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Abstract
Control-Flow Integrity (CFI) has been recognized as an
important low-level security property. Its enforcement
can defeat most injected and existing code attacks, in-
cluding those based on Return-Oriented Programming
(ROP). Previous implementations of CFI have required
compiler support or the presence of relocation or debug
information in the binary. In contrast, we present a tech-
nique for applying CFI to stripped binaries on x86/Linux.
Ours is the first work to apply CFI to complex shared
libraries such as glibc. Through experimental evalu-
ation, we demonstrate that our CFI implementation is
effective against control-flow hijack attacks, and elimi-
nates the vast majority of ROP gadgets. To achieve this
result, we have developed robust techniques for disas-
sembly, static analysis, and transformation of large bina-
ries. Our techniques have been tested on over 300MB of
binaries (executables and shared libraries).

1 Introduction
Since its introduction by Abadi et. al. [1, 2], Control-
Flow Integrity (CFI) has been recognized as an impor-
tant low-level security property. Unlike address-space
randomization [24, 5] and stack cookies [12, 17], CFI’s
control-flow hijack defense is not vulnerable to the re-
cent spate of information leakage and guessing attacks
[40, 37, 16]. Unlike code injection defenses such as
DEP (data execution prevention), CFI can protect from
existing code attacks such as return-oriented program-
ming (ROP) [38, 9, 49] and jump-oriented programming
(JOP) [10, 7]. In addition to exploit defense, CFI pro-
vides a principled basis for building other security mech-
anisms that are robust against low-level code attacks, as
evidenced by its application in software fault isolation
[27, 47] and sandboxing of untrusted code [15, 46].

An important feature of CFI is that it can be meaning-

∗This work was supported in part by AFOSR grant FA9550-09-1-
0539, NSF grant CNS-0831298, and ONR grant N000140710928.

fully enforced on binaries. Indeed, some applications of
CFI, such as sandboxing untrusted code, explicitly target
binaries. Most existing CFI implementations, including
those in Native Client [46], Pittsfield [27], Control-flow
locking [6] and many other works [22, 3, 42, 4, 36] are
implemented within compiler tool chains. They rely on
information that is available in assembly code or higher
levels, but unavailable in COTS binaries. The CFI imple-
mentation of Abadi et al [2] relies on relocation informa-
tion. Although this information is included in Windows
libraries that support ASLR, UNIX systems (and specif-
ically, Linux systems) rely on position-independent code
for randomization, and hence do not include relocation
information in COTS binaries. We therefore develop a
new approach for enforcing CFI on COTS binaries with-
out relocation or other high-level information.

Despite operating with less information, the security
and performance provided by our approach are compara-
ble to that of the existing CFI implementations. More-
over, our implementation is robust enough to handle
complex executables as well as shared libraries. We be-
gin by summarizing our approach and results.

1.1 CFI for COTS Binaries
We present the first practical approach for CFI enforce-
ment that scales to large binaries as well as shared
libraries without requiring symbol, debug, or reloca-
tion information. We have developed techniques that
cope with the challenges presented by static analysis
and transformation of large programs, including those
of Firefox, Adobe Acrobat 9, GIMP-2.6 and glibc. In
our experiments, we have transformed and tested over
300MB of binaries. Some of the key features of our de-
sign are:
• Modularity: Each shared library and executable is in-

strumented independently to enforce CFI. Our tech-
nique ensures that when an executable is loaded and
run, CFI property is enforced globally across the exe-
cutable and all the shared libraries used by it.
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• Transparency: If our instrumentation made even the
smallest changes to (stack, heap or static) mem-
ory used by a program, it can cause complex pro-
grams to fail or function differently. As an exam-
ple, consider saved return addresses on the program
stack. Since code rewriting causes instruction loca-
tions to change, a straight-forward implementation
would change these saved return addresses. Unfortu-
nately, programs use this information in several ways:

– Position-independent code (PIC) computes the lo-
cations of static variables from return address.

– C++ exception handler uses return addresses to
identify the function (or more specifically, the try-
block within the function) to which the exception
needs to be dispatched.

– A program may use the return address (and any
other code pointer) to read constant data stored in
the midst of code, or more generally, its own code.

Changes to saved return address would cause these
uses to break, thus leading to application failure. For
this reason, our instrumentation has been designed to
provide full transparency.

The principal challenge in achieving full transparency
is one of performance. To address this challenge, we
have developed new optimization techniques.

• Compiler independence and support for hand-coded
assembly: Our approach does not make strong as-
sumptions regarding the compiler used to generate
a binary, such as the the conventions for generating
jump tables. Indeed, our code has been tested with
hand-written assembly, such as that found in low-
level libraries (e.g., glibc). It has been tested with the
two popular compilers on Linux, GCC and LLVM.

1.2 Quality of Protection
An ideal CFI implementation will restrict program ex-
ecution to exactly the set of program paths that can be
taken. In practice, due to the fact that targets of indi-
rect control-flow (ICF) transfers are difficult to predict,
CFI implementations enforce a conservative approxima-
tion of ideal CFI. Different techniques enforce different
approximations, so a natural and important question con-
cerns the relative strengths of these techniques. To an-
swer this question, we propose a simple metric, called
average indirect target reduction (AIR) which quantifies
the fraction of possible indirect targets eliminated by a
CFI technique. To compute AIR, we start with the frac-
tion of possible targets eliminated by a CFI technique for
each ICF transfer instruction, and average this number
across all ICF transfer instructions. (See Definition 1 on
Page 6.)

AIRs of several types of CFI are shown in Figure 1.
For the base case of an unprotected program, every byte

CFI Description AIR
type (%)
null no CFI protection 0.00
instr Restrict ICFs to valid instruction boundaries 79.27
bundle Instructions grouped into 32-byte bundles [46]. 96.04

All ICFs must target the start of a bundle.
reloc CFI based on relocation information. Indirect 99.13

calls/jumps to target any location present in
relocation table, returns to target a location
immediately following a call.

strict Enforces property closely matching reloc-CFI 99.08
but does not require relocation info.

bin Generalizes strict-CFI to avoid special 98.86
treatment of threads and exceptions

Figure 1: CFI flavors and strengths on SPEC CPU2006.

address in the code is a possible ICF target, and the AIR
is 0%. We then define a coarse form of CFI called instr-
CFI that limits ICF transfers to instruction boundaries. It
eliminates attacks that jump to the middle of instructions.
Bundle-CFI is another coarse form of CFI used in Pitts-
Field [27] and Native Client [46]. It limits ICF transfers
to addresses that are multiples of 16 (PittsField) or 32
(Native Client).

The next version, reloc-CFI, captures the strength of
CFI implementation described by Abadi et al [2]. It relies
on relocation information in binaries. (See Section 4.2
for more discussion).

Large and complex binaries contain several exceptions
to the simple model of calls, returns and indirect jumps
embodied in many CFI works:
• Returns used as jumps. Return instructions are some

times used to jump to functions by pushing their ad-
dress on the stack and returning. Examples include
code for thread context switching, signal handling,
etc.

• Returns to caller function, but not a return address.
Some times, returns go back to a caller, but don’t tar-
get a return address, e.g., due to C++ exceptions.

• Jumps to return addresses. Functions such as longjmp
use an indirect jump that targets a return address.

• Runtime generation of new ICF targets. Some appli-
cations create ICF targets on the fly using dlopen to
add additional libraries at any point during runtime.

• Indirect jumps using arithmetic operations. Low-
level assembly code can contain ICF targets that are
computed using multiple arithmetic operations.

To cope with these exceptions, our approach, called bin-
CFI, avoids making any of the common assumptions re-
garding ICF targets in general. Instead, it relies on static
analysis and a very conservative set of assumptions so
that it can scale to large executables and libraries.

Note that bin-CFI eliminates about 99% of possible
indirect targets. Moreover, it experiences only a small
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decrease in AIR as compared to reloc-CFI. This provides
evidence that our approach achieves compatibility with
COTS binaries without incurring a major reduction in
its quality of protection.

To further pinpoint the sources of the slight decrease in
AIR, we implemented a stricter version of bin-CFI called
strict-CFI. It uses the same binary analysis techniques as
bin-CFI, but instead of providing a general way to han-
dle exceptions and threads, it simply uses a relaxed pol-
icy for a few specific instructions in system libraries that
perform thread switching or exception unwinding. Note
that the strict-CFI has an AIR very close to that of reloc-
CFI, pointing out that the sources of AIR decrease are the
exceptions that need to be made in order to support large
and complex binaries. Effective precision loss incurred
by our static analysis is very small (0.05%) as compared
to the use of relocation information.

1.2.1 Experimental Evaluation

We present a detailed experimental evaluation of our
technique. Key points include:
• Good performance: Techniques for achieving trans-

parency and modularity can exact a price in terms of
performance. We describe several optimization tech-
niques in Section 6 that have reduced the overhead to
about 8.54% across the SPEC CPU benchmark suite.

• ROP and JOP defense: As our AIR measurements
indicate, about 99% of possible ICF targets have been
eliminated by bin-CFI. Moreover, on the SPEC CPU
2006 benchmark, our technique also eliminated about
93% of ROP gadgets that were found by the popular
ROP gadget discovery tool ROPGadget [35].

• Control-flow hijack detection. Our results show that
bin-CFI defeats the vast majority of control-flow hi-
jack attacks from the RIPE benchmark [45].

2 Disassembly
2.1 Background

There are two basic techniques for disassembly: linear
disassembly and recursive disassembly. Linear disas-
sembly starts by disassembling the first instruction in a
given segment. Once an instruction at an address l is
disassembled, and is determined to have a length of k
bytes, disassembly proceeds to the instruction starting at
address l + k. This process continues to the end of the
segment.

Linear disassembly can be confused by “gaps” in code
that consist of data or alignment-related padding. These
gaps will be interpreted by linear disassembly as in-
structions and decoded, resulting an erroneous disas-
sembly. With variable-length instruction sets such as
those of x86, incorrect disassembly of one instruction

can cause misidentification of the start of the next in-
struction; hence these errors can cascade even past the
end of gaps.

Recursive disassembly uses a different strategy, one
that is similar to a depth-first construction of program’s
control-flow graph (CFG). It starts with a set of code
entry points specified in the binary. For an executable,
there may be just one such entry point specified, but for
shared libraries, the beginning of each exported functions
is specified as well. The technique starts by disassem-
bling the instruction at an entry point. Subsequent in-
structions are disassembled in a manner similar to linear
disassembly. The difference with linear disassembly oc-
curs when control-flow transfer instructions are encoun-
tered. Specifically, (a) each target identified by a direct
control-flow transfer instruction is added to the list of
entry points, and (b) disassembly stops at unconditional
control-flow transfers.

Unlike linear disassembly, recursive disassembly does
not get confused by gaps in code, and hence does not
produce incorrect disassembly1. However, it fails to dis-
assemble code that is reachable only via ICF transfers.

Incompleteness of recursive disassembly can be miti-
gated by providing it a list of all targets that are reachable
via ICF transfers. This list can be computed from relo-
cation information. However, in stripped binaries, which
typically do not contain relocation information, recursive
disassembly can fail to disassemble significant parts of
the code.

2.2 Our Disassembly Technique
The above discussion on using relocation information to
complete recursive disassembly suggests the following
strategy for disassembly:
• Develop a static analysis to compute ICF targets.
• Modify recursive disassembly to make use of these as

possible entry points.
Unfortunately, the first step will typically result in a su-
perset of possible ICF targets: some of these locations
don’t represent code addresses. Thus, blindly following
ICF targets computed by static analysis can lead to incor-
rect disassembly. We therefore use a different strategy,
one that combines linear and recursive disassembly tech-
niques, and uses static analysis results as positive (but not
definitive) evidence about correctness of disassembly.

Our approach starts by eagerly disassembling the
entire binary using linear disassembly, which is then
checked for errors. The error checking step primarily
relies on the steps used in recursive disassembly. Finally,

1This does rely on some assumptions: (a) calls must return to the
instruction following the call, (b) all conditional branches are followed
by valid code, and (c) all targets of (conditional as well as uncondi-
tional) direct control-flow transfers represent legitimate code. These
assumptions are seldom violated, except in case of obfuscated code.

3



340 22nd USENIX Security Symposium USENIX Association

an error correction step identifies and marks regions of
disassembled code as representing gaps. The error de-
tection step relies on the following checks:
• Invalid opcode: Some byte patterns do not corre-

spond to any instruction, so attempts to decode them
will result in errors. This is relatively rare because
x86 machine code is very dense. But when it occurs,
it is a definitive indicator of a disassembly error.

• Direct control transfers outside the current module.
Cross-module transfers need to use special structures
called program-linkage table (PLT) and global offset
table (GOT), and moreover, need to use ICF transfers.
Thus, any direct control transfer to an address outside
the current module indicates erroneous disassembly.

• Direct control transfer to the middle of an instruc-
tion: This can happen either because of incorrect dis-
assembly of the target, or incorrect disassembly of the
control-flow transfer instruction. Detection of addi-
tional errors near the source or target will increase our
confidence regarding which of the two has been incor-
rectly disassembled. In the absence of additional in-
formation, our approach considers both possibilities.

Since errors in linear disassembly arise due to gaps,
our error correction step relies on identifying and mark-
ing these gaps. An incorrectly disassembled instruction
signifies the presence of a gap, and we need to find its
beginning and end. To find the beginning of the gap, we
simply walk backward from the erroneously disassem-
bled instruction to the closest preceding unconditional
control-flow transfer. If there are additional errors within
a few bytes preceding the gap, the scan is continued for
the next preceding unconditional control-flow transfer.
To find the end of the gap, we rely on static analysis re-
sults (Section 3). Specifically, the smallest ICF target
larger than the address of the erroneously disassembled
instruction is assumed to be the end of the gap. Once
again, if there are disassembly errors in the next few
bytes, we extend the gap to the next larger ICF target.

After the error correction step, all identified disassem-
bly errors are contained within gaps. At this point, the bi-
nary is disassembled again, this time avoiding the disas-
sembly of the marked gaps. If no errors are detected this
time, then we are done. Otherwise, the whole process
needs to be repeated. While it may seem that repetition
of disassembly is an unnecessarily inefficient measure,
we have used it because of its simplicity, and because
disassembly errors have been so rare in our implementa-
tion that no repetition was needed for the vast majority
of our benchmarks.

3 Indirect Control Flow Analysis
In this section, we describe a static analysis for discov-
ering possible ICF targets. We classify ICF targets into

several categories, and devise distinct analyses to com-
pute them:

• Code pointer constants (CK) consists of code ad-
dresses that are computed at compile-time.

• Computed code addresses (CC) include code ad-
dresses that are computed at runtime.

• Exception handling addresses (EH) include code ad-
dresses that are used to handle exceptions.

• Exported symbol addresses (ES) include export func-
tion addresses.

• Return addresses (RA) include the code addresses
next of a call.

Our static analysis results are filtered to retain only those
addresses that represent valid instruction boundaries in
disassembled code.

3.1 Identifying Code Pointer Constants (CK)

In general, there is no way to distinguish a code pointer
from other types of constants in code. So, we take a con-
servative approach: any constant that “looks like a code
pointer,” as per by the following tests, is included in CK:

• it falls within the range of code addresses in the cur-
rent module.

• it points to an instruction boundary in disassembled
code.

Note that a module has no compile-time knowledge of
addresses in another module, and hence it suffices to
check for constants that fall within the range of code ad-
dresses in the current module. For shared libraries, ab-
solute addresses are unknown, so we check if the con-
stant represents a valid offset from the base of the code
segment. It is also possible that the offset may be with
respect to the GOT of the shared library, so our validity
check takes that into account as well.

The entire code and data segments are scanned for pos-
sible code constants as determined by the procedure in
the preceding paragraph. Since 32-bit values need not
be aligned on 4-byte boundaries on x86, we use a 4-byte
sliding window over the code and data to identify all po-
tential code pointer constants.

3.2 Identifying Computed Code Pointers (CC)

Whereas our CK analysis was very conservative, it is dif-
ficult to bring the same level of conservativeness to the
analysis of computed code pointers. This is because, in
general, arbitrary computations may be performed on a
constant before it is used as an address, and it would be
impossible to estimate the results of such operations with
any degree of accuracy. However, these general cases are
just a theoretical possibility. The vast majority of code
is generated from high-level languages where arbitrary
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pointer arithmetic on code pointers isn’t meaningful2.
Even for hand-written assembly, considerations such as
maintainability, reliability and portability lead program-
mers to avoid arbitrary arithmetic on code pointers. So,
rather than supporting arbitrary code pointer computa-
tion, we support computed code pointers in a limited set
of contexts where they seem to arise in practice. Indeed,
the only context in which we have observed code pointer
arithmetic is that of jump tables3.

The most common case of jump tables arise from com-
piling switch statements in C and C++ programs. If
these were the only sources of CC, then a simple ap-
proach could be developed that is based on typical con-
ventions used by compilers for translating switch state-
ments. However, this approach isn’t feasible in our case
since we wish to handle many low-level libraries that
contain hand-written assembly code. So, we begin by
identifying properties that we believe are generic to jump
tables:
• Jump table targets are intra-procedural: the ICF trans-

fer instruction and ICF target are in the same function.
(We don’t require function boundaries — we estimate
them conservatively, as described below.)

• The target address is computed using simple arith-
metic operations such as additions and multiplication.

• Other than one quantity that serves as an index, all
other quantities involved in the computation are con-
stants in the code or data segment.

• All of the computation takes place within a fixed size
window of instructions, currently set to 50 instruc-
tions in our implementation.

Based on these characteristics, we have developed a
static analysis technique to compute possible CC targets.
It uses a three-step process. The first step is the identi-
fication of function boundaries and the construction of a
control-flow graph. In the absence of full symbol table
information, it is difficult to identify all function bound-
aries, so we fall back to the following approach that
uses information about exported function symbols. We
treat the region between two successive exported func-
tion symbols as an approximation of a function. (Note
that this approximation is conservative, as there may be
non-exported functions in between.) We then construct a
control-flow graph for each region.

In the second step, we identify instructions that per-
form an indirect jump. We perform a backward walk
from these instructions using the CFG. All backward
paths are followed, and for each path, we trace the

2This is true even in languages that are notorious for pointer arith-
metic, such as C.

3C++ exception handling also involved address arithmetic on return
addresses, but we can rely on exception handler information that must
be included in binaries rather than the CC analysis.

chain of data dependences to compute an expression for
the indirect jump target. This expression has the form
∗(CE1 + Ind)+CE2, where CE1 and CE2 denote expres-
sions consisting of only constants, Ind represents the in-
dex variable, and * denotes memory dereferencing. In
some cases, it is possible to extend the static analysis to
identify the range of values that can be taken by Ind.
However, we have not implemented such an analysis, es-
pecially because the index value may come from other
functions. Instead, we make an assumption that valid
Ind values will start around 0.

In the third step, we enumerate possible values for the
index variable, compute the jump target for each value,
and check if it falls within the current region. Specifi-
cally, we check if CE1 + Ind falls within the data or code
segment of the current module, and if so, retrieve the
value stored at this location. It is then added with CE2
and the result checked to determine if it falls within the
current region. If so, the target is added to the set CC. If
either of these checks fail, Ind value is deemed invalid.

We start from Ind value of 1, and explore values on
either side until we reach values for which the computed
target is invalid.

We point out that the backward walk through the CFG
can cross function boundaries, e.g., traversing into the
body of a called function. It may also go backwards
through indirect jumps. To support this case, we ex-
tend the CFG to capture indirect jumps discovered by
the analysis. The maximum extent of backward pass is
bounded by the window size specified above.

The above procedure can fail in some cases, e.g., if
CC computation is dispersed beyond the 50-instruction
window used in the analysis, or if the computation does
not have the form ∗(CE1+ Ind)+CE2. In such cases, we
can conservatively add every instruction address within
the region to CC.

3.3 Identifying Other Code Addresses

Below, we describe the computation of the three remain-
ing types of code pointers: exception handlers (EH), ex-
ported symbols (ES), and return addresses (RA).

In ELF binaries, exception handlers are also valid ICF
targets. They are constructed by adding a base address
with an offset. The base addresses and offsets are stored
in ELF sections .eh frame and .gcc except table re-
spectively. Both these sections are in DWARF [26] for-
mat. We use an existing tool, katana [29, 30], to parse
these DWARF sections and get both base addresses and
offsets, and thus compute the set EH. (We point out that
the CC analysis mentioned above won’t be able to dis-
cover these EH targets because DWARF format permits
variable length numeric encoding such as LEB128, and
hence the simple technique of scanning for 32-bit con-
stant values won’t work.)
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Exported symbol (ES) addresses are listed in the dy-
namic symbol table, which is found in the .dynamic sec-
tion of an ELF file.

Return addresses (RA) are simply the set of locations
that follow a call instruction in the binary. Thus, they can
be computed following the disassembly step.

4 Defining and Assessing CFI for Binaries
4.1 A Metric for Measuring CFI Strength
Previous works on CFI have relied on analysis of higher
level code to effectively narrow down ICF targets. Since
binary analysis is generally weaker than analyses on
higher-level code, our CFI enforcement is likely to be
less precise. It is natural to ask how much protection
is lost as a result. To answer this question, we define a
simple metric for quality of protection offered by a CFI
technique.

Definition 1 (Average Indirect target Reduction (AIR))
Let i1, ..., in be all the ICF transfers in a program and S
be the number of possible ICF targets in an unprotected
program. Suppose that a CFI technique limits possible
targets of ICF transfer i j to the set Tj. We define AIR of
this technique as the quantity

1
n

n

∑
j=1

(

1−
|Tj|
S

)

where the notation |T | denotes the size of set T .

On x86, where branches can target any byte offset, S
is the same as the size of code in a binary.

4.2 A Simple CFI Property based on Relocation
CFI techniques are generally based on the following
model of how ICF transfers are used in source code:
1. Indirect call (IC): An indirect call can go to any func-

tion whose address is taken, including those addresses
that are implicitly taken and stored in tables, such as
virtual function tables in C++.

2. Indirect jump (IJ): Since compiler optimizations4 can
replace an indirect call (IC) with indirect jump (IJ),
the same policy is often applied to indirect jumps as
well.

3. Return (RET): Returns should go back to any Return
Address (RA), i.e., an instruction following a call.

It is theoretically possible to further constrain each of
these sets, and moreover, use different sets for each ICF
transfer. However, implementations typically don’t use
this option, as increased precision comes with certain
drawbacks. For instance, the callers of functions in
shared libraries (or dynamically linked libraries in the

4Specifically, a tail call optimization that replaces a call occurring
at the very end of a function with a jump.

case of Microsoft Windows) are not known before run-
time, and hence it is difficult to constrain their returns
more narrowly than described above. Moreover, some
techniques rely on relocation information, which does
not distinguish between targets reachable by IC from
those reachable by IJ, or between the targets reachable
by any two ICs. Hence they do not refine over the above
property. For this reason, we refer to the above CFI prop-
erty as reloc-CFI.

The description of implementation in Abadi et al [2]
indicates their use of relocation information, and con-
firms the above policy regarding ICs. No specifics are
provided regarding IJs and returns, but for reasons de-
scribed above, we believe that they support the reloc-CFI
policy described above. We also note that indexed hooks
[22] uses a single table for ICs and IJs, and another for
returns, enforcing reloc-CFI but in a kernel environment.

4.3 Strict-CFI: A CFI Property for Binaries Closely
Matching Reloc-CFI

Strict-CFI is derived from reloc-CFI, except that it uses
ICF targets computed by our ICF target analysis rather
than relocation information. In addition, strict-CFI in-
corporates an extension needed to handle features such
as exception handling and multi-threading. Specifically,
these features are used by a handful of instructions in
system libraries, and we simply relax the above policy
for these instructions:

• Instructions performing exception related stack un-
winding are permitted to go to any exception handler
landing pad (EH).

• Instructions performing context switches are permit-
ted to use any type of ICF transfer to transfer to a
function address.

Since they apply to a very small fraction of ICF trans-
fers in a program, their overall effect on AIR is negligi-
ble. Thus, the difference in AIR between reloc-CFI and
strict-CFI will pinpoint the precision loss due to the use
of static analysis in place of relocation information.

4.4 Bin-CFI: CFI for Complex Binaries

Complex binaries can contain exceptions to the simple
model of ICF transfers outlined earlier. To define a suit-
able CFI property for such binaries, we introduce a cat-
egory of ICF transfer in addition to RET, IC and IJ de-
scribed earlier. This category, called PLT, includes all
ICF transfers in the program linkage table, a section of
code used in dynamic linking5.

We are now ready to define bin-CFI as shown in Fig-
ure 2.

5Specifically, for each function belonging to another module, a stub
routine is created by the compiler in this section.

6
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Returns (RET), PLT targets,
Indirect Indirect

Jumps (IJ) Calls (IC)
Return addresses (RA) Y
Exception handling Y
addresses (EH)
Exported symbol Y
addresses (ES)
Code pointer Y Y
constants (CK)
Computed code Y Y
addresses (CC)

Figure 2: Bin-CFI Property Definition

It is easy to see that strict-CFI is stricter than bin-
CFI. The reasons for relaxing strict-CFI are as follows.
In general, there is no easy way to distinguish be-
tween returns used for purposes such as stack unwind-
ing, longjmp, thread context switch, and function dis-
patch from (the more common) use of returning from
functions. We therefore permit returns to go to any of
the valid targets corresponding to each of these uses. Re-
turns are some times broken up into a pop and jump, so
all possible targets of RET are permissible targets of IJ.
This explains the first column of the table.

Since the purpose of PLT stubs is to dispatch cross-
module calls, it would seem that the targets can only
be exported symbols from other modules. However, re-
cent versions of gcc support a new function type called
gnu indirect function, which allows a function to have
many different implementations, with the most suitable
one selected at runtime based on factors such as the CPU
type. Currently, many glibc low level functions such as
memcpy, strcmp and strlen use this feature. To support
this feature, a library exports a chooser function that se-
lects at runtime which of the many implementations is
going to be used. These implementation functions may
not be exported at all. To avoid breaking such programs,
the policy for PLT should be relaxed to include code
pointers in the target library. This is what we have done
on the second column of Figure 2.

Indirect calls should go to the targets in one of the sets
CC or CK. Since these two sets are usually much larger
than ES, we chose to merge IC and PLT to use the same
table of valid targets.

5 Implementation

Although our design is largely applicable to most archi-
tectures, our implementation targets 32-bit x86 proces-
sors running Linux. For this reason, some implementa-
tion aspects discussed below are specific to this platform.

5.1 Disassembly

Binaries on Linux (and most other UNIX systems) use
the ELF (Executable and Linkable Format) [25] for-
mat. We support binaries that represent executables and
shared libraries. The ELF format divides a binary into
several sections, each of which may contain code, read-
only data, initialized data, and so on. While our approach
utilizes the data in read-only data sections, it is mainly
concerned with the code sections.

Our implementation utilizes objdump to perform lin-
ear disassembly. We have built our disassembly error
detection and correction components on top of objdump.
In our experience, disassembly errors occurred primarily
due to insertion of null padding generated by legacy code
or linker script. In addition, we discovered jump table
data in the middle of code in libffi.so and libxul.so

There were also several instances where conditional
jumps targeted the middle of an instruction. Further anal-
ysis revealed that these errors occurred with instructions
that had optional prefixes, such as the “lock” prefix. We
eliminated this error by treating these prefixes as inde-
pendent instructions, so that jumps could target the in-
struction with or without the prefix.

5.2 Instrumentation and Regeneration of Binary

After disassembly, the resulting code is instrumented to
enforce CFI. The specifics of this instrumentation are de-
scribed in Section 5.3. Below we describe the genera-
tion of a binary from instrumented code, since a general
understanding of this process will enable a fuller under-
standing of the instrumentation steps.

Instrumentation is performed on assembly representa-
tion. This simplifies our implementation since it does
not need to be concerned with details such as encoding
and decoding of instructions. Moreover, it can use labels
instead of addresses. In particular, for each instruction
location A in the disassembler output of objdump, we
associate a symbolic label L_A as follows:

L_8040930:movl %ecx, %eax

These symbolic labels are used as targets of direct branch
instructions, which means that the assembler will take
care of fixing up the branch offsets. (These offsets will
typically change since we are inserting additional code
during instrumentation.)

After rewriting, the instrumented assembly file is pro-
cessed using the system assembler (in our case, the GNU
assembler gas) to produce an object file. We extract the
code from this object file and then use the objcopy tool to
inject it into the original ELF file. Note that the original
code sections are not overwritten. This ensures that any
attempt by the instrumented program to read its own code
will produce the same results as the original program.

7
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The final step prepares the ELF file produced by ob-
jcopy for execution. This step requires relocation ac-
tions on the newly added segment, and updating the ELF
header to set its entry point to the segment containing in-
strumented code. The original code segments are made
unexecutable. For shared libraries, it is also necessary to
update the dynamic symbol sections.

5.3 Instrumentation for CFI
As described above, instrumented code resides in a dif-
ferent code segment (and hence a different memory lo-
cation) from the original code. This means that function
pointer values, which will typically appear in the code
as constants, will have incorrect values. Unfortunately,
it is not possible to fix them up automatically, since we
cannot distinguish constants representing code addresses
from other types of constants. It would obviously be un-
sound to modify a constant value that does not represent
a code pointer6.

The typical way to deal with this uncertainty, em-
ployed in dynamic binary translation (DBT) [8], is to
wait until a value is used as the target of an ICF transfer.
At that point, this target value is translated into the corre-
sponding location in the instrumented code. This trans-
lation is performed using a table that consists of pairs of
the form

〈original address, new address〉

At runtime, addr trans, a piece of trampoline code, per-
forms address translation. (In fact, there are two such
trampolines, one corresponding to each column of Fig-
ure 2.) Instrumentation is inserted at the site of the origi-
nal indirect control-flow transfer instruction as shown in
Figure 3.

060c0: call *%ecx

060c2: ......

L_060c0: push $060c2

movl %eax, %gs:0x44

movl %ecx, %eax

jmp addr_trans

L_060c2: ......

Figure 3: Original (left) and Instrumented code (right)
for ICF transfer

This code saves the register (eax) used by the instrumen-
tation, and moves the target address into it.7 Then the
original indirect jump (or call) is replaced with a direct
jump to the trampoline routine, addr trans. Note the use
of labels such as L_060c0 that are used to associate lo-
cations in the instrumented code with the corresponding

6Here again, relocation information can address this uncertainty, but
in our case, this is unavailable.

7Note that %gs points to the base of thread-local storage, and
%gs:0x44 is not used by existing system software.

original address, namely, 060c0. As a result, the transla-
tion table can consist of entries of the form

〈A,L A〉

for each valid ICF target A. As noted earlier, there are
two address translation routines, one corresponding to
each column of Figure 2. The valid ICF targets for each
table consists of the subset of ICF targets computed by
the static analysis described in Section 3 that appear in
the corresponding column of Figure 2.

The details of addr trans are as follows: After saving
registers and flags needed for its operation, addr trans

performs an address range check to determine if the tar-
get is within the current module. If not, this represents
a cross-module control transfer that is described later in
this section. After the range check, addr trans performs
address translation. Our implementation relies on closed
hashing [44] to perform an efficient lookup of the table
described above. Rather than storing just the target ad-
dress L A in the table, our implementation stores code
that transfers control to L A. For instance, the hash table
entry to translate a code address 0x060c2 looks as fol-
lows.

0x060c2 movl %gs:0x44, %eax; jmp L 060c2

If no translation is found for the target address,
addr_trans will set an error code to help in debugging,
and terminate the program.

Note that, for shared libraries, translation table only
contains the offsets rather than absolute addresses. Con-
sequently, the base address of the module needs to be
subtracted from the runtime address given to the transla-
tion routine. We rely on the dynamic linker to patch the
routine with the module’s base address when the module
is loaded.

In order to preserve the functionality of original code,
it is necessary to ensure that the instrumentation does not
modify any of the registers or memory used by the pro-
gram. It is relatively easy to avoid changes to memory, or
registers other than the program counter (PC). Since in-
strumentation changes code locations (as described ear-
lier), it is not possible to preserve the PC register. So,
what we need to do is to add a compensation for any op-
eration that uses the PC for any purpose other than fetch-
ing the next instruction. Fortunately, on x86, there are
only two instructions that use PC this way: call and re-
turn. A call X is translated into a push next; jmp X,
where next denotes the address of the instruction fol-
lowing call in the original program. Similarly, a return
is translated into a pop followed by a direct jump. Note
that after this transformation, none of the instructions in
the original program involve movement of data between
PC and other registers or memory8, thus ensuring that

8 In x86-64 architecture, any PC-relative data addressing needs to

8



USENIX Association  22nd USENIX Security Symposium 345

program behavior is unaffected by our instrumentation.

Modularity. Support for shared libraries is achieved as
follows. Our technique rewrites a single module (an ex-
ecutable or a shared library) at a time. There is exactly
one version of a transformed shared library, regardless of
the context (or the executable) in which it is used. Note
that we transform all shared libraries, including glibc

and ld.so.
As described before, addr_trans already handles

intra-module control transfers. Inter-module transfers
rely on a two-stage process. In the first stage, a global
translation table (GTT) is used to map an ICF target to
the translation routine address in the target module. This
table is constructed as follows. Since shared libraries
must begin at page boundaries, any two modules have
to be apart by at least 4KB, the page size on 32-bit Linux
systems. Thus, it is enough to use the leading 20 bits of
the ICF target in this lookup table. We use a simple array
implementation for GTT since there are only 220 = 1M
entries in this table. This array is made read-only in or-
der to protect it. The second stage performs a lookup in
the destination module, using the address translation ta-
ble for that module. We use the term module translation
table (MTT) for the translation table that specifies trans-
lations for addresses within the module.

Changes to the Loader. Note that the GTT needs to be
updated as and when modules are loaded. Naturally, the
best place to do this is the dynamic linker. We modified
the source code of ld.so to accomplish this. Our change
uniformly handles the typical case of the loader mapping
all of shared libraries referenced by an executable (or an-
other shared library loaded by the loader), as well as the
less common case of an application using dlopen and
dlclose primitives to load and unload libraries at run-
time. Our changes relate to about 300 lines of the source
code of ld.so.

Our loader modification also addressed two other id-
iosyncrasies of ld.so. First, note that our approach mod-
ifies the entry point of a binary. Thus, any program that
uses the entry point for purposes other than jumping to it
may not work any more. As it turns out, ld.so does make
use of this information when it is invoked to load a pro-
gram, as in ld.so <binary>. We changed the loader so
that it compensates for the change in the entry point, and
hence works correctly in all cases.

The second idiosyncrasy concerns the use of return
instructions for lazy symbol resolving. Lazy symbol
resolving is implemented by the dl runtime resolve

function (or dl runtime profile if profiling is enabled)
in ld.so. This function computes the target address cor-
responding to the symbol, pushes this address on the
top of stack, and returns. For this to work correctly, re-

be translated too. This can be done easily by modifying the offset value.

060b1: call 060c0

.....

L_060b1: call S_060b1

.....

S_060b1: add $offset, (%esp)

jmp L_060c0

Figure 4: Optimized instrumentation of calls

turns should be permitted to target exported symbols, fur-
ther decreasing the accuracy of our CFI implementation.
Instead, we chose to modify the loader to use indirect
jumps instead of returns, and restricted the target of these
jumps with the policy shown in Figure 2 for PLT entries.

Signals. Signal is another mechanism to redirect pro-
gram control flow. If a program registers its signal han-
dlers, once again we will have the problem that the pro-
gram will specify the location of the handler in original
code, whereas we want the signal to be delivered to the
instrumented code. (This problem arises because signals
are delivered by the kernel, which is not aware of the ad-
dress translations used to correctly handle code pointers.)

Our implementation intercepts sigaction and signal

system calls, and stores the address of the signal handlers
specified by these calls in a table. The signal handler ar-
gument is then changed so that control will be transferred
to a wrapper function, which contains code that jumps
to the user-specified handler. Since this wrapper will be
instrumented as usual, instrumented version of the user-
specified handler will be invoked.

6 Optimizations
6.1 Improving Branch Prediction (BP)

Modern processors use very deep pipelines, so branch
prediction misses can greatly decrease performance. Un-
fortunately, our translation of returns (into a combination
of pop and jmp) leads to misses. When a return instruc-
tion is used, the processor is able to predict the target by
maintaining a stack that keeps track of calls. When it is
replaced by an indirect jump, especially one that is al-
ways made from a single trampoline routine, prediction
fails.

To address this problem, we modified the transforma-
tion of calls and returns as shown in Figures 4 and 5.
The original call is transformed into another call into stub
code that is part of the instrumentation. There is a unique
stub for each call site. The code in the stub adjusts the
return address on the stack so that it will have the same
value as in the untransformed program. This requires
addition of a constant that represents the offset between
the call instructions in the original and transformed code.
Similarly, at the time of return, the return address on the
stack is translated from its original value to the corre-
sponding value in the transformed program, after which
a normal return can be executed.

9
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060d1: ret .... #address translation

add $4, %esp

mov %edx, (%esp)

ret

Figure 5: Optimized instrumentation of returns

The key point about this transformation is that the pro-
cessor sees a return in Figure 5 that returns from the call
it executed (Figure 4, label L_060b1). Although the ad-
dress on the program stack was adjusted (Figure 4, la-
bel S_060b1), this is reversed by address translation in
Figure 5. As a result, the processor’s predicted return
matches the actual return address on the stack.

6.2 Avoiding Address Translation (AT)

We explored three optimizations aimed at eliminating ad-
dress translation overheads in the following cases:

AT.1 jump tables

AT.2 PIC translation

AT.3 return target speculation

For the first optimization, instead of computing an orig-
inal code address and then translating it into new ad-
dresses, we create a new table that contains translated
addresses. The content of the table is copied from the
original table, and then each value is translated (at in-
strumentation time) into the corresponding new address.
A catch here is that we don’t know the size of the original
table. Note, however, that we have a good guess, based
on the CC computation technique from Section 3.2. We
first check that the index variable is within this range, and
if so, use the new table. Otherwise, we use the old table,
and translate the jump address at runtime.

PIC has several code patterns, including a call to
get pc thunk and a call to the next instruction. The ba-
sic function of the pattern is getting the current PC and
copying it into a general purpose register. In the trans-
lated code, however, get pc thunk introduces an address
lookup for return. This extra translation could be avoided
by translating this version into a call of the next instruc-
tion. No returns are used in this case, thereby avoiding
address translation overhead. (It is worth noting that us-
ing a call/pop combination does not affect branch pre-
diction for return instructions. The processor is able to
correct for minor violations of call/return discipline.

In the third case, if a particular ICF transfer tends to
target the same location most of the time, we can speed
it up by avoiding address translation for this location. In-
stead, a comparison is introduced to determine if the tar-
get is this location, and if so, introducing a direct jump.
In our implementation, we choose to apply it only to re-
turn instruction. We used profiling to determine if the
return frequently targets the same location.

6.3 Violating Transparency (VT)

Using static analysis results, we can safely avoid some
of the overheads associated with full transparency. The
following are two optimizations we use:

VT.1 no saving of eflags

VT.2 use non-transparent calls

To achieve, VT.1, we analyze all potential indirect and
direct control targets. If there is no instruction that uses
eflags prior to all instructions that define it, then we can
safely use VT.1. In fact, we discover that eflags is live
only in a few jump tables.

When VT.2 is enabled, all return addresses are within
the new code. Note that VT.2 is always enabled on PIC
patterns, i.e., call of get pc thunk and call of next in-
struction. This is because it is simple to analyze this pat-
tern and determine that non-transparent mode will not
lead to any problems, as long as the offset added to ob-
tain data address is appropriately adjusted.

7 Evaluation
We first evaluate functionality of our system, focusing on
disassembly, and compatibility with different compilers.
Next, we evaluate its effectiveness in terms of the AIR
metric and attack defense. Then, we evaluate its runtime
and memory overheads, Finally, we summarize the lim-
itations of the approach and its current implementation.

Module Package Size # of Ins- # of
tructions Errors

libxul.so firefox-5.0 26M 4.3M 0
gimp-console-2.6 gimp-2.6.5 7.7M 385K 0
libc.so glibc-2.13 8.1M 301K 0
libnss3.so firefox-5.0 4.1M 235K 0
libmozsqlite3.so firefox-5.0 1.8M 128K 0
libfreebl3.so firefox-5.0 876K 66K 0
libsoftokn3.so firefox-5.0 756K 50K 0
libnspr4.so firefox-5.0 776K 41K 0
libssl3.so firefox-5.0 864K 40K 0
libm.so glibc-2.13 620K 35K 0
libnssdbm3.so firefox-5.0 570K 34K 0
libsmime3.so firefox-5.0 746K 30K 0
ld.so glibc-2.13 694K 28K 0
gimpressionist gimp-2.6.5 403K 21K 0
script-fu gimp-2.6.5 410K 21K 0
libnssckbi.so firefox-5.0 733K 19K 0
libtestcrasher.so firefox-5.0 676K 17K 0
gfig gimp-2.6.5 442K 17K 0
libpthread.so glibc-2.13 666K 15K 0
libnsl.so glibc-2.13 448K 15K 0
map-object gimp-2.6.5 257K 15K 0
libresolv.so glibc-2.13 275K 13K 0
libnssutil3.so firefox-5.0 311K 13K 0
Total 58M 5.84M 0

Figure 6: Disassembly Correctness
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Application Name Experiment
Wireshark v1.6.2 capture packets on LAN for 20 minutes
gedit v3.2.3 open multiple files; edit; print; save
lyx v2.0.0 open a large report; edit; convert to pdf/dvi/ps
acroread9 open 20 pdf files; scroll;print;zoom in/out
mplayer 4.6.1 play an mp3 file
firefox 5 (no JIT) open web pages
perl execute a complex script, compare the output
vim open file, copy/paste, search, edit
gimp-2.6 load jpg picture, crop, blur, sharpen, etc.
lynx 2.8.8dev open web pages
ssh 5.8p1 login to a remote server
evince 3.2.1 open a large pdf file

Figure 7: Real World Program Functionality Test

7.1 Functionality

Testing transformed code. We tested the SPEC CPU2006
programs (Figure 8). This benchmark comes with scripts
to verify outputs, thus simplifying functionality testing.

We also tested many real world programs in-
cluding coreutils-8.16 and binutils-2.22, and medium
to large programs such ssh, scp, wireshark, gedit,
mplayer, perl, gimp, firefox, acroread, lyx as well
as all the shared libraries used by them includ-
ing libc.so.6, libpthread.so.0, libQtGui.so.4,
libQtCore.so.4.

Altogether, we had to transform 786 shared libraries
during testing. The total code transformed was over 300
MB, of which the libraries were about 240MB and exe-
cutables were about 60MB. We tested each of these pro-
grams and ensured that they worked correctly. A subset
of these tests is shown in Figure 7.

Correctness of Disassembly. Since testing explores
only a fraction of program paths, we undertook a more
complete evaluation of disassembly correctness. For this,
we recompiled several large programs, including Firefox
5, GIMP-2.6 and glibc-2.13 to obtain the assembly code
generated by the compiler. Specifically, we turned on
the option --listing-lhs-width=4 -alcdn of GNU as-
sembler to generate listing files containing both machine
code and assembly. This was then compared with disas-
sembly.

Note that multiple object files are combined by the
linker to produce an executable or library. We intercept
the linker ld to record address ranges in the code that
correspond to each object file. This information is used
to compare compiler-produced assembly for each object
file with the corresponding part of the disassembler out-
put.

Figure 6 shows the results of our disassembly testing.
About 58MB of executable files including code and data,
corresponding to a total of about 6M instructions have
been tested, with no errors reported.

Testing Code Generated by Alternative Compilers. We
applied our instrumentation to two programs compiled
using LLVM. In particular, we used Clang 2.9 to com-
pile two programs in the OpenSSH project, ssh and scp.
Experiments shows that both LLVM generated ssh and
scp function correctly when we used them to login to a
remote server and copy a large file to/from the server.

7.2 CFI Effectiveness Evaluation
Figure 8 compares the AIR metric for bin-CFI with
strict-CFI, reloc-CFI, bundle-CFI and instr-CFI. To cal-
culate AIR of reloc-CFI, we recompiled SPEC2006 pro-
grams using “-g” and a linker option “-Wl,-emit-relocs”
to retain all the relocations in executables. We can now
calculate AIR from the description of reloc-CFI in Sec-
tion 4.2 and Definition 1.

To calculate AIR for bundle-CFI, we recompiled
SPEC2006 using the Native Client provided gcc and
g++ compilers. Since bundle-CFI restricts ICF targets to
32-byte boundaries, 31/32 of the compiled binary code
is eliminated as ICF targets. However, the AIR num-
ber is smaller because the base is the original program
size; programs compiled using Native Client tool-chain
are larger due to reasons such as the need to introduce
padding to align indirect targets at 32-byte boundaries.

Name Reloc Strict Bin Bundle Instr
CFI CFI CFI CFI CFI

perlbench 98.49% 98.44% 97.89% 95.41% 67.33%
bzip2 99.55% 99.49% 99.37% 95.65% 78.59%
gcc 98.73% 98.71% 98.34% 95.86% 80.63%
mcf 99.47% 99.37% 99.25% 95.91% 79.35%
gobmk 99.40% 99.40% 99.20% 97.75% 89.08%
hmmer 98.90% 98.87% 98.61% 95.85% 79.01%
sjeng 99.32% 99.30% 99.10% 96.22% 83.18%
libquantum 99.14% 99.07% 98.89% 95.96% 76.53%
h264ref 99.64% 99.60% 99.52% 96.25% 80.71%
omnetpp 98.26% 98.08% 97.68% 95.72% 82.03%
astar 99.18% 99.13% 98.95% 96.02% 78.00%
milc 98.89% 98.86% 98.65% 96.03% 79.74%
namd 99.65% 99.64% 99.59% 95.81% 76.37%
soplex 99.19% 99.10% 98.86% 95.50% 77.37%
povray 99.01% 98.99% 98.67% 95.87% 78.03%
lbm 99.60% 99.50% 99.46% 96.79% 80.92%
sphinx3 98.83% 98.80% 98.64% 96.06% 80.75%
average 99.13% 99.08% 98.86% 96.04% 79.27%

Figure 8: AIR metrics for SPEC CPU 2006.

7.3 Security Evaluation

7.3.1 Control-Flow Hijack Attacks
To evaluate control flow hijack defense, we used the
RIPE [45] test suite. RIPE is a benchmark consisting
of 850 distinct exploits including code injection, return-
to-libc and ROP attacks. RIPE illustrated these attacks
by building vulnerabilities into a small program. Ex-
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DEP disabled DEP enabled
Original 520 140
CFI 90 90

Figure 9: Security Evaluation using RIPE

ploit code is also built into this program, so some of the
challenges of developing exploits, e.g., knowing the right
jump addresses, are not present. As such, techniques
such as ASLR have no impact on RIPE. So, the only
change we can experiment with is that of enabling or dis-
abling DEP.

Originally, on Ubuntu 11.10 platform, 520 attacks
survive with data execution prevention (DEP) disabled.
With DEP enabled, 140 attacks survive. All of these at-
tacks are return-to-libc attacks.

The 2nd row in Figure 9 shows bin-CFI could defeat
430 attacks including 380 code injection attacks and 50
return-to-libc attacks, even when DEP is disabled. In
both scenarios, when DEP is enabled or disabled, how-
ever there are 90 function pointer overwrite attacks that
survive in CFI.

Code injection attacks are defeated by CFI because
global data, stack and heap are not allowed targets of
ICF transfers. 50 out of 140 return-to-libc attacks are
defeated because they overflow return addresses and try
to redirect control flow to the libc functions and violate
the policy of bin-CFI. Those attacks are defeated.

The function pointer overwrite attacks that succeed are
some what of an artifact of RIPE design that includes ex-
ploit code within the victim program. Since pointers to
exploit code are already taken in the program, they are
identified as legitimate targets and permitted by our ap-
proach. If the same attacks were to be carried out against
real programs, only a subset of them will succeed: those
that overwrite function pointers with pointers to other
local functions. In this subset of cases, previous CFI
implementations (although not necessarily their formu-
lations) would fail too, as they too permit any indirect
call to reach any function whose address is taken.

7.3.2 ROP Attacks
We use the tool ROPGadget-v3.3[35], an ROP gadget
generator/compiler, as our testing tool. It scans binaries
to find useful gadgets for ROP attacks.

Figure 10 shows that CFI enforcement is effective, re-
sulting in the elimination of the vast majority (93%) of
gadgets in the original program. Moreover, there is little
diversity in the gadgets found — the tool was able to find
only the following gadgets:

• mov constant, %eax; ret (32.26%)
• add offset, %esp; pop %ebx; ret (27.42%)
• add offset, %esp; ret (19.35%)

• mov (%esp), %ebx; ret (14.52%)
• xor %eax, %eax; ret (5.65%)
• pop %edx; pop %ecx; pop %ebx; ret (0.81%)

There is little variety in these gadgets. Among other
missing features, note the complete lack of useful arith-
metic operations in the identified gadgets. As a result,
the tool was unable to build even a single exploit using
these gadgets

Name Reloc Strict Bin Instr
CFI CFI CFI CFI

perlbench 96.62% 96.24% 93.23% 58.65%
bzip2 97.78% 95.56% 93.33% 44.44%
gcc 97.69% 97.69% 91.42% 66.67%
mcf 95.45% 90.91% 90.91% 36.36%
gobmk 98.84% 98.27% 97.69% 70.52%
hmmer 97.00% 96.00% 96.00% 58.00%
sjeng 92.75% 92.75% 91.30% 47.83%
libquantum 93.18% 90.91% 86.36% 40.91%
h264ref 98.26% 97.39% 96.52% 60.87%
omnetpp 97.12% 97.12% 93.42% 74.07%
astar 95.35% 93.02% 93.02% 46.51%
milc 95.77% 94.37% 90.14% 57.75%
namd 94.87% 92.31% 92.31% 53.85%
soplex 94.64% 93.75% 93.75% 54.46%
povray 96.75% 96.75% 95.45% 61.69%
lbm 94.12% 88.24% 88.24% 23.53%
sphinx3 95.00% 93.75% 92.50% 52.50%
average 95.95% 94.41% 92.68% 53.45%

Figure 10: Gadget elimination in different CFI imple-
mentation

7.4 Performance Evaluation
Our testbed consists of an Intel core-i5 2410m CPU with
4GB memory, running Ubuntu 11.10 (32-bit version),
with glibc version 2.13. We used the SPEC 2006 CPU
benchmark to evaluate both the runtime overhead and
space overhead.

7.4.1 Runtime Overhead
Figure 11 shows the runtime overheads of CFI enforce-
ment on SPEC CPU 2006 benchmarks. The average
overhead for C programs is 4.29%. Due to C++ excep-
tion handling, VT.2 (Section 6.3) cannot be applied to
C++ programs. As a result, the overhead for C++ pro-
grams increases to an average of 8.54%. omnetpp, so-
plex, and povray are particular contributors to this in-
creased overhead. One way to bring these overheads
down (to match the overhead for C-programs) is to up-
date the exception handling metadata to use code ad-
dresses within instrumented code.

7.4.2 Space and Memory Overhead
Our instrumentation introduces a new code section that
is on average 1.2 times the original code size. The new
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Figure 11: SPEC CPU2006 Benchmark Performance

data section introduced contains address translation ta-
ble for indirect branch instructions. In total, the space
overhead for bin-CFI is 139% over the original file size.
Note that although the file size has increased, execution
will be confined to the new code. Except in the case of
programs that store read-only data in their code, other
programs don’t access their code even once. Hence the
runtime memory overhead is unaffected by the presence
of the original copy of code. Indeed, our measurements
showed a very small increase in resident memory use
(about 2.2% on average).

7.5 Limitations
Dynamic code. Since we rely on static transformation
of binaries, any usage of dynamic code such as just-in-
time compilation cannot be handled by bin-CFI. This
also applies to any binary that modifies itself. These lim-
itations are shared by most previous implementations of
CFI.

Obfuscated code. Reliable static disassembly of obfus-
cated code is a challenging problem without satisfac-
tory solutions. However, obfuscation is typically used
on malware, whereas our target consists of benign (but
possibly vulnerable) programs.

Return-into-libc attack. In general, CFI does not elim-
inate the threat of all return-to-libc attacks, a fact that
holds true in our implementation as well.

Most return-into-libc fall into one of the two follow-
ing types. The first type chains a sequence of library
function calls, and relies on the semantics of these func-
tions to perform attacks [28]. The second type relies
on the side effects of library functions to realize Turing-
complete ROP [41]. Both types rely heavily on returning
to exported functions in glibc, and hence are defeated by
bin-CFI. (Note that exported functions are excluded from
allowable return targets by our policy.) However, it may
be possible to construct return-to-libc attacks that make
use of code pointers in glibc (or other shared libraries), or
more generally, any address computed by our static anal-

ysis. These attacks could be mitigated by further tight-
ening the policy for returns, improving the precision of
static analysis, or both. We point out that even without
these improvements, bin-CFI degrades return-to-libc at-
tacks in much the same way as it degrades ROP attacks:
it reduces the number of possible functions that can be
used in an attack.

8 Related Work
8.1 ROP Attacks and Defenses

Return Oriented Programing (ROP) [38] is a powerful
code reuse attack. It has become a very popular means
to carry out successful attacks in spite of DEP. Although
ROP was originally thought to be applicable primarily to
CISC processors such as the x86, subsequent work has
demonstrated their effectiveness on RISC architectures
as well [9]. ROP attacks can target user programs as well
as the kernel [19]. The introduction of JOP [10, 7] elim-
inates the need to use return instructions to effect ICF
transfers, thereby defeating defenses that rely on the use
of (repeated) returns [11, 14, 32].

Some of ROP defenses [31, 23] modify the code gen-
eration process to ensure that there are no useful gadgets
in a generated binary. As they work at the level of code
generation, they require source code. Rather than elim-
inating gadgets, some recent works [18, 43, 33] rely on
fine-grained randomization that makes it difficult to find
the location of useful gadgets. Instruction Location Ran-
domization (ILR) [18] randomizes instruction locations,
thereby making ROP hard. A benefit of their approach is
that they can randomize return addresses, which signifi-
cantly reduces the number of valid ICF targets, as return
addresses constitute a majority of them. But this random-
ization can cause problems in large and complex binaries
where a return instruction may be used for purposes other
than returning from a call, e.g., PIC code data access, or
to implement context-switching-like functionality.

A drawback of ILR is high space overhead. Binary
Stirring (STIR) [43] solves this issue by randomizing ba-
sic blocks at load time using static rewriting. It achieves
better runtime performance and reasonable space over-
head. However, neither ILR nor Binary Stirring apply
their work on libraries or large binaries. [33] uses static
in-place randomization (IPR) to eliminate gadgets. The
runtime overhead is almost zero, though the effective-
ness depends on the target binary layout. In particular, a
significant fraction of gadgets remain, thus limiting pro-
tection against ROP attacks.

While strong randomization could confuse attackers
at runtime, and further reduce the number of usable gad-
gets, we have refrained from adding randomization to our
technique for several reasons. First and foremost, we be-
lieve that one of principal reasons behind the success of
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CFI is that it provides deterministic protection, thus lay-
ing a solid foundation for other protection mechanisms
such as SFI or policy enforcement on untrusted code.
Second, randomization defenses are already widely de-
ployed in the form of ASLR and stack cookies. To the
extent their randomization isn’t defeated, they can pro-
vide excellent protection in conjunction with our CFI.
If, on the other hand, we assume that randomization of
ASLR can be defeated, then there is no good reason to
believe that a randomization component added to a CFI
technique won’t be defeated either. Thirdly, the util-
ity of randomization is increasingly called into question
by advances in information leakage attacks. Recent ex-
ploits [37, 16] show that strong information leakage at-
tack could help bypass ASLR with high entropy. More-
over, just-in-time code reuse attacks [39] discover gad-
gets using repeated information leakage attacks and are
able to defeat even fine-grained code randomization.

8.2 Control Flow Integrity

Control-flow integrity (CFI) was introduced by Abadi et
al [1]. The basic idea was to use a static analysis to com-
pute a control-flow graph, and enforce it at runtime. En-
forcement was based on matching constants (called IDs)
between the source and target of each ICF transfer. How-
ever, due to difficulties in performing accurate points-
to analysis, and because of so-called destination equiv-
alence problem, their implementation resorts to coarse
granularity enforcement, wherein any indirect call is per-
mitted to target any function whose address is taken. Li
et al. [22] implement a compiler based CFI that uses
a similar policy for coarse-grained CFI. While they can
also support finer-granularity CFI, this requires runtime
profiling to compute possible targets of indirect calls, and
can hence be prone to false positives.

Control-flow locking (CFL) [6] improves significantly
on the performance of Abadi et al, while simultaneously
tightening the policy, especially for returns. But this
tighter policy poses challenges in the presence of indi-
rect tail calls. Another difference between their work and
ours is that they operate on assembly code generated by
the compiler, whereas our work targets binaries.

MoCFI [13] presents a design and implementation
of CFI for mobile platforms. The mobile environment
presents a unique set of challenges, including an instruc-
tion set that does not have explicit returns, a closed plat-
form (iOS), and so on. An important characteristic of
their approach is that they aggressively prune possible
targets of each ICF transfer. While this can provide bet-
ter protection, it leads to false positives in some cases
(e.g., when large jump tables are involved). In contrast,
our approach emphasizes handling of large binaries, in-
cluding shared libraries, that are not handled by their ap-
proach. We discussed how this requirement dictates the

use of coarser granularity CFI in our technique.

CCFIR [48], like the work presented in this paper,
targets binaries. The main insight in their work is that
most binaries on Windows support ASLR, which re-
quires relocation information to be included in the bi-
nary. They leverage this information for accurate dis-
assembly and static rewriting. Moreover, since reloca-
tion information effectively identifies all code pointers,
they can avoid runtime address translation, which en-
ables them to achieve better performance. The flipside
of this performance improvement is that the technique
can’t be used on most UNIX systems, as UNIX binaries
rarely contain the requisite relocations.

CFI has been used as the basis for untrusted code
sandboxing. PittSFIeld [27] implements SFI on top of
instruction bundling, a weaker CFI model. XFI [15]
presents techniques that are based on CFI and SFI to
confine untrusted code in shared-memory environments.
Zeng et al [47] improve the performance of SFI using
CFI and static analysis. Native client [46] is aimed at
running native binaries securely in a browser context,
and relies on instruction bundling. PittSFIeld, Native
Client, and many other works [22, 3, 4, 42, 21, 36, 34, 20]
that enforce CFI rely on compiler-provided information
and even hardware support. In contrast, bin-CFI operates
on COTS binaries without support from compiler, OS or
hardware.

9 Conclusions

In this paper, we developed a notion of control-flow in-
tegrity that can be effectively enforced on binaries. We
developed analysis techniques to compute possible ICF
targets, and instrumentation techniques that limit ICF
transfers to these targets. The resulting implementa-
tion defeats most common control-flow hijack attacks,
and greatly reduces the number of possible gadgets for
ROP attacks. We presented a robust implementation that
scales to large binaries as well as complex, low-level
libraries that include hand-coded assembly. Our tech-
nique is modular, supporting independent transformation
of shared libraries. It also provides very good perfor-
mance.

Our results realize one of central benefits of the CFI
property, i.e., it can be applied to protect low-level code
that is available only in the form of binaries. Although
the lack of high-level information can degrade the pre-
cision of static analysis, our results demonstrate that the
reduction is small; and overall, there is only a modest re-
duction in the strength of protection as compared to pre-
vious techniques that required source code, relocation in-
formation, or relied on compiler-based implementations.
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