
This paper is included in the Proceedings of the
23rd USENIX Security Symposium.

August 20–22, 2014 • San Diego, CA

ISBN 978-1-931971-15-7

Open access to the Proceedings of
the 23rd USENIX Security Symposium

is sponsored by USENIX

ret2dir: Rethinking Kernel Isolation
Vasileios P. Kemerlis, Michalis Polychronakis, and Angelos D. Keromytis,

Columbia University

https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/kemerlis

USENIX Association 23rd USENIX Security Symposium 957

ret2dir: Rethinking Kernel Isolation

Vasileios P. Kemerlis Michalis Polychronakis Angelos D. Keromytis
Columbia University

{vpk, mikepo, angelos}@cs.columbia.edu

Abstract

Return-to-user (ret2usr) attacks redirect corrupted kernel
pointers to data residing in user space. In response, sev-
eral kernel-hardening approaches have been proposed to
enforce a more strict address space separation, by pre-
venting arbitrary control flow transfers and dereferences
from kernel to user space. Intel and ARM also recently
introduced hardware support for this purpose in the form
of the SMEP, SMAP, and PXN processor features. Un-
fortunately, although mechanisms like the above prevent
the explicit sharing of the virtual address space among
user processes and the kernel, conditions of implicit shar-
ing still exist due to fundamental design choices that
trade stronger isolation for performance.

In this work, we demonstrate how implicit page frame
sharing can be leveraged for the complete circumven-
tion of software and hardware kernel isolation protec-
tions. We introduce a new kernel exploitation technique,
called return-to-direct-mapped memory (ret2dir), which
bypasses all existing ret2usr defenses, namely SMEP,
SMAP, PXN, KERNEXEC, UDEREF, and kGuard. We
also discuss techniques for constructing reliable ret2dir
exploits against x86, x86-64, AArch32, and AArch64
Linux targets. Finally, to defend against ret2dir attacks,
we present the design and implementation of an exclu-
sive page frame ownership scheme for the Linux ker-
nel that prevents the implicit sharing of physical memory
pages with minimal runtime overhead.

1 Introduction

Although the operating system (OS) kernel has always
been an appealing target, until recently attackers focused
mostly on the exploitation of vulnerabilities in server
and client applications—which often run with adminis-
trative privileges—as they are (for the most part) less
complex to analyze and easier to compromise. During
the past few years, however, the kernel has become an

equally attractive target. Continuing the increasing trend
of the previous years, in 2013 there were 355 reported
kernel vulnerabilities according to the National Vulnera-
bility Database, 140 more than in 2012 [73]. Admittedly,
the exploitation of user-level software has become much
harder, as recent versions of popular OSes come with nu-
merous protections and exploit mitigations. The princi-
ple of least privilege is better enforced in user accounts
and system services, compilers offer more protections
against common software flaws, and highly targeted ap-
plications, such as browsers and document viewers, have
started to employ sandboxing. On the other hand, the
kernel has a huge codebase and an attack surface that
keeps increasing due to the constant addition of new fea-
tures [63]. Indicatively, the size of the Linux kernel in
terms of lines of code has more than doubled, from 6.6
MLOC in v2.6.11 to 16.9 MLOC in v3.10 [32].

Naturally, instead of putting significant effort to ex-
ploit applications fortified with numerous protections
and sandboxes, attackers often turn their attention to
the kernel. By compromising the kernel, they can el-
evate privileges, bypass access control and policy en-
forcement, and escape isolation and confinement mech-
anisms. For instance, in recent exploits against Chrome
and Adobe Reader, after successfully gaining code ex-
ecution, the attackers exploited kernel vulnerabilities to
break out of the respective sandboxed processes [5, 74].

Opportunities for kernel exploitation are abundant. As
an example consider the Linux kernel, which has been
plagued by common software flaws, such as stack and
heap buffer overflows [14, 23, 26], NULL pointer and
pointer arithmetic errors [10, 12], memory disclosure
vulnerabilities [13, 19], use-after-free and format string
bugs [25, 27], signedness errors [17, 24], integer over-
flows [10,16], race conditions [11,15], as well as missing
authorization checks and poor argument sanitization vul-
nerabilities [18, 20–22]. The exploitation of these bugs
is particularly effective, despite the existence of kernel
protection mechanisms, due to the weak separation be-

958 23rd USENIX Security Symposium USENIX Association

tween user and kernel space. Although user programs
cannot access directly kernel code or data, the opposite
is not true, as the kernel is mapped into the address space
of each process for performance reasons. This design
allows an attacker with non-root access to execute code
in privileged mode, or tamper-with critical kernel data
structures, by exploiting a kernel vulnerability and redi-
recting the control or data flow of the kernel to code or
data in user space. Attacks of this kind, known as return-

to-user (ret2usr) [57], affect all major OSes, including
Windows and Linux, and are applicable in x86/x86-64,
ARM, and other popular architectures.

In response to ret2usr attacks, several protections have
been developed to enforce strict address space separa-
tion, such as PaX’s KERNEXEC and UDEREF [77] and
kGuard [57]. Having realized the importance of the prob-
lem, Intel introduced Supervisor Mode Execute Protec-
tion (SMEP) [46] and Supervisor Mode Access Preven-
tion (SMAP) [54], two processor features that, when en-
abled, prevent the execution (or access) of arbitrary user
code (or data) by the kernel. ARM has also introduced
Privileged Execute-Never (PXN) [4], a feature equiva-
lent to SMEP. These features offer similar guarantees to
software protections with negligible runtime overhead.

Although the above mechanisms prevent the explicit
sharing of the virtual address space among user pro-
cesses and the kernel, conditions of implicit data sharing
still exist. Fundamental OS components, such as physi-
cal memory mappings, I/O buffers, and the page cache,
can still allow user processes to influence what data is
accessible by the kernel. In this paper, we study the
above problem in Linux, and expose design decisions
that trade stronger isolation for performance. Specif-
ically, we present a new kernel exploitation technique,
called return-to-direct-mapped memory (ret2dir), which
relies on inherent properties of the memory management
subsystem to bypass existing ret2usr protections. This is
achieved by leveraging a kernel region that directly maps
part or all of a system’s physical memory, enabling at-
tackers to essentially “mirror” user-space data within the
kernel address space.

The task of mounting a ret2dir attack is complicated
due to the different kernel layouts and memory manage-
ment characteristics of different architectures, the par-
tial mapping of physical memory in 32-bit systems, and
the unknown location of the “mirrored” user-space data
within the kernel. We present in detail different tech-
niques for overcoming each of these challenges and con-
structing reliable ret2dir exploits against hardened x86,
x86-64, AArch32, and AArch64 Linux targets.

To mitigate the effects of ret2dir attacks, we present
the design and implementation of an exclusive page
frame ownership scheme for the Linux kernel, which
prevents the implicit sharing of physical memory among

user processes and the kernel. The results of our evalua-
tion show that the proposed defense offers effective pro-
tection with minimal (<3%) runtime overhead.

The main contributions of this paper are the following:

1. We expose a fundamental design weakness in the
memory management subsystem of Linux by intro-
ducing the concept of ret2dir attacks. Our exploita-
tion technique bypasses all existing ret2usr pro-
tections (SMEP, SMAP, PXN, KERNEXEC, UD-
EREF, kGuard) by taking advantage of the kernel’s
direct-mapped physical memory region.

2. We introduce a detailed methodology for mount-
ing reliable ret2dir attacks against x86, x86-64,
AArch32, and AArch64 Linux systems, along with
two techniques for forcing user-space exploit pay-
loads to “emerge” within the kernel’s direct-mapped
RAM area and accurately pinpointing their location.

3. We experimentally evaluate the effectiveness of
ret2dir attacks using a set of nine (eight real-world
and one artificial) exploits against different Linux
kernel configurations and protection mechanisms.
In all cases, our transformed exploits bypass suc-
cessfully the deployed ret2usr protections.

4. We present the design, implementation, and evalu-
ation of an exclusive page frame ownership scheme
for the Linux kernel, which mitigates ret2dir attacks
with negligible (in most cases) runtime overhead.

2 Background and Related Work

2.1 Virtual Memory Organization in Linux

Designs for safely combining different protection do-
mains range from putting the kernel and user processes
into a single address space and establishing boundaries
using software isolation [52], to confining user process
and kernel components into separate, hardware-enforced
address spaces [2, 50, 66]. Linux and Linux-based OSes
(Android [47], Firefox OS [72], Chrome OS [48]) adopt
a more coarse-grained variant of the latter approach, by
dividing the virtual address space into kernel and user

space. In the x86 and 32-bit ARM (AArch32) architec-
tures, the Linux kernel is typically mapped to the upper
1GB of the virtual address space, a split also known as
“3G/1G” [28].1 In x86-64 and 64-bit ARM (AArch64)
the kernel is located in the upper canonical half [60,69].

This design minimizes the overhead of crossing pro-
tection domains, and facilitates fast user-kernel interac-
tions. When servicing a system call or handling an ex-

1Linux also supports 2G/2G and 1G/3G splits. A patch for a 4G/4G
split in x86 [53] exists, but was never included in the mainline kernel
for performance reasons, as it requires a TLB flush per system call.

USENIX Association 23rd USENIX Security Symposium 959

ception, the kernel is running within the context of a pre-
empted process. Hence, flushing the TLB is not neces-
sary [53], while the kernel can access user space directly

to read user data or write the result of a system call.

2.2 Return-to-user (ret2usr) Exploits

Although kernel code and user software have both been
plagued by common types of vulnerabilities [9], the exe-
cution model imposed by the shared virtual memory lay-
out between the kernel and user processes makes ker-
nel exploitation noticeably different. The shared address
space provides a unique vantage point to local attack-
ers, as it allows them to control—both in terms of per-
missions and contents—part of the address space that is
accessible by the kernel [91]. Simply put, attackers can
easily execute shellcode with kernel rights by hijacking a
privileged execution path and redirecting it to user space.

Attacks of this kind, known as return-to-user (ret2usr),
have been the de facto kernel exploitation technique (also
in non-Linux OSes [88]) for more than a decade [36].
In a ret2usr attack, kernel data is overwritten with user
space addresses, typically after the exploitation of mem-
ory corruption bugs in kernel code [81], as illustrated
in Figure 1. Attackers primarily aim for control data,
such as return addresses [86], dispatch tables [36, 44],
and function pointers [40, 42, 43, 45], as they directly fa-
cilitate arbitrary code execution [89]. Pointers to crit-
ical data structures stored in the kernel’s heap [38] or
the global data section [44] are also common targets,
as they allow attackers to tamper with critical data con-
tained in these structures by mapping fake copies in user
space [38, 39, 41]. Note that the targeted data structures
typically contain function pointers or data that affect the
control flow of the kernel, so as to diverge execution to
arbitrary points. The end effect of all ret2usr attacks is
that the control or data flow of the kernel is hijacked and

redirected to user space code or data [57].
Most ret2usr exploits use a multi-stage shellcode, with

a first stage that lies in user space and “glues” together
kernel functions (i.e., the second stage) for performing
privilege escalation or executing a rootshell. Technically,
ret2usr expects the kernel to run within the context of
a process controlled by the attacker for exploitation to
be reliable. However, kernel bugs have also been iden-
tified and exploited in interrupt service routines [71]. In
such cases, where the kernel is either running in interrupt

context or in a process context beyond the attacker’s con-
trol [37,85], the respective shellcode has to be injected in
kernel space or be constructed using code gadgets from
the kernel’s text in a ROP/JOP fashion [8,51,87]. The lat-
ter approach is gaining popularity in real-world exploits,
due to the increased adoption of kernel hardening tech-
niques [31, 65, 68, 92, 93, 95].

Figure 1: Operation of ret2usr attacks. A kernel code
or data pointer is hijacked and redirected to controlled
code or data in user space (tampered-with data structures
may further contain pointers to code). Various protection
mechanisms (KERNEXEC, UDEREF, kGuard, SMEP,
SMAP, PXN) prevent arbitrary control flow transfers and
dereferences from kernel to user space.

2.3 Protections Against ret2usr Attacks

Return-to-user attacks are yet another incarnation of
the confused deputy problem [49]. Given the multi-
architecture [42, 83] and multi-OS [88] nature of the
problem, several defensive mechanisms exist for it. In
the remainder of this section, we discuss the ret2usr de-
fenses available in Linux with the help of Figure 1.

PaX: KERNEXEC and UDEREF are two features
of the PaX [77] hardening patch set that prevent con-
trol flow transfers and dereferences from kernel to user
space. In x86, KERNEXEC and UDEREF rely on mem-
ory segmentation [78] to map the kernel space into a
1GB segment that returns a memory fault whenever priv-
ileged code tries to dereference pointers to, or fetch in-
structions from, non-kernel addresses. In x86-64, due to
the lack of segmentation support, UDEREF/amd64 [79]
remaps user space memory into a different (shadow),
non-executable area when execution enters the kernel
(and restores it on exit), to prevent user-space deref-
erences. As the overhead of remapping memory is
significant, an alternative for x86-64 systems is to en-
able KERNEXEC/amd64 [80], which has much lower
overhead, but offers protection against only control-
flow hijacking attacks. Recently, KERNEXEC and UD-
EREF were ported to the ARM architecture [90], but the
patches added support for AArch32 only and rely on the
deprecated MMU domains feature (discussed below).

SMEP/SMAP/PXN: Supervisor Mode Execute Pro-
tection (SMEP) [46] and Supervisor Mode Access Pre-
vention (SMAP) [54] are two recent features of Intel

960 23rd USENIX Security Symposium USENIX Association

processors that facilitate stronger address space separa-
tion (latest kernels support both features [31,95]). SMEP
provides analogous protection to KERNEXEC, whereas
SMAP operates similarly to UDEREF. Recently, ARM
added support for an SMEP-equivalent feature, dubbed
Privileged Execute-Never (PXN) [4], but Linux uses
it only on AArch64. More importantly, on AArch32,
PXN requires the MMU to operate on LPAE mode (the
equivalent of Intel’s Physical Address Extension (PAE)
mode [55]), which disables MMU domains. Therefore,
the use of KERNEXEC/UDEREF on AArch32 implies
giving up support for PXN and large memory (> 4GB).

kGuard: kGuard [57] is a cross-platform compiler
extension that protects the kernel from ret2usr attacks
without relying on special hardware features. It enforces
lightweight address space segregation by augmenting
(at compile time) potentially exploitable control trans-
fers with dynamic control-flow assertions (CFAs) that
(at runtime) prevent the unconstrained transition of priv-
ileged execution paths to user space. The injected CFAs
perform a small runtime check before every computed
branch to verify that the target address is always located
in kernel space or loaded from kernel-mapped mem-
ory. In addition, kGuard incorporates code diversifica-
tion techniques for thwarting attacks against itself.

3 Attack Overview

Linux follows a design that trades weaker kernel-to-user
segregation in favor of faster interactions between user
processes and the kernel. The ret2usr protections dis-
cussed in the previous section aim to alleviate this design
weakness, and fortify the isolation between kernel and
user space with minimal overhead. In this work, we seek
to assess the security offered by these protections and
investigate whether certain performance-oriented design
choices can render them ineffective. Our findings indi-
cate that there exist fundamental decisions, deeply rooted
into the architecture of the Linux memory management
subsystem (mm), which can be abused to weaken the
isolation between kernel and user space. We introduce
a novel kernel exploitation technique, named return-to-
direct-mapped memory (ret2dir), which allows an at-
tacker to perform the equivalent of a ret2usr attack on
a hardened system.

3.1 Threat Model

We assume a Linux kernel hardened against ret2usr
attacks using one (or a combination) of the protec-
tion mechanisms discussed in Section 2.3. More-
over, we assume an unprivileged attacker with local
access, who seeks to elevate privileges by exploiting
a kernel-memory corruption vulnerability [10–27] (see

Section 2.2). Note that we do not make any assumptions
about the type of corrupted data—code and data pointers
are both possible targets [36, 40, 42–45, 86]. Overall, the
adversarial capabilities we presume are identical to those
needed for carrying out a ret2usr attack.

3.2 Attack Strategy

In a kernel hardened against ret2usr attacks, the hijacked
control or data flow can no longer be redirected to user
space in a direct manner—the respective ret2usr protec-
tion scheme(s) will block any such attempt, as shown in
Figure 1. However, the implicit physical memory sharing
between user processes and the kernel allows an attacker
to deconstruct the isolation guarantees offered by ret2usr
protection mechanisms, and redirect the kernel’s control
or data flow to user-controlled code or data.

A key facility that enables the implicit sharing of phys-
ical memory is physmap: a large, contiguous virtual
memory region inside kernel address space that contains
a direct mapping of part or all (depending on the archi-
tecture) physical memory. This region plays a crucial
role in enabling the kernel to allocate and manage dy-
namic memory as fast as possible (we discuss the struc-
ture of physmap in Section 4). We should stress that
although in this study we focus on Linux—one of the
most widely used OSes—direct-mapped RAM regions
exist (in some form) in many OSes, as they are consid-
ered standard practice in physical memory management.
For instance, Solaris uses the seg_kpmmapping facility
to provide a direct mapping of the whole RAM in 64-bit
architectures [70].

As physical memory is allotted to user processes and
the kernel, the existence of physmap results in address

aliasing. Virtual address aliases, or synonyms [62], occur
when two or more different virtual addresses map to the
same physical memory address. Given that physmap
maps a large part (or all) of physical memory within the
kernel, the memory of an attacker-controlled user pro-
cess is accessible through its kernel-resident synonym.

The first step in mounting a ret2dir attack is to map in
user space the exploit payload. Depending on whether
the exploited vulnerability enables the corruption of a
code pointer [36, 40, 42–45, 86] or a data pointer [38, 39,
41], the payload will consist of either shellcode, or con-
trolled (tampered-with) data structures, as shown in Fig-
ure 2. Whenever the mm subsystem allocates (dynamic)
memory to user space, it actually defers giving page
frames until the very last moment. Specifically, physi-
cal memory is granted to user processes in a lazy manner,
using the demand paging and copy-on-write methods [7],
which both rely on page faults to actually allocate RAM.
When the content of the payload is initialized, the MMU
generates a page fault, and the kernel allocates a page

USENIX Association 23rd USENIX Security Symposium 961

Figure 2: Overall ret2dir operation. The physmap

(direct-mapped RAM) area enables a hijacked kernel
code or data pointer to access user-controlled data, with-
out crossing the user-kernel space boundary.

frame to the attacking process. Page frames are managed
by mm using a buddy allocator [61]. Given the existence
of physmap, the moment the buddy allocator provides
a page frame to be mapped in user space, mm effectively
creates an alias of the exploit payload in kernel space,
as shown in Figure 2. Although the kernel never uses
such synonyms directly, mm keeps the whole RAM pre-
mapped in order to boost page frame reclamation. This
allows newly deallocated page frames to be made avail-
able to the kernel instantly, without the need to alter page
tables (see Section 4.1 for more details).

Overall, ret2dir takes advantage of the implicit
data sharing between user and kernel space (due to
physmap) to redirect a hijacked kernel control or data
flow to a set of kernel-resident synonym pages, effec-
tively performing the equivalent of a ret2usr attack with-
out reaching out to user space. It is important to note
that the malicious payload “emerges” in kernel space the
moment a page frame is given to the attacking process.
The attacker does not have to explicitly “push” (copy)
the payload to kernel space (e.g., via pipes or message
queues), as physmap makes it readily available. The
use of such methods is also much less flexible, as the sys-
tem imposes strict limits to the amount of memory that
can be allocated for kernel-resident buffers, while the ex-
ploit payload will (most likely) have to be encapsulated
in certain kernel data objects that can affect its structure.

4 Demystifying physmap

A critical first step in understanding the mechanics of
ret2dir attacks is to take a look at how the address
space of the Linux kernel is organized—we use the x86
platform as a reference. The x86-64 architecture uses

48-bit virtual addresses that are sign-extended to 64 bits
(i.e., bits [48:63] are copies of bit [47]). This
scheme natively splits the 64-bit virtual address space
in two canonical halves of 128TB each. Kernel space
occupies the upper half (0xFFFF800000000000 –
0xFFFFFFFFFFFFFFFF), and is further divided into
six regions [60]: the fixmap area, modules, kernel im-
age, vmemmap space, vmalloc arena, and physmap.
In x86, on the other hand, the kernel space can be as-
signed to the upper 1GB, 2GB, or 3GB part of the ad-
dress space, with the first option being the default. As
kernel virtual address space is limited, it can become a
scarce resource, and certain regions collide to prevent its
waste (e.g., modules and vmalloc arena, kernel image
and physmap).2 For the purposes of ret2dir, in the fol-
lowing, we focus only on the direct-mapped region.

4.1 Functionality

The physmap area is a mapping of paramount impor-
tance to the performance of the kernel, as it facilitates
dynamic kernel memory allocation. At a high level,
mm offers two main methods for requesting memory:
vmalloc and kmalloc. With the vmalloc family
of routines, memory can only be allocated in multiples
of page size and is guaranteed to be virtually contigu-
ous but not physically contiguous. In contrast, with the
kmalloc family of routines, memory can be allocated
in byte-level chunks, and is guaranteed to be both virtu-
ally and physically contiguous.

As it offers memory only in page multiples, vmalloc
leads to higher internal memory fragmentation and often
poor cache performance. More importantly, vmalloc
needs to alter the kernel’s page tables every time mem-
ory is (de)allocated to map or unmap the respective page
frames to or from the vmalloc arena. This not only
incurs additional overhead, but results in increased TLB
thrashing [67]. For these reasons, the majority of ker-
nel components use kmalloc. However, given that
kmalloc can be invoked from any context, including
that of interrupt service routines, which have strict timing
constraints, it must satisfy a multitude of different (and
contradicting) requirements. In certain contexts, the al-
locator should never sleep (e.g., when locks are held). In
other cases, it should never fail, or it should return mem-
ory that is guaranteed to be physically contiguous (e.g.,
when a device driver reserves memory for DMA).

Given constraints like the above, physmap is a ne-

cessity, as the main facilitator of optimal performance.

The mm developers opted for a design that lays kmalloc

2To access the contents of a page frame, the kernel must first map
that frame in kernel space. In x86, however, the kernel has only 1GB –
3GB virtual addresses available for managing (up to) 64GB of RAM.

962 23rd USENIX Security Symposium USENIX Association

Architecture PHYS_OFFSET Size Prot.

x86 (3G/1G) 0xC0000000 891MB RW

(2G/2G) 0x80000000 1915MB RW

(1G/3G) 0x40000000 2939MB RW

AArch32 (3G/1G) 0xC0000000 760MB RWX

(2G/2G) 0x80000000 1784MB RWX

(1G/3G) 0x40000000 2808MB RWX

x86-64 0xFFFF880000000000 64TB RW(X)

AArch64 0xFFFFFFC000000000 256GB RWX

Table 1: physmap characteristics across different ar-
chitectures (x86, x86-64, AArch32, AArch64).

over a region3 that pre-maps the entire RAM (or part
of it) for the following reasons [7]. First, kmalloc
(de)allocates memory without touching the kernel’s page
table. This not only reduces TLB pressure significantly,
but also removes high-latency operations, like page table
manipulation and TLB shootdowns [70], from the fast
path. Second, the linear mapping of page frames results
in virtual memory that is guaranteed, by design, to be
always physically contiguous. This leads to increased
cache performance, and has the added benefit of allowing
drivers to directly assign kmalloc’ed regions to DMA
devices that can only operate on physically contiguous
memory (e.g., when there is no IOMMU support). Fi-
nally, page frame accounting is greatly simplified, as ad-
dress translations (virtual-to-physical and vice versa) can
be performed using solely arithmetic operations [64].

4.2 Location and Size

The physmap region is an architecture-independent fea-
ture (this should come as no surprise given the reasons
we outlined above) that exists in all popular Linux plat-
forms. Depending on the memory addressing character-
istics of each ISA, the size of physmap and its exact
location may differ. Nonetheless, in all cases: (i) there
exists a direct mapping of part or all physical memory in
kernel space, and (ii) the mapping starts at a fixed, known
location. The latter is true even in the case where kernel-
space ASLR (KASLR) [35] is employed.

Table 1 lists physmap’s properties of interest for the
platforms we consider. In x86-64 systems, the physmap
maps directly in a 1:1 manner, starting from page frame

3kmalloc is not directly layered over physmap. It is instead
implemented as a collection of geometrically distributed (32B–4KB)
slabs, which are in turn placed over physmap. The slab layer is a hi-
erarchical, type-based data structure caching scheme. By taking into
account certain factors, such as page and object sizes, cache line infor-
mation, and memory access times (in NUMA systems), it can perform
intelligent allocation choices that minimize memory fragmentation and
make the best use of a system’s cache hierarchy. Linux adopted the
slab allocator of SunOS [6], and as of kernel v3.12, it supports three
variants: SLAB, SLUB (default), and SLOB.

zero, the entire RAM of the system into a 64TB region.
AArch64 systems use a 256GB region for the same pur-
pose [69]. Conversely, in x86 systems, the kernel directly
maps only a portion of the available RAM.

The size of physmap on 32-bit architectures de-
pends on two factors: (i) the user/kernel split used
(3G/1G, 2G/2G, or 1G/3G), and (ii) the size of the
vmalloc arena. Under the default setting, in which
1GB is assigned to kernel space and the vmalloc

arena occupies 120MB, the size of physmap is 891MB
(1GB - sizeof(vmalloc + pkmap + fixmap

+ unused)) and starts at 0xC0000000. Like-
wise, under a 2G/2G (1G/3G) split, physmap starts
at 0x80000000 (0x40000000) and spawns 1915MB
(2939MB). The situation in AArch32 is quite simi-
lar [59], with the only difference being the default size
of the vmalloc arena (240MB).

Overall, in 32-bit systems, the amount of di-
rectly mapped physical memory depends on the size
of RAM and physmap. If sizeof(physmap)

≥ sizeof(RAM), then the entire RAM is direct-
mapped—a common case for 32-bit mobile devices
with up to 1GB of RAM. Otherwise, only up
to sizeof(physmap)/sizeof(PAGE) pages are
mapped directly, starting from the first page frame.

4.3 Access Rights

A crucial aspect for mounting a ret2dir attack is the mem-
ory access rights of physmap. To get the protection
bits of the kernel pages that correspond to the direct-
mapped memory region, we built kptdump:4 a utility
in the form of a kernel module that exports page tables
through the debugfs pseudo-filesystem [29]. The tool
traverses the kernel page table, available via the global
symbols swapper_pg_dir (x86/AArch32/AArch64)
and init_level4_pgt (x86-64), and dumps the flags
(U/S, R/W, XD) of every kernel page that falls within the
physmap region.

In x86, physmap is mapped as “readable and write-
able” (RW) in all kernel versions we tried (the oldest one
was v2.6.32, released on Dec. 2009). In x86-64, how-
ever, the permissions of physmap are not in sane state.
Kernels up to v3.8.13 violate the W^X property by map-
ping the entire region as “readable, writeable, and exe-
cutable” (RWX)—only very recent kernels (≥ v3.9) use
the more conservative RW mapping. Finally, AArch32
and AArch64 map physmap with RWX permissions in
every kernel version we tested (up to v3.12).

4 kptdump resembles the functionality of Arjan van de Ven’s
patch [94]; unfortunately, we had to resort to a custom solution, as
that patch is only available for x86/x86-64 and cannot be used “as-is”
in any other architecture.

USENIX Association 23rd USENIX Security Symposium 963

5 Locating Synonyms

The final piece for mounting a ret2dir exploit is finding
a way to reliably pinpoint the location of a synonym ad-
dress in the physmap area, given its user-space counter-
part. For legacy environments, in which physmapmaps
only part of the system’s physical memory, such as a 32-
bit system with 8GB of RAM, an additional requirement
is to ensure that the synonym of a user-space address of
interest exists. We have developed two techniques for
achieving both goals. The first relies on page frame infor-
mation available through the pagemap interface of the
/proc filesystem, which is currently accessible by non-
privileged users in all Linux distributions that we studied.
As the danger of ret2dir attacks will (hopefully) encour-
age system administrators and Linux distributions to dis-
able access to pagemap, we have developed a second
technique that does not rely on any information leakage
from the kernel.

5.1 Leaking PFNs (via /proc)

The procfs pseudo-filesystem [58] has a long history
of leaking security-sensitive information [56, 76]. Start-
ing with kernel v2.6.25 (Apr. 2008), a set of pseudo-
files, including /proc/<pid>/pagemap, were added
in /proc to enable the examination of page tables for
debugging purposes. To assess the prevalence of this fa-
cility, we tested the latest releases of the most popular
distributions according to DistroWatch [34] (i.e., Debian,
Ubuntu, Fedora, and CentOS). In all cases, pagemap
was enabled by default.

For every user-space page, pagemap provides a 64-
bit value, indexed by (virtual) page number, which con-
tains information regarding the presence of the page
in RAM [1]. If a page is present in RAM, then
bit [63] is set and bits [0:54] encode its page
frame number (PFN). That being so, the PFN of a
given user-space virtual address uaddr, can be lo-
cated by opening /proc/<pid>/pagemap and read-
ing eight bytes from file offset (uaddr/4096) *
sizeof(uint64_t) (assuming 4KB pages).

Armed with the PFN of a given uaddr, de-
noted as PFN(uaddr), its synonym SYN(uaddr)

in physmap can be located using the following for-
mula: SYN(uaddr) = PHYS_OFFSET + 4096 *
(PFN(uaddr) - PFN_MIN). PHYS_OFFSET cor-
responds to the known, fixed starting kernel virtual
address of physmap (values for different configura-
tions are shown in Table 1), and PFN_MIN is the first
page frame number—in many architectures, including
ARM, physical memory starts from a non-zero offset
(e.g., 0x60000000 in Versatile Express ARM boards,
which corresponds to PFN_MIN = 0x60000). To pre-

vent SYN(uaddr) from being reclaimed (e.g., after
swapping out uaddr), the respective user page can be
“pinned” to RAM using mlock.

sizeof(RAM) > sizeof(physmap): For sys-
tems in which part of RAM is direct-mapped, only a
subset of PFNs is accessible through physmap. For
instance, in an x86 system with 4GB of RAM, the
PFN range is 0x0-0x100000. However, under the
default 3G/1G split, the physmap region maps only
the first 891MB of RAM (see Table 1 for other se-
tups), which means PFNs from 0x0 up to 0x37B00

(PFN_MAX). If the PFN of a user-space address is greater
than PFN_MAX (the PFN of the last direct-mapped page),
then physmap does not contain a synonym for that ad-
dress. Naturally, the question that arises is whether we
can force the buddy allocator to provide page frames with
PFNs less than PFN_MAX.

For compatibility reasons, mm splits physical mem-
ory into several zones. In particular, DMA processors
of older ISA buses can only address the first 16MB
of RAM, while some PCI DMA peripherals can ac-
cess only the first 4GB. To cope with such limita-
tions, mm supports the following zones: ZONE_DMA,
ZONE_DMA32, ZONE_NORMAL, andZONE_HIGHMEM.
The latter is available in 32-bit platforms and con-
tains the page frames that cannot be directly ad-
dressed by the kernel (i.e., those that are not mapped
in physmap). ZONE_NORMAL contains page frames
above ZONE_DMA (and ZONE_DMA32, in 64-bit sys-
tems) and below ZONE_HIGHMEM. When only part
of RAM is direct-mapped, mm orders the zones
as follows: ZONE_HIGHMEM > ZONE_NORMAL >

ZONE_DMA. Given a page frame request, mm will try
to satisfy it starting with the highest zone that com-
plies with the request (e.g., as we have discussed, the
direct-mapped memory of ZONE_NORMAL is preferred
for kmalloc), moving towards lower zones as long as
there are no free page frames available.

From the perspective of an attacker, user processes
get their page frames from ZONE_HIGHMEM first, as mm
tries to preserve the page frames that are direct-mapped
for dynamic memory requests from the kernel. How-
ever, when the page frames of ZONE_HIGHMEM are de-
pleted, due to increased memory pressure, mm inevitably

starts providing page frames from ZONE_NORMAL or

ZONE_DMA. Based on this, our strategy is as follows.
The attacking process repeatedly uses mmap to request
memory. For each page in the requested memory region,
the process causes a page fault by accessing a single
byte, forcing mm to allocate a page frame (alternatively,
the MAP_POPULATE flag in mmap can be used to pre-
allocate all the respective page frames). The process then
checks the PFN of every allocated page, and the same
procedure is repeated until a PFN less than PFN_MAX is

964 23rd USENIX Security Symposium USENIX Association

obtained. The synonym of such a page is then guaran-
teed to be present in physmap, and its exact address can
be calculated using the formula presented above. Note
that depending on the size of physical memory and the
user/kernel split used, we may have to spawn additional
processes to completely deplete ZONE_HIGHMEM. For
example, on an x86 machine with 8GB of RAM and the
default 3G/1G split, up to three processes might be nec-
essary to guarantee that a page frame that falls within
physmap will be acquired. Interestingly, the more be-
nign processes are running on the system, the easier it
is for an attacker to acquire a page with a synonym
in physmap; additional tasks create memory pressure,
“pushing” the attacker’s allocations to the desired zones.

Contiguous synonyms: Certain exploits may require
more than a single page for their payload(s). Pages
that are virtually contiguous in user space, however,
do not necessarily map to page frames that are physi-
cally contiguous, which means that their synonyms will
not be contiguous either. Yet, given physmap’s lin-
ear mapping, two pages with consecutive synonyms have
PFNs that are sequential. Therefore, if 0xBEEF000 and
0xFEEB000 have PFNs 0x2E7C2 and 0x2E7C3, re-
spectively, then they are contiguous in physmap despite
being ∼64MB apart in user space.

To identify consecutive synonyms, we proceed as fol-
lows. Using the same methodology as above, we com-
pute the synonym of a random user page. We then re-
peatedly obtain more synonyms, each time comparing
the PFN of the newly acquired synonym with the PFNs
of those previously retrieved. The process continues un-
til any two (or more, depending on the exploit) synonyms
have sequential PFNs. The exploit payload can then be
split appropriately across the user pages that correspond
to synonyms with sequential PFNs.

5.2 physmap Spraying

As eliminating access to /proc/<pid>/pagemap is
a rather simple task, we also consider the case in which
PFN information is not available. In such a setting, given
a user page that is present in RAM, there is no direct
way of determining the location of its synonym inside
physmap. Recall that our goal is to identify a kernel-
resident page in the physmap area that “mirrors” a user-
resident exploit payload. Although we cannot identify
the synonym of a given user address, it is still possible
to proceed in the opposite direction: pick an arbitrary

physmap address, and ensure (to the extent possible)
that its corresponding page frame is mapped by a user
page that contains the exploit payload.

This can be achieved by exhausting the address space
of the attacking process with (aligned) copies of the ex-
ploit payload, in a way similar to heap spraying [33].

The base address and length of the physmap area is
known in advance (Table 1). The latter corresponds to
PFN_MAX - PFN_MIN page frames, shared among all
user processes and the kernel. If the attacking process
manages to copy the exploit payload into N memory-
resident pages (in the physical memory range mapped
by physmap), then the probability (P) that an arbitrar-
ily chosen, page-aligned physmap address will point
to the exploit payload is: P = N / (PFN_MAX -

PFN_MIN). Our goal is to maximize P.

Spraying: Maximizing N is straightforward, and
boils down to acquiring as many page frames as pos-
sible. The technique we use is similar to the one pre-
sented in Section 5.1. The attacking process repeat-
edly acquires memory using mmap and “sprays” the ex-
ploit payload into the returned regions. We prefer us-
ing mmap, over ways that involve shmget, brk, and
remap_file_pages, due to system limits typically
imposed on the latter. MAP_ANONYMOUS allocations are
also preferred, as existing file-backed mappings (from
competing processes) will be swapped out with higher
priority compared to anonymous mappings. The copy-
ing of the payload causes page faults that result in page
frame allocations by mm (alternatively MAP_POPULATE
can be used). If the virtual address space is not enough
for depleting the entire RAM, as is the case with certain
32-bit configurations, the attacking process must spawn
additional child processes to assist with the allocations.

The procedure continues until mm starts swapping
“sprayed” pages to disk. To pinpoint the exact moment
that swapping occurs, each attacking process checks pe-
riodically whether its sprayed pages are still resident
in physical memory, by calling the getrusage sys-
tem call every few mmap invocations. At the same
time, all attacking processes start a set of background
threads that repeatedly write-access the already allocated
pages, simulating the behavior of mlock, and prevent-
ing (to the extent possible) sprayed pages from being
swapped out—mm swaps page frames to disk using the
LRU policy. Hence, by accessing pages repeatedly, mm
is tricked to believe that they correspond to fresh con-
tent. When the number of memory-resident pages begins
to drop (i.e., the resident-set size (RSS) of the attacking
process(es) starts decreasing), the maximum allowable
physical memory footprint has been reached. Of course,
the size of this footprint also depends on the memory
load inflicted by other processes, which compete with the
attacking processes for RAM.

Signatures: As far as PFN_MAX - PFN_MIN is
concerned, we can reduce the set of potential target pages
in the physmap region, by excluding certain pages that
correspond to frames that the buddy allocator will never
provide to user space. For example, in x86 and x86-64,
the BIOS typically stores the hardware configuration de-

USENIX Association 23rd USENIX Security Symposium 965

tected during POST at page frame zero. Likewise, the
physical address range 0xA0000-0xFFFFF is reserved
for mapping the internal memory of certain graphics
cards. In addition, the ELF sections of the kernel image
that correspond to kernel code and global data are loaded
at known, fixed locations in RAM (e.g., 0x1000000
in x86). Based on these and other predetermined allo-
cations, we have generated physmap signatures of re-
served page frame ranges for each configuration we con-
sider. If a signature is not available, then all page frames
are potential targets. By combining physmap spraying
and signatures, we can maximize the probability that our
informed selection of an arbitrary page from physmap

will point to the exploit payload. The results of our ex-
perimental security evaluation (Section 7) show that, de-
pending on the configuration, the probability of success
can be as high as 96%.

6 Putting It All Together

6.1 Bypassing SMAP and UDEREF

We begin with an example of a ret2dir attack against
an x86 system hardened with SMAP or UDEREF. We
assume an exploit for a kernel vulnerability that allows
us to corrupt a kernel data pointer, named kdptr, and
overwrite it with an arbitrary value [38,39,41]. On a sys-
tem with an unhardened kernel, an attacker can overwrite
kdptrwith a user-space address, and force the kernel to
dereference it by invoking the appropriate interface (e.g.,
a buggy system call). However, the presence of SMAP
or UDEREF will cause a memory access violation, ef-
fectively blocking the exploitation attempt. To overcome
this, a ret2dir attack can be mounted as follows.

First, an attacker-controlled user process reserves a
single page (4KB), say at address 0xBEEF000. Next,
the process moves on to initialize the newly allocated
memory with the exploit payload (e.g., a tampered-
with data structure). This payload initialization phase
will cause a page fault, triggering mm to request a free
page frame from the buddy allocator and map it at ad-
dress 0xBEEF000. Suppose that the buddy system
picks page frame 1904 (0x770). In x86, under the de-
fault 3G/1G split, physmap starts at 0xC0000000,
which means that the page frame has been pre-mapped
at address 0xC0000000 + (4096 ∗ 0x770) =

0xC0770000 (according to formula in Section 5.1).
At this point, 0xBEEF000 and 0xC0770000 are syn-
onyms; they both map to the physical page that con-
tains the attacker’s payload. Consequently, any data
in the area 0xBEEF000–0xBEEFFFFF is readily ac-
cessible by the kernel through the synonym addresses
0xC0770000–0xC0770FFF. To make matters worse,
given that physmap is primarily used for implement-

ing dynamic memory, the kernel cannot distinguish
whether the kernel data structure located at address
0xC0770000 is fake or legitimate (i.e., properly al-
located using kmalloc). Therefore, by overwriting
kdptr with 0xC0770000 (instead of 0xBEEF000),
the attacker can bypass SMAP and UDEREF, as both
protections consider benign any dereference of memory
addresses above 0xC0000000.

6.2 Bypassing SMEP, PXN, KERNEXEC,

and kGuard

We use a running example from the x86-64 architec-
ture to demonstrate how a ret2dir attack can bypass
KERNEXEC, kGuard, and SMEP (PXN operates almost
identically to SMEP). We assume the exploitation of
a kernel vulnerability that allows the corruption of
a kernel function pointer, namely kfptr, with an
arbitrary value [40, 42, 43, 45]. In this setting, the
exploit payload is not a set of fake data structures, but
machine code (shellcode) to be executed with elevated
privilege. In real-world kernel exploits, the payload
typically consists of a multi-stage shellcode, the first
stage of which stitches together kernel routines (second
stage) for performing privilege escalation [89]. In most
cases, this boils down to executing something similar to
commit_creds(prepare_kernel_cred(0)).
These two routines replace the credentials ((e)uid,
(e)gid) of a user task with zero, effectively granting
root privileges to the attacking process.

The procedure is similar as in the previous exam-
ple. Suppose that the payload has been copied to
user-space address 0xBEEF000, which the buddy
allocator assigned to page frame 190402 (0x2E7C2). In
x86-64, physmap starts at 0xFFFF880000000000
(see Table 1), and maps the whole RAM using reg-
ular pages (4KB). Hence, a synonym of address
0xBEEF000 is located within kernel space at address
0xFFFF880000000000 + (4096 ∗ 0x2E7C2)

= 0xFFFF87FF9F080000.
In ret2usr scenarios where attackers control a kernel

function pointer, an advantage is that they also control
the memory access rights of the user page(s) that con-
tain the exploit payload, making it trivially easy to mark
the shellcode as executable. In a hardened system, how-
ever, a ret2dir attack allows controling only the content

of the respective synonym pages within physmap—
not their permissions. In other words, although the at-
tacker can set the permissions of the range 0xBEEF000
– 0xBEEFFFF, this will not affect the access rights of
the corresponding physmap pages.

Unfortunately, as shown in Table 1, the W^X prop-
erty is not enforced in many platforms, including
x86-64. In our example, the content of user ad-

966 23rd USENIX Security Symposium USENIX Association

dress 0xBEEF000 is also accessible through kernel
address 0xFFFF87FF9F080000 as plain, executable
code. Therefore, by simply overwriting kfptr with
0xFFFF87FF9F080000 and triggering the kernel to
dereference it, an attacker can directly execute shellcode
with kernel privileges. KERNEXEC, kGuard, and SMEP
(PXN) cannot distinguish whether kfptr points to ma-
licious code or a legitimate kernel routine, and as long
as kfptr≥ 0xFFFF880000000000 and *kfptr is
RWX, the dereference is considered benign.

Non-executable physmap: In the above example,
we took advantage of the fact that some platforms map
part (or all) of the physmap region as executable (X).
The question that arises is whether ret2dir can be ef-
fective when physmap has sane permissions. As we
demonstrate in Section 7, even in this case, ret2dir at-
tacks are possible through the use of return-oriented pro-
gramming (ROP) [8, 51, 87].

Let’s revisit the previous example, this time under
the assumption that physmap is not executable. In-
stead of mapping regular shellcode at 0xBEEF000, an
attacker can map an equivalent ROP payload: an im-
plementation of the same functionality consisting solely
of a chain of code fragments ending with ret instruc-
tions, known as gadgets, which are located in the ker-
nel’s (executable) text segment. To trigger the ROP
chain, kfptr is overwritten with an address that points
to a stack pivoting gadget, which is needed to set the
stack pointer to the beginning of the ROP payload, so
that each gadget can transfer control to the next one. By
overwriting kfptrwith the address of a pivot sequence,
like xchg %rax, %rsp; ret (assuming that %rax
points to 0xFFFF87FF9F080000), the synonym of
the ROP payload now acts as a kernel-mode stack. Note
that Linux allocates a separate kernel stack for every user
thread using kmalloc, making it impossible to differ-
entiate between a legitimate stack and a ROP payload
“pushed” in kernel space using ret2dir, as both reside in
physmap. Finally, the ROP code should also take care
of restoring the stack pointer (and possibly other CPU
registers) to allow for reliable kernel continuation [3,81].

7 Security Evaluation

7.1 Effectiveness

We evaluated the effectiveness of ret2dir against ker-
nels hardened with ret2usr protections, using real-world
and custom exploits. We obtained a set of eight ret2usr
exploits from the Exploit Database (EDB) [75], cover-
ing a wide range of kernel versions (v2.6.33.6–v3.8).
We ran each exploit on an unhardened kernel to ver-
ify that it works, and that it indeed follows a ret2usr
exploitation approach. Next, we repeated the same ex-

periment with every kernel hardened against ret2usr at-
tacks, and, as expected, all exploits failed. Finally, we
transformed the exploits into ret2dir-equivalents, using
the technique(s) presented in Section 5, and used them
against the same hardened systems. Overall, our ret2dir
versions of the exploits bypassed all available ret2usr

protections, namely SMEP, SMAP, PXN, KERNEXEC,
UDEREF, and kGuard.

Table 2 summarizes our findings. The first two
columns (EDB-ID and CVE) correspond to the tested ex-
ploit, and the third (Arch.) and fourth (Kernel) denote the
architecture and kernel version used. The Payload col-
umn indicates the type of payload pushed in kernel space
using ret2dir, which can be a ROP payload (ROP), exe-
cutable instructions (SHELLCODE), tampered-with data
structures (STRUCT), or a combination of the above, de-
pending on the exploit. The Protection column lists the
deployed protection mechanisms in each case. Empty
cells correspond to protections that are not applicable in
the given setup, because they may not be (i) available for
a particular architecture, (ii) supported by a given ker-
nel version, or (iii) relevant against certain types of ex-
ploits. For instance, PXN is available only in ARM ar-
chitectures, while SMEP and SMAP are Intel processor
features. Furthermore, support for SMEP was added in
kernel v3.2 and for SMAP in v3.7. Note that depending
on the permissions of the physmap area (see Table 1),
we had to modify some of the exploits that relied on plain
shellcode to use a ROP payload, in order to achieve ar-
bitrary code execution (although in ret2usr exploits at-
tackers can give executable permission to the user-space
memory that contains the payload, in ret2dir exploits it is
not possible to modify the permissions of physmap).5

Entries for kGuard marked with * require access to the
(randomized) text section of the respective kernel.

As we mentioned in Section 2.3, KERNEXEC and
UDEREF were recently ported to the AArch32 architec-
ture [90]. In addition to providing stronger address space
separation, the authors made an effort to fix the permis-
sions of the kernel in AArch32, by enforcing the W^X

property for the majority of RWX pages in physmap.
However, as the respective patch is currently under de-
velopment, there still exist regions inside physmap that
are mapped as RWX. In kernel v3.8.7, we identified a
~6MB physmap region mapped as RWX that enabled the
execution of plain shellcode in our ret2dir exploit.

The most recent kernel version for which we found a
publicly-available exploit is v3.8. Thus, to evaluate the
latest kernel series (v3.12) we used a custom exploit. We

5Exploit 15285 uses ROP code to bypass KERNEXEC/UDEREF
and plain shellcode to evade kGuard. Exploit 26131 uses ROP
code in x86 (kernel v3.5) to bypass KERNEXEC/UDEREF and
SMEP/SMAP, and plain shellcode in x86-64 (kernel v3.8) to bypass
kGuard, KERNEXEC, and SMEP.

USENIX Association 23rd USENIX Security Symposium 967

EDB-ID CVE Arch. Kernel Payload Protection Bypassed

26131 2013-2094 x86/x86-64 3.5/3.8 ROP/SHELLCODE |KERNEXEC|UDEREF|kGuard |SMEP|SMAP| | ✓

24746 2013-1763 x86-64 3.5 SHELLCODE |KERNEXEC| |kGuard |SMEP| | | ✓

15944 N/A x86 2.6.33.6 STRUCT+ROP |KERNEXEC|UDEREF|kGuard*| | | | ✓

15704 2010-4258 x86 2.6.35.8 STRUCT+ROP |KERNEXEC|UDEREF|kGuard*| | | | ✓

15285 2010-3904 x86-64 2.6.33.6 ROP/SHELLCODE |KERNEXEC|UDEREF|kGuard | | | | ✓

15150 2010-3437 x86 2.6.35.8 STRUCT | |UDEREF| | | | | ✓

15023 2010-3301 x86-64 2.6.33.6 STRUCT+ROP |KERNEXEC|UDEREF|kGuard*| | | | ✓

14814 2010-2959 x86 2.6.33.6 STRUCT+ROP |KERNEXEC|UDEREF|kGuard*| | | | ✓

Custom N/A x86 3.12 STRUCT+ROP |KERNEXEC|UDEREF|kGuard*|SMEP|SMAP| | ✓

Custom N/A x86-64 3.12 STRUCT+ROP |KERNEXEC|UDEREF|kGuard*|SMEP|SMAP| | ✓

Custom N/A AArch32 3.8.7 STRUCT+SHELLCODE |KERNEXEC|UDEREF|kGuard | | | | ✓

Custom N/A AArch64 3.12 STRUCT+SHELLCODE | | |kGuard | | |PXN| ✓

Table 2: Tested exploits (converted to use the ret2dir technique) and configurations.

x86-64 AArch32

push %rbp | push r3, lr

mov %rsp, %rbp | mov r0, #0

push %rbx | ldr r1, [pc, #16]

mov $<pkcred>, %rbx | blx r1

mov $<ccreds>, %rax | pop r3, lr

mov $0x0, %rdi | ldr r1, [pc, #8]

callq *%rax | bx r1

mov %rax, %rdi | <pkcred>

callq *%rbx | <ccreds>

mov $0x0, %rax |

pop %rbx |

leaveq |

ret |

Figure 3: The plain shellcode used in ret2dir ex-
ploits for x86-64 (left) and AArch32 (right) targets
(pkcred and ccreds correspond to the addresses of
prepare_kernel_cred and commit_creds).

artificially injected two vulnerabilities that allowed us to
corrupt a kernel data or function pointer, and overwrite it
with a user-controlled value (marked as “Custom” in Ta-
ble 2). Note that both flaws are similar to those exploited
by the publicly-available exploits. Regarding ARM, the
most recent PaX-protected AArch32 kernel that we suc-
cessfully managed to boot was v3.8.7.

We tested every applicable protection for each exploit.
In all cases, the ret2dir versions transfered control solely

to kernel addresses, bypassing all deployed protections.
Figure 3 shows the shellcode we used in x86-64 and
AArch32 architectures. The shellcode is position inde-

pendent, so the only change needed in each exploit is to
to replace pkcred and ccreds with the addresses of
prepare_kernel_cred and commit_creds, re-
spectively, as discussed in Section 6.2. By copying the
shellcode into a user-space page that has a synonym in
the physmap area, we can directly execute it from ker-

/* save orig. esp */

0xc10ed359 /* pop %edx ; ret */

<SCRATCH_SPACE_ADDR1>

0xc127547f /* mov %eax, (%edx) ; ret */

/* save orig. ebp */

0xc10309d5 /* xchg %eax, %ebp ; ret */

0xc10ed359 /* pop %edx ; ret */

<SCRATCH_SPACE_ADDR2>

0xc127547f /* mov %eax, (%edx) ; ret */

/* commit_creds(prepare_kernel_cred(0) */

0xc1258894 /* pop %eax ; ret */

0x00000000

0xc10735e0 /* addr. of prepare_kernel_cred */

0xc1073340 /* addr. of commit_creds’ */

/* restore the saved CPU state */

0xc1258894 /* pop %eax ; ret */

<SCRATCH_SPACE_ADDR2>

0xc1036551 /* mov (%eax), %eax ; ret */

0xc10309d5 /* xchg %eax, %ebp ; ret */

0xc1258894 /* pop %eax ; ret */

<SCRATCH_SPACE_ADDR1>

0xc1036551 /* mov (%eax), %eax ; ret */

0xc100a7f9 /* xchg %eax, %esp ; ret */

Figure 4: Example of an x86 ROP payload (kernel v3.8)
used in our ret2dir exploits for elevating privilege.

nel mode by overwriting a kernel code pointer with the
physmap-resident synonym address of the user-space
page. We followed this strategy for all cases in which
physmap was mapped as executable (corresponding to
the entries of Table 2 that contain SHELLCODE in the
Payload column).

For cases in which physmap is non-executable,
we substituted the shellcode with a ROP payload that
achieves the same purpose. In those cases, the cor-
rupted kernel code pointer is overwritten with the ad-
dress of a stack pivoting gadget, which brings the ker-
nel’s stack pointer to the physmap page that is a syn-
onym for the user page that contains the ROP pay-
load. Figure 4 shows an example of an x86 ROP pay-
load used in our exploits. The first gadgets preserve

968 23rd USENIX Security Symposium USENIX Association

Physical Memory

1GB 2GB 4GB 8GB 16GB

S
u
c
c
e
s
s
 P

ro
b
a
b
ili

ty

0

0.2

0.4

0.6

0.8

1

Idle

Browsing

Kernel Build

Figure 5: Probability that a selected physmap address
will point to the exploit payload (successful exploitation)
with a single attempt, when using physmap spraying, as
a function of the available RAM.

the esp and ebp registers to facilitate reliable con-
tinuation (as discussed in Section 6.2). The scratch
space can be conveniently located inside the controlled
page(s), so the addresses SCRATCH_SPACE_ADDR1

and SCRATCH_SPACE_ADDR2 can be easily computed
accordingly. The payload then executes essentially the
same code as the shellcode to elevate privilege.

7.2 Spraying Performance

In systems without access to pagemap, ret2dir attacks
have to rely on physmap spraying to find a synonym
that corresponds to the exploit payload. As discussed
in Section 5.2, the probability of randomly selecting a
physmap address that indeed points to the exploit pay-
load depends on (i) the amount of installed RAM, (ii)

the physical memory load due to competing processes,
and (iii) the size of the physmap area. To assess this
probability, we performed a series of experiments under
different system configurations and workloads.

Figure 5 shows the probability of successfully select-
ing a physmap address, with a single attempt, as a func-
tion of the amount of RAM installed in our system; our
testbed included a single host armed with two 2.66GHz
quad-core Intel Xeon X5500 CPUs and 16GB of RAM,
running 64-bit Debian Linux v7. Each bar denotes the
average value over 5 repetitions and error bars corre-
spond to 95% confidence intervals. On every repeti-
tion we count the percentage of the maximum number
of physmap-resident page frames that we managed to
aquire, using the spraying technique (Section 5.2), over
the size of physmap. We used three different work-
loads of increasing memory pressure: an idle system, a
desktop-like workload with constant browsing activity in
multiple tabs (Facebook, Gmail, Twitter, YouTube, and

the USENIX website), and a distributed kernel compi-
lation with 16 parallel threads running on 8 CPU cores
(gcc, as, ld, make). Note that it is necessary to main-
tain continuous activity in the competing processes so
that their working set remains hot (worst-case scenario),
otherwise the attacking ret2dir processes would easily
steal their memory-resident pages.

The probability of success increases with the amount
of RAM. For the lowest-memory configuration (1GB),
the probability ranges between 65–68%, depending on
the workload. This small difference between the idle
and the intensive workloads is an indication that de-
spite the continuous activity of the competing processes,
the ret2dir processes manage to claim a large amount
of memory, as a result of their repeated accesses to all
already allocated pages that in essence “lock” them to
main memory. For the 2GB configuration the probability
jumps to 88%, and reaches 96% for 16GB.

Note that as these experiments were performed on
a 64-bit system, physmap always mapped all avail-
able memory. On 32-bit platforms, in which physmap
maps only a subset of RAM, the probability of success
is even higher. As discussed in Section 5.1, in such
cases, the additional memory pressure created by com-
peting processes, which more likely were spawned be-

fore the ret2dir processes, helps “pushing” ret2dir alloca-
tions to the desired zones (ZONE_NORMAL,ZONE_DMA)
that fall within the physmap area. Finally, depending on
the vulnerability, it is quite common that an unsuccess-
ful attempt will not result in a kernel panic, allowing the
attacker to run the exploit multiple times.

8 Defending Against ret2dir Attacks

Restricting access to /proc/<pid>/pagemap, or
disabling the feature completely (e.g., by compiling the
kernel without support for PROC_PAGE_MONITOR), is
a simple first step that can hinder, but not prevent, ret2dir
attacks. In this section, we present an eXclusive Page
Frame Ownerwhip (XPFO) scheme for the Linux kernel
that provides effective protection with low overhead.

8.1 XPFO Design

XPFO is a thin management layer that enforces exclusive

ownership of page frames by either the kernel or user-
level processes. Specifically, under XPFO, page frames
can never be assigned to both kernel and user space, un-
less a kernel component explicitly requests that (e.g., to
implement zero-copy buffers [84]).

We opted for a design that does not penalize the
performance-critical kernel allocators, at the expense of
low additional overhead whenever page frames are al-
located to (or reclaimed from) user processes. Recall

USENIX Association 23rd USENIX Security Symposium 969

that physical memory is allotted to user space using the
demand paging and copy-on-write (COW) methods [7],
both of which rely on page faults to allocate RAM.
Hence, user processes already pay a runtime penalty for
executing the page fault handler and performing the nec-
essary bookkeeping. XPFO aligns well with this design
philosophy, and increases marginally the management
and runtime overhead of user-space page frame alloca-
tion. Crucially, the physmap area is left untouched, and
the slab allocator, as well as kernel components that in-
terface directly with the buddy allocator, continue to get
pages that are guaranteed to be physically contiguous and
benefit from fast virtual-to-physical address translations,
as there are no extra page table walks or modifications.

Whenever a page frame is assigned to a user process,
XPFO unmaps its respective synonym from physmap,
thus breaking unintended aliasing and ensuring that mali-
cious content can no longer be “injected” to kernel space
using ret2dir. Likewise, when a user process releases
page frames back to the kernel, XPFO maps the corre-
sponding pages back in physmap to proactively facili-
tate dynamic (kernel) memory requests. A key require-
ment here is to wipe out the content of page frames that
are returned by (or reclaimed from) user processes, be-
fore making them available to the kernel. Otherwise, a
non-sanitizing XPFO scheme would be vulnerable to the
following attack. A malicious program spawns a child
process that uses the techniques presented in Section 5
to map its payload. Since XPFO is in place, the payload
is unmapped from physmap and cannot be addressed
by the kernel. Yet, it will be mapped back once the child
process terminates, making it readily available to the ma-
licious program for mounting a ret2dir attack.

8.2 Implementation

We implemented XPFO in the Linux kernel v3.13. Our
implementation (∼500LOC) keeps the management and
runtime overhead to the minimum, by employing a set of
optimizations related to TLB handling and page frame
cleaning, and handles appropriately all cases in which
page frames are allocated to (and reclaimed from) user
processes. Specifically, XPFO deals with: (a) demand
paging frames due to previously-requested anonymous
and shared memory mappings (brk, mmap/mmap2,
mremap, shmat), (b) COW frames (fork, clone),
(c) explicitly and implicitly reclaimed frames (_exit,
munmap, shmdt), (d) swapping (both swapped out
and swapped in pages), (e) NUMA frame migrations
(migrate_pages,move_pages), and (f) huge pages
and transparent huge pages.

Handling the above cases is quite challenging. To
that end, we first extended the system’s page frame data
structure (struct page) with the following fields:

xpfo_kmcnt (reference counter), xpfo_lock (spin-
lock) and xpfo_flags (32-bit flags field)—struct

page already contains a flags field, but in 32-bit systems
it is quite congested [30]. Notice that although the kernel
keeps a struct page object for every page frame in
the system, our change requires only 3MB of additional
space per 1GB of RAM (∼0.3% overhead). Moreover,
out of the 32 bits available in xpfo_flags, we only
make use of three: “Tainted” (T; bit 0), “Zapped” (Z; bit
1), and “TLB-shootdown needed” (S; bit 2).

Next, we extended the buddy system. Whenever
the buddy allocator receives requests for page frames
destined to user space (requests with GFP_USER,
GFP_HIGHUSER, or GFP_HIGHUSER_MOVABLE set
to gfp_flags), XPFO unmaps their respective syn-
onyms from physmap and asserts xpfo_flags.T,
indicating that the frames will be allotted to userland
and their contents are not trusted anymore. In contrast,
for page frames destined to kernel space, XPFO asserts
xpfo_flags.S (optimization; see below).

Whenever page frames are released to the buddy sys-
tem, XPFO checks if bit xpfo_flags.T was pre-
viously asserted. If so, the frame was mapped to
user space and needs to be wiped out. After zeroing
its contents, XPFO maps it back to physmap, resets
xpfo_flags.T, and asserts xpfo_flags.Z (opti-
mization; more on that below). If xpfo_flags.T
was not asserted, the buddy system reclaimed a frame
previously allocated to the kernel itself and no action
is necessary (fast-path; no interference with kernel al-
locations). Note that in 32-bit systems, the above are
not performed if the page frame in question comes from
ZONE_HIGHMEM—this zone contains page frames that
are not direct-mapped.

Finally, to achieve complete support of cases
(a)–(f), we leverage kmap/kmap_atomic and
kunmap/kunmap_atomic. These functions are
used to temporarily (un)map page frames acquired
from ZONE_HIGHMEM (see Section 5.1). In 64-bit
systems, where the whole RAM is direct-mapped,
kmap/kmap_atomic returns the address of the re-
spective page frame directly from physmap, whereas
kunmap/kunmap_atomic is defined as NOP and
optimized by the compiler. If XPFO is enabled, all of
them are re-defined accordingly.

As user pages are (preferably) allocated from
ZONE_HIGHMEM, the kernel wraps all code related to
the cases we consider (e.g., demand paging, COW,
swapping) with the above functions. Kernel com-
ponents that use kmap to operate on page frames
not related to user processes do exist, and we distin-
guish these cases using xpfo_flags.T. If a page
frame is passed to kmap/kmap_atomic and that bit
is asserted, this means that the kernel tries to oper-

970 23rd USENIX Security Symposium USENIX Association

ate on a frame assigned to user space via its kernel-
resident synonym (e.g., to read its contents for swap-
ping it out), and thus is temporarily mapped back in
physmap. Likewise, in kunmap/kunmap_atomic,
page frames with xpfo_flags.T asserted are un-
mapped. Note that in 32-bit systems, the XPFO
logic is executed on kmap routines only for direct-
mapped page frames (see Table 1). xpfo_lock

and xpfo_kmcnt are used for handling recursive or
concurrent invocations of kmap/kmap_atomic and
kunmap/kunmap_atomicwith the same page frame.

Optimizations: The overhead of XPFO stems mainly
from two factors: (i) sanitizing the content of reclaimed
pages, and (ii) TLB shootdown and flushing (necessary
since we modify the kernel page table). We employ three
optimizations to keep that overhead to the minimum. As
full TLB flushes result in prohibitive slowdowns [53],
in architectures that support single TLB entry invalida-
tion, XPFO selectively evicts only those entries that cor-
respond to synonyms in physmap that are unmapped;
in x86/x86-64 this is done with the INVLPG instruction.

In systems with multi-core CPUs, XPFO must take
into consideration TLB coherency issues. Specifically,
we have to perform a TLB shootdown whenever a page
frame previously assigned to the kernel itself is mapped
to user space. XPFO extends the buddy system to use
xpfo_flags.S for this purpose. If that flag is asserted
when a page frame is alloted to user space, XPFO invali-
dates the TLB entries that correspond to the synonym of
that frame in physmap, in every CPU core, by sending
IPI interrupts to cascade TLB updates. In all other cases
(i.e., page frames passed from one process to another, re-
claimed page frames from user processes that are later
on alloted to the kernel, and page frames allocated to the
kernel, reclaimed, and subsequently allocated to the ker-
nel again), XPFO performs only local TLB invalidations.

To alleviate the impact of page sanitization, we ex-
ploit the fact that page frames previously mapped to user
space, and in turn reclaimed by the buddy system, have
xpfo_flags.Z asserted. We extended clear_page
to check xpfo_flags.Z and avoid clearing the frame
if the bit is asserted. This optimization avoids zeroing a
page frame twice, in case it was first reclaimed by a user
process and then subsequently allocated to a kernel path
that required a clean page—clear_page is invoked by
every kernel path that requires a zero-filled page frame.

Limitations: XPFO provides protection against
ret2dir attacks, by braking the unintended address space
sharing between different security contexts. However, it
does not prevent generic forms of data sharing between
kernel and user space, such as user-controlled content
pushed to kernel space via I/O buffers, the page cache, or
through system objects like pipes and message queues.

Benchmark Metric Original XPFO (%Overhead)

Apache Req/s 17636.30 17456.47 (%1.02)

NGINX Req/s 16626.05 16186.91 (%2.64)

PostgreSQL Trans/s 135.01 134.62 (%0.29)

Kbuild sec 67.98 69.66 (%2.47)

Kextract sec 12.94 13.10 (%1.24)

GnuPG sec 13.61 13.72 (%0.80)

OpenSSL Sign/s 504.50 503.57 (%0.18)

PyBench ms 3017.00 3025.00 (%0.26)

PHPBench Score 71111.00 70979.00 (%0.18)

IOzone MB/s 70.12 69.43 (%0.98)

tiobench MB/s 0.82 0.81 (%1.22)

dbench MB/s 20.00 19.76 (%1.20)

PostMark Trans/s 411.00 399.00 (%2.91)

Table 3: XPFO performance evaluation results using
macro-benchmarks (upper part) and micro-benchmarks
(lower part) from the Phoronix Test Suite.

8.3 Evaluation

To evaluate the effectiveness of the proposed protection
scheme, we used the ret2dir versions of the real-world
exploits presented in Section 7.1. We back-ported our
XPFO patch to each of the six kernel versions used in our
previous evaluation (see Table 2), and tested again our
ret2dir exploits when XPFO was enabled. In all cases,
XPFO prevented the exploitation attempt.

To assess the performance overhead of XPFO, we
used kernel v3.13, and a collection of macro-benchmarks
and micro-benchmarks from the Phoronix Test Suite
(PTS) [82]. PTS puts together standard system tests, like
apachebench, pgbench, kernel build, and IOzone,
typically used by kernel developers to track performance
regressions. Our testbed was the same with the one used
in Section 7.2; Table 3 summarizes our findings. Overall,
XPFO introduces a minimal (negligible in most cases)
overhead, ranging between 0.18–2.91%.

9 Conclusion

We have presented ret2dir, a novel kernel exploitation
technique that takes advantage of direct-mapped physical
memory regions to bypass existing protections against
ret2usr attacks. To improve kernel isolation, we designed
and implemented XPFO, an exclusive page frame own-
ership scheme for the Linux kernel that prevents the im-
plicit sharing of physical memory. The results of our ex-
perimental evaluation demonstrate that XPFO offers ef-
fective protection with negligible runtime overhead.

Availability

Our prototype implementation of XPFO and all modified
ret2dir exploits are available at: http://www.cs.

columbia.edu/~vpk/research/ret2dir/

USENIX Association 23rd USENIX Security Symposium 971

Acknowledgments

This work was supported by DARPA and the US Air
Force through Contracts DARPA-FA8750-10-2-0253
and AFRL-FA8650-10-C-7024, respectively, with addi-
tional support from Intel Corp. Any opinions, findings,
conclusions, or recommendations expressed herein are
those of the authors, and do not necessarily reflect those
of the US Government, DARPA, the Air Force, or Intel.

References

[1] pagemap, from the userspace perspective, December 2008.
https://www.kernel.org/doc/Documentation/

vm/pagemap.txt.

[2] ACCETTA, M. J., BARON, R. V., BOLOSKY, W. J., GOLUB,
D. B., RASHID, R. F., TEVANIAN, A., AND YOUNG, M. Mach:
A New Kernel Foundation for UNIX Development. In Proc. of

USENIX Summer (1986), pp. 93–113.

[3] ARGYROUDIS, P. Binding the Daemon: FreeBSD Kernel Stack
and Heap Exploitation. In Black Hat USA (2010).

[4] ARM R© ARCHITECTURE REFERENCE MANUAL. ARM R©v7-A
and ARM R©v7-R edition. Tech. rep., Advanced RISC Machine
(ARM), July 2012.

[5] BEN HAYAK. The Kernel is calling a zero(day) pointer -
CVE-2013-5065 - Ring Ring, December 2013. http://

blog.spiderlabs.com/2013/12/the-kernel-is-

calling-a-zeroday-pointer-cve-2013-5065-

ring-ring.html.

[6] BONWICK, J. The Slab Allocator: An Object-Caching Kernel
Memory Allocator. In Proc. of USENIX Summer (1994), pp. 87–
98.

[7] BOVET, D. P., AND CESATI, M. Understanding the Linux Ker-

nel, 3rd ed. 2005, ch. Memory Management, pp. 294–350.

[8] CHECKOWAY, S., DAVI, L., DMITRIENKO, A., SADEGHI, A.-
R., SHACHAM, H., AND WINANDY, M. Return-Oriented Pro-
gramming without Returns. In Proc. of CCS (2010), pp. 559–572.

[9] CHEN, H., MAO, Y., WANG, X., ZHOU, D., ZELDOVICH, N.,
AND KAASHOEK, M. F. Linux kernel vulnerabilities: State-of-
the-art defenses and open problems. In Proc. of APsys (2011),
pp. 51–55.

[10] COMMON VULNERABILITIES AND EXPOSURES. CVE-2005-
0736, March 2005.

[11] COMMON VULNERABILITIES AND EXPOSURES. CVE-2009-
1527, May 2009.

[12] COMMON VULNERABILITIES AND EXPOSURES. CVE-2009-
2698, August 2009.

[13] COMMON VULNERABILITIES AND EXPOSURES. CVE-2009-
3002, August 2009.

[14] COMMON VULNERABILITIES AND EXPOSURES. CVE-2009-
3234, September 2009.

[15] COMMON VULNERABILITIES AND EXPOSURES. CVE-2009-
3547, October 2009.

[16] COMMON VULNERABILITIES AND EXPOSURES. CVE-2010-
2959, August 2010.

[17] COMMON VULNERABILITIES AND EXPOSURES. CVE-2010-
3437, September 2010.

[18] COMMON VULNERABILITIES AND EXPOSURES. CVE-2010-
3904, October 2010.

[19] COMMON VULNERABILITIES AND EXPOSURES. CVE-2010-
4073, October 2010.

[20] COMMON VULNERABILITIES AND EXPOSURES. CVE-2010-
4347, November 2010.

[21] COMMON VULNERABILITIES AND EXPOSURES. CVE-2012-
0946, February 2012.

[22] COMMON VULNERABILITIES AND EXPOSURES. CVE-2013-
0268, December 2013.

[23] COMMON VULNERABILITIES AND EXPOSURES. CVE-2013-
1828, February 2013.

[24] COMMON VULNERABILITIES AND EXPOSURES. CVE-2013-
2094, February 2013.

[25] COMMON VULNERABILITIES AND EXPOSURES. CVE-2013-
2852, April 2013.

[26] COMMON VULNERABILITIES AND EXPOSURES. CVE-2013-
2892, August 2013.

[27] COMMON VULNERABILITIES AND EXPOSURES. CVE-2013-
4343, June 2013.

[28] CORBET, J. Virtual Memory I: the problem, March 2004.
http://lwn.net/Articles/75174/.

[29] CORBET, J. An updated guide to debugfs, May 2009.
http://lwn.net/Articles/334546/.

[30] CORBET, J. How many page flags do we really have?, June 2009.
http://lwn.net/Articles/335768/.

[31] CORBET, J. Supervisor mode access prevention, October 2012.
http://lwn.net/Articles/517475/.

[32] CORBET, J., KROAH-HARTMAN, G., AND MCPHERSON, A.
Linux Kernel Development. Tech. rep., Linux Foundation,
September 2013.

[33] DING, Y., WEI, T., WANG, T., LIANG, Z., AND ZOU, W. Heap
Taichi: Exploiting Memory Allocation Granularity in Heap-
Spraying Attacks. In Proc. of ACSAC (2010), pp. 327–336.

[34] DISTROWATCH. Put the fun back into computing. Use Linux,
BSD., November 2013. http://distrowatch.com.

[35] EDGE, J. Kernel address space layout randomization, October
2013. http://lwn.net/Articles/569635/.

[36] EXPLOIT DATABASE. EBD-131, December 2003.

[37] EXPLOIT DATABASE. EBD-16835, September 2009.

[38] EXPLOIT DATABASE. EBD-14814, August 2010.

[39] EXPLOIT DATABASE. EBD-15150, September 2010.

[40] EXPLOIT DATABASE. EBD-15285, October 2010.

[41] EXPLOIT DATABASE. EBD-15916, January 2011.

[42] EXPLOIT DATABASE. EBD-17391, June 2011.

[43] EXPLOIT DATABASE. EBD-17787, September 2011.

[44] EXPLOIT DATABASE. EBD-20201, August 2012.

[45] EXPLOIT DATABASE. EBD-24555, February 2013.

[46] GEORGE, V., PIAZZA, T., AND JIANG, H. Technology In-
sight: Intel c©Next Generation Microarchitecture Codename Ivy
Bridge, September 2011. http://www.intel.com/idf/

library/pdf/sf_2011/SF11_SPCS005_101F.pdf.

[47] GOOGLE. Android, November 2013. http://www.

android.com.

[48] GOOGLE. Chromium OS, November 2013. http://www.

chromium.org/chromium-os.

[49] HARDY, N. The Confused Deputy: (or why capabilities might
have been invented). SIGOPS Oper. Syst. Rev. 22 (October 1988),
36–38.

[50] HERDER, J. N., BOS, H., GRAS, B., HOMBURG, P., AND

TANENBAUM, A. S. MINIX 3: A Highly Reliable, Self-

972 23rd USENIX Security Symposium USENIX Association

Repairing Operating System. SIGOPS Oper. Syst. Rev. 40, 3 (July
2006), 80–89.

[51] HUND, R., HOLZ, T., AND FREILING, F. C. Return-Oriented
Rootkits: Bypassing Kernel Code Integrity Protection Mecha-
nisms. In Proc. of USENIX Sec (2009), pp. 384–398.

[52] HUNT, G. C., AND LARUS, J. R. Singularity: Rethinking the
Software Stack. SIGOPS Oper. Syst. Rev. 41, 2 (April 2007), 37–
49.

[53] INGO MOLNAR. 4G/4G split on x86, 64 GB RAM (and
more) support, July 2003. http://lwn.net/Articles/

39283/.

[54] INTEL R© 64 AND IA-32 ARCHITECTURES SOFTWARE DEVEL-
OPER’S MANUAL. Instruction Set Extensions Programming Ref-
erence. Tech. rep., Intel Corporation, January 2013.

[55] INTEL R© 64 AND IA-32 ARCHITECTURES SOFTWARE DEVEL-
OPER’S MANUAL. System Programming Guide, Part 1. Tech.
rep., Intel Corporation, September 2013.

[56] JANA, S., AND SHMATIKOV, V. Memento: Learning Secrets
from Process Footprints. In Proc. of IEEE S&P (2012), pp. 143–
157.

[57] KEMERLIS, V. P., PORTOKALIDIS, G., AND KEROMYTIS,
A. D. kGuard: Lightweight Kernel Protection against Return-
to-user Attacks. In Proc. of USENIX Sec (2012), pp. 459–474.

[58] KILLIAN, T. J. Processes as Files. In Proc. of USENIX Summer

(1984), pp. 203–207.

[59] KING, R. Kernel Memory Layout on ARM Linux,
November 2005. https://www.kernel.org/doc/

Documentation/arm/memory.txt.

[60] KLEEN, A. Memory Layout on amd64 Linux, July 2004.
https://www.kernel.org/doc/Documentation/

x86/x86_64/mm.txt.

[61] KNOWLTON, K. C. A fast storage allocator. Commun. ACM 8,
10 (October 1965), 623–624.

[62] KOLDINGER, E. J., CHASE, J. S., AND EGGERS, S. J. Archi-
tecture Support for Single Address Space Operating Systems. In
Proc. of ASPLOS (1992), pp. 175–186.

[63] KURMUS, A., TARTLER, R., DORNEANU, D., HEINLOTH,
B., ROTHBERG, V., RUPRECHT, A., SCHRÖDER-PREIKSCHAT,
W., LOHMANN, D., AND KAPITZA, R. Attack Surface Metrics
and Automated Compile-Time OS Kernel Tailoring. In Proc. of

NDSS (2013).

[64] LAMETER, C. Generic Virtual Memmap support for
SPARSEMEM v3, April 2007. http://lwn.net/

Articles/229670/.

[65] LIAKH, S. NX protection for kernel data, July 2009. http://
lwn.net/Articles/342266/.

[66] LIEDTKE, J. On µ-Kernel Construction. In Proc. of SOSP

(1984), pp. 237–250.

[67] LOVE, R. Linux Kernel Development, 2nd ed. 2005, ch. Memory
Management, pp. 181–208.

[68] MARINAS, C. arm64: Distinguish between user and kernel XN
bits, November 2012. https://forums.grsecurity.

net/viewtopic.php?f=7&t=3292.

[69] MARINAS, C. Memory Layout on AArch64 Linux,
February 2012. https://www.kernel.org/doc/

Documentation/arm64/memory.txt.

[70] MCDOUGALL, R., AND MAURO, J. Solaris Internals, 2nd ed.
2006, ch. File System Framework, pp. 710–710.

[71] MOKB. Broadcom Wireless Driver Probe Response SSID Over-
flow, November 2006.

[72] MOZILLA. Firefox OS, November 2013. https://www.

mozilla.org/en-US/firefox/os/.

[73] NATIONAL VULNERABILITY DATABASE. Kernel Vulnerabili-
ties, November 2013. http://goo.gl/GJpw0b.

[74] NILS AND JON. Polishing Chrome for Fun and Profit, August
2013. http://goo.gl/b5hmjj.

[75] OFFENSIVE SECURITY. The Exploit Database, November 2013.
http://www.exploit-db.com.

[76] ORMANDY, T., AND TINNES, J. Linux ASLR Curiosities. In
CanSecWest (2009).

[77] PAX. Homepage of The PaX Team, November 2013. http://
pax.grsecurity.net.

[78] PAX TEAM. UDEREF/i386, April 2007. http://

grsecurity.net/~spender/uderef.txt.

[79] PAX TEAM. UDEREF/amd64, April 2010. http://

grsecurity.net/pipermail/grsecurity/2010-

April/001024.html.

[80] PAX TEAM. Better kernels with GCC plugins, October 2011.
http://lwn.net/Articles/461811/.

[81] PERLA, E., AND OLDANI, M. A Guide To Kernel Exploitation:

Attacking the Core. 2010, ch. Stairway to Successful Kernel Ex-
ploitation, pp. 47–99.

[82] PTS. Phoronix Test Suite, February 2014. http://www.

phoronix-test-suite.com.

[83] RAMON DE CARVALHO VALLE & PACKET STORM.
sock_sendpage() NULL pointer dereference
(PPC/PPC64 exploit), September 2009. http://

packetstormsecurity.org/files/81212/Linux-

sock_sendpage-NULL-Pointer-Dereference.

html.

[84] RIZZO, L. Netmap: A Novel Framework for Fast Packet I/O. In
Proc. of USENIX ATC (2012), pp. 101–112.

[85] ROSENBERG, D. Owned Over Amateur Radio: Remote Kernel
Exploitation in 2011. In Proc. of DEF CON R© (2011).

[86] SECURITYFOCUS. Linux Kernel ’perf_counter_open()’ Local
Buffer Overflow Vulnerability, September 2009.

[87] SHACHAM, H. The geometry of innocent flesh on the bone:
Return-into-libc without function calls (on the x86). In Proc. of

CCS (2007), pp. 552–61.

[88] SINAN EREN. Smashing The Kernel Stack For Fun And Profit.
Phrack 6, 60 (December 2002).

[89] SPENGLER, B. Enlightenment Linux Kernel Exploitation
Framework, July 2013. https://grsecurity.net/

~spender/exploits/enlightenment.tgz.

[90] SPENGLER, B. Recent ARM security improvements,
February 2013. https://forums.grsecurity.net/

viewtopic.php?f=7&t=3292.

[91] SQRKKYU, AND TWZI. Attacking the Core: Kernel Exploiting
Notes. Phrack 6, 64 (May 2007).

[92] VAN DE VEN, A. Debug option to write-protect ro-
data: the write protect logic and config option, Novem-
ber 2005. http://lkml.indiana.edu/hypermail/

linux/kernel/0511.0/2165.html.

[93] VAN DE VEN, A. Add -fstack-protector support
to the kernel, July 2006. http://lwn.net/Articles/

193307/.

[94] VAN DE VEN, A. x86: add code to dump the (kernel) page ta-
bles for visual inspection, February 2008. http://lwn.net/
Articles/267837/.

[95] YU, F. Enable/Disable Supervisor Mode Execution Protection,
May 2011. http://git.kernel.org/?p=linux/

kernel/git/torvalds/linux-2.6.git;a=commit;

h=de5397ad5b9ad22e2401c4dacdf1bb3b19c05679.

