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Abstract
Apple adopts the mandatory app review and code sign-
ing mechanisms to ensure that only approved apps can
run on iOS devices. In this paper, we present a novel
attack method that fundamentally defeats both mecha-
nisms. Our method allows attackers to reliably hide ma-
licious behavior that would otherwise get their app re-
jected by the Apple review process. Once the app passes
the review and is installed on an end user’s device, it can
be instructed to carry out the intended attacks.

The key idea is to make the apps remotely exploitable
and subsequently introduce malicious control flows by
rearranging signed code. Since the new control flows
do not exist during the app review process, such apps,
namely Jekyll apps, can stay undetected when reviewed
and easily obtain Apple’s approval.

We implemented a proof-of-concept Jekyll app and
successfully published it in App Store. We remotely
launched the attacks on a controlled group of devices
that installed the app. The result shows that, despite run-
ning inside the iOS sandbox, Jekyll app can successfully
perform many malicious tasks, such as stealthily posting
tweets, taking photos, stealing device identity informa-
tion, sending email and SMS, attacking other apps, and
even exploiting kernel vulnerabilities.

1 Introduction

Apple iOS is one of the most popular and advanced op-
erating systems for mobile devices. By the end of June
2012, Apple had sold 400 million iOS devices [30], such
as iPhone, iPad and iPod touch. Despite the tremendous
popularity, in the history of iOS, only a handful of ma-
licious apps have been discovered [24]. This is mainly
attributed to the advanced security architecture of iOS
and the strict regulations of the App Store.

∗Jekyll is a character with dual personalities from the novel The
Strange Case of Dr. Jekyll and Mr. Hyde.

In addition to the standard security features like Ad-
dress Space Layout Randomization (ASLR), Data Exe-
cution Prevention (DEP), and Sandboxing, iOS enforces
the mandatory App Review and code signing mecha-
nisms [31]. App Review inspects every app submitted
by third parties (in binary form) and only allows it to
enter the App Store if it does not violate App Store’s reg-
ulations [5]. To further prohibit apps distributed through
channels other than the App Store (i.e., unsigned apps),
the code signing mechanism disallows unsigned code
from running on iOS devices. As a result, all third-party
apps running on iOS devices (excluding jailbroken de-
vices [48]) have to be approved by Apple and cannot be
modified after they have obtained the approval.

According to the official App Review guidelines [5],
developers should expect their apps to go through a thor-
ough inspection for all possible term violations. Dur-
ing this process, many reasons can lead to app rejections,
such as stealing data from users and using private APIs
reserved for system apps. Although the technical de-
tails of the review process remain largely unknown, it is
widely believed that such a selective and centralized app
distribution model has significantly increased the diffi-
culty and cost for malicious or ill-intended apps to reach
end users.

In this paper, we present a new attack method against
the App Store reviewing process and the code signing
mechanism. Using this method, attackers can create ma-
licious or term-violating apps and still be able to publish
them on App Store, which in turn open up new attack sur-
faces on iOS devices. We stress that our attack does not
assume any specifics about how Apple reviews apps, but
targets theoretical difficulties faced by any known meth-
ods to analyze programs. By demonstrating the power
of this practical attack, we highlight the shortcomings of
the pre-release review approach and call for more run-
time monitoring mechanisms to protect iOS users in the
future.

The key idea behind our attack is that, instead of sub-
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CFG exhibited in vetting process. Red
node represents the vulnerabilities.

Dynamic CFG in victim’s device after
exploiting vulnerabilities.

Figure 1: High Level Intuition

mitting an app that explicitly contains malicious func-
tionalities to Apple, the attacker plants remotely ex-
ploitable vulnerabilities (i.e., backdoor) in a normal app,
decomposes the malicious logic into small code gadgets
and hides them under the cover of the legitimate func-
tionalities. After the app passes the App Review and
lands on the end user device, the attacker can remotely
exploit the planted vulnerabilities and assemble the ma-
licious logic at runtime by chaining the code gadgets to-
gether.

Figure 1 shows the high level idea. On the left is the
app’s original control flow graph (CFG), which is what
can be observed during the app review process, with-
out the planted vulnerability being exploited. In com-
parison, on the right is the effective control flow graph
the same app will exhibit during runtime, which differs
from the left in the new program paths (represented by
the dotted paths) introduced at runtime by the remote at-
tackers (i.e., app developers). Since attackers can con-
struct malicious functionalities through dynamically in-
troducing new execution paths, even if the vetting pro-
cess could check all possible paths in the left CFG (i.e.,
100% path coverage), it cannot discover the malicious
logic that is only to be assembled at runtime as per at-
tacker’s commands. Apps so constructed bear benign
looks and yet are capable of carrying out malicious logic
when instructed; we call them Jekyll apps. By care-
fully designing the vulnerabilities and crafting the gad-
gets, Jekyll apps can reliably pass app review process
and open up a new attack surface on iOS devices when
installed. Specifically, an attacker can achieve the fol-
lowing general tasks via Jekyll apps:

First, Jekyll apps offer an approach to stealthily abuse
user privacy and device resources, for instance, via pri-
vate APIs1, which may provide unrestricted access to
certain sensitive resources and are intended for Apple’s
internal use only. Explicit use of private APIs almost al-

1Private APIs are undocumented and often security-critical APIs on
iOS, see Section 2.2 for details.

ways gets an app rejected by App Store [4]. However,
Jekyll apps can dynamically load, locate, and implicitly
invoke the private APIs and thus reliably bypass the re-
view checks. Comparing with simple obfuscation tech-
niques (e.g., [7, 23, 25]), our approach hides the usage
of private APIs in a way that is more resilient to non-
trivial code analysis — without correctly triggering the
planted vulnerabilities and arranging the code gadgets,
the invocation of private APIs never appears in the code
and execution of Jekyll apps.

Second, Jekyll apps open a window for attackers to ex-
ploit vulnerabilities in kernel space. Although the sand-
boxing policy in iOS limits the possibility and impact of
exploiting kernel vulnerabilities [22] by third-party apps,
certain attacks are still effective against vulnerable de-
vice drivers (i.e., IOKit drivers [49]).

Third, Jekyll apps also serve as a trampoline to attack
other apps. On iOS, by requesting a URL, an app can
launch another app that has registered to handle that URL
scheme. However, this simplified IPC (Inter-process
communication) mechanism may facilitate inter-app at-
tacks. For instance, once new vulnerabilities have been
found in Mobile Safari (the built-in web browser in iOS),
an attacker can set up a malicious webpage exploiting
such vulnerabilities, use the Jekyll app to direct the Mo-
bile Safari to visit the booby-trapped website, and even-
tually compromise the browser app. Given the high privi-
leges granted to Mobile Safari, the compromised browser
will in turn provide the stepping stone for more power-
ful attacks, such as untethered jailbreak, as shown by the
JailbreakMe attack [1] on old versions of iOS.

Attack Type Attack Description Affected Version

Abuse Device Resources

Sending SMS iOS 5.x
Sending Email iOS 5.x
Posting Tweet iOS 5.x & 6.x
Abusing Camera iOS 5.x & 6.x
Dialing iOS 5.x & 6.x
Manipulating Bluetooth iOS 5.x & 6.x
Stealing Device Info iOS 5.x & 6.x

Attack Kernel Rebooting system iOS 5.x
Attack Other Apps Crashing Mobile Safari iOS 5.x & i6.x

Table 1: Attack summary on iPhone

We have implemented a proof-of-concept Jekyll app
and submitted it to the App Store. The app success-
fully passed Apple’s review despite the hidden vulner-
abilities and code gadgets that can be assembled to carry
out malicious logic. Following the ethical hacking prac-
tice, we immediately removed the app from App Store
once a group of experiment devices of our control had
downloaded it. The download statistic provided by Ap-
ple later confirmed that the app had never been down-
loaded by any other users. By exploiting the vulnera-
bilities and chaining the planted gadgets in the app, we

2



USENIX Association  22nd USENIX Security Symposium 561

remotely launched many malicious operations on our ex-
periment devices, as summarized in Table 1. Even on
iOS 6.1.2, the latest version of iOS at the time of our ex-
periments, the Jekyll app can abuse the camera device to
recode videos, post tweets, steal device identity informa-
tion such as IMEI (the unique device identifier), manip-
ulate the bluetooth device, attack Mobile Safari, and dial
arbitrary number. We made a full disclosure of our attack
scheme to Apple in March 2013 and have since been in
correspondence with Apple.

In summary, the main contributions of our work are as
follows:

• We propose a novel method to generate iOS apps
that can pass App Review and synthesize new con-
trol flows as instructed remotely during runtime,
without violating code signing. We call such mali-
cious apps Jekyll apps. Given that arbitrary control
flows can be introduced to such apps at runtime, the
code signing mechanism on iOS is totally defense-
less against Jekyll apps.

• We are the first to propose a dynamic analysis tech-
nique to discover the private APIs used to post
tweets, send email, and send SMS without user’s
consent on iOS. We incorporate these attacks, along
with a set of previously known iOS attacks, into a
Jekyll app to show its versatility.

• We successfully publish a proof-of-concept Jekyll
app in Apple App Store and later launch remote at-
tacks to a controlled group.

• We demonstrate that the security strategy to solely
rely on pre-install review, as currently followed by
Apple App Store, is ineffective against Jekyll apps
and similar attacks. We discuss and advocate run-
time security measures as a necessary step in ad-
vancing iOS security.

The rest of the paper is organized as follows. Sec-
tion 2 introduces the background. Section 3 presents a
motivating example and describes the design of our at-
tack scheme. Section 4 demonstrates some of the mali-
cious operations that can be carried out by Jekyll apps.
Section 5 gives the implementation details and Section 6
compares our research to related work. Section 7 dis-
cusses the potential countermeasures against our attack
and Section 8 concludes the paper.

2 Background

2.1 iOS Security

iOS provides a rich set of security features. We briefly in-
troduce the related exploit mitigation mechanisms here.

Interested readers are referred to [31, 38] for the overall
security architecture of iOS.

DEP and ASLR. Apple introduced the Data Exe-
cution Prevention (DEP) mechanism in iOS 2.0 and
later the Address Space Layout Randomization (ASLR)
mechanism in iOS 4.3 [21]. The DEP mechanism in
iOS is based on the NX (eXecute Never) bit supported
by the ARM architecture and the kernel prevents third
party apps from requesting memory pages that are write-
able and executable at the same time. Since data pages
such as the stack and heap are marked non-executable
and code pages are marked executable but non-writeable,
DEP prevents the traditional code injection attacks that
need to write payloads into memory and execute them.

ASLR randomizes a process’s memory layout. If a
third-party app is compiled as a position-independent ex-
ecutable (PIE), the locations of all memory regions in its
process’s address space, including the main executable,
dynamic libraries, stack, and heap, are unpredictable. As
an important complementary to DEP, ASLR makes it
very difficult for attackers to launch return-to-libc based
or return-oriented programming based attacks (see Sec-
tion 2.3). However, ASLR in iOS only enforces the mod-
ule level randomization, that is, executable modules are
loaded into unpredictable memory regions, but the in-
ternal layout of each module remains unchanged. Thus,
the ASLR implementation is vulnerable to information
leakage vulnerabilities [45]. If an attacker can obtain the
absolute address of a function in a module, she is able to
infer the memory layout of that entire module.

Privilege Separation and Sandboxing. iOS employs
traditional UNIX file permission mechanisms to manage
the file system and achieve the basic privilege separation.
While all third-party apps run as the non-privileged user
mobile, only a few most import system processes run
as the privileged user root. As a result, third-party apps
are not able to change system configurations.

To enforce isolation among apps that all run as the
same user mobile, iOS utilizes the sandboxing mech-
anism. iOS sandbox is implemented as a policy mod-
ule in the TrustedBSD mandatory access control frame-
work [8]. Each app contains a plist file in XML format,
which declares a set of entitlements for the special capa-
bilities or security permissions in iOS. When an app is
launched, iOS determines its sandbox policy according
to its entitlements.

Although the built-in apps in iOS, such as Mobile Sa-
fari, run as the non-privileged user mobile, they may
be granted with special privileges via reserved entitle-
ments. For instance, Mobile Safari has an entitlement
called dynamic-codesigning, which allows Mo-
bile Safari to allocate a writable and executable mem-
ory buffer and generate executable code on the fly—a se-
curity exception made for Mobile Safari’s Just-in-Time
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(JIT) JavaScript engine to improve performance.
As for third-party apps, Apple applies a one-size-fits-

all sandbox policy called container. According to the
study in [51], in iOS 4.3, this permissive policy allows
third-party apps to read the user’s media library, interact
with a few IOKit User Clients, communicate with the lo-
cal Mach RPC servers over the bootstrap port, access the
network, etc. On top of the default access granted by the
container policy, third party apps can also request for
two extra entitlements: one for using the iCloud storage
and one for subscribing to the push notification service.
Finally, even though the container policy has under-
gone significant improvements and is becoming more re-
strictive over time, as we show in this paper, our Jekyll
app, even running in sandbox, still poses a significant
threat to the user’s privacy and system security.

Also, in contrast to other mobile platforms, such as
Android, which use the declarative permissions to regu-
late each app individually, iOS applies the default sand-
box configuration on most third-party apps, which con-
sequently share the same broad set of privileges. As of
iOS 6, only a few sensitive operations, such as access-
ing location information and contact book and sending
push notifications, have to be explicitly acknowledged
by users before they can proceed.

Code signing, App Store, and App Review. Along
with the release of iOS 2.0 in 2008, Apple opened the
App Store, an application distribution platform for iOS
devices. Third-party developers are required to submit
their apps to App Store for distribution. Since then, iOS
has enforced the mandatory code signing mechanism to
ensure only the executables that have been approved and
signed by Apple are allowed to run on iOS devices. The
study in [37] presents the implementation details of iOS
code signing mechanism. In comparison with DEP, code
signing mechanism is more strict. In a DEP-enabled sys-
tem, attackers can compromise a process using ROP at-
tacks and then download a new binary and run it. This
does not apply to iOS because iOS will refuse to run the
new binary if it is not signed by a trusted authority.

To release an app through App Store, a third-party de-
veloper has to participate in Apple’s iOS developer pro-
gram and submit the app to Apple for review. The app
is signed and published by Apple only after it passes
the review process. In addition to business benefits, the
mandatory review process helps Apple prevent malicious
apps from entering App Store.

2.2 Public and Private Frameworks

iOS provides the implementation of its system interfaces
in special packages called frameworks. A framework is
a directory that contains a dynamic shared library and
the related resources such as images, localization strings,

and header files. Native iOS apps are built on top of these
frameworks and written in the Objective-C programming
language, a superset of C language.

Besides the public frameworks, iOS also contains a
set of private frameworks that are not allowed to be used
in third-party apps. Even in public frameworks, there
are some undocumented APIs (i.e., private APIs) that
cannot be used by third-party apps. In fact, these pri-
vate frameworks and APIs are reserved for the built-
in apps and public frameworks. Apple ships all public
and private frameworks as part of the iOS Software De-
velopment Kit (SDK). Third-party developers can find
all these frameworks in their own development environ-
ment. It is worth noting that, since iOS 3.x, Apple has
combined all frameworks into a single cache file called
dyld_shared_cache in iOS devices to improve per-
formance [21].

Moreover, the creation of dynamic libraries by third-
party developers is not supported by the iOS SDK, which
makes the public frameworks the only shared libraries to
link in iOS apps. To prevent apps from dynamically load-
ing private frameworks or unofficial libraries, some stan-
dard UNIX APIs are also considered as private by Apple,
such as dlopen and dlsym that support runtime load-
ing of libraries. During the app review process, linking
to private frameworks or importing private APIs can di-
rectly result in app rejections from Apple App Store.

2.3 Code Reuse and ROP Attack

Reusing the code within the original program is an ef-
fective way to bypass DEP and code signing mechanism.
Solar Designer first suggested return-to-libc [16], which
reuses existing functions in a vulnerable program to im-
plement attacks. Shacham et al. proposed the Return-
Oriented Programming (ROP) exploitation technique in
2007 [44]. The core idea behind ROP attacks is to uti-
lize a large number of instruction sequences ending with
ret-like instructions (e.g., ret on x86 and pop{pc}
on ARM) in the original program or other libraries to
perform certain computation. Since attackers can con-
trol the data on the stack and ret-like instructions will
change the execution flow according to the data on the
stack, a crafted stack layout can chain these instruc-
tion sequences together. Figure 2 shows a simple ROP
example that performs addition and storage operations
on the ARM platform. Specifically, constant values
0xdeadbeaf and 0xffffffff are loaded to the reg-
isters r1 and r2 by the first two gadgets, respectively.
Next, an addition operation is performed by the third
gadget. At last, the addition result (0xdeadbeae) is
stored on the stack by the fourth gadget.
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0xdeadbeaf0xdeadbeaf

0xffffffff0xffffffff

......

1. pop {r1, pc}1. pop {r1, pc}

4. str r1, [sp, #8]
pop{r0}
bx r0

4. str r1, [sp, #8]
pop{r0}
bx r0

3. add r1, r2
pop {pc}

3. add r1, r2
pop {pc}

2. pop {r2, pc}2. pop {r2, pc}

Figure 2: A ROP example

3 Attack Design

Before introducing the design of our attack scheme, we
first discuss an example attack, which demonstrates the
feasibility of such attacks and helps illustrate the design
details in the rest of this section.

3.1 Motivating Example

Suppose the attacker’s goal is to steal the user’s con-
tacts. To this end, the attacker first creates a normal
app, a greeting card app for instance, which can down-
load greeting cards from a remote server and then send
them to the user’s friends. The pseudo code in Figure 3
presents the workflow of the app, which requires access
to user’s address book and the network for legitimate rea-
sons. However, direct abuses of these privileges to send
the whole address book over the network can be easily
detected. In fact, multiple systems (e.g., [17–19, 26])
have been proposed to detect malicious apps by identi-
fying code paths or execution traces where sensitive data
is first acquired and then transported out of the device,
and we assume the app review process will also be able
to detect and reject such apps.

//contains a stack buffer overflow flaw	

1. ConnectToServerAndDownloadGreetingCards();	

	

2. buf=ReadAddressBook();	

	

3. status=SendGreetingToContacts(buf);	

	

4. if(status==Failed){	

	

5.    buf = StatusToString(status);	


	
	

6.    SendFailureReportToServer(buf);	

    }	

    	


return address	


return address	


return address	


Static Work Flow	
 Runtime Stack Layout  	

After Stack Overflow	


① 

② 

③ 

Figure 3: Running Example

However, our example app (as shown in Figure 3) does
not contain any feasible code path to leak the address
book after reading it at line 2. As such, our example app
appears to be compliant with Apple’s privacy policy and
can be expected to pass the app review.

To achieve the goal of stealing the user’s contact while
avoiding the direct approach that will guarantee rejection
by App Store, the attacker instead hides vulnerabilities in
the ConnectToServerAndDownloadGreetingCards

function (line 1 in Figure 3). Subsequently, when the
app runs on a victim’s iOS device and tries to download
greeting cards from the server controlled by the attacker,
the server exploits the planted vulnerabilities to remotely
manipulate the app’s stack into the one shown on the
right side of Figure 3. The contaminated stack layout
will change the original control flows of the app. Instead
of sequentially executing the statements from line 2 to
line 6, the compromised app first reads the address book
into a buffer (line 2 in Figure 3), and then directly in-
vokes the SendFailureReportToServer function
at line 6 to send the content of the buffer (i.e., address
book) to the server. Finally, the app resumes the normal
execution by returning the control back to line 3. Note
that the attacker will avoid revealing the above behavior
to Apple and only exploit the vulnerabilities after the app
has passed the app review.

Malicious developers can freely design the vulnerabil-
ities to bootstrap the attacks. For instance, the app can
deliberately leak its memory layout information to the
remote server so that ASLR is completely ineffective.
Based on the memory layout information, attackers can
launch attacks by reusing the exiting code inside the app.
As a result, DEP and code signing cannot prevent the ex-
ploit. Furthermore, by using iOS private APIs, attackers
can accomplish more sophisticated attacks, even though
the app runs in the sandbox. In other words, once the app
gets installed, existing security mechanisms on iOS will
be of no defense against the attack.

3.2 Attack Scheme Overview

The high level idea of our attack scheme is very intuitive.
The attacker creates a normal app in which he plants vul-
nerabilities and hides code gadgets along side the normal
functionalities. After the app passes Apple’s app review
and gets installed on victims’ devices, the attacker ex-
ploits the vulnerabilities and assembles the gadgets in a
particular order to perform malicious operations.

For our attack to be successful, the planted vulnera-
bilities should allow us to defeat the ASLR, DEP, and
code signing mechanisms in iOS, and at the same time
be hardly detectable. To this end, we design an informa-
tion leakage vulnerability through which the app delib-
erately leaks its partial runtime memory layout informa-
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tion to the remote attacker. Thus, the attacker can infer
the locations of the pre-deployed gadgets, making ASLR
useless. Next, we plant a buffer overflow vulnerability in
the app through which the attacker can smash the stack
layout and hijack the app’s control flow. The carefully
designed stack layout will chain together the gadgets to
accomplish malicious tasks.

To avoid the vulnerabilities from being detected in the
review process, the communication between the app and
the server is encrypted, and all the vulnerabilities have
special trigger conditions. Considering the fact that no
source code but only the executable is provided to the
review process, even if advanced vulnerability detection
technologies like fuzz testing and dynamic symbolic exe-
cution are employed, it is unlikely for app review process
to discover artificially planted and obscured vulnerabili-
ties.

Finally, the hidden gadgets should be discretely dis-
tributed in the app and mingled with the normal func-
tionalities, without explicit control flow or and data flow
connections. To do this, we create a number of infeasible
branches across the entire code space and hide gadgets
under these infeasible branches. In addition, we orga-
nize the common operations useful for both legitimate
and malicious functionalities into individual functional
gadgets.

3.3 Bypassing ASLR via Information Leakage

The ASLR mechanism loads the app executable and
other dynamic libraries at different random locations for
each run, and this causes some difficulties in the process
of chaining up our gadgets. However, since native apps
are written in Objective-C, it is very easy to plant infor-
mation leakage vulnerabilities to bypass ASLR and re-
cover the addresses of our gadgets. In the following, we
present two examples of how this can be achieved.

First, we can take advantage of an out-of-bounds
memory access vulnerability to read a function pointer,
and then send the value back to the remote server. Specif-
ically, we can use a C code snippet similar to Figure 4. In
this case, the app assigns the address of a public function
to the function pointer in a C structure, and pretends to
transmit the user name to the server. However, the server
can control the size parameter of the function memcpy
and is able to accurately trigger an out-of-bounds read.
As a result, the address of the public function is leaked.
Based on this address, we can infer the memory layout
of corresponding executable file.

Alternatively, we can take advantage of type con-
fusion vulnerabilities and features of Objective-C ob-
jects to leak address information. Most objects in
Objective-C programs inherit from a common class
called NSObject. The first field of these objects points

struct userInfo{
char username[16];
void* (*printName)(char*);

} user;
...
user.printName = publicFunction.
...
n = attacker_controllable_value; //20
memcpy(buf, user.username, n); //get function ptr
SendToServer(buf);

Figure 4: Information Disclosure Vulnerability I

to a Class structure that stores information about the
object’s type, inheritance hierarchy, member methods,
etc. These Class structures follow the same naming
convention (i.e., a common prefix _objc_class_$_)
and are stored at fixed offsets in the executable files. Us-
ing this information, we can also infer the address infor-
mation of the entire executable file. Figure 5 demon-
strates how this method works. First, we create an
Objective-C object with the myObject pointer point-
ing to the object. After that, we convert myObject into
an integer pointer by using explicit type-casting. Finally,
by dereferencing the integer pointer, we copy the address
value of the Class structure into the variable UID, and
send it to the remote server.

//create an object
SomeClass* myObject = [[SomeClass alloc] init];
...
int UID = *(int*)myObject; //type confusion
...
SendToServer(UID);

Figure 5: Information Disclosure Vulnerability II

Since many of the malicious operations in Table 1 rely
on private APIs, some discussion on how we invoke pri-
vate APIs in our attack is in order. To this end, we need
to be able to dynamically load private frameworks and
locate private APIs, and we employ two special APIs,
dlopen() and dlsym(). dlopen() is used to load
and link a dynamic library specified by filename and re-
turn an opaque handle for the library. dlsym() is used
to get the address of a symbol from a handle returned
from dlopen(). These two functions are implemented
in a library named libdyld.dylib. Since there is no
evidence to show that the exported APIs in this library
can be used by third-party apps, we should avoid directly
referencing to any APIs in this library.

Fortunately, we find that both APIs are commonly
used by public frameworks due to the need for dynam-
ically loading shared libraries and obtaining the absolute
addresses of symbols in the libraries. In particular, in
order to support PIE (Position Independent Executable),
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public frameworks invoke imported APIs through tram-
poline functions. The trampoline functions here con-
sist of a short sequence of instructions that first load the
absolute address of a specific function from an indirect
symbol table and then jump to that address. The indi-
rect symbol table is initially set up by the linker at run-
time. Therefore, if we can identify the trampolines for
dlopen and dlsym in a public framework, our app
can use the trampolines to indirectly invoke dlopen and
dlsym.

The task of identifying usable trampolines is simple.
With the help of a debugger, we set function breakpoints
at dlopen and dlsym and run a test app on a physi-
cal device. When the debug session hits a breakpoint,
we examine the call stack to find out the trampoline
function and its relative offset to the beginning of the
module. Thanks to the fact that ASLR on iOS work at
the granularity of modules, we can always infer the ad-
dresses of these trampolines from the address of a public
function in the same module leaked by our Jekyll app
using the vulnerabilities described before. Finally, we
note that trampolines for dlopen and dlsym can be
found in many essential frameworks, such as UIKit and
CoreGraphics.

3.4 Introducing New Execution Paths via Control-
Flow Hijacking

A key design of our attack scheme is to dynamically in-
troduce new execution paths that do not exist in the orig-
inal app to perform the malicious operations. In order
to achieve this, we plant a vulnerability in the Jekyll app,
through which we can corrupt data on the stack and over-
write a function return address (or a function pointer).
When the function returns, instead of returning to the
original call site, the execution will proceed to a program
point that is specified by the altered return address on the
stack. Although iOS employs the Stack-Smashing Pro-
tector method to detect stack-based overflows, we can
accurately overwrite the function return address without
breaking the stack canary.

void vulnerableFoo(int i, int j){
int buf[16];
...
if(fakeChecks(i)) ;

buf[i]= j; //overwrite return address
...
return;

}

Figure 6: Control Flow Hijacking Vulnerability

Specifically, we use an out-of-bounds write vulnera-
bility as shown in Figure 6 to hijack the control flow. In
this case, both i and j are controlled by the attacker.

Variable i is used to index a local integer array. Since
the offset from the starting address of this local array to
the memory slot for the function’s return address is fixed,
a carefully crafted i can overwrite the return address via
an array element assignment without breaking the stack
canary [10]. We can also add fake boundary checks on
i in the function to prevent the vulnerability from be-
ing easily detected. The new return address stored in j
points to a gadget that shifts the stack frame to a memory
region storing data supplied by the attacker. After that,
the new stack layout will chain the gadgets together. By
using the existing code in the app, we can defeat DEP and
code signing. Since our method for introducing new exe-
cution paths is essentially return-oriented-programming,
interested readers are referred to [15] and [33] for the
details of ROP on the ARM platform.

3.5 Hiding Gadgets

In traditional ROP attack scenarios, attackers have to
search for usable gadgets from existing binary or li-
braries using the Galileo algorithm [44]. However, in
our case, the attacker is also the app developer, who can
freely construct and hide all necessary gadgets, either at
the basic block or function level. This advantage makes
our attacks significantly less difficult and more practical
to launch than ROP attacks.

For the common functional units (such as converting a
char* to NSString and invoking a function pointer),
which are useful for both malicious and legit operations
of the app, we implement them in individual functions.
As a result, we can simply reuse such functions in our
attack based on the return-to-libc like exploitation tech-
nique. For the special gadgets that are not easily found
in existing code, we manually construct them by using
ARM inline assembly code [32] and hide them in infea-
sible branches. In our Jekyll app, we have planted and
hidden all gadgets that are required by traditional ROP
attacks [15], such as memory operations, data processing
(i.e., data moving among registers and arithmetic/logical
operations), and indirect function calls.

To create the infeasible branches, we use the opaque
constant technique [34]. For instance, in Figure 7 we
set a variable to a non-zero constant value derived from
a complicated calculation, and perform a fake check on
that variable. Since the compiler cannot statically deter-
mine that the variable holds a constant value, it will gen-
erate code for both branches. As a result, we can reliably
embed the gadgets using similar techniques.

Finally, we will conclude this section with a concrete
example of our ROP attack. Figure 8 shows the original
source code for dialing attack (see Section 4.2), which
loads a framework into process memory, locates a pri-
vate API called CTCallDial in the framework, and fi-
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int i = Opaque_constant_calculation();
if(i == 0)
{ //hide a gadget in this branch

asm volatile(
"pop {r2}"
"bx r2"
);

}

Figure 7: Hide an indirect call gadget

nally invokes that function. Accomplishing the equiv-
alent functionality through the ROP technique is very
easy, because many function level gadgets are available
in our Jekyll app. Specifically, we can find trampolines
for dlopen and dlsym in public frameworks (see Sec-
tion 3.3), and can also reuse existing code in our Jekyll
app to implement the indirect call and the conversion
from char* to NSString (the argument type of the
function CTCallDial is NSString).

1. void* h = dlopen("CoreTelephony", 1);
2. void (*CTCallDial)(NSString*)=dlsym(h, "CTC-

allDial");
3. CTCallDial(@"111-222-3333");

Figure 8: Attack code for dialing

In addition to these function level gadgets, we also
utilize a few simple basic block level gadgets that are
used to prepare and pass function arguments, recover the
stack pointer, and transfer the control back to the nor-
mal execution. For example, the first four arguments of a
function on iOS are passed through the registers R0-R3.
Before jumping into the target function, we can use a
gadget like pop{r0,r1,pc} to set up the function’s
parameters. Such block level gadgets are ubiquitous in
the existing code.

4 Malicious Operations

In this section, we introduce the malicious operations
we can perform using Jekyll apps. We present how to
post tweets and send email and SMS without the user’s
knowledge in Section 4.1, describe more private APIs
based attacks in Section 4.2, and demonstrate Jekyll
app’s ability to exploit kernel vulnerabilities and attack
other apps in Section 4.3 and Section 4.4.

4.1 Under the Hood: Posting Tweets and Sending
Email and SMS

Since iOS 5.0, third-party apps are allowed to send Twit-
ter requests on behalf of the user, by using the public
APIs in a framework called Twitter. After setting the

initial text and other content of a tweet, the public API
called by the app will present a tweet view to the user,
and let the user decide whether to post it or not, as shown
in Figure 9. However, we find that the tweet view in Fig-
ure 9 can be bypassed by using private APIs, i.e., our
app can post tweets without the user’s knowledge. Next,
we describe how we discover the private APIs needed for
achieving this goal.

Figure 9: The default UI for a tweet view

Our intuition is that if we know the event handling
function that is responsible for the “Send” button click
event, our app can directly invoke that function to post
the tweet, without the need to present the tweet view to
the user.

To do this, we created a simple app that uses the
Twitter framework to post tweets, and run the app in
the debug model. We developed a dynamic analysis tool
based on LLDB, a scriptable debugger in the iOS SDK,
to log the function invocation sequence after the “Send”
button is clicked. In the following, we will present some
details about our tool.

In Objective-C, all object method invocations are dis-
patched through a generic message handling function
called objc_msgSend. A method invocation expres-
sion in Objective-C like [object methodFoo:arg0]
will be converted into a C function call expression like

objc_msgSend(object, "methodFoo:", arg0).

Moreover, iOS follows the ARM standard calling con-
vention. The first four arguments of a function are passed
through the registers R0-R3, and any additional argu-
ments are passed through the stack. For the C func-
tion expression above, the arguments will be passed as
follows: R0 stores object, R1 stores the starting ad-
dress of the method name (i.e.,“methodFoo:”), and R2
stores arg0.

Our dynamic analysis tool sets a conditional break-
point at the objc_msgSend function. When the break-
point is triggered after the user clicks the “Send” button,
the tool logs the call stack, gets the target method name
through the register R1, and retrieves the type informa-
tion of the target object and other arguments (stored in
the registers R0, R2 and R3 ) by inspecting their Class
structures (see Section 3.3).
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According to the information in the log, we can
easily identify the relevant Objective-C classes and
private APIs for posting tweets. For instance,
in iOS 6.x, we find that a tweet is composed
through the method “setStatus:” in a class called
SLTwitterStatus, and then is posted through the
method “sendStatus:completion:” in a class
called SLTwitterSession. Our Jekyll app will
dynamically load the Twitter framework, create in-
stances from these classes, and invoke private APIs to
post tweets without the user’s knowledge.

We also extended the idea to find critical private APIs
for sending email and SMS. As in the case of posting
Tweets, third-party apps are able to set the initial text
and other content of an email or SMS, and present
the email or SMS view to the user. In iOS 5.x, we
successfully implemented the code to send email and
SMS without the user’s knowledge. Specifically, we
find that an email is first composed by a method of the
class MessageWriter, and then is sent to a service
process via an inter-process communication (IPC)
interface CPDistributedMessagingCenter.
Eventually, the service process will send the email out.
In the case of sending SMS, we find that, the content
of an SMS is first converted into an XPC message, and
the XPC message is subsequently passed to an XPC
service (another kind of IPC interfaces in iOS) named
com.apple.chatkit.clientcomposeserver.xpc.
By using such private APIs, our Jekyll app is able to
compose email and SMS objects, pass them to the
corresponding service processes, and automatically send
them without the user’s knowledge. An independent
study simultaneously reported how to send SMS in
this manner; interested readers are referred to [20] for
details.

However, in iOS 6, Apple introduced a new concept
called remote view to enhance the security of email and
SMS services. Specifically, a third-party app only passes
the initial content of an email or SMS to the correspond-
ing system services. These system service processes will
then generate the message view, and let the user make
further changes and final decision. Since the message
view runs in a separate process, the third-party app is no
longer able to invoke the handler function for the “Send”
button click event.

4.2 Camera, Bluetooth, Device ID, and Dialing

The iOS developer community has accumulated exten-
sive knowledge of using private APIs and proposed many
attacks against jailbroken iOS devices. We integrated
some previously known attacks into our Jekyll app. Since
these attacks heavily use private APIs, any app that ex-
plicitly launches these attacks will most certainly be re-

jected by Apple. However, our Jekyll app can dynam-
ically load the private frameworks and hide the invoca-
tions to private APIs, and successfully passes the App
Review.

Next, we briefly introduce the private APIs that we
utilized to achieve the following tasks without alerting
the users: take photos, switch on/off bluetooth, steal the
device identity information, and dial arbitrary numbers.
The operations in this subsection work in both iOS 5.x
and iOS 6.x.

• Abuse cameras. Our Jekyll app is able to stealthily
turn on the camera in iOS devices to record videos
without the user’s knowledge; this can be achieved
by creating and assembling the object instances of a
set of classes such as AVCaptureDeviceInput
and AVCaptureVideoDataOutput in the
AVFoundation framework. Jekyll app can also
extract every frame of a video stream and transfer
the images back to the server.

• Switch Bluetooth. By using the APIs in a private
framework BluetoothManager, our Jekyll app
can directly manipulate the Bluetooth device, such
as turning it on or off.

• Steal Device Identity. To obtain the de-
vice identity information, we take ad-
vantage of a private function called
CTServerConnectionCopyMobileEquipmentInfo

in the CoreTelephony framework. This func-
tion can return the device’s the International Mobile
Station Equipment Identity (IMEI), the Interna-
tional Mobile Subscriber Identity (IMSI), and the
Integrated Circuit Card Identity (ICCID).

• Dial. By invoking the private API CTCallDial in
the CoreTelephony framework, our Jekyll app
can dial arbitrary numbers. Note that, this API sup-
ports to dial not only phone numbers, but also GSM
service codes [3] as well as carrier-specific num-
bers. For instance, by dialing *21*number#, Jekyll
app can forward all calls to the victim’s phone to an-
other phone specified by number.

4.3 Exploiting Kernel Vulnerabilities

Since they run directly on iOS, native apps are able to
directly interact with the iOS kernel and its extensions,
making the exploitation of kernel vulnerabilities possi-
ble. Even though the sandbox policy limits third-party
apps to only communicate with a restricted set of device
drivers, and thus significantly reduces the attack surface
for kernel exploitation, security researchers still man-
aged to find vulnerabilities in this small set of device
divers [49].
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In our Jekyll app, we hide the gadgets that can enable
us to communicate with the accessible device drivers.
Specifically, Jekyll app can dynamically load a frame-
work called IOKit, in which Jekyll app further locates
the required APIs such as IOServiceMatching,
IOServiceOpen and IOConnectCallMethod to
create and manipulate connections to device drivers.
Therefore, our Jekyll app provides a way for attackers
to exploit kernel vulnerabilities. We demonstrate this by
exploiting a kernel NULL pointer dereference vulnera-
bility in iOS 5.x, disclosed in [49]. The exploitation of
this vulnerability causes the iOS devices to reboot.

4.4 Trampoline Attack

Due to the sandboxing mechanism, iOS apps are re-
stricted from accessing files stored by other apps. How-
ever, iOS provides a form of inter-process communica-
tion (IPC) among apps using URL scheme handlers. If
an app registers to handle a URL type, other apps can
launch and pass messages to this app by opening a URL
scheme of that type. The http, mailto, tel, and sms
URL schemes are supported by built-in apps in iOS. For
example, an app opening a http URL will cause the
built-in web browser Mobile Safari to launch and load
the webpage. Since attackers can fully control the con-
tent in a URL request, our Jekyll app has the ability to
attack other apps that have vulnerabilities when handling
malformed URL requests.

In our proof-of-concept Jekyll app, we demonstrated
an attack against Mobile Safari; in particular, we pre-
pared a web page containing malicious JavaScript code
that can trigger an unpatched vulnerability in Mobile Sa-
fari. Through our Jekyll app, we can force the victim’s
Mobile Safari to access this web page. Finally, Mobile
Safari will crash when loading the webpage due to a
memory error. JailbreakMe [1], a well-known jailbreak
tool, completes the untethered jailbreak through exploit-
ing a vulnerability in Mobile Safari and then exploiting a
kernel vulnerability. If new vulnerabilities in Mobile Sa-
fari are disclosed by other researchers in the future, we
can simply take advantage of these new vulnerabilities to
launch similar powerful attacks.

5 Jekyll App Implementation

We have implemented a proof-of-concept Jekyll app
based on an open source news client called News:yc [2].
The original News:yc app fetches news from a server,
and allows the user to share selected news items through
email. We modified News:yc in several places. First,
we configured it to connect to a server controlled by us.
Second, we planted vulnerabilities and code gadgets in
the app. These vulnerabilities are triggerable by special

news contents, and the code gadgets support all the mali-
cious operations listed in Table 1. Third, we modified the
app to use a secure protocol that provides authenticated
and encrypted communication, so that the app client only
accepts data from our server. In addition, the server was
configured to deliver exploits only to the clients from
specific IP addresses, which ensures that only our test-
ing devices can receive the exploits. Figure 10.a shows
the snapshot of the app.

a. The main UI of the app b. After an attack, device identity is
popped up for illustration purposes

Figure 10: Snapshots of the app

We submitted the app to Apple and got Apple’s ap-
proval after 7 days. Figure 11 shows the approval notifi-
cation from Apple. Once the app was on App Store, we
immediately downloaded it into our testing devices and
removed it from App Store. We have data to show that
only our testing devices installed the app. The server has
also been stopped after we finished the testing.

The testing results are summarized in Table 1. By ex-
ploiting the vulnerabilities and chaining the planted gad-
gets, we can send email and SMS and trigger a kernel
vulnerability on iOS 5.x, and post tweets, record videos,
steal the device identity, manipulate bluetooth, dial arbi-
trary number, and attack Mobile Safari on both iOS 5.x
and iOS 6.x. We show the attack of stealing device iden-
tity in Figure 10.b. We have made a full disclosure of our
attack to Apple.

6 Related Work

Jailbreak, which obtains the root privilege and perma-
nently disables the code signing mechanism, represents
the majority of efforts to attack iOS [38]. Since jail-
break usually relies on a combination of vulnerabilities
found in the iOS kernel, the boot loaders, and even the
firmware, Apple and hackers have long played a cat-and-
mouse game. However, due to Apple’s increasing efforts
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Figure 11: The approval notification from Apple

to secure iOS and keep fixing known bugs, it is becoming
extremely difficult to find exploitable vulnerabilities in
newer versions of iOS. Our attack does not try to achieve
a jailbreak on iOS devices, instead, it takes advantage
of the intrinsic incapability of the App Review process
and the design flaws of iOS to deliver various types of
malicious operations remotely, which cannot be trivially
addressed via software updates. Note that, it is possible
for Jekyll apps to take advantage of the vulnerabilities
used by jailbreak tools to compromise iOS devices.

C. Miller [37] recently discovered a vulnerability in
the iOS code signing mechanism, which allows attack-
ers to allocate a writeable and executable memory buffer.
He demonstrated that, by exploiting this vulnerability, a
malicious app can safely pass the app review process if
it generates malicious code only at runtime. However,
Apple had instantly fixed the issue, and therefore, effec-
tively blocked apps that use similar methods to load or
construct malicious code during runtime.

In contrast, Jekyll apps do not hinge on specific im-
plementation flaws in iOS. They present an incomplete
view of their logic (i.e., control flows) to app reviewers,
and obtain the signatures on the code gadgets that remote
attackers can freely assemble at runtime by exploiting
the planted vulnerabilities to carry out new (malicious)
logic. In addition, the lack of runtime security moni-
toring on iOS makes it very hard to detect and prevent
Jekyll apps. Considering that ROP attacks can achieve
Turing-completeness [9] and automatic ROP shellcode
generation is also possible [29, 43], the attack scheme in
this paper significantly generalizes the threat in [37].

Return-Oriented Programming (ROP) [44], without
introducing new instructions, carries out new logic that
is not embodied in the original code. ROP and its vari-
ants [11, 29, 33, 36] allow attackers to create new con-
trol flows of a program at runtime via code gadget rear-

rangements, obviating the need for code injections that
are prevented by DEP and code signing. Jekyll apps also
employ code gadget rearrangements to alter runtime con-
trol flows—an idea inspired by ROP. However, our attack
differs from ROP in both the assumption and the goal.
Traditional ROP attack targets at programs that are out
of the attacker’s control and its power is often limited by
the availability of useful code gadgets.

In comparison, Jekyll apps are created and later ex-
ploited by the same person, who has the ultimate control
of the gadget availability. On the other hand, traditional
ROP attackers have no concern about hiding potential
code gadgets and their inter-dependencies, whereas we
do so that Jekyll app can bypass existing and possible
detections. Currently, we need to manually construct
the ROP exploits that are responsible for chaining gad-
gets together. However, previous studies [29, 43] have
demonstrated the possibility of automatically generating
ROP shellcode on the x86 platform. We leave the auto-
matic ROP shellcode generation for Jekyll apps as future
work. In addition, M. Prati [40] proposed a way to hide
ROP gadgets in open source projects with a purpose to
evade the code audit of the projects. This implies that
even Apple could audit the source code of third-party
apps in the future, detecting the hidden gadgets is still
quite challenging.

Jekyll apps also share a common characteristic with
trojan and backdoor programs [13], that is, the malice or
vulnerabilities of attacker’s choice can be freely planted
into the program, which later cooperates with the at-
tacker when installed on a victim’s device. In fact, Jekyll
app can be deemed as an advanced backdoor app that
stays unsuspicious and policy-abiding when analyzed
during the app review process, but turns into malicious
at runtime only when new control flows are created per
attacker’s command.

Thus far Apple’s strict app publishing policies and re-
view process [5] have helped keep malicious apps out
of iOS devices [41]. Automated static analysis meth-
ods, such as [17, 26], were also proposed to assist the
review process in vetting iOS apps. However, as we have
demonstrated with our design and evaluation of Jekyll
apps, malicious apps can easily bypass human reviewers
and automatic tools if their malicious logic is constructed
only at runtime. This demonstrates the limitations of Ap-
ple’s current strategy that solely relies on app reviewing
to find malicious apps and disallows any form of security
monitoring mechanism on iOS devices.

7 Discussion

In this section, we discuss a number of possible counter-
measures against Jekyll apps and analyze the effective-
ness as well as the feasibility of these countermeasures.
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7.1 Possible Detection at App Review Stage

Two possible directions that the app reviewers may pur-
sue to detect Jekyll apps are: (i) discover the vulnerabil-
ities we plant; (ii) identify the code gadgets we hide.

We emphasis that discovering software vulnerabilities
using static analysis alone is fundamentally an undecid-
able problem [35], even without considering the power-
ful adversary in our attack who can arbitrarily obscure
the presence of the vulnerabilities. Dynamic analysis
based vulnerability detection approaches can also be eas-
ily defeated by using complicated trigger conditions and
encrypted input data. We argue that the task of making
all apps in App Store vulnerability-free is not only theo-
retically and practically difficult, but also quite infeasible
to Apple from an economic perspective because such at-
tempts will significantly complicate the review tasks, and
therefore, prolong the app review and approval process
that is already deemed low in throughput by third-party
app developers.

To simplify the engineering efforts, our current imple-
mentation of Jekyll app directly includes some code gad-
gets in an isolated fashion (i.e., unreachable from pro-
gram entry points), essentially leaving them as dead code
that may be detectable and in turn removed during app
review process. However, given our freedom to craft the
app, it is totally possible to collect all gadgets from the
code that implements the legitimate functionalities of the
app, without the need to hide extra gadgets as dead code.

In summary, even though the hidden vulnerabilities
and gadgets might take unusual forms comparing with
regular code, accurately detecting Jekyll apps (e.g., based
on statistical analysis) is still an open challenge. Thus,
detecting Jekyll apps in App Review process via vulnera-
bility discovery or gadgets identification is not a feasible
solution.

7.2 Possible Mitigation through Improved or New
Runtime Security

Generally, improving the existing security mechanisms
or introducing more advanced runtime monitoring mech-
anisms can limit Jekyll apps’ capability to perform mali-
cious operations. However, completely defeating Jekyll
apps is not easy.

• A natural idea to limit Jekyll apps is to technically
prevent third-party apps from loading private frame-
works or directly invoking private APIs. However,
Jekyll apps do not have to dynamically load private
frameworks. As we discussed, since many pub-
lic frameworks rely on these private frameworks,
Jekyll apps can reasonably link to these public
frameworks so that certain private frameworks will

also be loaded into the process space by the sys-
tem linker. A more strict execution environment
like Native Client [50] can help prevent the apps
from directly invoking private APIs by loading pri-
vate frameworks into a separate space and hooking
all invocations. However, since iOS public and pri-
vate frameworks are tightly coupled, applying such
a mechanism to iOS is quite challenging.

• Fine-grained ASLR such as [27, 39, 46] can greatly
reduce the number of gadgets that we can locate
during runtime even with the help of the planted
information leakage vulnerabilities. Although ex-
panding the scale and refining the granularity of
the information leakage can help obtain a detailed
view of the memory layout, Jekyll apps may lose
the stealthiness due to the increased exposure of the
vulnerabilities and increased runtime overhead.

• A fine-grained permission model, sandbox profile,
or user-driven access control policy [28,42] can also
help limit the damages done by Jekyll apps. How-
ever, simply using Android-like permission system
will not be an unsurmountable obstacle to Jekyll
apps. As long as a Jekyll app can reasonably re-
quire all permissions, it can still carry out certain
attacks successfully. A user-driven access control
model [28, 42] also cannot stop Jekyll apps from
abusing the access already granted and attacking
other apps or the kernel. Take the greeting card app
in Section 3.1 as an example. After the user allows
the greeting card app to access the address book, it
is very hard to prevent the app from leaking the in-
formation.

• Since Jekyll apps heavily reply on control flow hi-
jacking vulnerabilities, advanced exploit prevention
techniques such as CFI [6] may effectively limit
Jekyll apps. CFI ensures that runtime control-
flow transfers conform with the rules that are de-
rived from the static analysis of the program and
the constraints inferred from the execution context.
MoCFI [14] and PSiOS [47] brought the same idea
to iOS with a caveat that they require jailbroken
devices. Despite its high performance overhead
and low adoption rate in practice, CFI is generally
deemed effective against conventional ROP attacks,
which partially inspired the design of Jekyll apps. In
principle, if properly implemented and deployed on
iOS, CFI can significantly increase the complexity
of designing Jekyll apps and force attackers to trade
code flexibility for success. Although skilled attack-
ers presumably can either employ very systematic
non-control data attacks [12] to perform malicious
operations or use function-level gadgets to bypass
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CFI, given their freedom to craft the gadgets in our
attack, they may have to sacrifice the stealthiness
of Jekyll apps to some extent due to the increased
distinguishability caused by such techniques.

• Type-safe programming languages like Java are im-
mune to low-level memory errors such as buffer
overflows. Thus, if we can enforce that third-party
apps be developed in type-safe programming lan-
guages, we can prevent the problems of planted con-
trol flow hijacking or information leakage vulnera-
bilities in the apps.

In summary, we advocate the official support for run-
time security monitoring mechanisms on iOS. Our de-
sign of Jekyll apps intends to motivate such mechanisms,
which can protect iOS against advanced attacks and en-
sure that the app review practice and regulations receive
their maximum efficacy.

8 Conclusion

In this paper, we presented a novel attack scheme that can
be used by malicious iOS developers to evade the manda-
tory app review process. The key idea is to dynamically
introduce new execution paths that do not exist in the app
code as reviewed by Apple. Specifically, attackers can
carefully plant a few artificial vulnerabilities in a benign
app, and then embed the malicious logic by decomposing
it into disconnected code gadgets and hiding the gadgets
throughout the app code space. Such a seemingly benign
app can pass the app review because it neither violates
any rules imposed by Apple nor contains functional mal-
ice. However, when a victim downloads and runs the
app, attackers can remotely exploit the planted vulnera-
bilities and in turn assemble the gadgets to accomplish
various malicious tasks.

We demonstrated the versatility of our attack via a
broad range of malicious operations. We also discussed
our newly discovered private APIs in iOS that can be
abused to send email and SMS and post tweets without
the user’s consent.

Our proof-of-concept malicious app was successfully
published on App Store and tested on a controlled group
of users. Even running inside the iOS sandbox, the app
can stealthily post tweets, take photos, gather device
identity information, send email and SMS, attack other
apps, and even exploit kernel vulnerabilities.
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