
This paper is included in the Proceedings of the
23rd USENIX Security Symposium.

August 20–22, 2014 • San Diego, CA

ISBN 978-1-931971-15-7

Open access to the Proceedings of
the 23rd USENIX Security Symposium

is sponsored by USENIX

Never Been KIST: Tor’s Congestion Management
Blossoms with Kernel-Informed Socket Transport

Rob Jansen, U.S. Naval Research Laboratory; John Geddes, University of Minnesota;
Chris Wacek and Micah Sherr, Georgetown University;

Paul Syverson, U.S. Naval Research Laboratory

https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/jansen

USENIX Association 23rd USENIX Security Symposium 127

Never Been KIST: Tor’s Congestion Management Blossoms with
Kernel-Informed Socket Transport

Rob Jansen† John Geddes‡ Chris Wacek∗ Micah Sherr∗ Paul Syverson†

† U.S. Naval Research Laboratory
{rob.g.jansen, paul.syverson}@nrl.navy.mil

‡ University of Minnesota
geddes@cs.umn.edu

∗ Georgetown University
{cwacek, msherr}@cs.georgetown.edu

Abstract
Tor’s growing popularity and user diversity has re-

sulted in network performance problems that are not
well understood. A large body of work has attempted
to solve these problems without a complete understand-
ing of where congestion occurs in Tor. In this paper,
we first study congestion in Tor at individual relays as
well as along the entire end-to-end Tor path and find
that congestion occurs almost exclusively in egress ker-
nel socket buffers. We then analyze Tor’s socket interac-
tions and discover two major issues affecting congestion:
Tor writes sockets sequentially, and Tor writes as much
as possible to each socket. We thus design, implement,
and test KIST: a new socket management algorithm that
uses real-time kernel information to dynamically com-
pute the amount to write to each socket while consider-
ing all writable circuits when scheduling new cells. We
find that, in the medians, KIST reduces circuit conges-
tion by over 30 percent, reduces network latency by 18
percent, and increases network throughput by nearly 10
percent. We analyze the security of KIST and find an ac-
ceptable performance and security trade-off, as it does
not significantly affect the outcome of well-known la-
tency and throughput attacks. While our focus is Tor,
our techniques and observations should help analyze and
improve overlay and application performance, both for
security applications and in general.

1 Introduction

Tor [21] is the most popular overlay network for com-
municating anonymously online. Tor serves millions of
users daily by transferring their traffic through a source-
routed circuit of three volunteer relays, and encrypts the
traffic in such a way that no one relay learns both its
source and intended destination. Tor is also used to resist
online censorship, and its support for hidden services,
network bridges, and protocol obfuscation has helped at-
tract a large and diverse set of users.

While Tor’s growing popularity, variety of use cases,
and diversity of users have provided a larger anonymity
set, they have also led to performance issues [23]. For
example, it has been shown that roughly half of Tor’s
traffic can be attributed to BitTorrent [18, 43], while the
more recent use of Tor by a botnet [29] has further in-
creased concern about Tor’s ability to utilize volunteer
resources to handle a growing user base [20, 36, 37, 45].

Numerous proposals have been made to battle Tor’s
performance problems, some of which modify the
mechanisms used for path selection [13, 59, 60], client
throttling [14, 38, 45], circuit scheduling [57], and
flow/congestion control [15]. While some of this work
has or will be incorporated into the Tor software, none of
it has provided a comprehensive understanding of where
the most significant source of congestion occurs in a
complete Tor deployment. This lack of understanding
has led to the design of uninformed algorithms and spec-
ulative solutions. In this paper, we seek a more thor-
ough understanding of congestion in Tor and its effect on
Tor’s security. We explore an answer to the fundamental
question—“Where is Tor slow?”—and design informed
solutions that not only decrease congestion, but also im-
prove Tor’s ability to manage it as Tor continues to grow.
Congestion in Tor: We use a multifaceted approach to
exploring congestion. First, we develop a shared library
and Tor software patch for measuring congestion local to
relays running in the public Tor network, and use them
to measure congestion from three live relays under our
control. Second, we develop software patches for Tor
and the open-source Shadow simulator [7], and use them
to measure congestion along the full end-to-end path in
the largest known, at-scale, private Shadow-Tor deploy-
ment. Our Shadow patches ensure that our congestion
measurements are accurate and realistic; we show how
they significantly improve Shadow’s TCP implementa-
tion, network topology, and Tor models.1

1We have contributed our patches to the Shadow project [7] and
they have been integrated as of Shadow release 1.9.0.

128 23rd USENIX Security Symposium USENIX Association

To the best of our knowledge, we are the first to con-
sider such a comprehensive range of congestion infor-
mation that spans from individual application instances
to full network sessions for the entire distributed system.
Our analysis indicates that congestion occurs almost
exclusively inside of the kernel egress socket buffers,
dwarfing the Tor and the kernel ingress buffer times. This
finding is consistent among all three public Tor relays we
measured, and among relays in every circuit position in
our private Shadow-Tor deployment. This result is sig-
nificant, as Tor does not currently prevent, detect, or oth-
erwise manage kernel congestion.
Mismanaged Socket Output: Using this new under-
standing of where congestion occurs, we analyze Tor’s
socket output mechanisms and find two significant and
fundamental design issues: Tor sequentially writes to
sockets while ignoring the state of all sockets other than
the one that is currently being written; and Tor writes as
much as possible to each socket.

By writing to sockets sequentially, Tor’s circuit sched-
uler considers only a small subset of the circuits with
writable data. We show how this leads to improper uti-
lization of circuit priority mechanisms, which causes Tor
to send lower priority data from one socket before higher
priority data from another. This finding confirms evi-
dence from previous work indicating the ineffectiveness
of circuit priority algorithms [35].

By writing as much as possible to each socket, Tor is
often delivering to the kernel more data than it is capable
of sending due to either physical bandwidth limitations
or throttling by the TCP congestion control protocol. Not
only does writing too much increase data queuing de-
lays in the kernel, it also further reduces the effectiveness
of Tor’s circuit priority mechanisms because Tor relin-
quishes control over the priority of data after it is deliv-
ered to the kernel.2 This kernel overload is exacerbated
by the fact that a Tor relay may have thousands of sock-
ets open at any time in order to facilitate data transfer
between other relays, a problem that may significantly
worsen if Tor adopts recent proposals [16, 26] that sug-
gest increasing the number of sockets between relays.
KIST: Kernel-Informed Socket Transport: To solve
the socket management problems outlined above, we de-
sign KIST: a Kernel-Informed Socket Transport algo-
rithm. KIST has two features that work together to sig-
nificantly improve Tor’s control over network conges-
tion. First, KIST changes Tor’s circuit level scheduler so
that it chooses from all circuits with writable data rather
than just those belonging to a single TCP socket. Second,
to complement this global scheduling approach, KIST
also dynamically manages the amount of data written to
each socket based on real-time kernel and TCP state in-

2To the best of our knowledge, the Linux kernel uses a variant of
the first-come first-serve queuing discipline among sockets.

formation. In this way, KIST attempts to minimize the
amount of data that exists in the kernel that cannot be
sent, and to maximize the amount of time that Tor has
control over data priority.

We perform in-depth experiments in our at-scale pri-
vate Shadow-Tor network, and we show how KIST can
be used to relocate congestion from the kernel into Tor,
where it can be properly managed. We also show how
KIST allows Tor to correctly utilize its circuit priority
scheduler, reducing download latency by over 660 mil-
liseconds, or 23.5 percent, for interactive traffic streams
typically generated by web browsing behaviors.

We analyze the security of KIST, showing how it af-
fects well-known latency and throughput attacks. In par-
ticular, we show the extent to which the latency improve-
ments reduce the number of round-trip time measure-
ments needed to conduct a successful latency attack [31].
We also show how KIST does not significantly affect an
adversary’s ability to collect accurate measurements re-
quired for the throughput correlation attack [44] when
compared to vanilla Tor.
Outline of Major Contributions: We outline our major
contributions as follows:
– in Section 3 we discuss improvements to the open-

source Shadow simulator that significantly enhance
its accuracy, including experiments with the largest
known private Tor network of 3,600 relays and
13,800 clients running real Tor software;

– in Section 4 we discuss a library we developed to
measure congestion in Tor, and results from the first
known end-to-end Tor circuit congestion analysis;

– in Section 5 we show how Tor’s current management
of sockets results in ineffective circuit priority, detail
the KIST design and prototype, and show how it im-
proves Tor’s ability to manage congestion through a
comprehensive and full-network evaluation; and

– in Section 6 we analyze Tor’s security with KIST by
showing how our performance improvements affect
well-known latency and throughput attacks.

2 Background and Related Work

Tor [21] is a volunteer-operated anonymity service
used by an estimated hundreds of thousands of daily
users [28]. Tor assumes an adversary who can monitor
a portion of the underlying Internet and/or operate Tor
relays. People primarily use Tor to prevent an adversary
from discovering the endpoints of their communications,
or disrupting access to information.
Tor Traffic Handling: Tor provides anonymity by form-
ing source-routed paths called circuits that consist of
(usually) three relays on an overlay network. Clients
transfer TCP-based application traffic within these cir-
cuits; encrypted application-layer headers and payloads

USENIX Association 23rd USENIX Security Symposium 129

Tor circuit
queues

Kernel socket
input buffers

Tor input
buffers

Tor output
buffers

Kernel socket
output buffers

(a) (b)
(c)

(d)
(e)

(f)

Figure 1: Internals of cell processing within in a Tor relay.
Dashed lines denote TCP connections. Transitions between
buffers—both within the kernel (side boxes) and within Tor
(center box)—are shown with solid arrows.

make it more difficult for an adversary to discern an inter-
cepted communication’s endpoints or learn its plaintext.

A given circuit may carry several Tor streams, which
are logical connections between clients and destinations.
For example, a HTTP request to usenix.org may result
in several Tor streams (i.e., to fetch embedded objects);
these streams may all be transported over a single circuit.
Circuits are themselves multiplexed over TLS connec-
tions between relays whenever their paths share an edge;
that is, all concurrent circuits between relays u and v will
be transferred over the same TLS connection between the
two relays, irrespective of the circuits’ endpoints.

The unit of transfer in Tor is a 512-byte cell. Figure 1
depicts the internals of cell processing within a Tor re-
lay. In this example, the relay maintains two TLS con-
nections with other relays. Incoming packets from the
two TCP streams are first demultiplexed and placed into
kernel socket input buffers by the underlying OS (Fig-
ure 1a)3. The OS processes the packets, usually in FIFO
order, delivering them to Tor where they are reassem-
bled into TLS-encrypted cells using dedicated Tor in-
put buffers (Figure 1b). Upon receipt of an entire TLS
datagram, the TLS layer is removed, the cell is onion-
crypted,4 and then transferred and enqueued in the ap-
propriate Tor circuit queue (Figure 1c). Each relay main-
tains a queue for each circuit that it is currently serving.
Cells from the same Tor input buffer may be enqueued in
different circuit queues, since a single TCP connection
between two relays may carry multiple circuits.

Tor uses a priority-based circuit scheduling approach
that attempts to prioritize interactive web clients over
bulk downloaders [57]. The circuit scheduler selects a
cell from a circuit queue to process based on this prioriti-
zation, onion-crypts the cell, and stores it in a Tor output
buffer (Figure 1d). Once the Tor output buffer contains
sufficient data to form a TLS packet, the data is written
to the kernel for transport (Figure 1f).
Improving Tor Performance: There is a large body
of work that attempts to improve Tor’s network perfor-

3For simplicity, we consider only relays that run Linux since such
relays represent 75% of all Tor relays and contribute 91% of the band-
width of the live Tor network [58].

4Encrypted or decrypted, depending on circuit direction.

mance, e.g., by refining Tor’s relay selection strategy
[11,55,56] or providing incentives to users to operate Tor
relays [36, 37, 45]. These approaches are orthogonal and
can be applied in concert with our work, which focuses
on improving Tor’s congestion management.

Most closely related to this paper are approaches
that modify Tor’s circuit scheduling, flow control, or
transport mechanisms. Reardon and Goldberg suggest
replacing Tor’s TCP-based transport mechanism with
UDP-based DTLS [54], while Mathewson explores us-
ing SCTP [40]. Murdoch [47] explains that the UDP
approach is promising, but there are challenges that
have thus far prevented the approach from being de-
ployed: there is limited kernel support for SCTP; and
the lack of hop-by-hop reliability from UDP-based trans-
ports causes increased load at Tor’s exit relays. Our work
allows Tor to best utilize the existing TCP transport in the
short term while work toward a long term UDP deploy-
ment strategy continues.

Tang and Goldberg propose the use of the exponential
weighted moving average (EWMA) to characterize cir-
cuits’ recent levels of activity, with bursty circuits given
greater priority than busy circuits [57] (to favor interac-
tive web users over bulk downloaders). Unfortunately,
although Tor has adopted EWMA, the network has not
significantly benefitted from its use [35]. In our study of
where Tor is slow, we show that EWMA is made ineffec-
tive by Tor’s current management of sockets, and can be
made effective through our proposed modifications.

AlSabah et al. propose an ATM-like congestion and
flow control system for Tor called N23 [15]. Their ap-
proach causes pushback effects to previous nodes, reduc-
ing congestion in the entire circuit. Our KIST strategy is
complementary to N23, focusing instead on local tech-
niques to remove kernel-level congestion at Tor relays.

Torchestra [26] uses separate TCP connections to
carry interactive and bulk traffic, isolating the effects of
congestion between the two traffic classes. Conceptually,
Torchestra moves circuit-selection logic to the kernel,
where the OS schedules packets for the two connections.
Relatedly, AlSabah and Goldberg introduce PCTCP [16],
a transport mechanism for Tor in which each circuit is as-
signed its own IPsec tunnel. In this paper, we argue that
overloading the kernel with additional sockets reduces
the effectiveness of circuit priority mechanisms since the
kernel has no information regarding the priority of data.
In contrast, we aim to move congestion management to
Tor, where priority scheduling can be most effective.

Nowlan et al. [50] propose the use of uTCP and
uTLS [49] to tackle the “head-of-line” blocking problem
in Tor. Here, they bypass TCP’s in-order delivery mech-
anism to peek at traffic that has arrived but is not ready
to be delivered by the TCP stack (e.g., because an earlier
packet was dropped). Since Tor multiplexes multiple cir-

130 23rd USENIX Security Symposium USENIX Association

cuits over a single TCP connection, their technique offers
significant latency improvements when connections are
lossy, since already-arrived traffic can be immediately
processed. Our technique can be viewed as a form of
application-layer head-of-line countermeasure since we
move scheduling decisions from the TCP stack to within
Tor. In contrast to Nowlan et al.’s approach, we do not re-
quire any kernel-level modifications or changes to Tor’s
transport mechanism.

3 Enhanced Network Experimentation

To increase confidence in our experiments, we introduce
three significant enhancements to the Shadow Tor simu-
lator [35] and its existing models [33]: a more realistic
simulated kernel and TCP network stack, an updated In-
ternet topology model, and the largest known deployed
private Tor network. The enhancements in this section
represent a large and determined engineering effort; we
will show how Tor experimental accuracy has signifi-
cantly benefited as a result of these improvements. We
remark that our improvements to Shadow will have an
immediate impact beyond this work to the various re-
search groups around the world that use the simulator.
Shadow TCP Enhancements: After reviewing
Shadow [7], we first discovered that it was missing
many important TCP features, causing it to be less
accurate than desired. We enhanced Shadow by adding
the following: retransmission timers [52], fast retrans-
mit/recovery [12], selective acknowledgments [42], and
forward acknowledgments [41]. Second, we discovered
that Shadow was using a very primitive version of the
basic additive-increase multiplicative-decrease (AIMD)
congestion control algorithm. We implemented a much
more complete version of the CUBIC algorithm [27], the
default congestion control algorithm used in the Linux
kernel since version 2.6.19. CUBIC is an important algo-
rithm for properly adjusting the congestion window. We
will show how our implementation of these algorithms
greatly enhance Shadow’s accuracy, which is paramount
to the remainder of this paper. See Appendix A.1 [34]
for more details about our modifications.

We verify the accuracy of Shadow’s new TCP imple-
mentation to ensure that it is adequately handling packet
loss and properly growing the congestion window by
comparing its behavior to ns [51], a popular network sim-
ulator, because of the ease at which ns is able to model
packet loss rates. In our first experiment, both Shadow
and ns have two nodes connected by a 10 MiB/s link
with a 10 ms round trip time. One node then down-
loads a 100 MiB file 10 times for each tested packet loss
rate. Figure 2a shows that the average download time in
Shadow matches well with ns over varying packet loss
rates. Although not presented here, we similarly vali-

dated Shadow with our changes against a real network
link using the bandwidth and packet loss rate that was
achieved over our switch; the results did not significantly
deviate from those presented in Figure 2a.

For our second experiment, we check that the growth
of the congestion window using CUBIC is accurate.
We first transfer a 100 MiB file over a 100 Mbit/s link
between two physical Ubuntu 12.04 machines running
the 3.2.0 Linux kernel. We record the cwnd (con-
gestion window) and ssthresh (slow start threshold)
values from the getsockopt function call using the
TCP_INFO option. We then run an identical experiment
in Shadow, setting the slow start threshold to what we
observed from Linux and ensuring that packet loss hap-
pens at roughly the same rate. Figure 2b shows the value
of cwnd in both Shadow and Linux over time, and we
see almost identical growth patterns. The slight varia-
tion in the saw-tooth pattern is due to unpredictable vari-
ation in the physical link that was not reproduced by
Shadow. As a result, Shadow’s cwnd grew slightly faster
than Linux’s because Shadow was able to send one ex-
tra packet. We believe this is an artifact of our particular
physical configuration and do not believe it significantly
affects simulation accuracy in general: more importantly,
the overall saw-tooth pattern matches well.

The two experiments discussed above give us high
confidence that our TCP implementation is accurate,
both in responding to packet loss and in operation of the
CUBIC congestion control algorithm.
Shadow Topology Enhancements: To ensure that we
are causing the most realistic performance and con-
gestion effects possible during simulation, we enhance
Shadow using techniques from recent research in mod-
eling Tor topologies [39, 59], traceroute data from
CAIDA [2], and client/server data from the Tor Metrics
Portal [8] and Alexa [1]. This data-driven Internet map
is more realistic than the one Shadow provides, and in-
cludes 699,029 vertices and 1,338,590 edges. For space
reasons, we provide more details in Appendix A.2 [34].
Tor Model: Using Shadow with the improvements dis-
cussed above, we build a Tor model that reflects the real
Tor network as it existed in July 2013, using the then-
latest stable Tor version 0.2.3.25. (We use this model
for all experiments in this paper.) Using data from the
Tor Metrics Portal [8], we configure a complete, private
Tor network following Tor modeling best practices [33],
and attach every node to the closest network location in
our topology map. The resulting Tor network config-
uration includes 10 directory authorities, 3,600 relays,
13,800 clients, and 4,000 file servers—the largest known
working private experimental Tor network, and the first
to run at scale to the best of our knowledge.

The 13,800 clients in our model provide background
traffic and load on the network. 10,800 of our clients

USENIX Association 23rd USENIX Security Symposium 131

0 5 10 15 20
Packet Loss (%)

0

500

1000

1500

2000

2500

3000

D
ow

nl
oa

d
Ti

m
e

(s
)

Shadow

NS

(a) Download Time, Shadow vs. ns

0 1 2 3 4 5 6 7 8 9
Time (s)

0

20

40

60

80

100

cw
nd

Shadow

Linux

(b) Congestion Window, Shadow vs. Linux

0 20 40 60 80 100 120
Time to Last Byte (s)

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

Fr
ac

tio
n

torperf 50KiB

shadow 50KiB

torperf 1MiB

shadow 1MiB

torperf 5MiB

shadow 5MiB

(c) Download Time, Shadow-Tor vs. Tor

Figure 2: Figure 2a compares Shadow to ns download times. Figure 2b compares congestion window over time when Shadow and
Linux have the same link properties. Figure 2c compares Shadow-Tor to live Tor measurements collected from Tor Metrics [8].

download 320 KiB files (the median size of a web page
according to the most recent web statistics published by
a Google engineer [53]) and then wait for a time cho-
sen uniformly at random from the range [1, 60 000] mil-
liseconds after each completed download. 1,200 of our
clients repeatedly download 5 MiB files with no pauses
between completing a download and starting the next.
The ratio of these client behaviors was chosen accord-
ing to the latest known measurements of client traffic
on Tor [18, 43]. Shadow also contains 1,800 TorPerf [9]
clients that download a file over a fresh circuit and pause
for 60 seconds after each successful download. (TorPerf
is a tool for measuring Tor performance.) 600 of the Tor-
Perf clients download 50 KiB files, 600 download 1 MiB
files, and 600 download 5 MiB files. Our simulations run
for one virtual hour during each experiment.

Figure 2c shows a comparison of publicly available
TorPerf measurements collected on the live Tor net-
work [8] to those collected in our private Shadow-Tor
network. As shown in Figure 2c, our full size Shadow-
Tor network is extremely accurate in terms of time to
complete downloads for all file sizes. These results give
us confidence that our at-scale Shadow-Tor network is
strongly representative of the deployed Tor network.

4 Congestion Analysis

In this section, we explore where congestion happens in
Tor through a large scale congestion analysis. We take a
multifaceted approach by measuring congestion as it oc-
curs in both the live, public Tor network, and in an exper-
imental, private Tor network running in Shadow. By an-
alyzing relays in the public Tor network, we get the most
realistic and accurate view of what is happening at our
measured relays. We supplement the data from a rela-
tively small public relay sample with measurements from
a much larger set of private relays, collecting a larger and
more complete view of Tor congestion.

To understand congestion, we are interested in mea-
suring the time that data spends inside of Tor as well as
inside of kernel sockets in both the incoming and outgo-
ing directions. We will discuss our findings in both envi-
ronments after describing the techniques that we used to
collect the time spent in these locations.

4.1 Congestion in the Live Tor Network

Relays running in the operational network provide the
most accurate source of congestion data, as these relays
are serving real clients and transferring real traffic. As
mentioned above, we are interested in measuring queu-
ing times inside of the Tor application as well as inside
of the kernel, and so we developed techniques for both in
the local context of a public Tor relay.
Tor Congestion: Measuring Tor queuing times requires
some straightforward modifications to the Tor software.
As soon as a relay reads the entire cell, it internally cre-
ates a cell structure that holds the cell’s circuit ID, com-
mand, and payload. We add a new unique cell ID value.
Whenever a cell enters Tor and the cell structure is cre-
ated, we log a message containing the current time and
the cell’s unique ID. The cell is then switched to the out-
going circuit. After it’s sent to the kernel we log another
message containing the time and ID. The difference be-
tween these times represents Tor application congestion.
Kernel Congestion: Measuring kernel queuing times
is much more complicated since Tor does not have di-
rect access to the kernel internals. In order to log the
times when a piece of data enters and leaves the ker-
nel in both the incoming and outgoing directions, we
developed a new, modular, application-agnostic, multi-
threaded library, called libkqtime.5 libkqtime
uses libpcap [6] to determine when data crosses the
host/network boundary, and function interposition on

5libkqtime was written in 770 LOC, and is available for down-
load as open source software [5].

132 23rd USENIX Security Symposium USENIX Association

10−1 100 101 102 103

Time (ms)

0.5

0.6

0.7

0.8

0.9

1.0

C
um

ul
at

iv
e

Fr
ac

tio
n

kernel in

tor

kernel out

(a) curiosity1

10−1 100 101 102 103

Time (ms)

0.5

0.6

0.7

0.8

0.9

1.0

C
um

ul
at

iv
e

Fr
ac

tio
n

kernel in

tor

kernel out

(b) curiosity2

10−1 100 101 102 103

Time (ms)

0.5

0.6

0.7

0.8

0.9

1.0

C
um

ul
at

iv
e

Fr
ac

tio
n

kernel in

tor

kernel out

(c) curiosity3

Figure 3: The distribution of congestion inside Tor and the kernel on our 3 relays running in the public Tor network, as measured
between 2014-01-20 and 2014-01-28. Most congestion occurred in the outbound kernel queues on all three relays.

the write(), send(), read(), and recv() func-
tions to determine when it crosses the application/kernel
boundary. The library copies a 16 byte tag as data enters
the kernel from either end, and then searches for the tag
as data leaves the kernel on the opposite end. This pro-
cess works in both directions, and the timestamps col-
lected by the library allow us to measure both inbound
and outbound kernel congestion. Appendix B [34] gives
a more detailed description of libkqtime.
Results: To collect congestion information in Tor, we
first ran three live relays (curiosity1, curiosity2, and
curiosity3) using an unmodified copy of Tor release
0.2.3.25 for several months to allow them to stabi-
lize. We configured them as non-exit nodes and used a
network appliance to rate limit curiosity1 at 1 Mbit/s, cu-
riosity2 at 10 Mbit/s, and curiosity3 at 50 Mbit/s. Only
curiosity2 had the guard flag (could be chosen as en-
try relay for a circuit) during our data collection. On
2014-01-20, we swapped the Tor binary with a version
linked to libkqtime and modified as discussed in Sec-
tion 4.1. We collected Tor and kernel congestion for 190
hours (just under 8 days) ending on 2014-01-28, and then
replaced the vanilla Tor binary.

The distributions of congestion as measured on each
relay during the collection period are shown in Figure 3
with logarithmic x-axes. Our measurements indicate that
most congestion, when present, occurs in the kernel out-
bound queues, while kernel inbound and Tor congestion
are both less than 1 millisecond for over 95 percent of our
measurements. This finding is consistent across all three
relays we measured. Kernel outbound congestion in-
creases from curiosity1 to curiosity2, and again slightly
from curiosity2 to curiosity3, indicating that congestion
is a function of relay capacity or load. We leave it to fu-
ture work to analyze the strength of this correlation, as
that is outside the scope of this paper.
Ethical Considerations: We took careful protections to
ensure that our live data collection did not breach users’
anonymity. In particular, we captured only buffered

data timing information; no network addresses were ever
recorded. We discussed our experimental methodology
with Tor Project maintainers, who raised no objections.
Finally, we contacted the IRB of our relay host institu-
tion. The IRB decided that no review was warranted
since our measurements did not, in their opinion, con-
stitute human subjects research.

4.2 Congestion in a Shadow-Tor Network

While congestion data from real live relays is the most
accurate, it only gives us a limited view of congestion
local to our relays. The congestion measured at our re-
lays may or may not be representative of congestion at
other relays in the network. Therefore, we use our pri-
vate Shadow-Tor network to supplement our congestion
data and enhance our analysis. Using Shadow provides
many advantages over live Tor: it’s technically simpler;
we are able to measure congestion at all relays in our pri-
vate network; we can track the congestion of every cell
across the entire circuit because we do not have privacy
concerns with Shadow; and we can analyze how conges-
tion changes with varying network configurations.
Tor and Kernel Congestion: The process for collect-
ing congestion in Shadow is simpler than in live Tor,
since we have direct access to Shadow’s virtual kernel.
In our modified Tor, each cell again contains a unique ID
as in Section 4.1. However, when running in Shadow,
we also add a 16 byte magic token and include both the
unique ID and the magic token when sending cells out to
the network. The unique ID is forwarded with the cell
as it travels through the circuit. Since Shadow prevents
Tor from encrypting cell contents for efficiency reasons,
the Shadow kernel can search outgoing packets for the
unencrypted magic token immediately before they leave
the virtual network interface. When found, it logs the
unique cell ID with a timestamp. It performs an anal-
ogous procedure for incoming packets immediately af-
ter they arrive on the virtual network interface. These

USENIX Association 23rd USENIX Security Symposium 133

10−1 100 101 102 103 104

Time (ms)

0.0

0.2

0.4

0.6

0.8

1.0
C

um
ul

at
iv

e
Fr

ac
tio

n

kernel in

tor

kernel out

(a) Relays in Entry Position

10−1 100 101 102 103 104

Time (ms)

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

Fr
ac

tio
n

kernel in

tor

kernel out

(b) Relays in Middle Position

10−1 100 101 102 103 104

Time (ms)

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

Fr
ac

tio
n

kernel in

tor

kernel out

(c) Relays in Exit Position

Figure 4: Relay congestion by circuit position in our Shadow-Tor network, measured on on circuits using end-to-end cells from
1,200 clients selected uniformly at random. Most congestion occurred in the outbound kernel queues, independent of relay position.

Shadow timestamps are combined with the timestamps
logged when a cell enters and leaves Tor to compute both
Tor and kernel congestion.
Results: We use our model of Tor as described in Sec-
tion 3, with the addition of the cell tracking information
discussed above. Since tracking every cell would con-
sume an extremely large amount of disk space, we sam-
ple congestion as follows: we select 10 percent of the
non-TorPerf clients (1,200 total) in our network chosen
uniformly, and track 1 of every 100 cells traveling over
circuits they initiate. The tracking timestamps from these
cells are then used to attribute congestion to the relays
through which the cells are traveling.

It is important to understand that our method does not
sample relay congestion uniformly: the congestion mea-
surements will be biased towards relays that are cho-
sen more often by clients, according to Tor’s bandwidth-
weighted path selection algorithm. This means that our
results will represent the congestion that a typical client
will experience when using Tor. We believe that these
results are more meaningful than those we could obtain
by uniformly sampling congestion at each relay indepen-
dently (as we did in Section 4.1), because ultimately we
are interested in improving clients’ experience.

The distributions of congestion measured in Shadow
for each circuit position are shown in Figure 4. We again
find that congestion occurs most significantly in the ker-
nel outbound queues, regardless of a relay’s circuit po-
sition. Our Shadow experiments indicate higher conges-
tion than in live Tor, which we attribute to our client-
oriented sampling method described above.

5 Kernel-Informed Socket Transport

Our large scale congestion analysis from Section 4 re-
vealed that the most significant delay in Tor occurs in
outbound kernel queues. In this section, we first explore
how this problem adversely affects Tor’s traffic manage-
ment by disrupting existing scheduling mechanisms to

the extent that they become ineffective. We then describe
the KIST algorithm and experimental results.

5.1 Mismanaged Socket Output

As described in Section 2, each Tor relay creates and
maintains a single TCP connection to every relay to
which it is connected. All communication between two
relays occurs through this single TCP connection chan-
nel. In particular, this channel multiplexes all circuits
that are established between its relay endpoints. TCP
provides Tor a reliable and in-order data transport.
Sequential Socket Writes: Tor uses the asynchronous
event library libevent [4] to assist with sending and
receiving data to and from the kernel (i.e. network). Each
TCP connection is represented as a socket in the kernel,
and is identified by a unique socket descriptor. Tor reg-
isters each socket descriptor with libevent, which itself
manages kernel polling and triggers an asynchronous no-
tification to Tor via a callback function of the readability
and writability of that socket. When Tor receives this
notification, it chooses to read or write as appropriate.

An important aspect of these libevent notifications is
that they happen for one socket at a time, regardless of
the number of socket descriptors that Tor has registered.
Tor attempts to send or receive data from that one socket
without considering the state of any of the other sock-
ets. This is particularly troublesome when writing, as
Tor will only be able to choose from the non-empty cir-
cuits belonging to the currently triggered socket and no
other. Therefore, Tor’s circuit scheduler may schedule a
circuit with worse priority than it would have if it could
choose from all sockets that are able to be triggered at
that time. Since the kernel schedules with a first-come
first-serve (FCFS) discipline, Tor may actually be send-
ing data out of priority order simply due to the order in
which the socket notifications are delivered by libevent.
Bloated Socket Buffers: Linux uses TCP auto-
tuning to dynamically and monotonically increase each

134 23rd USENIX Security Symposium USENIX Association

(a) Socket Sharing Scenarios

0.0 0.2 0.4 0.6 0.8 1.0
Throughput (KiB/s)

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

Fr
ac

tio
n

40 60 80 100 120 140 160
0.0
0.2
0.4
0.6
0.8
1.0

D
E

TE
R

pri+

rr

pri-

0.0
0.2
0.4
0.6
0.8
1.0

S
hadow

(b) Throughput with Shared Socket

0.0 0.2 0.4 0.6 0.8 1.0
Throughput (KiB/s)

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

Fr
ac

tio
n

160 180 200 220 240
0.0
0.2
0.4
0.6
0.8
1.0

D
E

TE
R

pri+

rr

pri-

0.0
0.2
0.4
0.6
0.8
1.0

S
hadow

(c) Throughput with Unshared Sockets

Figure 5: Socket sharing affects circuit priority scheduling.

socket buffer’s capacity using the socket connection’s
bandwidth-delay product calculation [61]. TCP auto-
tuning increases the amount of data the kernel will accept
from the application in order to ensure that the socket is
able to fully utilize the network link. TCP auto-tuning
is an extremely useful technique to maximize throughput
for applications with few sockets or without priority re-
quirements. However, it may cause problems for more
complex applications like Tor.

When libevent notifies Tor that a socket is writable,
Tor writes as much data as possible to that socket (i.e.,
until the kernel returns EWOULDBLOCK). Although this
improves utilization when only a few auto-tuned sockets
are in use, consider a Tor relay that writes to thousands of
auto-tuned sockets (a common situation since Tor main-
tains a socket for every relay with which it communi-
cates). These sockets will each attempt to accept enough
data to fully utilize the link. If Tor fills all of these sock-
ets to capacity, the kernel will clearly be unable to imme-
diately send it all to the network. Therefore, with many
active sockets in general and for asymmetric connections
in particular, the potential for kernel queuing delays are
dramatic. As we have shown in Section 4, writing as
much as possible to the kernel as Tor currently does re-
sults in large kernel queuing delays.

Tor can no longer adjust data priority once it is sent
to the kernel, even if that data is still queued in the ker-
nel when Tor receives data of higher importance later.
To demonstrate how this may result in poor scheduling
decisions, consider a relay with two circuits: one con-
tains sustained, high throughput traffic of worse prior-
ity (typical of many bulk data transfers), while the other
contains bursty, low throughput traffic of better priority
(typical of many interactive data transfer sessions). In
the absence of data on the low throughput circuit, the
high throughput circuit will fill the entire kernel socket
buffer whether or not the kernel is able to immediately
send that data. Then, when a better priority cell arrives,
Tor will immediately schedule and write it to the kernel.
However, since the kernel sends data to the network in

the same order in which it was received from the appli-
cation (FCFS), that better priority cell data must wait un-
til all of the previously received high throughput data is
flushed to the network. This problem theoretically wors-
ens as the number of sockets increase, suggesting that
recent research proposing that Tor use multiple sockets
between each pair of relays [16, 26] may be misguided.
Effects on Circuit Priority: To study the effects on cir-
cuit priority, we customized Tor as follows. First, we
added the ability for each client to send a special cell af-
ter building a circuit that communicates one of two prior-
ity classes to the circuit’s relays: a better priority class; or
a worse priority class. Second, we customized the built-
in EWMA circuit scheduler that prioritizes bursty traffic
over bulk traffic [57] to include a priority factor F : the
circuit scheduler counts F cells for every cell scheduled
on a worse priority circuit. Therefore, the EWMA of
the worse priority class will effectively increase F times
faster than normal, giving a scheduling advantage to bet-
ter priority traffic.

We experiment with two separate private Tor net-
works: one using Shadow [35], a discrete event network
simulator that runs Tor in virtual processes; and the other
using DETER [3], a custom experimentation testbed that
runs Tor on bare-metal hardware. We consider two
clients downloading from two file servers through Tor in
the scenarios shown in Figure 5a:
– shared socket: the clients share entry and middle re-

lays, but use different exit relays – the clients’ circuits
each belong to the same socket connecting the middle
to the entry; and

– unshared sockets: the clients share only the middle
relay – the clients’ circuits each belong to indepen-
dent sockets connecting the middle to each entry.

We assigned one client’s traffic to the better priority
class (denoted with “+”) and the other client’s traffic to
the worse priority class (denoted with “-”). We config-
ured all nodes with a 10 Mbit symmetric access link,
and approximated a middle relay bottleneck by setting its
socket buffer size to 32 KiB. Our configuration allows us

USENIX Association 23rd USENIX Security Symposium 135

to focus on the socket contention that will occur at the
middle relay, and the four cases that result when con-
sidering whether or not the two circuits share incoming
or outgoing TCP connections at the middle relay. Clients
downloaded data through the circuits continuously for 10
minutes in Shadow and 60 minutes on DETER.6

The results collected during each of the scenarios are
shown in Figure 5. Plotted is the cumulative distribu-
tion of the throughput achieved by the better (“pri+”) and
worse (“pri-”) priority clients using the priority sched-
uler, as well as the combined cumulative distribution for
both clients using Tor’s default round-robin scheduler
(“rr”). As shown in Figure 5b, performance differenti-
ation occurs correctly with the priority scheduler on a
shared socket. However, as shown in Figure 5c, the pri-
ority scheduler is unable to differentiate throughput when
the circuits do not share a socket.
Discussion: As outlined above, the reason for no differ-
entiation in the case of the unshared socket is that both
circuits are treated independently by the scheduler due to
the sequential libevent notifications and the fact that Tor
currently schedules circuits belonging to one socket at a
time while ignoring the others. We used TorPS [10], a
Tor path selection simulator, to determine how often we
would expect unshared sockets to occur in practice. We
used TorPS to build 10 million paths following Tor’s path
selection algorithm, and computed the probability of two
circuit paths belonging to each scenario. We found that
any two paths may be classified as unshared (they share
at least one relay but never share an outgoing socket) at
least 99.775 percent of the time, clearly indicating that
adjusting Tor’s socket management may have a dramatic
effect on data priority inside of Tor.

Note that the socket mismanagement problem is not
solved simply by parallelizing the libevent notification
system and priority scheduling processes (which would
require complex code), or by utilizing classful queuing
disciplines in the kernel (which would require root priv-
ileges); while these may improve control over traffic pri-
ority to some extent, they would still result in bloated
buffers containing data that cannot be sent due to closed
TCP congestion windows.

5.2 The KIST Algorithm
In order to overcome the inefficiencies resulting from
Tor’s socket management, KIST chooses between all cir-
cuits that have queued data irrespective of the socket to
which the circuit belongs, and dynamically adjusts the
amount written to each socket based on real-time kernel
information. We now detail each of these approaches.

6The small-scale experiments described here are meant to isolate
Tor’s internal queuing behavior for analysis purposes, and do not fully
represent the live Tor network, its background traffic, or its load.

Algorithm 1 The KIST NotifySocketWritable()
callback, invoked by libevent for each writable socket.
Require: sdesc,conn,T ← GlobalWriteTimeout

1: Lp ← getPendingConnectionList()
2: if Lp is Null then
3: Lp ← newList()
4: setPendingConnectionList(Lp)
5: createCallback(T ,NotifyGlobalWrite())
6: end if
7: if Lp.contains(conn) is False then
8: Lp.add(conn)
9: end if

10: disableNoti f y(sdesc)

Global Circuit Scheduling: Recall that libevent delivers
write notification events for a single socket at a time. Our
approach with KIST is relatively straightforward: rather
than handle the kernel write task immediately when
libevent notifies Tor that a socket is writable, we simply
collect a set of sockets that are writable over a time inter-
val specified by an adjustable GlobalWriteTimeout
parameter. This allows us to increase the number of can-
didate circuits we consider when scheduling and writ-
ing cells to the kernel: we may select among all circuits
which contain cells that are waiting to be written to one
of the sockets in our writable set.

The socket collection approach is outlined in Algo-
rithm 1. The socket descriptor sdesc and a connection
state object conn are supplied by libevent. Note that
we disable notification events for the socket (as shown in
line 10) in order to prevent duplicate notification events
during the socket collection interval.

After the GlobalWriteTimeout time interval,
KIST begins writing cells to the sockets according to the
circuit scheduling policy. There are two major phases
to this process, which is outlined in Algorithm 2. In
lines 4 and 8, we distinguish sockets that contain raw
bytes ready to be written directly to the kernel (previ-
ously scheduled cells with TLS headers attached) from
those with additional cells ready to be converted to raw
bytes. KIST first writes the already scheduled raw bytes
(lines 4-7), and then schedules and writes additional cells
after converting them to raw bytes and adding TLS head-
ers (lines 13-15). Note that the connections should be
enumerated (on line 3 of Algorithm 2) in an order that
respects the order in which cells were converted to raw
bytes by the circuit scheduler in the previous round.

The global scheduling approach does not by itself
solve the bloated socket buffer problem. KIST also dy-
namically computes socket write limits on line 2 of Al-
gorithm 2 using real-time TCP, socket, and bandwidth in-
formation, which it then uses when deciding how much
to write to the kernel.

136 23rd USENIX Security Symposium USENIX Association

Algorithm 2 The KIST NotifyGlobalWrite() call-
back, invoked after the GlobalWriteTimeout period.

1: Leligible ← newList()
2: K ← collectKernelIn f o(getConnectionList())
3: for all conn in getPendingConnectionList() do
4: if hasBytesForKernel(conn) is True then
5: enableNoti f y(conn)
6: nBytes ← writeBytesToKernel(K,conn)
7: end if
8: if hasCells(conn) is True and

getLimit(K,conn)> 0 then
9: Leligible.add(conn)

10: end if
11: end for
12: while Leligible.isEmpty() is False do
13: conn ← scheduleCell(Leligible) {cell to bytes}
14: enableNoti f y(conn)
15: nBytes ← writeBytesToKernel(K,conn)
16: if nBytes is 0 or getLimit(K,conn) is 0 then
17: Leligible.remove(conn)
18: end if
19: end while

Managing Socket Output: KIST attempts to move the
queuing delays from the kernel outbound queue to Tor’s
circuit queue by keeping kernel output buffers as small
as possible, i.e., by only writing to the kernel as much
as the kernel will actually send. By delaying the circuit
scheduling decision until the last possible instant before
kernel starvation occurs, Tor will ultimately improve its
control over the priority of outgoing data. This approach
attempts to give Tor approximately the same control over
outbound data that it would have if it had direct access to
the network interface. When combined with global cir-
cuit scheduling, Tor’s influence over outgoing data prior-
ity should improve.

To compute write limits, KIST first makes three sys-
tem calls for each connection: getsockopt on level
SOL SOCKET for option SO SNDBUF to get sndbufcap,
the capacity of the send buffer; ioctl with command
SIOCOUTQ to get sndbuflen, the current length of the
send buffer; and getsockopt on level SOL TCP for
option TCP INFO to get tcpi, a variety of TCP state in-
formation. The TCP information used by KIST includes
the connection’s maximum segment size mss, the con-
gestion window cwnd, and the number of unacked pack-
ets for which the kernel is waiting for an acknowledg-
ment from the TCP peer. KIST then computes a write
limit for each connection c as follows:

socket spacec = sndbufcapc − sndbuflenc
tcp spacec = (cwndc −unackedc) ·mssc
limitc = min(socket spacec, tcp spacec)

(1)

The key insight in Equation 1 is that TCP will not al-
low the kernel to send more packets than dictated by the
congestion window, and that the unacknowledged pack-
ets prevent the congestion window from sliding open. By
respecting this write limit for each connection, KIST en-
sures that the data sent to the kernel is immediately send-
able and reduces kernel queuing delays.

If all connections are sending data in parallel, it is still
possible to overwhelm the kernel with more data than
it can physically send to the network. Therefore, KIST
also computes a global write limit at the beginning of
each GlobalWriteTimeout period:

sndbuflen prev = sndbuflen
sndbuflen = ∑ci

(
sndbuflenci

)
bytes sent = sndbuflen− sndbuflen prev
limit = max(limit,bytes sent)

(2)

Note that Equation 2 is an attempt to measure the actual
upstream bandwidth speed of the machine. In practice,
this could be done in a testing phase during which writes
are not limited, configured manually, or estimated using
other techniques such as packet trains [32].

The connection and global limits are computed at the
beginning of a scheduling round, i.e., on line 2 of Algo-
rithm 2; they are enforced whenever bytes are written to
the kernel, i.e., on lines 6 and 15 of Algorithm 2. Note
that they will be bounded above by Tor’s independently
configured connection and global application rate limits.

5.3 Experiments and Results

We use Shadow and its models as discussed in Section 3
to measure KIST’s effect on network performance, con-
gestion, and throughput. We also evaluate its CPU over-
head. See Appendix C [34] for an analysis under a more
heavily loaded Shadow-Tor network. Note that we found
that KIST performs as well or better under heavier load
than under normal load as presented in this section, indi-
cating that it can gracefully scale as Tor grows.
Prototype: We implemented a KIST protoype as a patch
to Tor version 0.2.3.25, and included the elements
discussed in Section 4 necessary for measuring conges-
tion during our experiments. We tested vanilla Tor us-
ing the default CircuitPriorityHalflife of 30,
the global scheduling part of KIST (without enforcing
the write limits), and the complete KIST algorithm. We
configured the global scheduler to use a 10 millisecond
GlobalWriteTimeout in both the global and KIST
experiments. Note that our KIST implementation ignores
the connection enumeration order on line 3 of Algo-
rithm 2, an optimization that may further improve Tor’s
control over priority in cases where the global limit is
reached before the algorithm reaches line 12.

USENIX Association 23rd USENIX Security Symposium 137

10−1 100 101 102 103

Time (ms)

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

Fr
ac

tio
n

vanilla

global

KIST

(a) Kernel Out Congestion

10−1 100 101 102 103

Time (ms)

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

Fr
ac

tio
n

vanilla

global

KIST

(b) Tor Congestion

0 500 1000 1500 2000
Time (ms)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

C
um

ul
at

iv
e

Fr
ac

tio
n

vanilla

global

KIST

(c) Circuit Congestion

Figure 6: Congestion for vanilla Tor, KIST, and the global scheduling part of KIST (without enforcing write limits). Figures 6a
and 6b show the distribution of cell congestion local to each relay (with logarithmic x-axes), while Figure 6c shows the distribution
of the end-to-end circuit congestion for all measured cells.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Time to First Byte (s)

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

Fr
ac

tio
n

vanilla

global

KIST

0.5 1 2 4 8
0.4

0.6

0.8

1.0

(a) All Clients

0 1 2 3 4 5 6 7 8
Time to Last Byte (s)

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

Fr
ac

tio
n

vanilla

global

KIST

(b) 320 KiB “web” clients

0 10 20 30 40 50 60 70 80
Time to Last Byte (s)

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

Fr
ac

tio
n

vanilla

global

KIST

(c) 5 MiB “bulk” clients

Figure 7: Client performance for vanilla Tor, KIST, and the global scheduling part of KIST (without enforcing write limits).
Figure 7a shows the distribution of the time until the client receives the first byte of the data payload, for all clients, while the inset
graph shows the same distribution with a logarithmic x-axis. Figures 7b and 7c show the distribution of time to complete a 320 KiB
and 5 MiB file by the “web” and “bulk” clients, respectively.

Congestion: Recall that the goal of KIST is to move con-
gestion from the kernel outbound queue to Tor where it
can better be managed. Figure 6 shows KIST’s effective-
ness in this regard. In particular, Figure 6a shows that
KIST reduces kernel outbound congestion over vanilla
Tor by one to two order of magnitude for over 40 percent
of the sampled cells. Further, it shows that the queue
time is less than 200 milliseconds for 99 percent of the
cells measured, compared to over 4000 milliseconds for
both vanilla Tor and global scheduling alone.

Figure 6b shows how global scheduling and KIST in-
crease the congestion inside of Tor. Both global schedul-
ing and KIST result in sharp Tor queue time increases
up to 10 milliseconds, after which the existing 10 mil-
lisecond GlobalWriteTimeout timer event will fire
and Tor will flush more data to the kernel. With global
scheduling, most of the data queued in Tor quickly gets
transferred to the kernel following this timeout, whereas
data is queued inside of Tor much longer when using
KIST. This result is an explicit feature of KIST, as it
means Tor will have more control over data priority when
scheduling circuits.

While we have shown above how KIST is able to move
congestion from the kernel into Tor, Figure 6c shows the
aggregate effect on cell congestion during its complete
existence through the entire end-to-end circuit. KIST re-
duces aggregate circuit congestion from 1010.1 millisec-
onds to 704.5 milliseconds in the median, a 30.3 percent
improvement, while global scheduling reduces conges-
tion by 13 percent to 878.8 milliseconds.

The results in Figure 6 show that KIST indeed
achieves its congestion management goals while high-
lighting the importance of limiting kernel write amounts
in addition to globally scheduling circuits.
Performance: We show in Figure 7 how KIST af-
fects client performance. Figure 7a shows how net-
work latency is generally affected by showing the time
until the first byte of every download by all clients.
Global scheduling alone is roughly indistinguishable
from vanilla Tor, while KIST reduces latency to the first
byte for over 80 percent of the downloads—in the me-
dian, KIST reduces network latency by 18.1 percent from
0.838 seconds to 0.686 seconds. The inset graph has a
logarithmic x-axis and shows that KIST is particularly

138 23rd USENIX Security Symposium USENIX Association

650 700 750 800 850 900 950
Throughput (MiB/s)

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

Fr
ac

tio
n

vanilla

global

KIST

Figure 8: Aggregate relay write throughput for vanilla Tor,
KIST, and the global scheduling part of KIST (without enforc-
ing write limits). Both of our enhancements increase network
throughput over vanilla Tor.

beneficial in the upper parts of the distribution: in the
99th percentile, latency is reduced from more than 7 sec-
onds to less than 2.7 seconds.

Figures 7b and 7c show the distribution of time to
complete each 320 KiB download for the “web” clients
and each 5 MiB file for the “bulk” clients, respectively.
In our experiments, the 320 KiB download times de-
creased by over 1 second for over 40 percent of the down-
loads, while the download times for 5 MiB files increased
by less than 8 seconds for all downloads. These changes
in download times are a result of Tor correctly utiliz-
ing its circuit priority scheduler, which prioritizes traffic
with the lowest exponentially-weighted moving average
throughput. As the “web” clients pause between down-
loads, their traffic is often prioritized ahead of “bulk”
traffic. Our results indicate that not only does KIST de-
crease Tor network latency, it also increases Tor’s ability
to appropriately manage its traffic.
Throughput: We show in Figure 8 KIST’s effect on
relay throughput. Shown is the distribution of aggre-
gate bytes written per second by all relays in the net-
work. We found that throughput improves when using
KIST due to a combination of the reduction in network
latency and our client model: web clients completed their
downloads faster in the lower latency network and there-
fore also downloaded more files. By lowering circuit
congestion, KIST improves utilization of existing band-
width resources over vanilla Tor by 71.6 MiB/s, or 9.8%,
in the median. While the best network utilization is
achieved with global scheduling without write limits (a
150.1 MiB/s, or 20.5%, improvement over vanilla Tor in
the median), we have shown above that it is less effective
than KIST at reducing kernel congestion and allowing
Tor to correctly prioritize traffic.
Overhead: The main overhead in KIST involves the
collection of socket and TCP information from the ker-
nel using three separate calls to getsockopt (socket
capacity, socket length, and TCP info). These three
system calls are made for every connection after ev-

Nov 2011

Feb 2012

May 2012

Aug 2012

Nov 2012

Feb 2013

May 2013

Aug 2013

Nov 2013
0

5

10

15

20

25

To
rp

er
f1

M
B

D
ow

nl
oa

d
Ti

m
e

(s
)

2000

2700

3400

4100

4800

5500

R
elays

Torperf Download

Number Relays

Figure 9: Network size correlates with performance.

ery GlobalWriteTimeout interval. To understand
the overhead involved with these calls, we instrumented
curiosity3 from Section 4 to collect timing information
while performing the syscalls required by KIST. Our test
ran on the live relay running an Intel Xeon x3450 CPU
at 2.67GHz for 3 days and 14 hours, and collected a tim-
ing sample every second for a total of 309,739 samples.
We found that the three system calls took 0.9140 mi-
croseconds per connection in the median, with a mean
of 0.9204 and a standard deviation of 3.1×10−5.

The number of connections a relay may have is
bounded above roughly by the number of relays in the
network, which is currently around 5,000. Therefore, we
expect the overhead to be less than 5 milliseconds and
reasonable for current relays. If this overhead becomes
problematic as Tor grows, the gathering of kernel infor-
mation can be outsourced to a helper thread and continu-
ously updated over time. Further, we have determined
through discussions with Linux kernel developers that
the netlink socket diag interface could be used to collect
information for several sockets at once—an optimization
that may provide significant reductions in overhead.

6 Security Analysis

Performance and Security: Performance and ease of
use affect adoption rates of any network technology.
They have played a central role in the size and diversity
of the Tor userbase. This can then affect the size of the
network itself as users are more willing to run parts of the
network or contribute financially to its upkeep, e.g., via
torservers.net. Growth from performance improvements
affect the security of Tor by increasing the uncertainty for
many types of adversaries concerning who is communi-
cating with whom [17, 20, 22, 37]. Performance factors
in anonymous communication systems like Tor are thus
pertinent to security in a much more direct way than they
typically would be for, say, a faster signature algorithm’s
impact on the security of an authentication system.

Though real and more significant, direct effects of per-
formance on Tor’s security from network and userbase
growth are also hard to show, given both the variety of

USENIX Association 23rd USENIX Security Symposium 139

0 50 100 150 200 250
Difference (ms)

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

Fr
ac

tio
n

vanilla

KIST

(a) Latency Estimate Difference

0 500 1000 1500 2000
Cumulative Number of Pings

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

Fr
ac

tio
n

vanilla

KIST

(b) Cumulative Pings until Best Estimate

Figure 10: Latency leaks are more pronounced (10a) and are faster (10b) with KIST.

causal factors and the difficulty of gathering useful data
while preserving privacy. Whatever the causal explana-
tion, a correlation (−.62) between Tor performance im-
provement over time (measured by the median download
time of a 1 MB file) and network size is shown in Fig-
ure 9. (Numbers are from the Tor Metrics Portal [8].)
Similar results hold when number of relays is replaced
with bandwidth metrics. Which is more relevant depends
on the adversary’s most significant constraints: adver-
sary size and distribution across the underlying network
are important considerations [39].

More measurable effects can occur if a performance
change creates a new opportunity for attack or makes an
existing attack more effective or easier to mount. Perfor-
mance change may also eliminate or diminish previous
possible or actual attacks. Growth effects are potentially
the greatest security effects of our performance changes,
but we now focus on these more directly observable as-
pects. They include attacks on Tor based on resource
contention or interference [19, 24, 25, 31, 44, 46, 48] or
simply available resource observation [44], or observ-
ing other performance properties, such as latency [31].
Many papers have also explored improvements to Tor
performance via scheduling, throttling, congestion man-
agement, etc. (see Section 2). Manipulating performance
enhancement mechanisms can turn them into potential
vectors of attack themselves [38]. Geddes et al. [25]
analyzed anonymity impact of several performance en-
hancement mechanisms for Tor.
Latency Leak: The basic idea of a latency leak attack
as first set out in [30] is to measure RTT (roundtrip time)
between a compromised exit and the client of some tar-
get connection repeatedly and then to pick the shortest
result as an indication of latency. Next compare this to
the known, measured latency through all the hops in the
circuit except client to entry relay. (Other attacks such as
throughput measurement, discussed below, are assumed
to have already identified the relays in the circuit.) Next,

use that to determine the latency between the client of
the target connection and its entry relay, which is in a
known network location. This can significantly reduce
the range of possible network locations for the client.
When measuring latency using our improved models and
simulator, we discovered that this attack is generally able
to determine latency well with vanilla Tor. While KIST
improves the overall accuracy, the improvement is small
when a good estimate was also found with vanilla Tor.

Figure 10a shows the results of an experiment run on
our model from Section 3 with random circuit and client
choices, indicating the difference between the correct la-
tency and the estimate after a few hundred pings once per
second. Roughly 20% of circuits for both vanilla Tor and
KIST are within 25ms of the correct latency. After this
they diverge, but both have a median latency estimate
of about 50ms or less. It is only for the worst 10-20%
of estimates, which are presumably not useful anyway,
that KIST is substantially better. While the eventual ac-
curacy of the attack is comparable for both, the attacker
under KIST is significantly faster on average. Figure 10b
shows the cumulative number of pings (seconds) until a
best estimate is achieved. After 200 pings, nearly 40%
of KIST circuits have achieved their best estimate while
less than 10% have for vanilla Tor. And the median num-
ber of pings needed for KIST is about 700 vs. 1200 for
vanilla Tor.

The accuracy of the latency attack indicated above is a
significant threat to network location, which from a tech-
nical perspective is what Tor is primarily designed to pro-
tect. It could be diminished by padding latency. Specif-
ically any connection at the edges of the Tor network,
at either source or destination end, could be dynamically
padded by the entry or exit relay respectively to ideally
make latency of all edge connections through that re-
lay uniform—more realistically to significantly decrease
the network location information leaked by latency. Re-
lays can do their own RTT measurements for any edge

140 23rd USENIX Security Symposium USENIX Association

−0.4−0.3−0.2−0.10.0 0.1 0.2 0.3 0.4 0.5

Correlation Score

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

Fr
ac

tio
n

vanilla

KIST

(a) Throughput Correlation, Probe to Target Client

0 200 400 600 800 1000 1200

Number of Guards Remaining

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

Fr
ac

tio
n

vanilla

KIST

(b) Guards Remaining in Candidate Guard Set

Figure 11: While the aggregate throughput correlations of the probe to the true guard over the set of all probes (11a) are not
significantly affected by KIST, it is slightly easier for the adversary to eliminate candidate guards of a target client (for all clients)
(11b) when using KIST.

connection and pad accordingly. There are many issues
around this suggestion, which we leave to future work.
Throughput Leak: The throughput attack introduced by
Mittal et al. [44] identifies the entry relay of a target con-
nection by setting up one-hop probe circuits from attack
clients through all prospective entry relays and back to
the client in order to measure throughput at those relays.
These throughputs are compared to the throughput ob-
served by the exit relay of the target circuit. The attack is
directed against circuits used for bulk downloading since
these will attempt a sustained maximum throughput, and
will result in congestion effects on bottleneck relays that
allow the adversary to reduce uncertainty about possible
entry relays. Mittal et al. also looked at attacks on lower
bandwidth interactive traffic and found some success, al-
though with much less accuracy than for bulk traffic.

We analyze the extent to which KIST affects the
throughput attack. While measuring throughput at en-
try relays, we also adopt the simplification of Geddes et
al. [25] of restricting observations to entry relays that are
not used as middle or exit relays for other bulk download-
ing circuits. This allows us the efficiency of making mea-
surements for several simulated attacks simultaneously
while minimizing interference between their probes.

Figure 11a shows the cumulative distribution of scores
for correlation of probe throughput at the correct entry
relay with throughput at the observed exit relay under
vanilla Tor and under KIST scheduling (on the network
and user model given in Section 3). Throughput was
measured every 100 ms. We found that the throughput
correlations are not significantly affected by KIST.

To explain the correlation scores, recall from Sec-
tion 5.2 how KIST reduces both circuit congestion and
network latency by allowing Tor to properly prioritize
circuits independent of the TCP connections to which
they belong. This leads to two competing potential ef-

fects on the throughput attack: (1) a less congested net-
work will increase the sensitivity of the probes to vari-
ations in throughput, thereby allowing stronger corre-
lations between the throughput achieved by the probe
client and that achieved by the target client; and (2) a cir-
cuit’s throughput is most correlated with that of its bottle-
neck relay, and KIST’s improved scheduling should also
reduce the bottleneck effects of congestion in the net-
work and allow weaker throughput correlations. Further,
the improved priority scheduling (moving from round-
robin over TCP connections to properly utilizing EWMA
over circuits) will cause the throughput of each client to
become slightly “burstier” over the short term as the pri-
ority causes the scheduler to oscillate between the cir-
cuits. We suspect that the similar correlation scores are
the result of combining these effects.

To further understand KIST’s affect on the throughput
attack, we measure how the correlation of every client’s
throughput to the true guard’s throughput compares to
the correlation of the client’s throughput to that of every
other candidate guard in the network. For every client,
we start with a candidate guard set of all guards, and re-
move those guards with a lower correlation score with
the client than the true guard’s score. Figure 11b shows
the distribution, over all clients, of the extent to which
we were able to reduce the size of the candidate guard
set using this heuristic. Although KIST reduced the un-
certainty about the true guard used by the target client,
we do not expect the small improvement to significantly
affect the ability to conduct a successful throughput at-
tack in practice.

7 Conclusion

In this paper, we outlined the results of an in-depth
congestion study using both public and private Tor net-

USENIX Association 23rd USENIX Security Symposium 141

works. We identified that most congestion occurs in
outbound kernel buffers, analyzed Tor socket manage-
ment, and designed a new socket transport mechanism
called KIST. Through evaluation in a full-scale private
Shadow-Tor network, we conclude that KIST is capa-
ble of moving congestion into Tor where it can be bet-
ter managed by application priority scheduling mecha-
nisms. More specifically, we found that by considering
all sockets and respecting TCP state information when
writing data to the kernel, KIST reduces both conges-
tion and latency while increasing utilization. Finally, we
performed a detailed evaluation of KIST against well-
known latency and throughput attacks. While KIST in-
creases the speed at which true network latency can be
calculated, it does not significantly affect the accuracy of
the probes required to correlate throughput.

Future work should extend our simulation-based eval-
uation and consider how KIST performs for relays in
the live Tor network. We note that our analysis is
based exclusively on Linux relays, as 91% of Tor’s band-
width is provided by relays running a Linux-based dis-
tribution [58]. Although we expect KIST to improve
performance similarly across platforms because it pri-
marily works by managing socket buffer levels, future
work should consider how KIST is affected by the inter-
operation of relays running on a diverse set of OSes. Fi-
nally, our KIST prototype would benefit from optimiza-
tions, particularly by running the process of gathering
kernel state information in a separate thread and/or us-
ing the netlink socket diag interface.

Acknowledgments

We thank our shepherd, Rachel Greenstadt, and the
anonymous reviewers for providing feedback that helped
improve this work. We thank Roger Dingledine for
discussions about measuring congestion in Tor, and
Patrick McHardy for suggesting the use of the netlink
socket diag interface. This work was partially supported
by ONR, DARPA, and the National Science Founda-
tion through grants CNS-1149832, CNS-1064986, CNS-
1204347, CNS-1223825, and CNS-1314637. This mate-
rial is based upon work supported by the Defense Ad-
vanced Research Project Agency (DARPA) and Space
and Naval Warfare Systems Center Pacific under Con-
tract No. N66001-11-C-4020. Any opinions, findings
and conclusions or recommendations expressed in this
material are those of the author(s) and do not necessar-
ily reflect the views of the Defense Advanced Research
Project Agency and Space and Naval Warfare Systems
Center Pacific.

References
[1] Alexa top 1 million sites. http://s3.amazonaws.com/

alexa-static/top-1m.csv.zip. Retrieved 2012-01-31.

[2] CAIDA data. http://www.caida.org/data.

[3] DETER testbed. http://www.isi.edu/deter.

[4] libevent event notification library. http://libevent.org/.

[5] libkqtime code repository. https://github.com/
robgjansen/libkqtime.git.

[6] libpcap portable C/C++ library for network traffic capture.
http://www.tcpdump.org/.

[7] Shadow homepage and code repositories. https://shadow.
github.io/, https://github.com/shadow/.

[8] Tor Metrics Portal. http://metrics.torproject.org/.

[9] TorPerf. https://gitweb.torproject.org/
torperf.git/.

[10] TorPS homepage. http://torps.github.io/.

[11] AKHOONDI, M., YU, C., AND MADHYASTHA, H. V. LAS-
Tor: A low-latency as-aware Tor client. In IEEE Symposium on
Security and Privacy (Oakland) (2012).

[12] ALLMAN, M., PAXSON, V., AND BLANTON, E. TCP Conges-
tion Control. RFC 5681 (Draft Standard), Sept. 2009.

[13] ALSABAH, M., BAUER, K., ELAHI, T., AND GOLDBERG, I.
The path less travelled: Overcoming Tor’s bottlenecks with traffic
splitting. In Privacy Enhancing Technologies Symposium (PETS)
(2013).

[14] ALSABAH, M., BAUER, K., AND GOLDBERG, I. Enhancing
Tor’s performance using real-time traffic classification. In ACM
Conference on Computer and Communications Security (CCS)
(2012).

[15] ALSABAH, M., BAUER, K., GOLDBERG, I., GRUNWALD, D.,
MCCOY, D., SAVAGE, S., AND VOELKER, G. DefenestraTor:
Throwing out windows in Tor. In Privacy Enhancing Technolo-
gies Symposium (PETS) (2011).

[16] ALSABAH, M., AND GOLDBERG, I. PCTCP: Per-circuit tcp-
over-ipsec transport for anonymous communication overlay net-
works. In ACM Conference on Computer and Communications
Security (CCS) (2013).

[17] BACK, A., MÖLLER, U., AND STIGLIC, A. Traffic analysis
attacks and trade-offs in anonymity providing systems. In Work-
shop on Information Hiding (IH) (2001).

[18] CHAABANE, A., MANILS, P., AND KAAFAR, M. Digging into
anonymous traffic: A deep analysis of the tor anonymizing net-
work. In IEEE Conference on Network and System Security (NSS)
(2010).

[19] CHAN-TIN, E., SHIN, J., AND YU, J. Revisiting circuit clogging
attacks on Tor. In IEEE Conference on Availability, Reliability
and Security (ARES) (2013).

[20] DINGLEDINE, R., AND MATHEWSON, N. Anonymity loves
company: Usability and the network effect. In Workshop on the
Economics of Information Security (WEIS) (2006).

[21] DINGLEDINE, R., MATHEWSON, N., AND SYVERSON, P. Tor:
The second-generation onion router. In USENIX Security Sympo-
sium (USENIX) (2004).

[22] DINGLEDINE, R., MATHEWSON, N., AND SYVERSON, P. De-
ploying low-latency anonymity: Design challenges and social
factors. IEEE Security & Privacy 5, 5 (Sept./Oct. 2007), 83–87.

[23] DINGLEDINE, R., AND MURDOCH, S. J. Performance improve-
ments on Tor or, why Tor is slow and what we’re going to do
about it. Tech. Rep. 2009-11-001, The Tor Project, 2009.

[24] EVANS, N. S., DINGLEDINE, R., AND GROTHOFF, C. A prac-
tical congestion attack on Tor using long paths. In USENIX Se-
curity Symposium (USENIX) (2009).

142 23rd USENIX Security Symposium USENIX Association

[25] GEDDES, J., JANSEN, R., AND HOPPER, N. How low can you
go: Balancing performance with anonymity in Tor. In Privacy
Enhancing Technologies Symposium (PETS) (2013).

[26] GOPAL, D., AND HENINGER, N. Torchestra: Reducing interac-
tive traffic delays over Tor. In ACM Workshop on Privacy in the
Electronic Society (WPES) (2012).

[27] HA, S., RHEE, I., AND XU, L. CUBIC: a new TCP-friendly
high-speed TCP variant. ACM SIGOPS Operating Systems Re-
view 42, 5 (2008), 64–74.

[28] HAHN, S., AND LOESING, K. Privacy-preserving ways to esti-
mate the number of Tor users. Tech. Rep. 2010-11-001, The Tor
Project, 2010.

[29] HOPPER, N. Protecting Tor from botnet abuse in the long term.
Tech. Rep. 2013-11-001, The Tor Project, 2013.

[30] HOPPER, N., VASSERMAN, E. Y., AND CHAN-TIN, E. How
much anonymity does network latency leak? In ACM Confer-
ence on Computer and Communications Security (CCS) (2007).
Expanded and revised version in [31].

[31] HOPPER, N., VASSERMAN, E. Y., AND CHAN-TIN, E. How
much anonymity does network latency leak? ACM Transactions
on Information and System Security (TISSEC) 13, 2 (Feb. 2010),
13–28.

[32] JAIN, R., AND ROUTHIER, S. Packet trains–measurements and
a new model for computer network traffic. IEEE Selected Areas
in Communications 4, 6 (1986), 986–995.

[33] JANSEN, R., BAUER, K., HOPPER, N., AND DINGLEDINE, R.
Methodically modeling the Tor network. In USENIX Workshop
on Cyber Security Experimentation and Test (CSET) (2012).

[34] JANSEN, R., GEDDES, J., WACEK, C., SHERR, M., AND
SYVERSON, P. Appendices to accompany “Never been
KIST: Tor’s congestion management blossoms with kernel-
informed socket transport”. Tech. Rep. 14-012, Univ.
of Minnesota, 2014. http://www.cs.umn.edu/tech_
reports_upload/tr2014/14-012.pdf.

[35] JANSEN, R., AND HOPPER, N. Shadow: Running Tor in a box
for accurate and efficient experimentation. In USENIX Security
Symposium (USENIX) (2012).

[36] JANSEN, R., HOPPER, N., AND KIM, Y. Recruiting new Tor re-
lays with BRAIDS. In ACM Conference on Computer and Com-
munications Security (CCS) (2010).

[37] JANSEN, R., JOHNSON, A., AND SYVERSON, P. LIRA:
Lightweight incentivized routing for anonymity. In Network and
Distributed System Security Symposium (NDSS) (2013).

[38] JANSEN, R., SYVERSON, P., AND HOPPER, N. Throttling Tor
bandwidth parasites. In USENIX Security Symposium (USENIX)
(2012).

[39] JOHNSON, A., WACEK, C., JANSEN, R., SHERR, M., AND
SYVERSON, P. Users get routed: Traffic correlation on tor by
realistic adversaries. In ACM Conference on Computer and Com-
munications Security (CCS) (2013).

[40] MATHEWSON, N. Evaluating SCTP for Tor. http:
//archives.seul.org/or/dev/Sep-2004/
msg00002.html, Sept. 2004. Listserv posting.

[41] MATHIS, M., AND MAHDAVI, J. Forward acknowledgement:
Refining TCP congestion control. ACM SIGCOMM Computer
Communication Review 26, 4 (1996), 281–291.

[42] MATHIS, M., MAHDAVI, J., FLOYD, S., AND ROMANOW, A.
TCP Selective Acknowledgment Options. RFC 2018 (Proposed
Standard), Oct. 1996.

[43] MCCOY, D., BAUER, K., GRUNWALD, D., KOHNO, T., AND
SICKER, D. Shining light in dark places: Understanding the Tor
network. In Privacy Enhancing Technologies Symposium (PETS)
(2008).

[44] MITTAL, P., KHURSHID, A., JUEN, J., CAESAR, M., AND
BORISOV, N. Stealthy traffic analysis of low-latency anonymous
communication using throughput fingerprinting. In ACM Confer-
ence on Computer and Communications Security (CCS) (2011).

[45] MOORE, W. B., WACEK, C., AND SHERR, M. Exploring the po-
tential benefits of expanded rate limiting in Tor: Slow and steady
wins the race with Tortoise. In Annual Computer Security Appli-
cations Conference (ACSAC) (2011).

[46] MURDOCH, S. J. Hot or not: Revealing hidden services by their
clock skew. In ACM Conference on Computer and Communica-
tions Security (CCS) (2006).

[47] MURDOCH, S. J. Comparison of Tor datagram designs. Tech.
Rep. 2011-11-001, The Tor Project, 2011.

[48] MURDOCH, S. J., AND DANEZIS, G. Low-cost traffic analysis
of Tor. In IEEE Symposium on Security and Privacy (Oakland)
(2005).

[49] NOWLAN, M. F., TIWARI, N., IYENGAR, J., AMIN, S. O., AND
FORD, B. Fitting square pegs through round pipes. In USENIX
Symposium on Networked Systems Design and Implementation
(NSDI) (2012).

[50] NOWLAN, M. F., WOLINSKY, D., AND FORD, B. Reducing la-
tency in Tor circuits with unordered delivery. In USENIX Work-
shop on Free and Open Communications on the Internet (FOCI)
(2013).

[51] The ns2 Network Simulator. http://www.isi.edu/
nsnam/ns/.

[52] PAXSON, V., ALLMAN, M., CHU, J., AND SARGENT, M. Com-
puting TCP’s Retransmission Timer. RFC 6298 (Proposed Stan-
dard), June 2011.

[53] RAMACHANDRAN, S. Web metrics: Size and number of re-
sources. https://developers.google.com/speed/
articles/web-metrics, 2010.

[54] REARDON, J., AND GOLDBERG, I. Improving Tor using a TCP-
over-DTLS tunnel. In USENIX Security Symposium (USENIX)
(2009).

[55] SHERR, M., MAO, A., MARCZAK, W. R., ZHOU, W., LOO,
B. T., AND BLAZE, M. A3: An Extensible Platform for
Application-Aware Anonymity. In Network and Distributed Sys-
tem Security Symposium (NDSS) (2010).

[56] SNADER, R., AND BORISOV, N. A tune-up for Tor: Improving
security and performance in the Tor network. In Network and
Distributed System Security Symposium (NDSS) (2008).

[57] TANG, C., AND GOLDBERG, I. An improved algorithm for Tor
circuit scheduling. In ACM Conference on Computer and Com-
munications Security (CCS) (2010).

[58] Tor network status. http://torstatus.blutmagie.de/
index.php.

[59] WACEK, C., TAN, H., BAUER, K., AND SHERR, M. An em-
pirical evaluation of relay selection in Tor. In Network and Dis-
tributed System Security Symposium (NDSS) (2013).

[60] WANG, T., BAUER, K., FORERO, C., AND GOLDBERG, I.
Congestion-aware path selection for Tor. In Financial Cryptog-
raphy and Data Security (FC) (2012).

[61] WEIGLE, E., AND FENG, W.-C. A comparison of TCP auto-
matic tuning techniques for distributed computing. In IEEE Sym-
posium on High Performance Distributed Computing (HPDC)
(2002).

