
This paper is included in the Proceedings of the
23rd USENIX Security Symposium.

August 20–22, 2014 • San Diego, CA

ISBN 978-1-931971-15-7

Open access to the Proceedings of
the 23rd USENIX Security Symposium

is sponsored by USENIX

Dynamic Hooks: Hiding Control Flow Changes
within Non-Control Data

Sebastian Vogl, Technische Universität München; Robert Gawlik and Behrad Garmany,
Ruhr-University Bochum; Thomas Kittel, Jonas Pfoh, and Claudia Eckert, Technische

Universität München; Thorsten Holz, Ruhr-University Bochum

https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/vogl

USENIX Association 23rd USENIX Security Symposium 813

Dynamic Hooks: Hiding Control Flow Changes within Non-Control Data

Sebastian Vogl∗, Robert Gawlik†, Behrad Garmany†, Thomas Kittel∗,
Jonas Pfoh∗, Claudia Eckert∗, Thorsten Holz†

∗Technische Universität München
†Horst Görtz Institute for IT-Security, Ruhr-University Bochum

Abstract

Generally speaking, malicious code leverages hooks
within a system to divert the control flow. Without them,
an attacker is blind to the events occurring in the sys-
tem, rendering her unable to perform malicious activities
(e.g., hiding of files or capturing of keystrokes). How-
ever, while hooks are an integral part of modern attacks,
they are at the same time one of their biggest weaknesses:
Even the most sophisticated attack can be easily identi-
fied if one of its hooks is found. In spite of this fact,
hooking mechanisms have remained almost unchanged
over the last years and still rely on the persistent mod-
ification of code or control data to divert the control
flow. As a consequence, hooks represent an abnormal-
ity within the system that is permanently evident and can
in many cases easily be detected as the hook detection
mechanisms of recent years amply demonstrated.

In this paper, we propose a novel hooking concept that
we refer to as dynamic hooking. Instead of modifying
persistent control data permanently, this hooking mech-
anisms targets transient control data such as return ad-
dresses at run-time. The hook itself will thereby reside
within non-control data and remains hidden until it is
triggered. As a result, there is no evident connection be-
tween the hook and the actual control flow change, which
enables dynamic hooks to successfully evade existing de-
tection mechanisms. To realize this idea, dynamic hooks
make use of exploitation techniques to trigger vulner-
abilities at run-time. Due to this approach, dynamic
hooks cannot only be used to arbitrarily modify the con-
trol flow, but can also be applied to conduct non-control
data attacks, which makes them more powerful than their
predecessors. We implemented a prototype that makes
uses of static program slicing and symbolic execution to
automatically extract paths for dynamic hooks that can
then be used by a human expert for their realization. To
demonstrate this, we used the output provided by our
prototype to implement concrete examples of dynamic
hooks for both modern Linux and Windows kernels.

1 Introduction

Over the last decade, the sophistication and technical
level of malicious software (malware) has increased dra-
matically. In the early 2000s, we saw malware such as
the I Love You [29] and Blaster worms [3] that gener-
ally operated in user space with very little in the way
of defensive mechanisms. In contrast, we nowadays see
complex kernel level malware such as Stuxnet, Duqu, and
Flame [6] that show an increase in sophistication in the
target of their attack, the exploitation methods used to
deliver them, and their ability to evade detection. By tar-
geting kernel space, modern malware effectively runs at
the same privilege level as the operating system (OS),
enabling it to attack and modify any part of the system
including the kernel itself. In addition, malware can take
advantage of stealth techniques that were originally only
used by kernel rootkits to hide itself deep within the sys-
tem. This makes the detection of malware increasingly
difficult, especially as malware continues to evolve, en-
abling it to stay one step ahead of the defenders. Cur-
rently, one the most sophisticated methods employed is
data-only malware [16, 41].

However, even very sophisticated malware such as
data-only malware has an Achilles’ heel: in general, mal-
ware needs to intercept events within the system to be
able to fulfill its purpose [27, 44]. Without this capabil-
ity, malware would be unable to react to events or pro-
vide fundamental functionality such as key logging and
file hiding, which would severely limit its possibilities.
Event interception, however, requires malware to divert
the control flow of the infected system at run-time. To
achieve this, malware must install hooks in the system
that facilitate the required control flow transfer on be-
half of the malware whenever the desired event occurs.
While malware might manage to hide itself, these hooks
represent an abnormality that will be permanently visible
within the system and thus lends itself well to becoming
the basis of detection mechanisms. This insight led to
a wide range of research that enable the monitoring of
malware hooking behavior for the purpose of signature

814 23rd USENIX Security Symposium USENIX Association

generation [47] or detecting malware based on control
flow modifications [15, 20, 43].

Although existing systems are not yet able to de-
tect all hooks that are placed by malware, the remain-
ing possibilities for malware to install hooks are con-
stantly dwindling. Hooks that are based on code mod-
ifications are usually no longer an option, since changes
to code areas can be easily detected due to their static na-
ture. This leaves attackers only with the option of data
hooks [43,47], but even here the options are increasingly
restricted by modern detection mechanisms. The reason
for this development is that, in contrast to malware where
one can observe a constant evolution of techniques and
mechanisms used, hooking techniques have not signifi-
cantly changed over the course of recent years.

In this paper, we present a novel hooking concept that
we refer to as dynamic hooking. In contrast to existing
hooking mechanisms which persistently modify control
data, our hooking approach targets transient control data
such as return addresses at run-time. As a consequence,
the resulting control flow change that is introduced by
the hook only becomes visible when the hook is actu-
ally triggered. This significantly complicates the detec-
tion of dynamic hooks as security mechanisms can no
longer focus on persistent control data, but must also
take transient control data into account. What is even
more, the hook itself will thereby reside in non-control
data, which is much more difficult to analyze and ver-
ify [4,15] when compared to control data that traditional
hooks target. Despite the fact that dynamic hooks reside
purely in non-control data, they are able to reliably inter-
cept the execution flow of functions similar to traditional
hooks. Furthermore, they can be used in pure data-only
attacks, which are by themselves a realistic and danger-
ous threat [3, 5]. Thus they are not only harder to detect,
but also more powerful than their predecessors.

To provide these capabilities, dynamic hooks modify
data in such a way that they will trigger vulnerabilities at
run-time. Through this approach, they are able to arbi-
trarily modify the control flow, while the hook itself only
consists of the data that triggers and exploits the vulner-
ability. This makes them quite similar to traditional ex-
ploitation techniques with the exception that they target
applications that are already controlled by the attacker.
Due to this fact, the attack surface for dynamic hooks is
much broader compared to traditional exploitation, since
an attacker can not only attack external functions, but
also internal functions.

Furthermore, dynamic hooks can be obtained automat-
ically in a manner comparable to automated exploit gen-
eration [2]. To demonstrate this, we implemented a pro-
totype that leverages static program slicing [40, 45] and
symbolic execution [34] to automatically extract satisfi-
able, exploitable paths for dynamic hooks. The prototype

thereby provides detailed information about each jump
condition in the path and the actual vulnerability in an
intuitive format, which makes the output suitable for ex-
ploit generation frameworks or a human expert. We used
this prototype to automatically identify dynamic hooks
for recent Linux and Windows kernels. Additionally,
we implemented proof of concepts (POCs) of dynamic
hooks that demonstrate how they can be used in prac-
tice to intercept events such as system calls or to imple-
ment backdoors. This proves that the suggested hooking
mechanism is not only powerful, but also realistic.

In summary, we make the following contributions:

• We present a novel hooking concept called dynamic
hooking that targets transient control data at run-
time instead of persistent control-data. This ap-
proach bypasses existing hook detection techniques
proposed in the last few years.

• We show how dynamic hooks for OS kernels can be
automatically found by leveraging binary analysis
techniques and implemented a prototype.

• We provide detailed POC implementations of dy-
namic hooks for both Linux and Windows kernels
that demonstrate their capabilities and possibilities.

2 Technical Background

Before presenting our approach to realize dynamic
hooks, we first review background information that is
essential for the understanding of the remainder of the
paper. We begin by defining important terms and then
discuss why malware in general requires hooks within
the system to function. Finally, we cover existing hook-
ing mechanisms and their countermeasures.

2.1 Definitions
We first introduce important terms that we will use
throughout the paper. In particular, we highlight the dif-
ferences between control data and non-control data as
well as transient and permanent control data.

Control data and non-control data. Control data
specifies the target location of a branch instruction. By
changing control data, an attacker can arbitrarily change
the control flow of an application. Examples of control
data are return addresses and function pointers.

In contrast, non-control data never contains the target
address for a control transfer. In certain cases, however,
it may influence the control flow of an application. For
instance, a conditional branch may depend on the value
of non-control data.

2

USENIX Association 23rd USENIX Security Symposium 815

Transient and persistent control data. We consider
control data to be transient when it cannot be reached
through a pointer-chain originating from a global vari-
able. This essentially implies that there is no lasting con-
nection between the application and the control data. In-
stead, the control data is only visible in the current scope
of the execution such as a return address which is only
valid as long as a function executes.

By extension, we consider all control data that is
reachable through a global variable as persistent, since
the control data is permanently connected to the applica-
tion and can thus always be accessed independent of the
current scope.

2.2 Malware and Hooking

Petroni et al. [27] estimated that about 96% of all root-
kits require hooks within the system to function. Intu-
itively, this makes sense: since the sole purpose of root-
kits is to provide stealth, they have to hide all signs of
an infection. While existing structures can be hidden us-
ing techniques such as direct kernel object manipulation
(DKOM) [38], hooks enable rootkits to react to changes
occurring at run-time. Consider, for instance, that a hid-
den process creates a new network connection or a child
process. Naturally, a rootkit must also hide such newly
created objects to achieve its goal. This, however, re-
quires a rootkit to be notified of the occurrence of such
events. Hooks solve this problem by enabling a rootkit
to install callback functions in the system. This makes
them an integral part of rootkit functionality.

In practice, rootkit functionality is often mixed with
a variety of malicious payloads. According to a report
by Microsoft released in 2012 [13], “some of the most
prevalent malware families today consistently use rootkit
functionality”. The primary reason for this is that the
single purpose of a rootkit is to avoid detection. Con-
sequently, it is not a big surprise that the techniques
formerly only found in rootkits are increasingly being
adapted by malware. Since rootkits require hooks to
function, this, however, also implies that any malware
based on rootkit functionality will require the same.

2.3 Existing Hooking Mechanisms

In general, we distinguish between two different types of
hooks: code hooks and data hooks [11, 43, 47]. Code
hooks work by directly patching the application’s code
regions: wherever the attacker wants to redirect the con-
trol flow of the application, she overwrites existing in-
structions with a branch instruction. As a result, the con-
trol flow of the application is diverted every time the ex-
ecution passes through the modified instructions.

The main problem with code hooks is that code re-
gions are usually static. Therefore, it is generally suffi-
cient to identify modifications to code regions to detect
this type of hook. Various techniques have been pro-
posed that leverage such an approach [22, 27, 31]. As
a result, adversaries resorted to a different hooking form
referred to as data hooks. Instead of modifying code di-
rectly, data hooks target persistent control data within the
application. By modifying control data, the attacker is
able to divert every control transfer that makes use of the
modified data. For example, the most straightforward
method for intercepting the execution of system calls is
to modify function pointers within the system call table.

To counter the threat of data hooks, researchers pro-
posed various systems that aim to protect control data
within an application [9, 20, 27, 43]. However, the main
focus of these systems thereby lies in the protection of
function pointers that are allocated on the heap or reside
within the data region of the application. This is achieved
by ensuring that each function pointer points to a valid
function according to its control flow graph (CFG). Tran-
sient control data on the other side is generally ignored
by these approaches or they merely consider the protec-
tion of return addresses, which is not the only kind of
transient control data. Instead transient function pointer
may also exist as we will discuss in Section 5.1.

While researchers acknowledge that malware could
potentially also target transient control data to modify
the control flow [20, 27, 43], these attacks are usually
only considered in the context of exploitation or return-
oriented rootkits [16], but are not deemed to be rele-
vant for hooking. The reasoning behind this assump-
tion is that malware generally wants to change the con-
trol flow of the target application indefinitely in order to
be continuously able to intercept events. Consequently,
the malware must permanently redirect the control flow
and thus target persistent control data as transient control
data is, by definition, only used by the system for a lim-
ited amount of time. In this paper, we demonstrate that
this assumption is false and can be used to circumvent
existing defense mechanisms against hooking.

3 Dynamic Hooks

In the following, we introduce our novel hooking concept
that we refer to as dynamic hooking. For this purpose, we
provide an overview of the concept, discuss the vulner-
abilities that can be used to implement dynamic hooks,
and cover the types of dynamic hooks that exist and their
properties. Before doing so, however, we first state the
attacker model that we assume throughout this paper.

3

816 23rd USENIX Security Symposium USENIX Association

3.1 Attacker Model & Scope
In the following, we assume that the attacker’s goal is to
install persistent kernel malware such as a rootkit on the
victim’s system. For this purpose, we assume that the
attacker has the ability to manipulate the kernel’s mem-
ory arbitrarily either through a vulnerability or the ability
to load a kernel module (or driver). To avoid detection,
the attacker wishes to hide all the hooks of the malware.
That is, we are not concerned with the stealth of the mal-
ware itself, but instead solely focus on its hooks. Conse-
quently, we consider all malware detection mechanisms
that do not detect malware based on its hooks to be out
of scope for the remainder of the paper. Furthermore, we
assume the target system leverages common protection
mechanisms such as Address Space Layout Randomiza-
tion (ASLR), stack canaries, and W ⊕X .

3.2 High-Level Overview
The main problem with existing hooking mechanisms is
that they require the permanent change of code or func-
tion pointers. Consequently, the desired control flow
change of the malware is permanently evident within
the system [27]. The fundamental idea behind dynamic
hooks is to solve this problem by hiding the desired con-
trol flow change within non-control data such that there
is no clear connection between the changes that the mal-
ware conducts and the actual control flow change. This
is accomplished with the help of exploitation techniques.

To exploit a vulnerable application, an attacker makes
use of specially crafted input data that—when processed
by the application—will eventually trigger a vulnerabil-
ity. If the vulnerability enables the attacker to overwrite
important control structures such as a return address, she
will be able to modify and often control the execution
flow of the application using techniques such as return-
oriented programming (ROP) [35].

With dynamic hooks, we apply the same concepts that
are used in traditional exploitation scenarios to hooking.
That is, we manipulate the input data of the functions we
want to hook in such a way that we will trigger a con-
trol flow modifying vulnerability when the data is used.
This effectively allows us to overwrite control data (e.g.,
a return address) at run-time and enables us to control
the execution flow of the application similar to a tradi-
tional hook. The main difference, however, is that such
a dynamic hook will reside somewhere within the data
structures of the application unnoticed until its malicious
payload is eventually used by the target function.

For this approach to work, we need to identify a con-
trol flow modifying vulnerability in every function that
we want to hook. At first glance this seems unlikely.
However, there is a key difference between the exploita-
tion of traditional vulnerabilities and vulnerabilities that

are used to realize dynamic hooks: the attacker already
controls the application at the time she installs a hook. In
a traditional exploit, the attacker’s goal is to gain control
over an application. To achieve this, she needs to find
an input to the application that will trigger a vulnerabil-
ity. That is, the attacker can only control the external
data which is provided to the application. In the case
of a dynamic hook, however, this restriction does not ap-
ply. As the attacker controls the application, she is free to
access and modify any internal data structure of the ap-
plication. This results in a much stronger attacker model
when compared to traditional exploitation.

Finding and exploiting vulnerabilities in such a sce-
nario becomes much easier for several reasons. First,
many existing protection mechanisms such as ASLR,
stack canaries, or W ⊕X only protect against an exter-
nal attacker, but can be easily circumvented by an at-
tacker that controls the application. Second, the attacker
can prepare the code (or ROP chain) she wants to exe-
cute when the vulnerability is triggered beforehand and
does not have to provide it during the exploitation pro-
cess. This enables the attacker to exploit vulnerabilities
for which traditional methods would be difficult due to
space constraints of the vulnerability. Third, the attack
surface for dynamic hooks is much broader. The attacker
cannot only attack functions that handle user input, but
can also target internal functions that cannot be influ-
enced by the user. In fact, by manipulating internal data
structures, the attacker can create new vulnerabilities that
would not occur during normal operation of the applica-
tion, because the targeted data structures are normally
only accessed and modified by the program itself. This
may even allow the attacker to circumvent checks and fil-
ters within the application as the manipulated data struc-
tures may contain values that could never occur during
normal operation and may thus not have been expected
by the programmer. Finally, to hook a specific event, the
hook may be placed anywhere within the control flow of
the handling code, it is not restricted to a single function.

Example. To illustrate the concept of dynamic hooks
at a concrete example, consider the following code from
the function in the Linux kernel (version 3.8):

1 s t r u c t l i s t _ h e a d {
2 s t r u c t l i s t _ h e a d ∗ n e x t ;
3 s t r u c t l i s t _ h e a d ∗ p rev ;
4 } ;
5
6 s t a t i c vo id l i s t _ d e l (s t r u c t l i s t _ h e a d ∗ e n t r y)
7 {
8 e n t r y −>next −>prev = e n t r y −>prev ;
9 e n t r y −>prev−>n e x t = e n t r y −>n e x t ;

10 }

This function essentially removes the given entry from
its list. If the attacker controls the and the

4

USENIX Association 23rd USENIX Security Symposium 817

field from the entry to be deleted, she essentially can trig-
ger an arbitrary 8-byte write on a 64-bit architecture. In
particular, she can write the value of into the mem-
ory address (Line 8) and the value of
into the memory address (Line 9). To use this
code fragment for a dynamic hook, the attacker could,
for instance, modify a specific entry within the system
and set its pointer to point to the return address
of the function and its pointer to point
to attacker-controlled code. When the entry is deleted,
the function will then, while processing the
malicious pointers, overwrite its own return address and
activate the code of the attacker on its return.

The example code above was selected as the
function is used throughout the Linux kernel

and demonstrates the arguments stated above. In general,
this function is not exploitable by an external attacker, as
the entries that are used by the function are created by
other internal functions within the kernel. While these
functions initialize the values of the pointers correctly,
an attacker that controls the kernel can modify them arbi-
trarily, thus creating a new vulnerability. The
function does not expect the manipulated values and uses
them without checks. This enables an attacker to con-
duct an arbitrary 8-byte write, which is not enough to
introduce shellcode into the system, but is sufficient to
transfer the control flow to a previously prepared code
region. In addition, the attacker is not hindered by any
of the protection mechanisms used by the Linux kernel,
since she can disable W ⊕X for her code1, does not need
to overwrite the stack canary, and knows the address of
her code or can calculate the address of the location of
the return address2. Finally, since the function
is invoked by many other functions within the kernel, a
dynamic hook within this function is very effective.

3.3 Suitable Vulnerabilities
In principle, any kind of vulnerability can be used to im-
plement a dynamic hook. In this paper, however, we
will, for the sake of simplicity, focus on n-byte writes,
sometimes also referred to as write-what-where primi-
tives, such as the one presented in the previous example.
Such n-byte writes enable an attacker to modify n bytes
at an arbitrary memory location. In our example, the at-
tacker controls an 8-byte write to an arbitrary memory
address. In x86-assembly, n-byte writes are essentially

1Note that this is necessary since the first write (Line 8) of the exam-
ple will write the return address () into the code () of
the attacker. However, this is not a problem in practice, as the attacker
can set her code to be writable and executable. In fact, this is even the
default for memory allocated in the Linux kernel via .

2The location of the return address depends solely on the address of
the kernel stack and the size of the current function’s stack frame. Both
values are known to the attacker as we will describe in Section 4.2.

a memory instruction for which the source and the
destination operand can be controlled by an attacker. An
example of a potential 8-byte write vulnerability in Intel
assembly syntax is the following instruction:

mov [r a x] , rbx

If the attacker can control the contents of and
at the time the instruction is executed, she can misuse it
for a dynamic hook. It goes without saying that such
instructions appear frequently within software. In the
Linux 3.8 kernel binary, for instance, we found more than
103,000 instructions similar to the one shown above
that can potentially be abused for an 8-byte write. This
corresponds to about 5% of all instructions (1,976,441)
within the tested Linux kernel binary (Linux 64-bit 3.8
kernel). Note that this does not include the approxi-
mately 58,000 one, two, or four byte write instructions.
Together, this equates to a total of 8% of all instructions
that can potentially be used to realize a dynamic hook.

3.4 Types of Dynamic Hooks

Generally speaking, there are two different types of dy-
namic hooks: dynamic control hooks and dynamic data
hooks. The former target the control flow of the victim
application and can be used as an alternative to tradi-
tional hooks since they enable an attacker to intercept
events within the application. Dynamic data hooks, on
the other side, do not target control data, but rather other
critical data structures within an application. As an ex-
ample, consider that an attacker wants to install a back-
door. For this purpose, she places a dynamic hook into a
control path that can be triggered from userland such as a
specific system call. However, instead of changing con-
trol data, this dynamic hook will upon invocation directly
overwrite the credentials of a predefined process and el-
evate its privileges to root. Since the task credentials are
usually a data value, this can be achieved with a single
memory write. Thus, instead of overwriting a return ad-
dress, the attacker simply sets her hook to overwrite the
memory location where the task credentials reside. As
pointed out by Chen et al. [10], such non-control data
attacks can be quite powerful.

While dynamic data hooks do not modify the control
flow directly, they can be used to influence the control
flow at a later point in time. Consider for instance data
that resides in memory and is processed by a just-in-time
compiler. If an attacker manages to overwrite this data
with dynamic hooks before it gets compiled, she can in-
fluence the instructions that are introduced into the sys-
tem, which can lead to arbitrary code execution [7].

5

818 23rd USENIX Security Symposium USENIX Association

3.5 Properties of Dynamic Hooks

Components. Dynamic hooks always consist of two
integral components. On the one hand, there is the in-
struction that activates the hook, which we refer to as the
trigger. In the case of an 8-byte write, the trigger is the

instruction that conducts the write on behalf of the
attacker. Every path that leads to the execution of the
trigger is referred to as a trigger path. On the other hand,
there is the data that was manipulated by the attacker and
encodes the malicious action that the attacker wants to
conduct. This is the payload of the hook. For n-byte
writes, the payload usually consists of two manipulated
pointers: the destination pointer, which contains the ad-
dress that will be written to and the source pointer, which
specifies the value that will be written.

Binding. While the same trigger can be shared among
different dynamic hooks, each hook in general requires
its own payload. The reason for this is that the payload
contains the actual data that specifies the control transfer.
This data, however, will only be valid in a particular con-
text. To overwrite a specific return address, for example,
we must first be able to predict its exact location. This
requires us to know the exact path leading to the use of
the payload by the trigger. In practice, this means that
a payload and thus the dynamic hook is usually closely
bound to a specific execution path. The closer the con-
nection between an execution path and a dynamic hook,
the better the control of the attacker over the hook.

In an ideal situation, a dynamic hook is exclusively
bound to a specific execution path. In this case, the
payload of the hook is only processed in the execution
path that leads to its trigger. This enables the attacker
to predict possible modifications applied to the payload
before its use in addition to the state of the machine at
the time of the exploitation with high probability, since
she must only consider a single execution path. Similar
to traditional exploits, this is essential information that
is required to be able to setup a dynamic hook correctly.
After all, the attacker needs to correctly predict the exact
address of the control data, which should be overwrit-
ten and overwrite it with the precise address of the target
code region. Without knowing the exact layout of the
stack as well as the transformations that may be applied
to the payload before its use, this is a hard task.

If there are multiple paths that use the payload, the
dynamic hook is only loosely bound to the path leading
to the trigger instruction. The more execution paths the
payload affects, the more difficult it will become for an
attacker to control the hook. On the one hand, this is due
to the fact that it will become increasingly difficult to
predict the necessary memory addresses and transforma-
tions as has been described above. On the other hand, the

more functions access the actual payload that the attacker
modified, the more likely it will be that the hook intro-
duces side effects into the application that may lead to
unexpected behavior and crash the application. Consider,
for instance, that an entry that is used by the
function has been modified to act as payload for a dy-
namic hook. If the same entry is used by a different
function to iterate through all elements within the list,
this will most likely lead to a crash of the system as the

and the pointer do not point to the previous
and next element, respectively, as would have been ex-
pected.

Coverage. Another important property of a dynamic
hook is coverage: as dynamic hooks should be closely
bound to the execution path containing the trigger, it
is essential that this triggering path is always executed
when the target event that should be hooked is invoked.
In this case, the dynamic hook provides full coverage.
Otherwise, the hook may only be able to intercept some
execution paths of the target event, but not all. In that
case, the hook has only partial coverage and must thus be
combined with other dynamic hooks to be able to achieve
full coverage of the target function. Note that while bind-
ing is a property of the payload of the hook, coverage is
a property of the trigger instruction.

3.6 Automated Path Extraction
So far we have discussed the concept of dynamic hooks
and provided an overview of the different types of dy-
namic hooks and their properties. However, the creation
of a dynamic hook still remains a manual process, which
can—as in the case of traditional exploitation—be very
time-consuming and error-prone especially for complex
binaries such as modern OS kernels. We now describe
how paths for dynamic hooks can be obtained automat-
ically for a given binary. This is essentially a two-step
process: In the first step, we make use of static program
slicing [40, 45] to extract potential paths that could be
used for a dynamic hook. In the second step, we then
employ symbolic execution [17, 34] to verify the satisfi-
ability of the paths and to generate detailed information
for their exploitation.

3.6.1 Program Slicing

To find possible locations for dynamic hooks within an
application, an attacker has to find triggers that make use
of a payload that she can control. Since trigger instruc-
tions can be as simple as a memory move, there usually
exist many triggering instructions in many paths of the
application. To identify whether a particular trigger in-
struction can be used for a dynamic hook, it is necessary

6

USENIX Association 23rd USENIX Security Symposium 819

to analyze the data flow that leads to the particular in-
struction. One technique that can be used for this pur-
pose is static program slicing [40, 45].

The basic idea behind static program slicing is to tra-
verse back through the control flow graph (CFG) of an
application starting from a sink node and to extract each
node that directly or indirectly influences the values used
at the sink. Applied to the problem of finding dynamic
hooks, static program slicing thus allows us to deter-
mine where the values of the source and the destination
pointer in an n-byte write originate. To achieve this, we
first identify all potentially vulnerable instructions
within a given binary. These are essentially all in-
structions which move a value contained within a register
to a memory location specified by another register. In the
next step, we then traverse the CFG of the binary back-
wards at the assembler level until we encounter the first
instruction that modifies the source register of the move.
We record this instruction and continue with our back-
ward traversal. Instead of looking for instructions that
modify the source register of the original move, however,
we will from here on search for instructions that modify
the source register of the last instruction we recorded. If
we continue this process, we eventually obtain the reg-
ister or memory location where the value that is later on
contained within the source register originates. We then
repeat the process for the destination register. All the
instructions that we recorded using this method form a
slice of the binary. Each slice contains all the instruc-
tions that affect a given vulnerable instruction.

We implemented a slicer which is capable of extract-
ing potential paths that could be used for n-byte writes
from a 64-bit Linux or Windows kernel binary. The im-
plementation of the slicer is based on the disassembler
IDA Pro [14]. In particular, we make use of the CFG that
IDA provides to perform the above described static inter-
procedural def-use analysis. Starting from each trigger,
we perform a breadth-first search in a backwards direc-
tion. We hereby make use of a register set to conduct the
actual analysis. Initially, this register set consists of the
source and destination register. Whenever we encounter
an instruction that modifies a register included within the
register set, we add the source register of the instruction
to the set and remove the modified register. Since we
walk backwards through the instruction stream, this ef-
fectively allows us to record and track the def-use chains
for the source and destination register. In addition, we
record all instructions that we visit along the way, in or-
der to be able to reconstruct the path that we explored in
case we consider it to be potentially exploitable.

The challenge that remains to be solved is to deter-
mine whether a slice can be used for a dynamic hook
or not. To address this problem, we must know whether
the registers in the vulnerable move can be controlled by

an attacker. We consider this to be the case if the val-
ues of the source and destination register originate from
a global variable. The reasoning behind this approach
is that the data used within the move in this case stems
from a persistent location. Consequently, to control the
final instruction, an attacker can modify the pointer
chain starting from the global variable.

To identify global variables in the kernel, we assume
that each access to a fixed address or the Global Seg-
ment register (GS) constitutes an access to a global vari-
able. The reason for the latter is that both the Linux
and Windows kernels store important global variables
that are valid for a particular CPU within a memory re-
gion pointed to by this register. For instance, both Linux
and Windows store the address of the
() or the () structure of the
process that is currently executing in this memory region.

If both the source and the destination register originate
from a fixed address or the memory region pointed to by
GS, we consider the path to be potentially exploitable
and record it such that it can later on be used as input for
the symbolic execution engine.

3.6.2 Symbolic Execution

Symbolic Execution is a well-known program analy-
sis method that has been proposed over three decades
ago [8, 17]. The basic idea of symbolic execution is to
treat input data of interest as symbols rather than con-
crete values. These symbols can represent any possible
value and as we walk over the code of a program, the
values become constrained. Branches, for instance, set
up conditions that constrain symbolic variables. Each of
these conditions can be represented as a logical formula
which can then be fed into an SMT solver to obtain con-
crete values that satisfy the path conditions. A profound
introduction is available in the literature [25, 34].

We use forward symbolic execution to verify the sat-
isfiability of our sliced paths and to produce detailed in-
formation for the creation of the dynamic hooks. In the
process, we utilize the VEX IR, which is a RISC like
intermediate representation with single static assignment
(SSA) properties, deeply connected to the popular Val-
grind toolkit [24]. Due to space limitations, we refrain
from discussing this intermediate language in detail.

To verify satisfiability, we transform each basic block
of the sliced path into VEX IR code and execute the code
symbolically. The translation to VEX IR is achieved by
utilizing a python framework called pyvex [36]. We dis-
mantle every VEX statement that we obtain from pyvex
and link the components of the statements into our own
data structures. These data structures are used to walk
over the VEX code and by doing so, we semantically
map the statements to Z3 expressions. Z3 is a theorem

7

820 23rd USENIX Security Symposium USENIX Association

prover developed at Microsoft Research that we use to
solve our formulas [23].

As we walk over the VEX code of our sliced paths, we
also keep track of three global contexts, i.e., a memory
context, CPU context, and the current jump condition.
Each context consists of Z3 expressions that semantically
mirror the current state of the execution. Additionally,
each basic block also keeps track of temporary VEX IR
variables in SSA form. By constant propagation, we use
these variables to resolve source and destination. Each
store, load, and register set statement updates the corre-
sponding context in form of Z3 expressions. Once we hit
a jump condition, we ask the solver whether we can take
the jump according to our context. If no solution exists,
we can filter out the path. An unsatisfiable set of formu-
las stops execution of the current path, and we move on
with the next slice.

At this point it is worth mentioning that we do not use
symbolic execution in the traditional sense to achieve
code coverage. Our main goal is to check whether we
can walk down our paths and to determine what value
sets lead us to the end of the slice. We use the symbolic
formulas to generate detailed information about the con-
trolled registers at the time the vulnerability is triggered
as well as the jump conditions that must be fulfilled to
actually reach the trigger. By processing over the VEX
code, the solver also gives us possible values to set.

4 Experiments

Based on the slicer and the symbolic execution engine,
we created a prototype that we used to automatically ex-
tract paths for dynamic hooks in a fully patched Win-
dows 7 SP1 64-bit kernel and a Linux 64-bit 3.8 kernel.
We chose this approach for three main reasons. First and
foremost, since malware nowadays generally attacks the
kernel, this approach allowed us to test the prototype in a
realistic scenario. Second, kernel binaries are especially
complex, which makes them well suited for a thorough
test of our implementation. Finally, by targeting Win-
dows and Linux, the experiments show that the proposed
mechanism is applicable to two of the most popular OSs.

In the following, we first discuss the results that we
obtained by providing detailed statistics about the auto-
matically extracted paths for both kernels. To demon-
strate how useful the prototype is when it comes to the
actual creation of the hooks, we also describe three con-
crete POCs for dynamic hooks that we created based on
the information that the prototype provided.

4.1 Automated Path Extraction
As stated above, we tested our prototype with a fully
patched Windows 7 SP1 64-bit kernel and a Linux 64-bit

3.8 kernel. The goal of the experiment was to automati-
cally extract trigger paths that could then either be used
by a human expert to manually design dynamic hooks or
to automatically generate exploits. Table 1 provides an
overview of the obtained results.

At first, we determined the number of instructions
contained within both kernel binaries for reference. In
the next step, we obtained the number of potentially ex-
ploitable 8-byte instructions. In the process, we only
counted those instructions that move data from one
general purpose register into a memory location speci-
fied by another general purpose register with the condi-
tion that the involved registers were neither nor .
The reason for this restriction is that our prototype imple-
mentation currently does not support a memory model,
meaning that we cannot track memory store and load op-
erations in our slicer, which is why we currently ignore
any path that requires this functionality. We will cover
this limitation in more detail in Section 5.3. As Table 1
shows, about 2 % of all instructions within the tested ker-
nels are instructions that fulfill this criteria.

Next, we used the slicer to extract potentially ex-
ploitable slices for each of the identified moves. In
case of Linux, the slicer considered about 4% of the

instructions as potentially exploitable, while on the
Windows side about 20% of the instructions were
marked as possibly exploitable. We assume that the sig-
nificant difference between Windows and Linux stems
from the fact that Linux has substantially more in-
structions that store or load data from memory (61,651
vs 37,272). Since the slicer does not support a memory
model, it will abort whenever such a instruction is
part of a def-use chain. Due to their number, this sce-
nario is more likely to occur on Linux than on Windows.

Finally, we symbolically executed each of the obtained
slices. In total, this led to 566 exploitable paths for Linux
and 379 exploitable paths for Windows. The symbolic
execution engine thereby produced the required value for
each conditional jump within the path and detailed infor-
mation of the vulnerable instruction. In particular,
the output3 specifies exactly which memory addresses
must be modified in what way to pass the conditional
jumps and where the source and destination values are
located, respectively. This information can directly be
applied to generate exploits or to manually create a dy-
namic hook as we will show in the next section.

4.2 Prototypes

We now present three concrete examples of dynamic
hooks to illustrate the capabilities and properties which
have been discussed throughout the paper. We created

3An example of the output is shown in Section 4.2.3.

8

USENIX Association 23rd USENIX Security Symposium 821

OS Size Instructions 8-byte moves Slices Paths

Linux 3.8 64-bit () 18.8 MB 1,976,441 42,130 (2.1%) 1753 (4%) 566 (32%)
Windows 7 SP1 64-bit () 5.3 MB 1,330,791 26,694 (2.0%) 5450 (20%) 379 (07%)

Table 1: Overview of the 8-byte moves, the potentially exploitable slices, and the exploitable paths according to the
symbolic execution engine for the analyzed Linux and Windows kernels.

these examples based on the output provided by our pro-
totype. The first and the third example focus on a dy-
namic control hook, while the second example demon-
strates a dynamic data hook. To ease the understand-
ing of the examples, all hooks leverage a trigger instruc-
tion within the function (as explained in Sec-
tion 3.2) or its Windows equivalent. The first two hooks
were implemented for Linux 3.8 and an Intel Core i7-
2600 3.4 GHz CPU. To demonstrate that the proposed
concept is similarly applicable to Windows, the third
hook was implemented on a fully patched version of
Windows 7 SP1 running on the same CPU.

4.2.1 Dynamic Control Hook: Intercepting Syscalls

A common functionality that kernel level malware re-
quires is the possibility to intercept system calls. In this
example, we show how a single dynamic hook can be
used to intercept all system calls for a particular process.
To achieve this, the hook is placed into the execution flow
of the system call handler, which is—independent of the
system call mechanism that is used (i.e., interrupt-based,
sysenter-based, or syscall-based)—invoked whenever a
system call on the x86 architecture is executed. The main
purpose of the syscall handler is to invoke the actual sys-
tem call by using the system call number as an index into
the system call table.

Similar to other functions within the kernel, the sys-
tem call handler can be audited for debugging reasons.
Auditing can be enabled or disabled within the flags
field of the struct associated with each
process. By setting the flag, ev-
ery system call conducted by a process will also lead to
the invocation of the auditing functions. In particular,
the function will be executed
before the invocation of a system call and the function

will be executed after the sys-
tem call, but before the system call handler hands control
back to user space. In our POC, the dynamic hook is set
within the function.

When syscall auditing is enabled, the
function records infor-

mation about the system call such as the syscall
number and the arguments of the syscall within the
audit context of the process. The purpose of the

function is to reset the audit

context of the task before the system call returns. In
the process of resetting the audit context, this function
invokes the inline function , which
resets the within the audit context:
1 s t a t i c i n l i n e void a u d i t _ f r e e _ n a m e s (
2 s t r u c t a u d i t _ c o n t e x t ∗ c o n t e x t) {
3 . . .
4 l i s t _ f o r _ e a c h _ e n t r y _ s a f e (n , nex t ,
5 &c o n t e x t −>n a m e s _ l i s t , l i s t) {
6 l i s t _ d e l (&n−> l i s t) ;
7 }
8 . . .
9 }

The function essentially iterates
over the of the audit context (Line 4) and
deletes every entry within the list (Line 6). Consequently,
if we control the , we can control the entry
that is passed to the function, which in turn al-
lows us to exploit its vulnerability. As the
is not modified by the func-
tion or anywhere else in the kernel4, the attacker is
free to modify it in any way she wants. That is, the

structure is exclusively bound to the exe-
cution path within the syscall handler that we use for our
dynamic hook.

While the structure seems to be perfectly
suited for a dynamic hook, the triggering path places
additional constraints on the hook. The problem arises
due to the fact that the function is contained
within a loop that iterates over all entries within the

list (Line 4). To iterate through the list,
the loop will essentially follow the pointer in every
entry until one of them points back to the first element
in the list, which is . Since we
want to modify the and the pointer of an en-
try within the list to conduct an arbitrary 8-byte write, we
have to take this problem into account and assure that the
list iteration will eventually terminate. To achieve this we
initialize the audit context as shown in Figure 1.

The basic idea behind this setup is to make use of a
special address, referred to as a “magic address”, that
is a valid memory address, but at the same time con-
tains valid x86 instructions. Due to little-endian byte
order, these valid instructions must be contained in re-

4While there are other functions in the kernel that try to access the
, these attempts can be blocked by setting the first member

within the audit context () to one.

9

822 23rd USENIX Security Symposium USENIX Association

Trampoline

&context->name_list

Magic_Address

next:

next:

prev:

prev: Return Address

&Magic_Address

&context->name_list+ 0xe6eb:

+ 0x230:

+ 0x248:

Figure 1: The audit context structure that the attacker
uses to set a dynamic hook within .

verse order within the address. In Figure 1, the in-
struction encoded into the address is a negative relative
jump ((address) ⇒ (instruction)) that
will upon execution transfer control to a trampoline, that
then transfers control to an arbitrary address. Initially
when the loop begins iterating over the , it
follows the pointer to the first entry within the list,
which is located at the magic address. The pointer
stored at the magic address will in turn point back to the

, thus fulfilling the loop condition. How-
ever, before the loop exits, the first entry in the list (lo-
cated at the magic address) is processed by the
function. Since the pointer of this entry points to
the location of a return address, the function
will overwrite this return address with the value stored in
the pointer (prev → next = next), which points to

. Consequently, as soon as the
return address is used, control will be transferred to the
address of where the magic
address is stored, leading to the execution of the magic
address and the activation of the trampoline code. Note
that the hook requires the audit context region created
by the attacker to be writable and executable, since the

function conducts two write operations as has
been described in Section 3.2. This is not a big problem
in practice, since every memory region allocated with

is by default writable and executable.

The final problem that remains is which return address
we are actually going to overwrite and how we can pre-
dict its location. As previously stated, the syscall handler
is invoked before every system call and it will invoke the
actual function handling the syscall. Thus, if we know
the stack frame size of the syscall handler and the lo-
cation of the kernel stack, we can predict where the re-
turn address of the function that is invoked by the syscall
handler resides. The stack frame size can be obtained
from the assembler code of the syscall handler, while the

location of kernel stack can be obtained from a kernel
variable (). The target
return address will then reside at

.

Summary. A dynamic control hook for intercept-
ing all system calls for a particular process can be
placed in the function. To en-
sure that execution passes through this function, we set
the flag within the
struct of the target process. In the next step, we mod-
ify the audit context of the target process in the way de-
scribed above and use a trampoline to control the execu-
tion flow. This enables us to reliably divert the control
flow at run-time. The resulting dynamic hook will have
full coverage and be exclusively bound to the execution
path leading to the function.

4.2.2 Dynamic Data Hook: Installing a Backdoor

In the second example, we demonstrate the possibilities
of dynamic data hooks. In particular, we show how a
dynamic data hook can be used to install a backdoor
within a Linux system that is capable of elevating the task
rights of a predefined process to root. For this purpose,
we leverage the system call, which enables one
process to attach to another process for debugging rea-
sons. To install the backdoor, we simulate that a process
used the system call to attach to the tar-
get process (i.e. the process that will contain the hook).
This is achieved by manually applying the changes that
the function conducts to the internal
data structures of the target process. Most importantly,
the field of the task must be updated to include

, the field within the task must
be set to 1, and the field must be set to the pro-
cess which will later trigger the backdoor. We will defer
the discussion of this last change for the moment and ex-
plain it in more detail later on.

Once the changes of the func-
tion have been simulated, it is possible to invoke
the function on the so prepared pro-
cess. The execution of this function eventually leads
to the invocation of the function,
which in turn invokes the function using the

pointer within the target process as argu-
ment:
1 void _ _ p t r a c e _ u n l i n k (
2 s t r u c t t a s k _ s t r u c t ∗ c h i l d) {
3 . . .
4 l i s t _ d e l (& c h i l d −> p t r a c e _ e n t r y) ;
5 . . .
6 }

To use this code fragment for a dynamic data hook,
we modify the ptrace_entry → next pointer and the

10

USENIX Association 23rd USENIX Security Symposium 823

ptrace_entry → prev pointer of the target process. This
enables us to conduct an arbitrary 8-byte write when the

function is invoked during the execution of
. In particular, we set the pointer

to point to the task credentials that we want to override
and the pointer to an address that is writable and
ends with four zero bytes. To understand this, we have to
take a look at the Linux task credential structure, which
defines the access rights of a process:

1 s t r u c t c r e d {
2 . . .
3 k u i d _ t u i d ; /∗ r e a l UID ∗ /
4 k g i d _ t g i d ; /∗ r e a l GID ∗ /
5 k u i d _ t s u i d ; /∗ saved UID ∗ /
6 k g i d _ t s g i d ; /∗ saved GID ∗ /
7 k u i d _ t e u i d ; /∗ e f f e c t i v e UID ∗ /
8 k g i d _ t e g i d ; /∗ e f f e c t i v e GID ∗ /
9 . . .

10 } ;

Each task contains three pairs of access rights and each
access right pair consists of a user id and a group id. Most
important for us is the effective user id (), which
specifies the effective access rights of a process. Since
the root user in Linux generally has the user id zero, our
goal is to overwrite the field, which has a size of 4
bytes, with zeroes. If we choose an address for the
pointer that has its lower 32-bits set to zero and addition-
ally set the pointer to point to the field of the
process whose privileges we want to elevate, we will—
due to the little endian byte order—overwrite the
(prev → next = next) field with zeroes and thus set the
access rights of the process to root. However, because
the function will also write the pointer
into the address of (next → prev = prev),
we have to ensure that the address used within the
pointer points to a writable memory region that does not
contain crucial data. A possible address that can be used
for this purpose is since this ad-
dress usually points to the first 8-bytes of the physical
memory of the machine, which is not used by the Linux
kernel. Finally, note that we will also override the
of the process with the upper 32-bits of the address in the
next pointer. This will, however, not affect the process as
long as it has a valid .

We can now set up a dynamic hook as follows: First,
we need to select a target process that remains running
on the system as it will contain the above described dy-
namic hook. Good candidates are therefore background
daemons such as the SSH daemon. Second, we need to
specify the victim process whose privileges we want to
elevate and setup the dynamic hook within the target pro-
cess. Since we need to know the address of the task struct
of the victim process in order to be able to set the
pointer to its field, this process also needs to remain
running. A good choice in this case could, for instance,

be a shell process within a screen session.
To activate the backdoor, we need to call the

syscall with the argument on the target
process. However, the backdoor cannot be activated by
any process because only the tracing process can detach
from the traced process. Since we simulate the changes
conducted by , the process which can
execute the call, is the process that we
specify as during the setup of the dynamic hook.
While this ensures that the backdoor cannot be triggered
by accident, this requires us to specify the process that
triggers the backdoor when we setup the dynamic hook.
The easiest way to solve this problem is to specify the
victim process as parent of the target process. In this
case the victim, whose privileges will be elevated, can
trigger the backdoor itself.

Summary. A dynamic data hook can be used to imple-
ment a backdoor that can be triggered from user space
with arbitrary access rights. In our example, the back-
door is closely bound to the process that was specified
as the tracing process and to the execution path within

. In addition, the hook only provides
partial coverage as only the detach call to a specific pro-
cess will trigger it, which is desired behavior in the case
of a backdoor.

4.2.3 Dynamic Control Hook: Process Termination

To show that the proposed hooking concept can be ap-
plied to other OSs as well, we will in our final example
present a dynamic control hook that we implemented on
a fully patched version of Windows 7. In particular, the
hook is capable of intercepting the termination of an ar-
bitrary process, which can, for instance, be useful in situ-
ations where a malicious process on the system is found
and terminated by a security application or the user. Due
to the hook, the malware would be notified of this event
and could react to it.

When a process is exiting on Windows 7, the function
is invoked which in turn invokes

various cleanup functions that prepare the termination of
the process. One of these functions is

. To support a wide range of appli-
cations, Windows provides processes with the possibility
to request a change to the system’s clock interval [32].
This enables programs that have a demand for a faster
response time to decrease the clock interval and thus to
increase the number of clock-based interrupts. When a
process emits such a request, the process is added to the

list, which is used by the OS to
manage all timer resolution changes. As the name sug-
gests, the purpose of the

function is to remove processes from the man-

11

824 23rd USENIX Security Symposium USENIX Association

agement list once they exit. Our automated path extrac-
tion tool discovered the following path within this func-
tion:

1 −−−−SLICE−−−−
2 0 x000000014042c396 mov rax , gs :188 h
3 0 x000000014042c39f mov rbx , [r a x +70h]
4 0 x000000014042c3c6 mov rcx , [rbx +4A8h]
5 0 x000000014042c3cd mov rax , [rbx +4B0h]
6 0 x000000014042c3d4 mov [r a x] , r c x
7 0 x000000014042c3d7 mov [r c x +8] , r a x
8
9 −−−−SYMBOLIC−−−−

10 Jump C o n d i t i o n i n : BB_0x14042c390
11 Concat (0 x0 , E x t r a c t (0 x1f , 0x0 ,
12 MEM[RBX+0 x440])) >> Concat (0 x0 , 0 xc) &1 == 0
13
14 CPU CONTEXT/CONTROLLED REGISTERS
15 RCX −> MEM[MEM[MEM[0 x188+GS]+0 x70]+0 x4a8]
16 RAX −> MEM[MEM[MEM[0 x188+GS]+0 x70]+0 x4b0]

To remove a process from the
list, the

function obtains the forward and the backward pointer
(Line 4 and Line 5) from the structure of the
process and performs the discussed list delete operation
(Line 6 and Line 7). The only prerequisite for this path
is that the 13th least significant bit of the memory word
at location +0x440 is not set (Line 11). By
manipulating this memory word and the pointers, which
are located within in the struct of the process
at offset 0x4A8 (Line 4) and offset 0x4B0 (line 5) re-
spectively, we can thus perform an arbitrary 8-byte write
and change the control flow. In our POC we set the for-
ward pointer () to point to our shellcode and the back-
ward pointer () to point to the return address of

. Just as in the case
of our first example, the location of the latter can be ob-
tained by subtracting the sum of the stack frames of the
invoking functions from the start address of the kernel
stack, which is stored within the variable
contained within the structure of the thread of
the process. Similarly, the area where the shellcode re-
sides must be writable and executable. On Windows,
we can allocate such a memory region by invoking the

function with the argument
.

One last problem that remains, however, is that the
entry structure of a process is

unfortunately not exclusively bound to the path of our
dynamic hook, since the list is
also used by other functions such as

. The solution to this problem is quite sim-
ple, though: since the list is
not critical for the execution of a process and the

function does on top
of that not iterate through the list, but rather accesses
the forward and backward pointers directly, we can sim-

ply remove the entry from the linked list. As a re-
sult, the manipulated entry will no longer be processed
by other management functions, which will bind the

entry structure exclusively to
our trigger path. In our experiments, removing processes
from the list did not affect their
execution in any way. The proposed dynamic hook there-
fore serves as an example that an exclusive binding of a
hook payload must not be given by the target application,
but can also be manually enforced by the creator of the
hook.

Summary. By manipulating the
entry structure of a process in the way described

above we can install a dynamic hook and intercept the
termination of an arbitrary process on Windows. While
the manipulated structure is by default not exclusively
bound to the trigger path, the creator of the hook can
enforce an exclusive binding manually by removing the
manipulated entry from its linked list. In addition, the
presented dynamic hook had full coverage in our experi-
ments. It was even triggered if we forcefully terminated
the process using the task manager.

5 Discussion

Up to this point, we have not discussed what kinds of
transient control data exist. This is why it may seem to
the reader that dynamic control hooks could be mitigated
by protecting return addresses alone. In this section, we
cover this topic in more detail and show that this is not
the case. In addition, we cover possible countermeasures
against dynamic hooks and review the limitations of the
proposed hooking concept and our current prototype.

5.1 Transient Control Data

Instead of targeting persistent control data such as func-
tion pointers in the system call table, dynamic control
hooks change transient control data at run-time. While
return addresses are a popular example of transient con-
trol data, it is not the only kind of transient control data
that exists. For instance, if a function allocates a local
function pointer, this pointer will reside on the stack and
not in the data segment or the heap. Instead of over-
writing the return address, an attacker can in such a case
similarly target the function pointer. While this is a rather
unlikely scenario, it demonstrates a very important class
of attacks where a local variable on the stack is changed
to achieve the desired control flow change. This class of
attacks is not restricted to function pointers alone. Con-
sider, for example, the following code from the sys-

12

USENIX Association 23rd USENIX Security Symposium 825

tem call in the Linux kernel5:
1 s t r u c t fd {
2 s t r u c t f i l e ∗ f i l e ;
3 i n t n e e d _ p u t ;
4 } ;
5
6 SYSCALL_DEFINE3 (read , unsigned i n t , fd , char
7 _ _ u s e r ∗ , buf , s i z e _ t , c o u n t) {
8 s t r u c t fd f = f d g e t (fd) ;
9 . . .

10 r e t = f . f i l e −>f_op−>r e a d (f . f i l e , buf ,
11 count , pos) ;
12 . . .
13 }

In this case, a local structure () is al-
located on the stack (Line 8). The structure contains
a pointer to another structure (),
which in-turn contains a function pointer that is called
in Line 10. With the help of a dynamic hook, an at-
tacker could modify the pointer within the local struc-
ture (Line 2) and point it to an attacker-controlled struc-
ture instead. If she manages this before the function call
in Line 10 is executed, this will effectively allow her to
control the function call and thus enable her to arbitrarily
change the control flow.

Instead of targeting a return address or a function
pointer directly, the attacker in this scenario modifies a
local pointer on the stack. This approach enables her to
control any data that the local function accesses using
this pointer. In the kernel, where objects in general are
accessed through pointer chains, this represents a power-
ful attack vector, which effectively provides control over
any object that the pointer references. Since similar code
exists in many other functions within the kernel, this at-
tack vector must be taken into account when one consid-
ers countermeasures against dynamic hooks.

5.2 Countermeasures
Dynamic hooks are installed by an attacker that already
controls the application, which renders many of the ex-
isting defense mechanisms against exploits ineffective.
However, while dynamic hooks are a powerful attack
vector, there are, of course, countermeasures that can be
used to reduce the attack surface. In the following, we
first discuss possible countermeasures against dynamic
control hooks, before we present defense mechanisms
for dynamic data hooks.

Dynamic control hooks. What makes dynamic con-
trol hooks difficult to detect is that they do not perma-
nently modify control data. Instead, their payload is hid-
den within non-control data and the actual control flow

5For better readability we directly included the function
into the system call. In the actual code the function call in Line 10
will occur in the function.

modification only occurs at run-time. This enables them
to evade popular hook detection mechanisms such as
HookSafe [43] or SBCFI [27], which only protect per-
sistent control data, but ignore transient control data on
the stack. However, at some point during the execution,
dynamic control hooks must override control data in or-
der to divert the control flow. Thus while a dynamic hook
may be hidden at first, it will become visible when it is
triggered. The resulting control flow change can poten-
tially be detected using control flow integrity (CFI) and
related approaches [1, 15, 20, 39, 42, 46, 48].

In order to detect dynamic control hooks with CFI, it
is crucial that every control transfer of an application is
verified. If a single control transfer is missed, this can
potentially be abused by an attacker to install a dynamic
hook. However, finding all possible control transfer in-
structions within complex software such as an OS kernel
is a difficult problem. This is especially true if we con-
sider attacks on transient control data such as the one
present in the last section. Even worse, control trans-
fer instructions can often have more than a single tar-
get. Consequently, one must not only identify all control
transfer locations, but also all the possible targets of these
transfers to avoid false positives. Additionally, if there
are multiple possible targets for a given control transfer
instruction, an attacker can still launch return-to-libc like
attacks [37], which is a general problem of CFI mech-
anisms [48]. Finally, every check of a control transfer
comes at a cost [39]: the more instructions we verify, the
higher the overhead will be and for applications that are
optimized for performance such as an OS kernel, even a
small overhead can have a huge impact.

While current CFI approaches are not yet able to solve
all of these problems, they certainly reduce the attack
surface and make it more difficult to install dynamic
control hooks. The results presented in this paper can
help to further improve these mechanisms by using the
discussed techniques to automatically extract possible
triggers from a given application and adding additional
checks to verify them. To increase the performance, one
could make use of lazy control flow verification as pro-
posed by Bletsch et al. [7]. This could result in an ef-
fective and efficient detection system, which might not
be able to eliminate dynamic control hooks entirely, but
will significantly raise the bar for an attacker.

Dynamic data hooks. The defense mechanisms dis-
cussed above make use of the fact that dynamic control
hooks have to eventually modify the control flow. That
is, the detection mechanisms do not focus on the hook
itself, but rather target the effects of the hook’s invoca-
tion. The idea behind dynamic data hooks is to com-
plicate detection even further by modifying non-control
data instead of control data. As a result, defenders can no

13

826 23rd USENIX Security Symposium USENIX Association

longer concentrate on the control flow of the application
alone, but rather have to detect integrity violations within
the data of the application.

Verifying the integrity of data structures is a difficult
problem. Petroni et al. [26] were the first to propose a
general architecture for the detection of kernel data in-
tegrity violations. Since then various systems have been
proposed that try to detect or prevent malicious modifi-
cation of kernel data structures [9, 15, 19, 30, 33]. What
is common to all these approaches, however, is that they
only enforce integrity checks, but leave the creation of
the actual integrity constraints to a human expert. To the
best of our knowledge, the only approach that tries to
generate integrity constraints for kernel data structures
automatically is Gibraltar [4]. While this approach pro-
vides a good starting point and could support a human
expert in the creation of integrity constraints, the authors
acknowledge that the generated invariants are “neither
sound nor complete” [4]. Creating reliable and evasion-
resistant integrity constraints is, however, the basis for
the detection of dynamic data hooks.

To be able to effectively protect kernel data structures,
additional research in the field of automatic integrity con-
straint generation is required. Techniques that are able
to generate signatures for kernel data structures such as
the ones presented by Lin et al. [21] or Dolan-Gavitt et
al. [12], could thereby provide a good starting for further
research, as the generated signatures could potentially
be used to infer integrity invariants. In the meanwhile,
initial defense mechanism could use systems such as
HookMap [43] or K-Tracer [18] in combination with the
techniques presented in this paper to generate integrity
constraints for known dynamic hooks that can then be
enforced by one of the systems mentioned above.

Summary. While the threat of dynamic control hooks
can potentially be reduced with the help of (kernel-level)
CFI mechanisms, dynamic data hooks pose a difficult
problem that cannot be easily solved. To detect dynamic
data hooks, reliable integrity constraints are required that
allow the automatic verification of the kernel data re-
gions. Until these constraints are available, one could re-
duce the attack surface with the help of manual integrity
specifications or by automatically creating integrity con-
straints for known attacks.

5.3 Limitations
Dynamic Hooks. Dynamic hooks essentially face two
limitations. First and foremost, not every function may
contain a vulnerability that can be used to implement a
dynamic hook. In contrast, it is likely that there are func-
tions which are immune against the attack. However, this
is not a big problem in practice: if a particular function

cannot be hooked directly, it may still be possible to in-
tercept calls to the function by hooking a function that
immediately precedes or follows the function in the exe-
cution flow. After all, not every function contains a func-
tion pointer either. Function pointer hooks have never-
theless been proven to be very effective in practice.

Second, similar to traditional exploits, a dynamic hook
may face restrictions that are caused by the vulnerability
it is exploiting. For instance, specific hooks such as the
one presented in our first prototype (see Section 4.2.1)
may require that certain memory areas are writable and
executable. Depending on its restrictions, a dynamic
hook may therefore not be suitable for every scenario.
This, however, heavily depends on the particular hook.

Automated Path Extraction. While our prototype al-
ready produces very valuable paths that can be used to
implement powerful dynamic hooks as we have shown
in Section 4.2, it also faces some limitations. First, our
slicer does not yet support a detailed memory model.
As a result, we are unable to find dynamic hooks on
paths where registers, which are currently monitored, are
loaded with values from the stack. This situation fre-
quently occurs when subfunctions are called. In this
case, the calling function often stores register values tem-
porarily on the stack to guarantee that they are not over-
written by the subfunction. During our experiments, the
slicer ignored 79,853 such paths due to this restriction.

Second, the symbolic execution engine currently only
handles a subset of the available x86 instructions. Most
importantly, it is unable to handle some instructions that
are a ring-0 privilege. This is, however, a restriction in
the VEX intermediate language. In the experiments we
conducted, this led to 949 (55%, Linux) and 4,908 (90%,
Windows) paths that could not be verified.

Finally, the slicer and the symbolic execution engine
currently do not consider the properties of binding and
coverage, while determining whether a path could be
used for a dynamic hook or not. Consequently, not all
of the paths extracted by our prototype will be suited for
the implementation of a dynamic hook. As described in
Section 3.5, especially the property of binding can be a
limiting factor. If a payload is only loosely bound, it is
likely that the hook will introduce side effects that can
lead to a crash of the system. Determining automatically
whether a path has exclusive binding or full coverage is
difficult though. As the discussed POCs show, even pay-
loads that initially seem unsuited for the implementation
of a dynamic hook can through subtle manipulations of
the involved data structures yield very reliable hooks. To
designate the binding of a payload, we thus not only have
to identify whether a payload is used in multiple loca-
tions, but we also have to establish how many of those
usages can be controlled by the attacker. This requires

14

USENIX Association 23rd USENIX Security Symposium 827

a profound semantic understanding of the data structures
and functions involved.

6 Related Work

To the best of our knowledge, Petroni et al. [27] were
the first to consider the hooking of transient control data.
However, their work is primarily focused on the detec-
tion of persistent control flow modifications. Attacks on
transient control data are thereby only mentioned as a
limitation of their system. Hofmann et al. [15] presented
a “return to schedule” rootkit that overwrites return ad-
dresses of sleeping processes to periodically invoke itself
and evade hook detection mechanisms. While related to
our work, this approach does not leverage exploitation
techniques to change the control of an application at run-
time. As a consequence, the technique only enables the
rootkit to reschedule itself, but it does not allow it to in-
tercept events within the system, which is the actual goal
of a hooking mechanism.

In addition, there has also been a lot of work con-
cerned with the possibilities of non-control data attacks.
Chen et al. [10] were the first to demonstrate that non-
control data attacks are indeed a dangerous and realis-
tic threat. Sparks and Butler [38] presented DKOM as a
general mechanism to hide objects within kernel space.
Baliga et al. [5] extended this work and presented another
class of stealthy attacks that do not have the goal of hid-
ing objects, but rather target crucial kernel data structures
to subvert the integrity of the system. Finally, Prakash et
al. [28] discussed the manipulation of semantic values in
the kernel to evade virtual machine introspection (VMI).

7 Conclusion

In this paper, we presented a novel hooking concept that
we coined dynamic hooks. The main insight behind this
concept is that existing hooking mechanisms are based
on the permanent modification of persistent control data.
As a consequence, the resulting hooks are constantly ev-
ident within the system and can be detected by verifying
persistent control data alone.

Dynamic hooks solve this problem by targeting tran-
sient control data at run-time. This is achieved by apply-
ing exploitation techniques to the problem of hooking.
To install a dynamic hook, an attacker will modify the
internal data structures of an application in such a way
that its usage will trigger a vulnerability at run-time. The
hook thereby only consists of the modified data as well
as the exploitation logic. This results in a powerful attack
model with a wide range of possibilities as the attacker
can make use of the entire arsenal of exploitation mecha-
nisms to achieve her goal. At the same time, the hook

will remain hidden in non-control data until it is trig-
gered, which makes dynamic hooks not only powerful,
but also difficult to detect in practice.

To show the applicability of the approach, we imple-
mented a prototype that is capable of automatically ex-
tracting paths for dynamic hooks from recent Linux and
Windows kernels. The experiments that we conducted
prove that dynamic hooks are not only a dangerous, but
are also a realistic threat that can be applied to practical
scenarios such as system call hooking and backdooring.
In future work, we plan to further improve our proto-
type implementation and to make use of it to generate in-
tegrity constraints instead of attack vectors that can then
be used for the reliable detection of dynamic hooks.

Acknowledgment

We would like to thank the anonymous reviewers for
their constructive and valuable comments. This work
was supported by the German Federal Ministry of Ed-
ucation and Research (BMBF) under grant 16BY1207B
(iTES).

References

[1] ABADI, M., BUDIU, M., ERLINGSSON, U., AND LIGATTI, J.
Control-flow Integrity. In ACM Conference on Computer and
Communications Security (CCS) (2005).

[2] AVGERINOS, T., CHA, S. K., HAO, B. L. T., AND BRUMLEY,
D. AEG: Automatic Exploit Generation. In Symposium on Net-
work and Distributed System Security (NDSS) (2011).

[3] BAILEY, M., COOKE, E., JAHANIAN, F., WATSON, D., AND
NAZARIO, J. The Blaster Worm: Then and Now. IEEE Security
and Privacy Magazine 3, 4 (2005).

[4] BALIGA, A., GANAPATHY, V., AND IFTODE, L. Detecting
Kernel-Level Rootkits Using Data Structure Invariants. IEEE
Transactions on Dependable and Secure Computing 8, 5 (2011).

[5] BALIGA, A., KAMAT, P., AND IFTODE, L. Lurking in the Shad-
ows: Identifying Systemic Threats to Kernel Data. In IEEE Sym-
posium on Security and Privacy (2007).

[6] BENCSÁTH, B., PÉK, G., BUTTYÁN, L., AND FÉLEGYHÁZI,
M. The Cousins of Stuxnet: Duqu, Flame, and Gauss. Future
Internet 4 (2012).

[7] BLETSCH, T., JIANG, X., AND FREEH, V. Mitigating code-
reuse attacks with control-flow locking. In Annual Computer Se-
curity Applications Conference (ACSAC) (2011).

[8] BOYER, R. S., ELSPAS, B., AND LEVITT, K. N. SELECT–
Formal System for Testing and Debugging Programs by Sym-
bolic Execution. In Proceedings of the International Conference
on Reliable Software (1975).

[9] CARBONE, M., CUI, W., LU, L., LEE, W., PEINADO, M., AND
JIANG, X. Mapping Kernel Objects to Enable Systematic In-
tegrity Checking. In ACM Conference on Computer and Com-
munications Security (CCS) (2009).

[10] CHEN, S., XU, J., SEZER, E. C., GAURIAR, P., AND IYER,
R. K. Non-control-data Attacks Are Realistic Threats. In
USENIX Security Symposium (2005).

15

828 23rd USENIX Security Symposium USENIX Association

[11] CUI, A., AND STOLFO, S. J. Defending Embedded Systems
with Software Symbiotes. In Symposium on Recent Advances in
Intrusion Detection (RAID) (2011).

[12] DOLAN-GAVITT, B., SRIVASTAVA, A., TRAYNOR, P., AND
GIFFIN, J. Robust signatures for kernel data structures. In ACM
Conference on Computer and Communications Security (CCS)
(2009).

[13] GOUDEY, H. Microsoft Malware Protection Center, Threat
Report: Rootkits. Tech. rep., Microsoft Corporation,
June 2012.

.

[14] HEX-RAYS. IDA Pro, February 2014. https://www.hex-
rays.com/products/ida/.

[15] HOFMANN, O. S., DUNN, A. M., KIM, S., ROY, I., AND
WITCHEL, E. Ensuring operating system kernel integrity with
osck. In Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS) (2011).

[16] HUND, R., HOLZ, T., AND FREILING, F. C. Return-oriented
rootkits: Bypassing kernel code integrity protection mechanisms.
In USENIX Security Symposium (2009).

[17] KING, J. C. Symbolic execution and program testing. In Com-
munications of the ACM (CACM) (1976).

[18] LANZI, A., SHARIF, M. I., AND LEE, W. K-Tracer: A Sys-
tem for Extracting Kernel Malware Behavior. In Symposium on
Network and Distributed System Security (NDSS) (2009).

[19] LEE, H., MOON, H., JANG, D., KIM, K., LEE, J., PAEK,
Y., AND KANG, B. B. KI-Mon: A Hardware-assisted Event-
triggered Monitoring Platform for Mutable Kernel Object. In
USENIX Security Symposium (2013).

[20] LI, J., WANG, Z., BLETSCH, T., SRINIVASAN, D., GRACE,
M., AND JIANG, X. Comprehensive and efficient protection of
kernel control data. IEEE Transactions on Information Forensics
and Security 6, 4 (2011).

[21] LIN, Z., RHEE, J., ZHANG, X., XU, D., AND JIANG, X. Sig-
Graph: Brute Force Scanning of Kernel Data Structure Instances
Using Graph-based Signatures. In Symposium on Network and
Distributed System Security (NDSS) (2011).

[22] LITTY, L., LAGAR-CAVILLA, H. A., AND LIE, D. Hypervisor
Support for Identifying Covertly Executing Binaries. In USENIX
Security Symposium (2008).

[23] MICROSOFT-RESEARCH. Z3: Theorem Prover, February 2014.
http://z3.codeplex.com/.

[24] NETHERCOTE, N., AND SEWARD, J. Valgrind: A Framework
for Heavyweight Dynamic Binary Instrumentation. In ACM SIG-
PLAN Conference on Programming Language Design and Imple-
mentation (PLDI) (2007). http://www.valgrind.org/.

[25] PASAREANU, C. S., AND VISSER, W. A survey of new trends
in symbolic execution for software testing and analysis. Int. J.
Softw. Tools Technol. Transf. 11, 4 (2009).

[26] PETRONI, JR., N. L., FRASER, T., WALTERS, A., AND AR-
BAUGH, W. A. An Architecture for Specification-based Detec-
tion of Semantic Integrity Violations in Kernel Dynamic Data. In
USENIX Security Symposium (2006).

[27] PETRONI, JR., N. L., AND HICKS, M. Automated detection
of persistent kernel control-flow attacks. In ACM Conference on
Computer and Communications Security (CCS) (2007).

[28] PRAKASH, A., VENKATARAMANI, E., YIN, H., AND LIN, Z.
Manipulating semantic values in kernel data structures: Attack
assessments and implications. In Conference on Dependable Sys-
tems and Networks (DSN) (Jun 2013).

[29] RAVI, S., RAGHUNATHAN, A., KOCHER, P., AND HATTAN-
GADY, S. Security in embedded systems. ACM Transactions on
Embedded Computing Systems 3, 3 (2004).

[30] RHEE, J., RILEY, R., XU, D., AND JIANG, X. Defeating
Dynamic Data Kernel Rootkit Attacks via VMM-Based Guest-
Transparent Monitoring. In Availability, Reliability and Security
(ARES) (2009).

[31] RILEY, R., JIANG, X., AND XU, D. Guest-transparent preven-
tion of kernel rootkits with vmm-based memory shadowing. In
Symposium on Recent Advances in Intrusion Detection (RAID)
(2008).

[32] RUSSINOVICH, M., SOLOMON, D. A., AND IONESCU, A. Win-
dows Internals Part I, 6 ed. Microsoft Press, 2012.

[33] SCHNEIDER, C., PFOH, J., AND ECKERT, C. Bridging the Se-
mantic Gap Through Static Code Analysis. In Proceedings of
EuroSec’12, 5th European Workshop on System Security (2012).

[34] SCHWARTZ, E. J., AVGERINOS, T., AND BRUMLEY, D. All
You Ever Wanted to Know About Dynamic Taint Analysis and
Forward Symbolic Execution (but Might Have Been Afraid to
Ask). In IEEE Symposium on Security and Privacy (2010).

[35] SHACHAM, H. The geometry of innocent flesh on the bone.
In ACM Conference on Computer and Communications Security
(CCS) (2007).

[36] SHOSHITAISHVILI, Y. Python bindings for Valgrind’s VEX IR,
February 2014. https://github.com/zardus/pyvex.

[37] SOLAR DESIGNER. Getting around non-executable stack (and
fix), Aug. 1997.

[38] SPARKS, S., AND BUTLER, J. Shadow Walker: Raising The Bar
For Windows Rootkit Detection. Phrack 11, 63 (2005).

[39] SZEKERES, L., PAYER, M., WEI, T., AND SONG, D. SoK:
Eternal War in Memory. In IEEE Symposium on Security and
Privacy (2013).

[40] TIP, F. A survey of program slicing techniques. Tech. rep., Am-
sterdam, The Netherlands, The Netherlands, 1994.

[41] VOGL, S., PFOH, J., KITTEL, T., AND ECKERT, C. Persistent
data-only malware: Function Hooks without Code. In Symposium
on Network and Distributed System Security (NDSS) (2014).

[42] WANG, Z., AND JIANG, X. HyperSafe: A Lightweight Ap-
proach to Provide Lifetime Hypervisor Control-Flow Integrity.
In IEEE Symposium on Security and Privacy (2010).

[43] WANG, Z., JIANG, X., CUI, W., AND NING, P. Countering ker-
nel rootkits with lightweight hook protection. In ACM Confer-
ence on Computer and Communications Security (CCS) (2009).

[44] WANG, Z., JIANG, X., CUI, W., AND WANG, X. Countering
Persistent Kernel Rootkits through Systematic Hook Discovery.
In Symposium on Recent Advances in Intrusion Detection (RAID)
(2008).

[45] WEISER, M. Program slicing. In International Conference on
Software Engineering (ICSE) (1981).

[46] XIA, Y., LIU, Y., CHEN, H., AND ZANG, B. CFIMon: De-
tecting Violation of Control Flow Integrity Using Performance
Counters. In Conference on Dependable Systems and Networks
(DSN) (2012).

[47] YIN, H., LIANG, Z., AND SONG, D. Hookfinder: Identifying
and understanding malware hooking behaviors. In Symposium on
Network and Distributed System Security (NDSS) (2008).

[48] ZHANG, M., AND SEKAR, R. Control Flow Integrity for COTS
Binaries. In USENIX Security Symposium (2013).

16

