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Abstract

Information security and privacy in general are major
concerns that impede enterprise adaptation of shared or
public cloud computing. Specifically, the concern of vir-
tual machine (VM) physical co-residency stems from the
threat that hostile tenants can leverage various forms of
side channels (such as cache covert channels) to exfil-
trate sensitive information of victims on the same physi-
cal system. However, on virtualized x86 systems, covert
channel attacks have not yet proven to be practical, and
thus the threat is widely considered a “potential risk”.
In this paper, we present a novel covert channel attack
that is capable of high-bandwidth and reliable data trans-
mission in the cloud. We first study the application of
existing cache channel techniques in a virtualized envi-
ronment, and uncover their major insufficiency and dif-
ficulties. We then overcome these obstacles by (1) re-
designing a pure timing-based data transmission scheme,
and (2) exploiting the memory bus as a high-bandwidth
covert channel medium. We further design and imple-
ment a robust communication protocol, and demonstrate
realistic covert channel attacks on various virtualized x86
systems. Our experiments show that covert channels do
pose serious threats to information security in the cloud.
Finally, we discuss our insights on covert channel miti-
gation in virtualized environments.

1 Introduction

Cloud vendors today are known to utilize virtualization
heavily for consolidating workload and reducing man-
agement and operation cost. However, due to the relin-
quished control from data owners, data in the cloud is
more susceptible to leakage by operator errors or theft
attacks. Cloud vendors and users have used a number
of defense mechanisms to prevent data leakage, ranging
from network isolation to data encryption. Despite the
efforts being paid on information safeguarding, there re-

main potential risks of data leakage, namely the covert
channels in the cloud [14, 18, 22, 24, 30, 31].

Covert channels exploit imperfections in the isolation
of shared resources between two unrelated entities, and
enable communications between them via unintended
channels, bypassing mandatory auditing and access con-
trols placed on standard communication channels. Pre-
vious research has shown that on a non-virtualized sys-
tem, covert channels can be constructed using a variety of
shared media [3, 12, 16, 19, 23]. However, to date there
is no known practical exploit of covert channels on vir-
tualized x86 systems.

Exposing cloud computing to the threat of covert
channel attacks, Ristenpartet al. [18] have implemented
an L2 cache channel in Amazon EC2 [18], achieving a
bandwidth of 0.2 bps (bits-per-second), far less than the
one bps “acceptable” threshold suggested by the Trusted
Computer System Evaluation Criteria (TCSEC, a.k.a. the
“Orange Book”) [5]. A subsequent measurement study
of cache covert channels [30] has achieved slightly im-
proved speeds—a theoretical channel capacity of 1.77
bps1. Given such low reported channel capacities from
previous research, it is widely believed that covert chan-
nel attacks could only do very limited harm in the cloud
environment. Coupled with the fact that the cloud ven-
dors impose non-trivial extra service charges for provid-
ing physical isolation, one might be tempted to disregard
the concerns of covert channels as only precautionary,
and choose the lower cost solutions.

In this paper, we show that the threat of covert channel
attacks in the cloud is real and practical. We first study
existing cache covert channel techniques and their ap-
plications in a virtualized environment. We reveal that
these techniques are rendered ineffective by virtualiza-
tion, due to three major insufficiency and difficulties,
namely,addressing uncertainty, scheduling uncertainty,

1This value is derived from the results presented in the original
paper—a bandwidth of 3.20 bps with an error rate of 9.28%, by as-
suming a binary symmetric channel.



and cache physical limitations. We tackle the address-
ing and scheduling uncertainty problems by designing
a pure timing-based data transmission scheme with re-
laxed dependencies on precise cache line addressing and
scheduling patterns. Then, we overcome the cache phys-
ical limitations by discovering a high-bandwidth mem-
ory bus covert channel, exploiting the atomic instructions
and their induced cache–memory bus interactions on x86
platforms. Unlike cache channels, which are limited to a
physical processor or a silicon package, the memory bus
channel works system-wide, across physical processors,
making it a very powerful channel for cross–VM covert
data transmission.

We further demonstrate the real world exploitability
of the memory bus covert channel by designing a ro-
bust data transmission protocol and launching realistic
attacks on our testbed server as well as in the Amazon
EC2 cloud. We observe that the memory bus covert chan-
nel can achieve (1) a bandwidth of over 700 bps with
extremely low error rate in a laboratory setup, and (2) a
real world transmission rate of over 100 bps in the Ama-
zon EC2 cloud. Our experimental results show that, con-
trary to previous research and common beliefs, covert
channels are able to achieve high bandwidth and reliable
transmission on today’s x86 virtualization platforms.

The remainder of this paper is structured as follows.
Section 2 surveys related work on covert channels. Sec-
tion 3 describes our analysis of the reasons that existing
cache covert channels are impractical in the cloud. Sec-
tion 4 details our exploration of building high-speed, re-
liable covert channels in a virtualized environment. Sec-
tion 5 presents our evaluation of launching covert chan-
nel attacks using realistic setups. Section 6 provides a
renewed view of the threats of covert channels in the
cloud, and discusses plausible mitigation avenues. Sec-
tion 7 concludes this paper.

2 Related Work

Covert channel is a well known type of security attack
in multi-user computer systems. Originated in 1972 by
Lampson [12], the threats of covert channels are preva-
lently present in systems with shared resources, such
as file system objects [12], virtual memory [23], net-
work stacks and channels [3, 19, 20], processor caches
[16, 24], input devices [21], etc. [5, 13].

Compared to other covert channel media, the proces-
sor cache is more attractive for exploitation, because
its high operation speed could yield high channel band-
width and the low level placement in the system hierar-
chy can bypass many high level isolation mechanisms.
Thus, cache-based covert channels have attracted serious
attention in recent studies.

Percival [16] introduced a technique to construct inter-
process high bandwidth covert channels using the L1 and
L2 caches, and demonstrated a cryptographic key leak-
age attack through the L1 cache side channel. Wang and
Lee [24] deepened the study of processor cache covert
channels, and pointed out that the insufficiency of soft-
ware isolation in virtualization could lead to cache-based
cross–VM covert channel attacks. Ristenpartet al. [18]
further exposed cloud computing to covert channel at-
tacks by demonstrating the feasibility of launching VM
co-residency attacks, and creating an L2 cache covert
channel in the Amazon EC2 cloud. Xuet al. [30] con-
ducted a follow up measurement study on L2 cache
covert channels in a virtualized environment. Based on
their measurement results, they concluded that the harm
of data exfiltration from cache covert channels is quite
limited due to low achievable channel capacity.

In response to the discovery of cache covert channel
attacks, a series of architectural solutions have been pro-
posed to limit cache channels, including RPcache [24],
PLcache [11], and Newcache [25]. RPcache and New-
cache employ randomization to prevent data transmis-
sion by establishing a location-based coding scheme.
PLcache, however, is based on enforcing resource iso-
lation by cache partitioning.

One drawback of hardware-based solutions is their
high adaptation cost and latency. With the goal of of-
fering immediately deployable protection, HomeAlone
[31] proposes to proactively detect the co-residence of
unfriendly VMs. Leveraging the knowledge of existing
cache covert channel techniques [16, 18], HomeAlone
detects the presence of a malicious VM by acting like
a covert channel receiver and observing cache timing
anomalies caused by another receiver’s activities.

The industry has taken a more pragmatic approach
to mitigating covert channel threats. The Amazon EC2
cloud provides a featured service called dedicated in-
stances [1], which ensures VMs belonging to each tenant
of this service do not share physical hardware with any
other cloud tenants’ VMs. This service effectively elimi-
nates various covert channels induced by the shared plat-
form hardware, including cache covert channel. How-
ever, in order to enjoy this service, the cloud users have
to pay a significant price premium2.

Of historical interest, the study of covert channels in
virtualized systems is far from a brand new research
topic—legacy research that pioneered this field dates
back over 30 years. During the development of the VAX
security kernel, a significant amount of effort has been

2As of the time of writing (January, 2012), each dedicated instance
incurs a 23.5% higher per-hour cost than regular usage. In addition,
there is a $10 fee per hour/user/region. Thus, for a user of 20small
instances, the overall cost of using dedicated instances is6.12 times
more than that of using regular instances.



Algorithm 1 Classic Cache Channel Protocol

Cache[N]: A shared processor cache, conceptually divided intoN regions;
Cache[N]: Each cache region can be put in one of two states,cachedor flushed.
DSend[N], DRecv[N]: N bit data to transmit and receive, respectively.

Sender Operations: Receiver Operations:

(Wait for receiver to initialize the cache)

for i := 0 to N−1 do
{PutCache[i] into thecachedstate}
Access memory maps toCache[i];

end for

for i := 0 to N−1 do
if DSend[i] = 1 then

{PutCache[i] into theflushedstate}
Access memory maps toCache[i];

end if
end for

(Wait for sender to prepare the cache)

(Wait for receiver to read the cache)

for i := 0 to N−1 do
Timed access memory maps toCache[i];
{Detect the state ofCache[i] by latency}
if AccessTime> Thresholdthen

DRecv[i] := 1; {Cache[i] is flushed}
else

DRecv[i] := 0; {Cache[i] is cached}
end if

end for

paid to limit covert channels within the Virtual Machine
Monitor (VMM). Hu [8, 9] and Gray [6, 7] have pub-
lished a series of follow up research on mitigating cache
channels and bus contention channels, using timing noise
injection and lattice scheduling techniques. However,
this research field has lost its momentum until recently,
probably due to the cancellation of the VAX security ker-
nel project, as well as the lack of ubiquity of virtualized
systems in the past.

3 Struggles of the Classic Cache Channels

Existing cache covert channels (namely, the classic cache
channels) employ variants of Percival’s technique, which
uses a hybrid timing and storage scheme to transmit in-
formation over a shared processor cache, as described in
Algorithm 1.

The classic cache channels work very well on hyper-
threaded systems, achieving transmission rates as high as
hundreds of kilobytes per second [16]. However, when
applied in today’s virtualized environments, the achiev-
able rates drop drastically, to only low single-digit bits
per second [18, 30]. The multiple orders of magnitude
reduction in channel capacity clearly indicates that the
classic cache channel techniques are no longer suit-
able for cross–VM data transmission. In particular, we
found that on virtualized platforms, the data transmis-

sion scheme of a classic cache channel suffers three ma-
jor obstacles—addressing uncertainty, scheduling uncer-
tainty, and cache physical limitation.

3.1 Addressing Uncertainty

Classic cache channels modulate data by the states of
cache regions, and hence a key factor affecting chan-
nel bandwidth is the number of regions a cache being
divided. From information theory’s perspective, a spe-
cific cache region pattern is equivalent to a transmitted
symbol. And the number of regions in a cache thus cor-
responds to the number of symbols in the alphabet set.
The higher symbol count in an alphabet set, the more in-
formation can be passed per symbol.

On hyper-threaded single processor systems, for
which classic cache channels are originally designed, the
sender and receiver are executed on the same processor
core, using the L1 cache as the transmission medium.
Due to its small capacity, the L1 cache has a special
property that its storage is addressed purely by virtual
memory addresses, a technique called VIVT (virtually
indexed, virtually tagged). With a VIVT cache, two pro-
cesses can impact the same set of associative cache lines
by performing memory operations with respect to the
same virtual addresses in their address spaces, as illus-
trated in Figure 1(a). This property enables processes to
precisely control the status of the cache lines, and thus
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Figure 1: Memory Address to Cache Line Mappings for L1 and L2 Caches

allows for the L1 cache to be finely divided, such as 32
regions in Percival’s cache channel [16].

However, on today’s production virtualization sys-
tems, hyper-threading is commonly disabled for security
reasons (i.e., eliminating hyper-threading induced covert
channels). Therefore, the sender and receiver could only
communicate by interleaving their executions. Since the
L1 cache is completely flushed at context switches, only
those higher level caches (e.g., the L2 cache) whose con-
tents are preserved across a context switch can be lever-
aged for classic cache channel transmission. Unlike the
L1 cache, the storage in these higher level caches is
not addressed purely by virtual memory addresses, but
either by physical memory addresses (PIPT, physically
indexed, physically tagged), or by a mixture of virtual
and physical memory addresses (VIPT, virtually indexed,
physically tagged). With physical memory addresses in-
volved in cache line addressing, given only knowledge of
its virtual address space, a process cannot be completely
certain of the cache line a memory access would affect
due to address translation.

Server virtualization has further complicated the ad-
dressing uncertainty by adding another layer of indirec-
tion to memory addressing. As illustrated in Figure 1(b),
the “physical memory” of a guest VM is still virtualized,
and access to it must be further translated. As a result, it
is very difficult, if not impossible, for a process in a guest
VM (especially for a full virtualization VM) to discover
the actual physical memory addresses of a memory re-
gion. Due to the addressing uncertainty, for classic covert
channels on virtualized systems, the number of cache re-
gions is reduced to a minimum of only two [18, 30].

3.2 Scheduling Uncertainty

Classic cache channel data transmission depends on a
cache pattern “round-trip”—the receiver completely re-
sets the cache and correctly passes it to the sender; and
the sender completely prepares the cache pattern and cor-

rectly passes it back to the receiver. Therefore, to suc-
cessfully transmit one cache pattern, the sender and re-
ceiver must be strictly round-robin scheduled.

However, without special scheduling arrangements
(i.e., collusion) from the hypervisor, such idealistic
scheduling rarely happens. On production virtualized
systems, the physical processors are usually oversub-
scribed in order to increase utilization. In other words,
each physical processing core serves more than one vir-
tual processor from different VMs. As a result, there exist
many scheduling patterns that prevent successful cache
pattern “round-trip”, such as:

∗ Channel not cleared for send:The receiver is de-
scheduled before it finishes resetting the cache.

∗ Channel invalidated for send:The receiver finishes
resetting the cache, but another unrelated VM is
scheduled to run immediately after.

∗ Sending incomplete:The sender is de-scheduled be-
fore it finishes preparing the cache.

∗ Symbol destroyed:The sender finishes preparing the
cache, but another unrelated VM is scheduled to run
immediately after.

∗ Receiving incomplete:The receiver is de-scheduled
before it finishes reading the cache.

∗ Channel access collision:The sender and receiver
are executed in parallel on processor cores that share
the L2 cache.

Xu et al. [30] have clearly illustrated the problem of
scheduling uncertainty in two of their measurements.
First, in a laboratory setup, the error rate of their covert
channel increases from near 1% to 20–30% after adding
just one non-participating VM with moderate workload.
Second, in the Amazon EC2 cloud, they have discov-
ered that only 10.5% of the cache measurements at the
receiver side are valid for data transmission, due to the
fact that the hypervisor’s scheduling is different from the
idealistic scheduling.



Algorithm 2 Timing-based Cache Channel Protocol

CLines: Several sets of associative cache lines picked by both the sender andthe receiver;
CLines: These cache lines can be put in one of two states,cachedor flushed.
DSend[N], DReceive[N]: N bit data to transmit and receive, respectively.

Sender Operations: Receiver Operations:
for i := 0 to N−1 do

if DSend[i] = 1 then
for an amount of timedo

{PutCLinesinto theflushedstate}
Access memory maps toCLines;

end for
else

{LeaveCLinesin thecachedstate}
Sleep of an amount of time;

end if
end for

for i := 0 to N−1 do
for an amount of timedo

Timed access memory maps toCLines;
end for
{Detect the state ofCLinesby latency}
if Mean(AccessTime)> Thresholdthen

DReceive[i] := 1; {CLinesis flushed}
else

DReceive[i] := 0; {CLinesis cached}
end if

end for

3.3 Cache Physical Limitation

Besides the two uncertainties, classic cache channels also
face an insurmountable limitation—the necessity of a
sharedandstablecache.

If the sender and receiver of classic cache channels are
executed on processor cores that do not share any cache,
obviously no communication could be established. On a
multi-processor system, it is quite common to have pro-
cessor cores that do not share any cache, since there is
usually no shared cache between different physical pro-
cessors. And sometimes even processor cores residing on
the same physical processor do not share any cache, such
as an Intel Core2 Quad processor, which contains two
dual-core silicon packages with no shared cache in be-
tween.

Even if the sender and receiver could share a cache,
external interferences can make the cache unstable. Mod-
ern multi-core processors often include a large last-level
cache (LLC) shared between all processor cores. To fa-
cilitate a simpler cache coherence protocol, the LLC usu-
ally employs an inclusive principle, which requires that
all data contained in the lower level caches must also
exist in the LLC. In other words, when a cache line
is evicted from the LLC, it must also be evicted from
all the lower level caches. Thus, any non-participating
processes executing on those processor cores that share
the LLC with the sender and receiver can interfere with
the communication by indirectly evicting the data in the
cache used for the covert channel. The more cores on a
processor, the higher the interference.

Overall, virtualization induced changes to cache oper-
ations and process scheduling render the data transmis-
sion scheme of classic cache channels obsolete. First, the
effectiveness of data modulation is severely reduced by
addressing uncertainty. Second, the critical procedures of

signal generation, delivery, and detection are frequently
interrupted by less-than-ideal scheduling patterns. And
finally, the fundamental requirement of stably shared
cache is hard to satisfy as processors are having more
cores.

4 Covert Channel in the Hyper-space

In this section, we present our techniques to tackle the ex-
isting difficulties and develop a high-bandwidth, reliable
covert channel on virtualized x86 systems. At first, we
describe our redesigned, pure timing-based data trans-
mission scheme, which overcomes the negative effects of
addressing and scheduling uncertainties with a simplified
design. After that, we detail our findings of a powerful
covert channel medium, exploiting the atomic instruc-
tions and their induced cache–memory bus interactions
on x86 platforms. And finally, we specify our designs of
a high error-tolerance transmission protocol for cross–
VM covert channels.

4.1 A Stitch In Time

We first question the reasoning behind using cache state
patterns for data modulation. Originally, Percival [16]
designed this transmission scheme mainly for the use
of side channel cryptographic key stealing on a hyper-
threaded processor. In this specific usage context, the
critical information of memory access patterns are re-
flected by the states of cache regions. Therefore, cache
region-based data modulation is an important source of
information. However, in a virtualized environment, the
regions of the cache no longer carry useful informa-
tion due to addressing uncertainty, making cache region-
based data modulation a great source of interference.

We therefore redesign a data transmission scheme for
the virtualized environment. Instead of using the cache
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Figure 2: Timing-based Cache Channel Bandwidth Test

region-based encoding scheme, we modulate the data
based on the state of cache lines over time, resulting in a
pure timing-based transmission protocol, as described in
Algorithm 2.

Besides removing cache region-based data modula-
tion, the new transmission scheme also features a signif-
icant change in the scheduling requirement, i.e., signal
generation and detection are performed instantaneously,
instead of being interleaved. In other words, data are
transmitted while the sender and receiver run in parallel.
This requirement is more lenient than strict round-robin
scheduling, especially with the trend of increasing num-
ber of cores on a physical processor, making two VMs
more likely to run in parallel than interleaved.

We conduct a simple raw bandwidth estimation exper-
iment to demonstrate the effectiveness of the new cache
covert channel. In this experiment, interleaved bits of ze-
ros and ones are transmitted, and the raw bandwidth of
the channel can thus be estimated by manually counting
the number of bits transmitted over a period of time.

We build the cache covert channel on an Intel Core2
system with two processor cores sharing a 2 MB 8-way
set-associative L2 cache. Using a simple profiling test,
accessing a random3 sequence of memory addresses sep-
arated by multiples of 256KB, we observe that these
memory addresses can be mapped to up to 64 cache
lines. Therefore, we selectCLinesas a set of 64 cache
lines mapped by memory addresses following the pattern
M+X ·256K, whereM is a small constant andX is a ran-
dom positive integer. The sender puts these cache lines
into theflushedstate by accessing a sequence ofCLines-
mapping memory addresses. The receiver times the ac-
cess latency of another sequence ofCLines-mapping
memory addresses. The length of the receivers access se-
quence should be smaller than, but not too far away from
the cache line set size, for example, 48.

As shown in Figure 2, the x-value of each sample
point is the observed memory access latency by the re-
ceiver, and the trend line is created by plotting the mov-

3The randomness is introduced to avoid the interference of hard-
ware prefetching.

ing average of two samples. According to the measure-
ment results, 39 bits can be transmitted over a period
of 200 micro-seconds, yielding a raw bandwidth of over
190.4 kilobits per second, about five orders of magni-
tude higher than the previously studied cross–VM cache
covert channels.

Having resolved the negative effects of addressing and
scheduling uncertainties and achieved a high raw band-
width, our new cache covert channel, however, still per-
forms poorly on the system with non-participating work-
loads. We discover that the sender and receiver have dif-
ficulty in establishing a stable communication channel.
And the cause of instability is that the hypervisor fre-
quently migrates the virtual processors across physical
processor cores, which is also observed by Xuet al.
[30]. The outgrowth of this behavior is that the sender
and receiver frequently reside on processor cores that do
not share any cache, making our cache channel run into
the insurmountable cache physical limitation just like the
classic cache channels.

4.2 Aria on the B-String

The prevalence of virtual processor core migration hand-
icaps cache channels in cross–VM covert communica-
tion. In order to reliably establish covert channels across
processor cores that do not share any cache, a commonly
shared and exploitable resource is needed as the commu-
nication medium. And the memory bus comes into our
sight as we extend our scope beyond the processor cache.

4.2.1 Background

Interconnecting the processors and the system main
memory, the memory bus is responsible for delivering
data between these components. Because contention on
the memory bus results in a system-wide observable ef-
fect of increased memory access latency, a covert chan-
nel can be created by programmatically triggering con-
tention on the memory bus. Such a covert channel is
called a bus-contention channel.

The bus contention channels have long been studied
as a potential security threat for virtual machines on the
VAX VMM, on which a number of techniques have been
developed [6–8] to effectively mitigate this threat. How-
ever, the x86 platforms we use today are significantly
different from the VAX systems, and we suspect similar
exploits can be found by probing previously unexplored
techniques. Unsurprisingly, by carefully examining the
memory related operations of the x86 platform, we have
discovered a bus-contention exploit using atomic instruc-
tions with exotic operands.

Atomic instructions are special x86 memory manipu-
lation instructions, designed to facilitate multi-processor



Algorithm 3 Timing-based Memory Bus Channel Protocol

MExotic: An exotic configuration of a memory region that spans two cache lines.
DSend[N], DRecv[N]: N bit data to transmit and receive, respectively.

Sender Operations: Receiver Operations:
for i := 0 to N−1 do

if DSend[i] = 1 then
for an amount of timedo

{Put memory bus intocontendedstate}
Perform atomic operation withMExotic;

end for
else

{Leave memory bus incontention-freestate}
Sleep of an amount of time;

end if
end for

for i := 0 to N−1 do
for an amount of timedo

Timed uncached memory access;
end for
{Detect the state of memory bus by latency}
if Mean(AccessTime)> Thresholdthen

DRecv[i] := 1; {Bus iscontended}
else

DRecv[i] := 0; {Bus iscontention-free}
end if

end for

synchronization, such as implementing mutexes and
semaphores—the fundamental building blocks for par-
allel computation. Memory operations performed by
atomic instructions (namely, atomic memory operations)
are guaranteed to complete uninterrupted, because ac-
cesses to the affected memory regions by other proces-
sors or devices are temporarily blocked from execution.

4.2.2 Analysis

Atomic memory operations, by their design, generate
system-wide observable contentions in the target mem-
ory regions they operate on. And this particular feature
of atomic memory operations caught our attention. Ide-
ally, contention generated by an atomic memory oper-
ation is well bounded, and is only evident when the
affected memory region is accessed in parallel. Thus,
atomic memory operations are not exploitable for cross–
VM covert channels, because VMs normally do not im-
plicitly share physical memory. However, we have found
out that the hardware implementations of atomic mem-
ory operations do not match the idealistic specification,
and memory contentions caused by atomic memory op-
erations could propagate much further than expected.

Early generations (before Pentium Pro) of x86 proces-
sors implement atomic memory operations by using bus
lock, a dedicated hardware signal that provides exclusive
access of the memory bus to the device who asserts it.
While providing a very convenient means to implement
atomic memory operations, the sledgehammer-like ap-
proach of locking the memory bus results in system-wide
memory contention. In addition to being exploitable
for covert channels, the bus-locking implementation of
atomic memory operations also causes performance and
scalability problems.

Modern generations (before Intel Nehalem and AMD
K8/K10) of x86 processors improve the implementa-
tion of atomic memory operations by significantly re-

ducing the likelihood of memory bus locking. In par-
ticular, when an atomic operation is performed on a
memory region that can be entirely cached by a cache
line, which is a very common case, the corresponding
cache line is locked, instead of asserting the memory bus
lock [10]. However, on these platforms, atomic mem-
ory operations can still be exploited for covert chan-
nels, because the triggering conditions for bus-locking
are not eliminated. Specifically, when atomic opera-
tions are performed on memory regions with an exotic4

configuration—unaligned addresses that span two cache
lines, atomicity cannot be ensured by cache line locking,
and bus lock signals are thus asserted.

Remarkable architecture evolutions have taken place
in the latest generations (Intel Nehalem and AMD
K8/K10) of x86 processors, one of which is the removal
of the shared memory bus. On these platforms, instead
of having a unified central memory storage for the entire
system, the main memory is divided into several pieces,
each assigned to a processor as its local storage. While
each processor has direct access to its local memory,
it can also access memory assigned to other processors
via a high-speed inter-processor link. This non-uniform
memory access (NUMA) design eliminates the bottle-
neck of a single shared memory bus, and thus greatly
improves processor and memory scalability. As a side
effect, the removal of the shared memory bus has seem-
ingly invalidated memory bus covert channel techniques
at their foundation. Interestingly, however, the exploit
of atomic memory operation continues to work on the
newer platforms, and the reason for this requires a bit
more in-depth explanation.

On the latest x86 platforms, normal atomic memory
operations (i.e., operating on memory regions that can be

4The word “exotic” here only means that it is very rare to encounter
such an unaligned memory access in modern programs, due to auto-
matic data field alignments by the compilers. However, manually gen-
erating such an access pattern is very easy.
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Figure 3: Timing-based Memory Bus Channel Bandwidth Tests

cached by a single cache line) are handled by the cache
line locking mechanism similar to that of the previous
generation processors. However, for exotic atomic mem-
ory operations (i.e., operating on cache-line-crossing
memory regions), because there is no shared memory bus
to lock, the atomicity is achieved by a set of much more
complex operations: all processors must coordinate and
completely flush in-flight memory transactions that are
previously issued. In a sense, exotic atomic memory op-
erations are handled on the newer platform by “emulat-
ing” the bus locking behavior of the older platforms. As
a result, the effect of memory access delay is still observ-
able, despite the absence of the shared memory bus.

4.2.3 Verification

With the memory bus exploit, we can easily build a mem-
ory bus covert channel by adapting our timing-based
cache transmission scheme with minor modifications, as
shown in Algorithm 3.

Compared with Algorithm 2, there are only two dif-
ferences in the memory bus channel protocol. First, we
substitute the set of cache lines (CLines) with the mem-
ory bus as the transmission medium. Similar to the cache
lines, the memory bus can also be put in two states,con-
tendedand contention-free, depending on whether ex-
otic atomic memory operations are performed. Second,
instead of trying to evict contents of the selected cache
lines, the sender changes the memory bus status by per-
forming exotic atomic memory operations. And corre-
spondingly, the receiver must make uncached memory
accesses to detect contentions.

We demonstrate the effectiveness of the memory bus
channel by performing bandwidth estimation experi-
ments, similar to the one in Section 4.1, on two sys-
tems running different generations of platforms, hyper-
visors and guest VMs. Specifically, the first system uses
an older shared memory bus platform and runs Hyper-V
with Windows guest VMs, while the second system uti-
lizes the newer platform without a shared memory bus

and runs Xen with Linux guest VMs. As Figure 3 shows,
the x-value of each sample point is the observed mem-
ory access latency by the receiver, and the trend lines are
created by plotting the moving average of two samples.
According to the measurement results, on both systems,
39 bits can be transmitted over a period of 1 millisec-
ond, yielding a raw bandwidth of over 38 kilobits per
second. Although an order of magnitude lower in band-
width than our cache channel, the memory bus channel
enjoys its unique advantage of working across different
physical processors. And notably, the same covert chan-
nel implementation works on both systems, regardless of
the guest operating systems, hypervisors, and hardware
platform generations.

4.3 Whispering into the Hyper-space

We have demonstrated that the memory bus channel is
capable of achieving high speed data transmission on vir-
tualized systems. However, the preliminary protocol de-
scribed in Algorithm 3 is prone to errors and failures in a
realistic environment, because the memory bus is a very
noisy channel, especially on virtualized systems running
many non-participating workloads.

Figure 4 presents a realistic memory bus channel
sample, taken using a pair of physically co-resident
VMs in the Amazon EC2 cloud. From this figure, we
can observe that both the “contention free” and “con-
tended” signals are subject to frequent interferences. The
“contention free” signals are intermittently disrupted by
workloads of other non-participating VMs, causing the
memory access latency to moderately raise above the
baseline. In contrast, the “contended” signals experience
much heavier interferences, which originate from two
sources: scheduling and non-participating workloads.
The scheduling interference is responsible for the peri-
odic drop of memory access latency. In particular, con-
text switches temporarily de-schedule the sender process
from execution, and thereby briefly relieving memory
bus contention. The non-participating workloads exe-
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Figure 4: Memory Bus Channel Quality Sample in EC2

cutedin parallel with the sender process worsen memory
bus contention and cause the spikes in the figure, while
non-participating workloads executedconcurrentlywith
the sender process reduce memory bus contention, and
result in the dips in the figure. All these interferences can
degrade the signal quality in the channel, and make what
the receiver observes different from what the sender in-
tends to generate, which leads tobit-flip errors.

Besides the observable interferences shown in Fig-
ure 4, there are also unobservable interferences, i.e., the
scheduling interferences to the receiver, which can cause
an entirely different phenomenon. When the receiver is
de-scheduled from execution, there is no observer in the
channel, and thus all data being sent is lost. And to
make matters worse, the receiver could not determine
the amount of information being lost, because the sender
may also be de-scheduled during that time. As a result,
the receiver suffers fromrandom erasureerrors.

Therefore, three important issues need to be addressed
by the communication protocol in order to ensure reli-
able cross–VM communication: receiving confirmation,
clock synchronization, and error correction.

Receiving Confirmation: The random erasureerrors
can make the transmitted data very discontinuous, signif-
icantly reducing its usefulness. To alleviate this problem,
it is very important for the sender to be aware of whether
the data it sent out has been received.

We avoid using message based “send-and-ack”, a
commonly employed mechanism for solving this prob-
lem, since this mechanism requires the receiver to ac-
tively send data back to the sender, reversing the roles
of sending and receiving, and subjects the acknowledg-
ment sender (i.e., the data receiver) to the same problem.
Instead, we leverage the system-wide effect of memory
bus contention to achieve simultaneous data transmis-
sion and receiving confirmation. Here the sender infers
the presence of receiver by observing increased memory
access latencies generated by the receiver.

The corresponding changes to the data transmission
protocol include:

1. Instead of making uncached memory accesses, the
receiver performs exotic atomic memory operations,
just like the sender transmitting a one bit.

2. Instead of sleeping when transmitting a zero bit, the
sender performs uncached memory accesses. In ad-
dition, the sender always times its memory accesses.

3. While the receiver is in execution, the sender should
always observe high memory access latencies; oth-
erwise, the sender can assume the data has been par-
tially lost, and retry at a later time.

Clock Synchronization: Since the sender and receiver
belong to two independent VMs, scheduling differences
between them tend to make the data transmission and
detection procedures de-synchronized, which can cause
a significant problem to pure timing-based data mod-
ulation. We overcome clock de-synchronization by us-
ing self-clocking coding—a commonly used technique
in telecommunications. Here we choose to transmit data
bits using differential Manchester encoding, a standard
network coding scheme [28].

Error Correction: Even with self-clocking coding,bit-
flip errors are expected to be common. Similar to re-
solving the receiving confirmation problem, we again
avoid using acknowledgment-based mechanisms. As-
suming only a one-way communication channel, we re-
solve the error correction problems by applying forward
error correction (FEC) to the original data, before apply-
ing self-clocking coding. More specifically, we use the
Reed-Solomon coding [17], a widely applied block FEC
code with strong multi-bit error correction performance.

In addition, we strengthen the communication proto-
col’s resilience to clock drifting and scheduling inter-
ruption by employing data framing. We break the data
into segments of fixed-length bits, and frame each seg-
ment with a start-and-stop pattern. The benefits of data
framing are twofold. First, when the sender detects trans-
mission interruption, instead of retransmitting the whole
piece of data, only the affected data frame is retried. Sec-
ond, some data will inevitably be lost during transmis-
sion. With data framing, the receiver can easily local-
ize the erasure errors and handle them well through the
Reed-Solomon coding.

The finalized protocol with all the improvements in
place is presented in Algorithm 4.

5 Evaluation

We evaluate the exploitability of memory bus covert
channels by implementing the reliable Cross–VM com-
munication protocol, and demonstrate covert channel at-
tacks on our in-house testbed server, as well as on the
Amazon EC2 cloud.



Algorithm 4 Reliable Timing-based Memory Bus Channel Protocol

MExoticS, MExoticR: Exotic memory regions for the sender and the receiver, respectively.
DSend, DRecv: Data to transmit and receive, respectively.

Sender PreparesDSendby: Receiver RecoversDRecvby:
{DMSend[]: Segmented encoded data to send}

RSSend:= ReedSolomonEncode(DSend);
FDSend[] := BreakRSSendinto segments;
DMSend[] := DiffManchesterEncode(FDSend[]);

{DMRecv[]: Segmented encoded data received}

FDRecv[] := DiffManchesterDecode(DMRecv[]);
RSRecv:= ConcatenateFDRecv[];
DRecv:= ReedSolomonDecode(RSRecv);

Sending Encoded Data in a Frame: Receiving Encoded Data in a Frame:
{Data: A segment of encoded data to send}
{FrmHead, FrmFoot: Unique bit patterns
{signifying start and end of frame, respectively}

Result:= SendBits(FrmHead);
if Resultis not Abortedthen

Result:= SendBits(Data);
if Resultis not Abortedthen

{Ignore error in sending footer}
SendBits(FrmFoot);
return Succeed;

end if
end if
return Retry;

{Data: A segment of encoded data to receive}

Wait for frame header;
Result:= RecvBits(Data);
if Resultis Abortedthen

return Retry;
end if
Result:= Match frame footer;
if Resultis not Matchedthen

{Clock synchronization error, discardData}
return Erased;

else
return Succeed;

end if

Sending a Block of Bits: Receiving a Block of Bits:
{Block: A block of bits to send}
{Base1, Base0: Mean contention-free access
{time for sending bit 1 and 0, respectively}

for eachBit in Blockdo
if Bit = 1 then

for an amount of timedo
Timed atomic operation withMExoticS;

end for
Latency:= Mean(AccessTime)−Base1;

else
for an amount of timedo

Timed uncached memory access;
end for
Latency:= Mean(AccessTime)−Base0;

end if
if Latency< Thresholdthen

{Receiver not running, abort}
return Aborted;

end if
end for
return Succeed;

{Block: a block of bits to receive}

for eachBit in Blockdo
for an amount of timedo

Timed atomic operation withMExoticR;
end for
{Detect the state of memory by latency}
if Mean(AccessTime)> Thresholdthen

Bit := 1; {Bus iscontended}
else

Bit := 0; {Bus iscontention-free}
end if
{Detect sender de-schedule}
if too many consecutive 0 or 1 bitsthen

{Sender not running}
Sleep for some time;
{Sleep makes sender abort, then we abort}
return Aborted;

end if
end for
return Succeed;



5.1 In-house Experiments

We launch covert channel attacks on our virtualization
server equipped with the latest generation x86 platform
(i.e., with no shared memory bus). The experimental
setup is simple and realistic. We create two Linux VMs,
namely VM-1 and VM-2, each with a single virtual
processor and 512 MB of memory. The covert channel
sender runs as an unprivileged user program on VM-1,
while the covert channel receiver runs on VM-2, also as
an unprivileged user program.

We first conduct a quick profiling to determine the op-
timal data frame size and error correction strength. And
we find out that a data frame size of 32 bits (includ-
ing an 8 bit preamble), and a ratio of 4 parity symbols
(bytes) per 4 data bytes works well. Effectively, each data
frame transmits 8 bits of preamble, 12 bits of data, and
12 bits of parity, yielding an efficiency of 37.5%. In or-
der to minimize the impact of burst errors, such as multi-
ple frame losses, we group 48 data and parity bytes, and
randomly distribute them across 16 data frames using a
linear congruential generator (LCG).

We then assess the capacity (i.e., bandwidth and error
rate) of the covert channel by performing a series of data
transmissions using these parameters. For each transmis-
sion, a one kilobyte data block is sent from the sender to
the receiver. With 50 repeated transmissions, we observe
a stable transmission rate of 746.8±10.1 bps. Data errors
are observed, but at a very low rate of 0.09%.

5.2 Amazon EC2 Experiments

We prepare the Amazon EC2 experiments by spawning
physically co-hosted Linux VMs. Thanks to the opera-
tional experiences presented in [18, 30], using only two
accounts, we successfully uncover two pairs of physi-
cally co-hosted VMs (micro instances) in four groups of
40 VMs (i.e. each group consists of 20 VMs spawned by
each account). Information disclosed in/proc/cpuinfo
shows that these servers use the shared-memory-bus plat-
form, one generation older than our testbed server used
in the previous experiment.

Similar to our in-house experiments, we first conduct
a quick profiling to determine the optimal data frame
size and error correction strength. Compared to our in-
house system profiles, memory bus channels on Ama-
zon EC2 VMs have a higher tendency of clock de-
synchronization. We compensate for this deficiency by
reducing the data frame size to 24 bits. The error cor-
rection strength of 4 parity symbols per 4 data bytes still
works well. And the overall transmission efficiency thus
becomes 33.3%.

We again perform a series of data transmissions and
measure the bandwidth and error rates. Our initial results
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Figure 5: Memory Bus Channel Capacities in EC2

are astonishingly good. A transmission rate of 343.5±
66.1 bps is achieved, with error rate of 0.39%. However,
as we continue to repeat the measurements, we observe
an interesting phenomenon. As illustrated in Figure 5,
three distinct channel performances are observed through
our experiment. The best performance is achieved dur-
ing the initial 12–15 transmissions. After that, for the
next 5–8 transmissions, the performance degrades. The
bandwidth slightly reduces, and the error rate slightly in-
creases. Finally, for the rest of the transmissions, the per-
formance becomes very bad. While the bandwidth is still
comparable to that of the best performance, the error rate
becomes unacceptably high.

By repeating this experiment, we uncover that the
three-staged behavior can be repeatedly observed after
leaving both VMs idle for a long period of time (e.g.,
one hour). Therefore, we believe that the cause of this
behavior can be explained by scheduler preemption [29]
as discussed in [30]. During the initial transmissions,
the virtual processors of VMs at both the sender and
receiver sides have high scheduling priorities, and thus
they are very likely to be executed in parallel, resulting
in a very high channel performance. Then, the sender
VM’s virtual processor consumes all its scheduling cred-
its and is throttled back by the Xen scheduler, causing the
channel performance to degrade. Soon after that, the re-
ceiver VM’s virtual processor also uses up its scheduling
credits. Since both the sender and receiver are throttled
back, their communication is heavily interrupted. This
“offensive” scheduling pattern subjects the communica-
tion channel to heavy random erasures beyond the cor-
rection capability of the FEC mechanism.

Fortunately, our communication protocol is designed
to handle very unreliable channels. We adapt to the
scheduler preemption by tuning two parameters to be
more “defensive”. First, we increase the ratio of parity
bits to 4 parity symbols per 2 data bytes. Although it re-
duces transmission efficiency by 11.1%, the error correc-
tion capability of our FEC is increased by 33.3%. Sec-
ond, we reduce the transmission symbol rate by about
20%. By lengthening the duration of the receiving confir-
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Figure 6: Reliable Transmission with Adaptive Rates

mation, we effectively increase the probability of discov-
ering scheduling interruptions. After the parameter ad-
justment, we can achieve a transmission rate of 107.9±
39.9 bps, with an error rate of 0.75%, even under sched-
uler preemption.

Figure 6 depicts the adjusted communication proto-
col in action. During the first period of preemption-free
scheduling, the transmission rate can be as high as 250
bps. However, when preemption starts, the sender re-
sponds to frequent transmission failures with increased
retries, allowing the receiver continue to receive and de-
code data without uncorrectable error. And correspond-
ingly, the transmission rate drops to below 50 bps. Fi-
nally, when the harsh scheduling condition is alleviated,
the transmission rate is automatically restored. The capa-
bility of adaptively adjusting transmission rates to chan-
nel conditions, evidences the versatility of our reliable
communication protocol.

6 Discussion

In this section, we first reassess the threat of covert chan-
nel attacks based on our experimental results. Then, we
discuss possible means to mitigate the covert channel at-
tacks in virtualized environments.

6.1 Damage Assessment

We extrapolate the threat of the memory bus covert
channel from four different aspects—attack scenario,
achievable bandwidth, mitigation difficulties, and cross-
platform applicability.

6.1.1 Attack Scenario

Covert channel attacks are distinct from a seemingly sim-
ilar threat, side channel attacks. Side channels extrap-
olate information by observing an unknowing sender,
while covert channels transfer data between two collab-
orating parities. As a result, a successful covert channel
attack requires an “insider” to function as a data source.

However, this additional requirement does not signifi-
cantly reduce the usefulness of covert channels in data
theft attacks.

Data theft attacks are normally launched in two steps,
infiltration andexfiltration. In the infiltration step, attack-
ers leverage multiple attack vectors, such as buffer over-
flow [4], VM image pollution [2, 26], and various social
engineering techniques [15, 27], to place “insiders” in the
victim and gain partial control over it. And then, in the
exfiltration step, the “insiders” try to traffic sensitive in-
formation from the victim back to the attackers. Because
the “insiders” usually would only have very limited con-
trol of the victim, their behaviors are subjected to strict
security surveillance, e.g., firewall, network intrusion de-
tection, traffic logging, etc. Therefore, covert channels
become ideal choices for secret data transmissions under
such circumstances.

6.1.2 Achievable Bandwidth

Due to their very low channel capacities [18, 30], previ-
ous studies conclude that covert channels can only cause
very limited harms in a virtualized environment. How-
ever, the experimental results of our covert channel lead
us to a different conclusion that covert channels indeed
pose realistic and serious threats to information security
in the cloud.

With over 100 bits-per-second high speed and reliable
transmission, covert channel attacks can be applied to
a wide range of mass-data theft attacks. For example, a
hundred byte credit card data entry can be silently stolen
in less than 30 seconds; and a thousand byte private key
file can be secretly transmitted under 3 minutes. Work-
ing continuously, over 1 MB of data, equivalent to tens
of thousands of credit card entries or hundreds of private
key files, can be trafficked every 24 hours.

6.1.3 Mitigation Difficulties

In addition to high channel capacity, the memory bus
covert channel has two other intriguing properties which
make it difficult to be detected or prevented:

◦ Stealthiness:Because processor cache is not used as
channel medium, the memory bus covert channel in-
curs negligible impact on cache performance, mak-
ing it totally transparent to cache based covert chan-
nel detection, such as HomeAlone [31].

◦ “Future proof”: Our in-house experiment shows
that even on a platform that is one generation ahead
of Amazon EC2’s systems, the memory bus covert
channel continues to perform very well.



6.1.4 Cross-platform Applicability

Due to hardware availability, we have only evaluated
memory bus covert channels on the Intel x86 platforms.
On one hand, we make an intuitive inference that simi-
lar covert channels can also be established on the AMD
x86 platforms, since they share compatible specifica-
tions on atomic instructions with the Intel x86 plat-
forms. On the other hand, the atomic instruction ex-
ploits may not be applicable on platforms that use al-
ternative semantics to guarantee operation atomicity. For
example, MIPS and several other platforms use the load-
linked/store-conditional paradigm, which does not result
in high memory bus contention as atomic instructions do.

6.2 Mitigation Techniques

The realistic threat of covert channel attacks calls for ef-
fective and practical countermeasures. We discuss sev-
eral plausible mitigation approaches from three different
perspectives—tenants, cloud providers, and device man-
ufactures.

6.2.1 Tenant Mitigation

Mitigating covert channels on the tenant side has the ad-
vantages of trust and deployment flexibility. With the
implementation of mitigation techniques inside a ten-
ant owned VMs, the tenant has the confidence of covert
channel security, regardless whether the cloud provider
addresses this issue.

However, due to the lack of lower level (hypervisor
and/or hardware) support, the available options are very
limited, and the best choice is performance anomaly de-
tection. Although not affecting the cache performances,
memory bus covert channels do cause memory perfor-
mance degradation. Therefore, an approach similar to
that of HomeAlone [31] could be taken. In particular,
the defender continuously monitors memory access la-
tencies, and asserts alarms if significant anomalies are
detected. However, since memory accesses incur much
higher cost and non-determinism than cache probing, this
approach may suffer from high performance overhead
and high false positive rate.

6.2.2 Cloud Provider Mitigation

Compared to their tenants, cloud providers are much
more resourceful. They control not only the hypervisor
and hardware platform on a single system, but also the
entire network and systems in a data center. As a result,
cloud providers can tackle covert channels through either
preventative or detective countermeasures.

The preventative approaches, e.g., the dedicated in-
stances service provided by the Amazon EC2 cloud [1],

thwart covert channel attacks by eliminating the exploit-
ing factors of covert channels. As the significant extra
service charge of the dedicated instance service reduces
its attractiveness, the “no-sharing” guarantee may be too
strong for covert channel mitigation. We envision a low
cost alternative solution that allows tenants to share sys-
tem resources in a controlled and deterministic manner.
For example, the cloud provider may define a policy that
each server might be shared by up to two tenants, and
each tenant could only have a predetermined neighbor.
Although this solution does not eliminate covert chan-
nels, it makes attacking arbitrary tenants in the cloud
very difficult.

In addition to preventative countermeasures, cloud
providers can easily take the detective approach by im-
plementing low overhead detection mechanisms, be-
cause of their convenient access to the hypervisor and
platform hardware. For both cache and memory bus
covert channels, being able to generate observable per-
formance anomalies is the key to their success in data
transmission. However, modern processors have pro-
vided a comprehensive set of mechanisms to monitor and
discover performance anomalies with very low overhead.
Instead of actively probing cache or accessing memory,
cloud providers can leverage the hypervisor to infer the
presence of covert channels, by keeping track of the in-
crement rates of the cache miss counters or memory bus
lock counters [10]. Moreover, when suspicious activities
are detected, cloud providers can gracefully resolve the
potential threat by migrating suspicious VMs onto phys-
ically isolated servers. Without penalizing either the sus-
pect or the potential victims, the negative effects of false
positives are minimized.

6.2.3 Device Manufacture Mitigation

The defense approaches of both tenant and cloud
providers are only secondary in comparison to mitiga-
tion by the device manufactures, because the root causes
of the covert channels are imperfect isolation of the hard-
ware resources.

The countermeasures at the device manufacture side
are mainly preventative, and they come in various forms
of resource isolation improvements. For example, instead
of handling exotic atomic memory operations in hard-
ware and causing system-wide performance degradation,
the processor may be redesigned to trap these rare situ-
ations for the operating systems or hypervisors to han-
dle, without disrupting the entire system. A more general
solution is to tag all resource requests from guest VMs,
enabling the hardware to differentiate requests by their
owner VMs, and thereby limiting the scope of any per-
formance impact. While incurring high cost in hardware
upgrades, the countermeasures at the device manufacture



side are transparent to cloud providers and tenants, and
can potentially yield the lowest performance penalty and
overall cost compared to other mitigation approaches.

7 Conclusion and Future Work

Covert channel attacks in the cloud have been proposed
and studied. However, the threats of covert channels tend
to be down-played or disregarded, due to the low achiev-
able channel capacities reported by previous research. In
this paper, we presented a novel construction of high-
bandwidth and reliable cross–VM covert channels on the
virtualized x86 platform.

With a study on existing cache channel techniques, we
uncovered their application insufficiency and limitations
in a virtualized environment. We then addressed these
obstacles by designing a pure timing-based data trans-
mission scheme, and discovering the bus locking mech-
anism as a powerful covert channel medium. Leverag-
ing the memory bus covert channel, we further designed
a robust data transmission protocol. To demonstrate the
real-world exploitability of our proposed covert chan-
nels, we launched attacks on our testbed system and in
the Amazon EC2 cloud. Our experimental results show
that, contrary to previous research and common beliefs,
covert channel attacks in a virtualized environment can
achieve high bandwidth and reliable transmission. There-
fore, covert channels pose formidable threats to informa-
tion security in the cloud, and they must be carefully an-
alyzed and mitigated.

For the future work, we plan to explore various miti-
gation techniques we have proposed. Especially, we view
the countermeasures at the cloud provider side a highly
promising field of research. Not only do cloud providers
have control of rich resources, they also have strong in-
centive to invest in covert channel mitigation, because
ensuring covert channel security gives them a clear edge
over their competitors.
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