bridging vectors and lists.** We bridge (2) by changing all \( \text{Bvector} \) \( n \) to list bool, then proving that all functions preserve the length of the list when needed. This maintains the \( \text{Bvector} \) \( n \) invariant that its length is always \( n \). In general, the use of lists (of bytes, or Z values) is motivated by the desire to reuse Appel [5]’s prior work on SHA literally, whereas the use of \( \text{Bvector} \) enables a more elegant proof of the proof of cryptographic properties.

**Injectivity of splitAndPad.** The security proof relies on the fact that \( \text{splitAndPad} \) is injective, in the sense that \( b_1 = b_2 \) should hold whenever \( \text{splitAndPad}(b_1) = \text{splitAndPad}(b_2) \). Indeed, this property is violated if we naively instantiate \( \text{splitAndPad} \) with the bitlists-to-bytelists roundtrip conversion of SHA-256’s padding+length function, due to the non-injectivity of bitlists-to-bytelists conversion. On the other hand, as the C programs interpret all length informations as referring to lengths in bytes, attackers that attempt to send messages whose length is not divisible by 8 are effectively ruled out. To verify this property formally, we make the abstract specification (and the proof of Theorem HMAC_PRF) parametric in the type of messages. Instantiating the development to the case where messages are bitlists of length \( 8n \) allows us to establish the desired injectivity condition along the the lines of the following informal argument.

Given a message \( m \), SHA’s \( \text{splitAndPad} \) appends a 1 bit, then \( k \) zero bits, then a 64-bit integer representing the length of the message \( |m| \); \( k \) is the smallest number so that \( |\text{splitAndPad}(m_1)| \) is a multiple of the block size. Injective means that if \( m_1 \neq m_2 \) then \( \text{splitAndPad}(m_1) \neq \text{splitAndPad}(m_2) \). The proof has five cases:

- \( m_1 = m_2 \), then by contradiction.
- \( |m_1| = |m_2| \), then \( \text{splitAndPad}(m_1) \) must differ from \( \text{splitAndPad}(m_2) \) in their first \( |m_1| \) bits.
- \( |m_1| \neq |m_2| \), \( |m_1| \leq 2^{64} \), \( |m_2| \leq 2^{64} \), then the last 64 bits (representation of length) will differ.
- \( (|m_1| - |m_2|) \mod 2^{64} \neq 0 \), then the last 64 bits (representation of length) will differ.
- \( |m_1| \neq |m_2| \), and \( (|m_1| - |m_2|) \mod 2^{64} = 0 \); then the lengths \( |m_1|, |m_2| \) must differ by at least \( 2^{64} \), so the variation in \( k_1 \) and \( k_2 \) (which must each be less than twice the block size) cannot make up the difference, so the padded messages will have different lengths.

Our machine-checked proof of injectivity is somewhat more comprehensive than Bellare et al.’s [15], which reads in its entirety, “Notice that a way to pad messages to an exact multiple of \( b \) bits needs to be defined, in particular, MD5 and SHA pad inputs to always include an encoding of their length.”
Preservation of cryptographic security. Once the equivalence between the two functional programs has been established, and injectivity of the padding function is proved, it is straightforward to prove the applicability of Theorem HMAC,PRF (Listing 6) to the API spec.

6 Specifying and verifying the C program
(Items 11, 13 of the architecture.) We use Verifiable C to prove that each function’s body satisfies its specification. As in a classic Hoare logic, each kind of C-language statement has one or more proof rules. Appel [6, Ch. 24-26] presents these proof rules, and explains how tactics—programmed in the Ltac language of Coq—apply the proof rules to the abstract syntax trees of C programs. The ASTs are obtained by applying the front-end phase of the CompCert compiler to the C program. The HMAC proof (item 13 in §1) is 2832 lines of Coq (including blanks and comments), none of which is in the trusted base because it is all machine-checked.

Just like OpenSSL’s implementation of SHA-256, the C code implementing HMAC is incremental: the one-shot HMAC function is obtained by composing auxiliary functions hmacInit, hmacUpdate, hmacFinish, and hmacCleanup that are all exposed in the header file. They allow a client to reuse a key for the authentication of multiple messages, and also to provide each individual message in chunks, by repeatedly invoking hmacUpdate. To this end, the auxiliary functions employ the hash function’s incremental interface and are formulated over a client-visible struct, HMAC_CTX. Specializing OpenSSL’s original header file to the hash function SHA-256 yields the following:

```
typedef struct hmac.ctx.st {
    SHA256_CTX md,ctx; // workspace
    SHA256_CTX i,ctx; // inner SHA structure
    SHA256_CTX o,ctx; // outer SHA structure
    unsigned int key.len;
    unsigned char key[64];
} HMAC_CTX;

void HMAC_init(HMAC_CTX *ctx,
    unsigned char *key, int len);

void HMAC_update(HMAC_CTX *ctx,
    const void *data, size_t len);

void HMAC_finish(HMAC_CTX *ctx,
    unsigned char *md);
```

Fields i.ctx and o.ctx store partially constructed SHA data structures that are initialized during HMAC_init to hold the $\oplus$ of the normalized key and ipad/opad, respectively, and are copied to the workspace md,ctx where the inner and outer hashing applications are performed.

Omitting the implementations of the other functions, the one-shot HMAC invokes the incremental functions on a freshly stack-allocated HMAC_CTX, where 32 is the digest length of SHA-256:

```
unsigned char *HMAC(unsigned char *key,
    int key.len, unsigned char *d, int n,
    unsigned char *md) {
    HMAC_CTX c; static unsigned char m[32];
    if (md == NULL) md=m;
    HMAC_init(&c, key, key.len);
    HMAC_update(&c,d,n);
    HMAC_finish(&c,md);
    HMAC_cleanup(&c);
    return(md);
}
```

In order to verify that this code satisfies the specification HMAC256_spec from Section 2, each incremental function is equipped with its individual Verifiable C specification. Each specification is formulated with reference to a suitable Coq function (or alternatively a propositional relation, as extractability is not required) that expresses the function’s effect on the HMAC_CTX structure abstractly, without reference to the concrete memory layout.

More precisely, the logical counterpart of an HMAC_CTX structure is given by the Coq type

```
Inductive hmacabs :=
    HMACabs: {ctx : Sha oSha : s256abs)  
        (keylen: Z) (key: list Z), hmacabs.
```

That is, an HMAC abstract state has five components: ctx, iSha, and oSha are SHA abstract states, keylen is an integer, and key is a list of (integer) byte values. Appel [5] defines SHA abstract states; if you initialize a SHA module and dump the first r bytes of a message into it, you get a value of type s256abs representing the abstract state of the incremental-mode SHA-256 program.

Appel also defines a relation, update.abs of c1 c2, saying that adding another (incremental mode) message fragment $s$ to abstract state $c_1$ yields state $c_2$.

We define abstract states for HMAC, and the incremental-mode HMAC update relation, in terms of the SHA s256abs type and update.abs relation.
Definition hmacUpdate (data: list Z) :
(h1 h2: hmacabs) : Prop :=
match h1 with
HMACabs ctx1 iS oS klen k ⇒ (∃ ctx2, update.abs data ctx1 ctx2 ∧
h2 = HMACabs ctx2 iS oS klen k)
end.

To connect these definitions to the upper parts of our verification architecture, we prove that the composition of these counterparts of the incremental functions (i.e. the counterpart of the one-shot HMAC) coincides with HMAC256 the FIPS functional specification from Section 3.

Definition hmacIncremental (k data dig:list Z) :=
∃ hInit hUpd, hmacInit k hInit ∧
hmacUpdate data hInit hUpd ∧
hmacFinal hUpd dig.

Lemma hmacIncremental_sound k data dig:
hmacIncremental k data dig →
dig = HMAC256 data k.

Proof. ... Qed.

Downward, we connect hmacabs and HMAC_CTX by a separation logic representation predicate:

Definition hmacstate (h:hmacabs) (c:val): mpred:=
EX r:hmacstate, !! hmac.Relate h r &&
data.at Tsh t.struct.hmac.ctx.st r c.

where hmac.Relate is a pure proposition specifying that each component of a concrete struct r has precisely the content prescribed by h.

Using these constructions, we obtain API specifications of the incremental functions such as HMAC_Update.

Definition HMAC_Update_spec :=
DECLARE .HMAC_Update
WITH h1: hmacabs, c : val, d:val, len,Z, data:list Z, KV:val
PRE [ .ctx OF tptr t.struct.hmac.ctx.st, .data OF tptr tvoid, .len OF tuint]
PROP(has.lengthD (s256a.len (absCtxt h1))
len data)
LOCAL(temp .ctx c; temp .data d; temp .len (Vint (Int.repr len));
gvar .K256 KV)
SEP(`(K.vector KV); `(hmacstate, h1 c); `(data.block Tsh data d))
POST [ tvoid ]
EX h2: hmacabs,
PROP(hmacUpdate data h1 h2)
LOCAL()
SEP(`(K.vector KV); `(hmacstate, h2 c); `(data.block Tsh data d)).

7 Proof effort

It is difficult to estimate the proof effort, as we used this case study to learn where to make improvements to the usability and automation of our toolset. However, we can give some numbers: size, in commented lines of code, of the specifications and proofs. Where relevant, we give the size of the corresponding C API or function.

Functional correctness proof of the C program:

<table>
<thead>
<tr>
<th>C lines</th>
<th>Coq lines</th>
<th>SHA-256 component</th>
</tr>
</thead>
<tbody>
<tr>
<td>169</td>
<td>71</td>
<td>FIPS-180 functional spec of SHA-256</td>
</tr>
<tr>
<td>71</td>
<td>247</td>
<td>API spec of SHA-256</td>
</tr>
<tr>
<td>1022</td>
<td></td>
<td>Lemmas about the functional spec</td>
</tr>
<tr>
<td>10</td>
<td>229</td>
<td>Proof of addlength function</td>
</tr>
<tr>
<td>81</td>
<td>1640</td>
<td>sha256_block_data_order()</td>
</tr>
<tr>
<td>10</td>
<td>43</td>
<td>SHA256_Init()</td>
</tr>
<tr>
<td>38</td>
<td>1682</td>
<td>SHA256_Update()</td>
</tr>
<tr>
<td>31</td>
<td>1484</td>
<td>SHA256_Final()</td>
</tr>
<tr>
<td>7</td>
<td>58</td>
<td>SHA256()</td>
</tr>
<tr>
<td>248</td>
<td>6574</td>
<td>Total SHA-256</td>
</tr>
<tr>
<td>159</td>
<td></td>
<td>FIPS-198 functional spec of HMAC</td>
</tr>
<tr>
<td>25</td>
<td>374</td>
<td>API spec</td>
</tr>
<tr>
<td>25</td>
<td>533</td>
<td>Total HMAC spec</td>
</tr>
<tr>
<td>875</td>
<td></td>
<td>Supporting lemmas</td>
</tr>
<tr>
<td>74</td>
<td>1530</td>
<td>HMAC_Init proof</td>
</tr>
<tr>
<td>7</td>
<td>101</td>
<td>HMAC_Update proof</td>
</tr>
<tr>
<td>27</td>
<td>196</td>
<td>HMAC_Final proof</td>
</tr>
<tr>
<td>5</td>
<td>31</td>
<td>HMAC_Cleanup proof</td>
</tr>
<tr>
<td>21</td>
<td>99</td>
<td>HMAC proof</td>
</tr>
<tr>
<td>134</td>
<td>2832</td>
<td>Total HMAC proof</td>
</tr>
</tbody>
</table>

FCF proof that HMAC is a PRF:

<table>
<thead>
<tr>
<th>Coq lines</th>
<th>component</th>
</tr>
</thead>
<tbody>
<tr>
<td>70</td>
<td>Bellare-style functional spec of HMAC</td>
</tr>
<tr>
<td>25</td>
<td>Statement, HMAC is a PRF</td>
</tr>
<tr>
<td>377</td>
<td>Proof, HMAC is a PRF</td>
</tr>
<tr>
<td>472</td>
<td>Total</td>
</tr>
</tbody>
</table>

Connecting Verifiable C proof to FCF proof:

<table>
<thead>
<tr>
<th>Coq lines</th>
<th>component</th>
</tr>
</thead>
<tbody>
<tr>
<td>3017</td>
<td>General equivalence proof of the two functional specs for any compression function</td>
</tr>
<tr>
<td>993</td>
<td>Specialization to SHA-256</td>
</tr>
<tr>
<td>4010</td>
<td>Total</td>
</tr>
</tbody>
</table>

8 Related work

We have presented a foundational, end-to-end verification. All the relevant aspects of cryptographic proofs or of the C programming language are defined and checked.
with respect to the foundations of logic. We say a reasoning engine for crypto is foundational if it is implemented in, or its implementation is proved correct in, a trustworthy general-purpose mechanized logic. We say a connection to a language implementation is foundational if the synthesizer or verifier is connected (with proofs in a trustworthy general-purpose mechanized logic) to the operational semantics compiled by a verified compiler.

**Crypto verification.** Smith and Dill [40] verify several block-cipher implementations written in Java with respect to a functional spec written either in Java or in ACL2. They compile to bytecode, then use a subset model of the JVM to generate straight-line code. This work is not end-to-end, as the JVM is unverified—and it wouldn’t suffice to simply plug in a “verified” JVM, if one existed, without also knowing that the same specification of the JVM was used in both proofs. Their method applies only where the number of input bits is fixed and the loops can be completely unrolled. Their verifier would likely be applicable to the SHA-256 block shuffle function, but certainly not to the management code (padding, adding the length, key management, HMAC). The Cryptol synthesizer is not foundational because its semantics is not formally specified, let alone proved.

**CAO** is a domain specific language for crypto applications, which is compiled into C [11], and equipped with verification technology based on the FRAMA-C tool suite [4]. Libraries of arbitrary-precision arithmetic functions have been verified by Fischer [39] and Berghofer [17] using Isabelle/HOL. Bertot et al. [20] verify GMP’s computation of square roots in Coq, based on Filliatre’s C OR-checker. F7 is not capable of reasoning about all of the required cryptographic/probabilistic relationships required to complete the proof. So parts of the proof are completed using EasyCrypt, and there is no formal relationship between the EasyCrypt proofs and the F7 proof; one must inspect the code to ensure that the things admitted in F7 are the same things that are proved in EasyCrypt.

**EasyCrypt.** Almeida et al. [3] describe the use of their EasyCrypt tool to verify the security of an implementation of the RSA-OAEP encryption scheme. A functional specification of RSA-OAEP is written in EasyCrypt, which then verifies its security properties. An unverified Python script translates the EasyCrypt specification to (an extension of) C, then an extension of CompCert compiles it to assembly language. Finally, a leakage tool verifies that the assembly language program has no more program counter leakage than the source code, i.e. that the compiled program’s trace of conditional branches is no more informative to the adversary than the source code’s.

The EasyCrypt verifier is not foundational; it is an OCaml program whose correctness is not proved. The translation from C to assembly language is foundational, using CompCert. However, EasyCrypt’s C code relies on bignum library functions, but provides no mechanism by which these functions can be proved correct.

**CertiCrypt** [13] is a system for reasoning about cryptographic algorithms in Coq; it is foundational, but (like EasyCrypt) has no foundational connection to a C semantics. ZKCrypt[9] is a synthesizer that generates C code for zero-knowledge proofs, implemented in CertiCrypt, also with no foundational connection to a C semantics.

**Bhargavan et al.** [21] “implement TLS with verified cryptographic security” in F# using the F7 typechecker. F7 is not capable of reasoning about all of the required cryptographic/probabilistic relationships required to complete the proof. So parts of the proof are completed using EasyCrypt, and there is no formal relationship between the EasyCrypt proofs and the F7 proof; one must inspect the code to ensure that the things admitted in F7 are the same things that are proved in EasyCrypt.
Crypt. F7 is also not foundational, because the type checker has a large amount of trusted code and because it depends on the Z3 SMT solver. Another difference between this work and ours is that the code provides a reference implementation in F#, not an efficient implementation in C.

**CryptoVerif** [22] is a prover (implemented in OCaml) for security protocols in which one can, for example, extract a OCaml program from a CryptoVerif model [23]. CryptoVerif is not foundational, the extraction is not foundational, and the compiler for OCaml is not foundationally verified.

**C program verification.** There are many program analysis tools for C. Most of them do not address functional specification or functional correctness, and most are unsound and incomplete. They are useful in practice, but cannot be used for an end-to-end verification of the kind we have done.

Foundational formal verification of C programs has only recently been possible. The most significant such works are both operating-system kernels: seL4 [32] and CertiKOS [29]. Both proofs are refinement proofs between functional specifications and operational semantics. Both proofs are done in higher-order logics: seL4 in Isabelle/HOL and CertiKOS in Coq.

Neither of those proof frameworks uses separation logic, and neither can accommodate the use of addressable local variables in C. This means that OpenSSL’s HMAC/SHA could not be proved in these frameworks, because it uses addressable local variables.

Additionally, neither of those proof frameworks can handle function pointers. OpenSSL uses function pointers in its “engines” mechanism, an object-oriented style of programming that dynamically connects components together, such as HMAC and SHA. The Verifiable C program logic is capable of reasoning about such object-oriented patterns in C [6, Chapter 29], although we have not done so in the work described in this paper.

**9 Conclusion**

Widely used open-source cryptographic libraries such as OpenSSL, operating systems kernels, and the C compilers that build them, form the backbone of the public’s communication security. Since 2013 or so, it has become clear that hackers and nation-states (is there a difference anymore?) are willing to invest enormous resources in searching for vulnerabilities and exploiting them. Other authors have demonstrated that compilers [34] and OS kernels [32, 29] can be built to a provable zero-functional-correctness-defect standard. Here we have demonstrated the same, in a modular way, for key components of our common cryptographic infrastructure.

Functional correctness implies zero buffer-overflow defects as well. But there are side channels we have not addressed here, such as timing, fault-injection, and leaks through dead memory. Our approach does not solve these problems; but it makes them no worse. Because we can reason about standard C code, other authors’ techniques for side channel analysis are applicable without obstruction.

Functional correctness (with respect to a specification) does not always guarantee that a program has abstract security properties. Here, by linking a proof of cryptographic security to a proof of program correctness, we provide that guarantee.

**Acknowledgments.** Funded in part by DARPA award FA8750-12-2-029 and by a grant from Google ATAP.

**References**


BERNSTEIN, D. J. The HMAC brawl. cr.yp.to/talks/2012.03.20/slides.pdf, Mar. 2012.


