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Abstract
The increasing popularity of Google’s mobile platform
Android makes it the prime target of the latest surge in
mobile malware. Most research on enhancing the plat-
form’s security and privacy controls requires extensive
modification to the operating system, which has signif-
icant usability issues and hinders efforts for widespread
adoption. We develop a novel solution called Aurasium
that bypasses the need to modify the Android OS while
providing much of the security and privacy that users de-
sire. We automatically repackage arbitrary applications
to attach user-level sandboxing and policy enforcement
code, which closely watches the application’s behavior
for security and privacy violations such as attempts to re-
trieve a user’s sensitive information, send SMS covertly
to premium numbers, or access malicious IP addresses.
Aurasium can also detect and prevent cases of privilege
escalation attacks. Experiments show that we can apply
this solution to a large sample of benign and malicious
applications with a near 100 percent success rate, with-
out significant performance and space overhead. Aura-
sium has been tested on three versions of the Android
OS, and is freely available.

1 Introduction

Google’s Android OS is undoubtedly the fastest grow-
ing mobile operating system in the world. In July 2011,
Nielsen placed the market share of Android in the U.S.
at 38 percent of all active U.S. smartphones [9]. Weeks
later, for the period ending in August, Nielsen found that
Android has risen to 43 percent. More important, among
those who bought their phones in June, July, or August,
Google had a formidable 56 percent market share. This
unprecedented growth in popularity, together with the
openness of its application ecosystem, has attracted ma-
licious entities to aggressively target Android. Attacks
on Android by malware writers have jumped by 76 per-
cent over the past three months according to a report by

MacAfee [29], making it the most assaulted mobile op-
erating system during that period. While much of the
initial wave of Android malware consisted of trojans that
masquerade as legitimate applications and leak a user’s
personal information or send SMS messages to premium
numbers, recent malware samples indicate an escalation
in the capability and stealth of Android malware. In par-
ticular, attempts are made to gain root access on the de-
vice through escalation of privilege [37] to establish a
stealthy permanent presence on the device or to bypass
Android permission checks.

Fighting malware and securing Android-powered de-
vices has focused on three major directions. The first
one consists of statically [20] and dynamically [12, 36]
analyzing application code to detect malicious activities
before the application is loaded onto the user’s device.
The second consists of modifying the Android OS to in-
sert monitoring modules at key interfaces to allow the
interception of malicious activity as it occurs on the de-
vice [19, 27, 17, 33, 13]. The third approach consists of
using virtualization to implement rigorous separation of
domains ranging from lightweight isolation of applica-
tions on the device [35] to running multiple instances of
Android on the same device through the use of a hyper-
visor [26, 30, 11].

Two fundamental and intertwined problems plague
these approaches. The first is that the definition of ma-
licious behavior in an Android application is hard to as-
certain. Access to privacy- and security-relevant parts
of Android’s API is controlled by an install-time appli-
cation permission system. Android users are informed
about what data and resources an application will have
access to, and user consent is required before the appli-
cation can be installed. These explicit permissions are
declared in the application package. Install-time permis-
sions provide users with control over their privacy, but
are often coarse-grained. A permission granted at install
time is granted as long as the application is installed on
the device. While an application might legitimately re-



quest access to the Internet, it is not clear what connec-
tions it may establish with remote servers that may be
malicious. Similarly, an application might legitimately
require sending SMS messages. Once the SMS permis-
sion is granted, there are no checks to prevent the appli-
cation from sending SMS messages to premium numbers
without user consent. In fact, the mere request for SMS
permission by an application can be deemed malicious
according to a recent Android applications analysis [24],
where it is suggested that 82 percent of malicious ap-
plications require permissions to access SMS. A recent
survey [18] exposes many of the problems [22, 14] as-
sociated with application components interactions, dele-
gation of permission, and permission escalation attacks
due to poor or missing security policy specifications by
developers. This prompted early work [21] on security
policy extension for Android.

The second problem is that any approach so far that
attempts to enhance the platform’s security and privacy
controls based on policy extensions requires extensive
modification to the operating system. This has significant
usability issues and hinders any efforts for widespread
adoption. There exists numerous tablet and phone mod-
els with different hardware configurations, each running
a different Android OS version with its own customiza-
tions and device drivers. This phenomenon, also known
as the infamous Android version fragmentation problem
[16] demonstrates that it is difficult to provide a custom-
built Android for all possible devices in the wild. And
it is even more difficult to ask a normal user to apply
the source patch of some security framework and com-
pile the Android source tree for that user’s own device.
These issues will prevent many OS-based Android secu-
rity projects from being widely adopted by the normal
users. Alternatively, it is equally difficult to bring to-
gether Google, the phone manufacturers, and the cellular
providers to introduce security extensions at the level of
the consumer market, due to misaligned incentives from
different parties.

Our Approach We aim at addressing these challenges
by providing a novel, simple, effective, robust, and de-
ployable technology called Aurasium. Conceptually, we
want Aurasium to be an application-hardening service: a
user obtains arbitrary Android applications from poten-
tially untrusted places, but instead of installing the ap-
plication as is, pushes the application through the Aura-
sium black box and gets a hardened version. The user
then installs this hardened version on the phone, assured
by Aurasium that all of the application’s interactions are
closely monitored for malicious activities, and policies
protecting the user’s privacy and security are actively en-
forced.

Aurasium does not need to modify the Android OS

at all; instead, it enforces flexible security and privacy
polices to arbitrary applications by repackaging to at-
tach sandboxing code to the application itself, which per-
forms monitoring and policy enforcement. The repack-
aged application package (APK) can be installed on a
user’s phone and will enforce at runtime any defined
policy without altering the original APK’s functionali-
ties. Aurasium exploits Android’s unique application ar-
chitecture of mixed Java and native code execution to
achieve robust sandboxing. In particular, Aurasium in-
troduces libc interposition code to the target application,
wrapping around the Dalvik virtual machine (VM) under
which the application’s Java code runs. The target appli-
cation is also modified such that the interposition hooks
get placed each time the application starts.

Aurasium is able to interpose almost all types of in-
teractions between the application and the OS, enabling
much more fine-grained policy enforcement than An-
droid’s built-in permission system. For instance, when-
ever an application attempts to access a remote site on the
Internet, the IP of the remote server is checked against
an IP blacklist. Whenever an application attempts to
send an SMS message, Aurasium checks whether the
number is a premium number. Whenever an applica-
tion tries to access private information such as the In-
ternational Mobile Equipment Identity (IMEI), the Inter-
national Mobile Subscriber Identity (IMSI), stored SMS
messages, contact information, or services such as cam-
era, voice recorder, or location, a policy check is per-
formed to allow or disallow the access. Aurasium also
monitors I/O operations such as write and read. We eval-
uated Aurasium against a large number of real-world An-
droid applications and achieved over 99 percent success
rate. Repackaging an arbitrary application using Aura-
sium is fast, requiring an average of 10 seconds.

Our main contributions are that

• We have built an automated system to repackage
arbitrary APKs where arbitrary policies protecting
privacy and ensuring security can be enforced.

• We have developed a set of policies that take advan-
tage of advances in malware intelligence such as IP
blacklisting.

• We provide a way of protecting users from mali-
cious applications without making any changes to
the underlying Android architecture. This makes
Aurasium a technology that can be widely de-
ployed.

• Aurasium is a robust technology that was tested on
three versions of Android. It has low memory and
runtime overhead and, unlike other approaches, is
more portable across the different OS versions.

2



The paper is organized as follows: Section 2 provides
the some background information on the architecture of
Android and then goes through details about the archi-
tecture, enforceable policies and deployment methods of
Aurasium. In Section 3 we evaluate Aurasium with re-
spect to its robustness in repackaging applications, as
well as the overhead introduced by the repackaging pro-
cess. Section 4 describes threat models against Aurasium
and mitigation techniques. Related work and conclusions
are discussed in Section 5 and Section 6, respectively.

2 Aurasium

2.1 Android
Android, the open source mobile operating system de-
veloped by the Open Handset Alliance led by Google,
is gaining increasing popularity and market share among
smartphones. Built on top of a Linux 2.6 kernel, Android
introduces a unique application architecture designed to
ensure performance, security, and application portabil-
ity. Rigorous compartmentalization of installed applica-
tions is enforced through traditional Linux permissions.
Additional permission labels are assigned to applications
during install time to control the application’s access to
security and privacy-sensitive functionalities of the OS,
forming a mandatory access-control scheme.

Android employs an inter-process communication
(IPC) mechanism called Binder [6] extensively for inter-
actions between applications as well as for application-
OS interfaces. Binder is established by a kernel driver
and exposed as a special device node on which individ-
ual applications operate. Logically, the IPC works on the
principle of thread migration. A thread invoking an IPC
call with Binder appears as if it migrates into the target
process and executes the code there, hopping back when
the result is available. All the hard work such as taking
care of argument marshalling, tracking object references
across processes, and recursions of IPC calls is handled
by Binder itself.

Android applications are mainly implemented in Java,
with the compiled class files further converted into
Dalvik bytecode, running on the proprietary register-
based Dalvik VM. It is similar to the JVM, but designed
for a resource-constrained environment with a higher
code density and smaller footprint. Applications are
tightly coupled with a large and function-rich Android
framework library (c.f. J2SE). Also, applications are
free to include compiled native code as standalone Linux
shared object (.so) files. The interaction between an ap-
plication’s Java and native code is well defined by the
Java Native Interface (JNI) specification and supported
by Android’s Native Development Kit (NDK). In reality,
the complexity of using native code means that only a

small number of applications employ native code for the
most performance-critical tasks.

2.2 System Design

Aurasium is made up of two major components: the
repackaging mechanism that inserts instrumentation
code into arbitrary Android applications and the moni-
toring code that intercepts an application’s interactions
with the system and enforces various security policies.
The repackaging process makes use of existing open
source tools augmented with our own glue logic to re-
engineer Android applications. The monitoring code em-
ploys user-level sandboxing and interposition to intercept
the application’s interaction with the OS. Aurasium is
also able to reconstruct the high-level IPC communica-
tion from the low-level system call data, which allows it
to monitor virtually all of Android’s APIs.

2.2.1 Application-OS Interaction

Under the hood, some of Android’s OS APIs are han-
dled by the kernel directly, while others are implemented
at user-mode system services and are callable via inter-
process communication methods. However, in almost all
scenarios the application does not need to distinguish be-
tween the two, as these APIs have already been fully en-
capsulated in the framework library and the applications
just need to interact with the framework through well-
documented interfaces. Figure 1 shows in detail the lay-
ers of the framework library in individual applications’
address space.

Application Code

Framework Code - Java

Framework Code - Native (C++)

Java Native Interface

libandroid runtime.solibdvm.so libbinder.so

libc.solibm.so libstdc++.so
Kernel Boundary

Process Boundary

Linux Kernel

Aurasium

Figure 1: Android Application and Framework Structure

The top level of the framework is written in Java and is
the well-documented part of the framework with which
applications interact. This hides away the cumbersome
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details from the application’s point of view, but in order
to realize the required operations it will hand over the re-
quest to the low-level part of the framework implemented
in native code. The native layer of the framework con-
sists of a few shared objects that do the real work, such as
communicating with the Dalvik VM or establishing the
mechanism for IPC communication. If we dive lower,
we find that these shared objects are in fact also relying
on shared libraries at even lower levels. There, we find
Android’s standard C libraries called Bionic libc. The
Bionic libc will initiate appropriate system calls into the
kernel that completes the required operation.

For example, if the application wants to download a
file from the Internet, it has multiple ways to do so, rang-
ing from fully managed HttpURLConnection class to
low-level Socket access. No matter what framework
APIs the application decides to use, they will all land
on the connect() method in the OSNetworkSystem

Java class in order to create the underlying TCP socket.
This connect() method in turn transfers control to
libnativehelper.so, one of the shared objects in the
native layer of the framework, which again delegates
the request to the connect() method in libc.so. The
socket is finally created by libc issuing a system call into
the Linux kernel.

No matter how complex the upper layer framework li-
brary may be, it will always have to go through appropri-
ate functions in the Bionic libc library in order to interact
with the OS itself. This gives a reliable choke point at
which the application’s interactions with the OS can be
examined and modified. The next section explains how
function calls from the framework into libc can be inter-
posed neatly.

2.2.2 Efficient Interposition

Similar to the traditional Linux model, shared objects
in Android are relocatable ELF files that are mapped
into the process’s address space when loaded. To save
memory and avoid code duplication, all shared objects
shipped with Android are dynamically linked against the
Bionic libc library. Because a shared object like libc can
be loaded into arbitrary memory address, dynamic link-
ing is used to resolve the address of unknown symbols at
load time. For an ELF file that is dynamically linked
to some shared object, its call sites to the shared ob-
ject functions are actually jump instructions to some stub
function in the ELF’s procedure linkage table (PLT). This
stub function then performs a memory load on some en-
try in the ELF’s global offset table (GOT) in order to re-
trieve the real target address of this function call to which
it then branches. In other words, the ELF’s global offset
table contains an array of function pointers of all dynam-
ically linked external functions referenced by its code.

During dynamic linking this table is filled with appropri-
ate function pointers; this is controlled by the metadata
stored in the ELF file, such as which GOT entry maps to
which function in which shared object.

This level of indirection introduced by dynamic link-
ing can be exploited to implement the required interpo-
sition mechanism neatly: it is sufficient to go through
every loaded ELF file and overwrite its GOT entries with
pointers to our monitoring functions. This is equivalent
to doing the dynamic linking again but substituting func-
tion pointers of interposition routines1.

Because Java code is incapable of directly modifying
process memory, we implemented our interposition rou-
tines in C++ and compiled them to native code. All the
detour functions are also implemented in C++ and they
will preprocess the relevant function call arguments be-
fore feeding them to Aurasium’s policy logic. We try to
minimize the amount of native code because it is gener-
ally difficult to write and test. As a result most of the
policy logic is implemented in Java, which also means it
can take advantage of many helper functions in the stan-
dard Android framework. However, in the preprocessing
step of the IPC calls we make an effort to reconstruct
the inter-process communication parameters as well as
high-level Java objects out of marshalled byte streams
in our native code. It turns out that despite the system
changes between Android 2.2, 2.3 and 3.x, the IPC pro-
tocol remains largely unaffected2 and hence our interpo-
sition code is able to run on all major Android versions
reliably.

With all these facilities in place, Aurasium is capa-
ble of intercepting virtually all framework APIs and en-
forcing many classes of security and privacy policies on
them. It remains to be discussed what policies we cur-
rently implement (Section 2.3) and how reliable Aura-
sium’s sandboxing mechanism is (Section 4). But before
that, let us explain how we repackage an Android appli-
cation such that Aurasium’s sandboxing code is inserted.

2.2.3 APK Repackaging

Android applications are distributed as a single file called
an Android Application Package (APK) (Figure 2). An
APK file is merely a Java JAR archive containing the
compiled manifest file AndroidManifest.xml, the ap-
plication’s code in the form of dex bytecode, compiled
XML resources such as window layout and string con-
stant tables, and other resources like images, sound and
native libraries. It also includes its own signature in a
form identical to the standard Java JAR file signatures.

1We did not consider other advanced dynamic linking techniques
such as lazy linking here because they are not adopted in the current
Android OS. They can be dealt with similarly.

2An exception is the introduction of Strict Mode from version
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Android Package (.apk)

classes.dex resources.arsc

uncompiled resources

AndroidManifest.xml

Aurasium
Native

Library

Aurasium
Component
Declaration

Decompiled
smali files

Aurasium
Java Code

Figure 2: Android Application Package

Because the Aurasium code contains both a native li-
brary for low-level interposition and high-level Java code
that executes the policy logic, we need a way of in-
serting both into the target APK. Adding a native li-
brary is trivial as native libraries are standalone Linux
shared object (.so) files and are stored as is. Adding
Java code is slightly tricky because Android requires all
the application’s compiled bytecode to reside in a sin-
gle file called classes.dex. To insert Aurasium’s Java
code into an existing application, we have to take the
original classes.dex, disassemble it back to a col-
lection of individual classes, add Aurasium’s classes,
and then re-assemble everything back to create the new
classes.dex.

There exist open source projects that can perform such
task. For example, smali [7], an assembler/disassembler
for dex files, and android-apktool [1], which is an
integrated solution that can process not only code but
also compiled resources in APK files.3 In Aurasium we
adopt apktool in our repackaging process. In the de-
code phase, apktool takes in an APK file, disassembles
its dex file, and produces a directory such that each byte-
code file maps to a single Java class, and its path corre-
sponds to the package hierarchy, together with all other
resources in the original APK file. Aurasium’s Java code
is then merged into the directory and apktool is en-
gaged again to assemble the bytecode back into a new
classes.dex file. Together with other resources, a new
APK file is finally produced.

In reality, before producing the final APK file there is
one more thing to do: merely merging Aurasium code
into the target application does not automatically imply
that it will run. We need to make sure that Aurasium
code is invoked somehow, preferably before any of the
original application code, so that the application does not
execute any of its code before Aurasium’s sandboxing is
established. One option would be to modify the applica-
tion’s entry point so that it points to Aurasium. This turns

2.3 Gingerbread.
3apktool is actually built on top of a fork of smali.

out to be not as easy as one might expect. Android appli-
cations often possess many possible entry points, in the
sense that every public application component including
activity, service, broadcast receiver, and content provider
can be invoked directly and hence they all act as entry
points.

In Aurasium we take a different approach: The
Android SDK allows an application to specify an
Application class in its manifest file which will
be instantiated by the runtime whenever the applica-
tion is about to start. By declaring Aurasium as this
Application class, Aurasium runs automatically be-
fore any other parts of the application. There is a small
caveat that the original application may have already de-
fined such Application class. In this case, we trace
the inheritance of this class until we find the root base
class. This class will have to be inherited directly from
Application, and we modify its definition (which is
in the decompiled bytecode form) such that it inherits
from Aurasium’s Application class instead. This al-
lows Aurasium to be instantiated as before, and being
the root class ensures that Aurasium gets run before the
application’s Application class is instantiated.

Figure 2 illustrates the composition of an APK and the
various Aurasium modules added at repackaging time.

2.2.4 Application Signing

The last thing to worry about is that when an application
is modified and repackaged, its signature is inevitably
destroyed and there is no way to re-sign the applica-
tion under its original public key. We believe this is a
problem, but manageable. Every Android application
is indeed required to have a valid signature, but signa-
tures in Android work more like a proof of authorship,
in the sense that applications signed by the same certifi-
cate are believed to come from the same author, hence
they are trusted by each other and enjoy certain flexibil-
ities within Android’s security architecture, e.g., signa-
ture permission. Application updates are also required
to be signed with the same certificate as the original ap-
plication. Other than that, signatures impose few other
restrictions, and developers often use self-signed certifi-
cates for their applications.

This observation means that Aurasium can just re-
sign the repackaged application using a new self-signed
certificate. To preserve the authorship relation, Aura-
sium performs the re-signing step using a parallel set
of randomly generated Aurasium certificates, maintain-
ing a one-to-one mapping between this set to arbitrary
developer certificates. In other words, whenever Aura-
sium is about to re-sign an application, it first verifies
the validity of the old signature. If it passes, then Aura-
sium will proceed to sign the application with its own
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certificate that corresponds to the application’s original
certificate, or a newly generated one if this application
has not been encountered earlier. In this way, the equiv-
alence classes of authorship among applications are still
maintained by Aurasium’s re-signing procedure. Prob-
lems can still arise if Aurasium re-signs only a partial set
of applications in the cases of application updates or ap-
plications intending to cooperate with their siblings. We
consider these cases non-severe, with one reason being
that Aurasium is more likely to be applied to a standalone
application from a non-trusted source where application
updates and application cooperation are not common.

Because all private keys of the generated certificates
need to be stored4 for future queries, the re-signing pro-
cess contains highly confidential information and, hence,
requires careful protection. It should be (physically) sep-
arated from Aurasium’s other services and perceived as
an oracle with minimal interfaces to allow re-signing an
already-signed application. For higher assurance, hard-
ware security modules could be used.

2.2.5 Aurasium’s Security Manager

Aurasium-wrapped applications are self-contained in the
sense that the policy logic and the relevant user inter-
face are included in the repackaged application bundle,
and so are remembered user decisions stored locally in
the application’s data directory. Alternatively, Aurasium
Security Manager (ASM) can also be installed, enabling
central handling of policy decisions of all repackaged
application on the device. Depending on the enforced
polices at repackaging time, an application queries the
ASM for a policy decision via IPC mechanisms with in-
tents describing the sensitive operation it is about to per-
form, and the ASM either prompts the user for consent,
uses a remembered user decision recorded earlier, or au-
tomatically makes a decision without user interaction by
enforcing a predefined policy embedded at repackaging
time. The policy logic in individual applications prefers
delegating policy decisions to the ASM, and will fall
back to local decisions only if a genuine ASM instance
is not detected on the device.

Using ASM for central policy decision management
has one major advantage: policy logic can be controlled
globally, and it can also be improved by updating the
ASM instance on the device. For example, IP address
blacklisting and whitelisting can be managed and kept
up to date by ASM. Repackaged applications are able
to take advantage of better policy logics once ASM is
updated, even after they have been repackaged and de-
ployed to users’ devices. There is a tradeoff between the
flexibility of ASM and the efficiency of repackaged ap-

4Alternatively, these new certificates can be generated from the
original certificate under a master key.

plication, though. In extreme cases, a repackaged appli-
cation can proxy every IPC call to ASM, but this would
be vastly inefficient. In our implementation ASM is con-
sulted only with high-level summaries of potential sensi-
tive operations, the set of which is fixed at repackaging
time.

2.3 Policies
Now that we have demonstrated the ability to repackage
arbitrary applications with Aurasium to insert monitor-
ing code, we discuss various security policies that lever-
age this technique. It is important to point out that these
are just some examples that we implemented as a proof
of concept so far. Aurasium itself provides a flexible
framework under which many more potent policies are
possible.

We are interested primarily in enforcing some security
policy that protects the device from untrusted applica-
tions. This includes not only attempts by the application
to access sensitive information, leaking to the outside
world or modifying it, but also attempts by the applica-
tion to escalate privilege and to gain root access on the
device by running suspicious system calls and loading
native libraries. Aurasium’s architecture and design al-
low us to implement many of the already-proposed poli-
cies such as dynamically constraining permissions [33],
or setting up default dummy IMEI and IMSI numbers as
well as phone numbers, as in [27].

The following subsections describe a set of policies
that are easily checkable by Aurasium. The enforcement
of these policies is supported by Aurasium intercepting
the following functions:

• ioctl()

This is the main API through which all IPCs are
sent. By interposing this and reconstructing the
high-level IPC communication, Aurasium is able to
monitor most Android system APIs and enforce the
privacy and SMS policies, and modifying the IPC
arguments and results on the fly. In certain cases
such as content providers, Aurasium replaces the re-
turned Cursor object with a wrapper class to allow
finer control over the returned data.

• getaddrinfo() and connect()

These functions are responsible for DNS resolving
and socket connection. Intercepting them allows
Aurasium to control the application’s Internet ac-
cess.

• dlopen(), fork() and execvp()

The loading of native code from Java and execution
of external programs are provided by these func-
tions, which Aurasium monitors.
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• read(), write()

These functions reflect access to the file system. In-
tercepting them allows Aurasium to control private
and shared files accesses.

• open() and reflection APIs in libdvm.so5

These functions are intercepted to prevent malicious
applications from circumventing Aurasium’s sand-
boxing. Because Aurasium may stores policy de-
cisions in the application’s local directory, it must
prevent the application from tampering with the de-
cision file. open() is hooked such that whenever it
is invoked on the decision file it will check the JNI
call stack and allow only Aurasium code to success-
fully open the file. The various reflection APIs are
also guarded to prevent malicious applications from
modifying Aurasium’s Java-based policy logic by
reflection.

2.3.1 Privacy Policy

The most obvious set of policies that can be defined re-
lates to users’ privacy. These policies protect the pri-
vate data of the user such as the IMEI, IMSI, phone
number, location, stored SMS messages, phone conver-
sations, and contact list. These policies can be checked
by monitoring access to the system services provided by
the Framework APIs. While many APIs are available
to access system services, they all translate to a single
call to the ioctl() system call. By monitoring calls to
ioctl(), and parsing the data that is transmitted in the
call, we are able to determine which service is being ac-
cessed and alert the user.

Figure 3: Enforcement of Privacy Policies: Access to
Phone Number

Figure 3 illustrates how Aurasium intercepts a request
made by an application to access the user’s phone num-
ber. Aurasium displays a warning message and prompts

5Dalvik java lang reflect Method invokeNative(),
Dalvik java lang reflect Field setField() and
Dalvik java lang reflect Field setPrimitiveField()

the user to either accept the requested access or deny
it. The user can also make Aurasium store that user’s
answer to the request so that the same request never
prompts the user for approval again and the cached an-
swer is used instead. Finally, the user has the option to
terminate the application.

Aurasium is capable of intercepting requests for the
IMEI (Figure 4) and IMSI identifiers. Both the IMEI and
IMSI numbers are often abused by applications to track
users and devices for analytics and advertisement pur-
poses, but are also used by malware to identify victims.

Similar policies are also implemented for accessing
device location and contact list. In all of the above cases,
if the user denies an request for the private information,
Aurasium will provide shadow data to the application in-
stead, similar to the approach in [27];

Figure 4: Enforcement of Privacy Policies: Access to
IMEI from repackaged Android Market Security Tool
malware.

2.3.2 Preventing SMS Abuse

Figure 5 illustrates how Aurasium intercepts SMS mes-
sages sent to a premium number, which is initiated by the
malicious application AndroidOS.FakePlayer [2] found
in the wild. Aurasium displays the destination number as
well as the SMS’s content, so users can make informed
decision on whether to allow the operation or not. In
this case, the malware is most likely to attempt to sub-
scribe to some premium service covertly. We also ob-
served malware NickySpy [3] leaking device IMEI via
SMS in another test run. We believe automatic classifi-
cation on SMS number and content is possible to further
reduce user intervention.

2.3.3 Network Policy

Similarly to the privacy policies, we enforce a set of net-
work policies that regulate how an application is allowed
to interact with the network. Since the Android permis-
sion scheme allows unrestricted access to the Internet
when an application is installed, we enforce finer-grained
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Figure 5: Enforcement of SMS Sending

policies that are expressed as a combination of the fol-
lowing:

• restrict the application to only a particular web do-
main or set of IP addresses

• restrict the application from connecting to a remote
IP address known to be malicious

Figure 6: Enforcement of Network Policies: Access to
an IP address with an unverified level of maliciousness

We use an IP blacklisting provided by the Bothunter
network monitoring tool [4] to harvest information about
malicious IP addresses. For each connection, the service
retrieves information about the remote location, and the
warning presented to the user indicates the level of ma-
liciousness of the remote location (Figure 6). We also
display the geo-location of the remote IP. It would be
possible to include more threat intelligence from various
diverse sources.

2.3.4 Privilege Escalation Policy

In addition to the privacy policy and the network policy,
we implement a policy that warns the user when a suspi-
cious execvp is invoked. Aurasium intervenes whenever
the application tries to execute external ELF binaries.

Knowing the attack signatures based on suspicious ex-
ecutables can prevent certain types of escalation of priv-
ilege attacks. Figure 7 illustrates an interception of the
su command. The Aurasium warning indicates that the
application is trying to gain root access on a potentially
rooted phone by executing the su command.

In another scenario, Aurasium warns the user when the
application is about to load a native library. Malicious
native code can interfere with Aurasium and potentially
break out of its sandbox, which we discuss further in sec-
tion 4.

Figure 7: Enforcement of Privilege Escalation Policy

2.3.5 Automatic Embedding of policies

Our implementation allows us to naturally compare the
behavior of an application against a policy expressed not
as a single event such as a single access to private data, to
a system service or a single invocation of a system call,
but as a sequence of such events. We plan on automat-
ically embedding into an application code an arbitrary
user-defined policy expressible in an automaton.

2.4 Deployment Models
Driven by the need for deployable mobile security solu-
tions for Android and other platforms, we support mul-
tiple deployment models for Aurasium. The unrestricted
and open nature of the Android Market allows us to
provide Aurasium hardened and repackaged applications
to users directly. Here, we discuss several deployment
models for Aurasium that users can directly use without
modifying the Android OS on their phones.

2.4.1 Web Interface

We have a web interface6 that allows users to upload ar-
bitrary applications and download the Aurasium repack-
aged and hardened version. Aurasium can be employed
to repackage any APKs that the user possesses.

6www.aurasium.com
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2.4.2 Cooperation with Application Markets

We are exploring collaborations with Android markets
run by mobile service providers to deploy Aurasium.
Subscribers to the mobile service who get their applica-
tions from the official Android market supported by the
mobile provider will have all their applications packaged
with Aurasium for protection.

2.4.3 Deployment in the Cloud

Another deployment model consists of writing a custom
download application that runs on a user’s phone so that
whenever a user browses an Android market and wishes
to download an application, the application is pulled and
sent to the Aurasium cloud service where the application
is repackaged and then downloaded to the user’s phone.
This may be more accessible as users no longer need to
interact with Aurasium’s web interface manually.

2.4.4 Phone Deployment

Similarly to the cloud service, we plan on porting the
repackaging tool to the Android phone itself. That is, we
will be able to repackage an application on the device
itself.

2.4.5 Corporate Environment

Many corporations have security concerns about mobile
devices in their infrastructure and Aurasium can help to
establish the desired security and privacy polices on ap-
plications to be installed on these devices. These An-
droid devices should be configured to allow installing
only Aurasium-protected applications (by means of APK
signatures for example), while the applications can be
provided by some methods described above, such as an
internal repackaging service or a transparent repackaging
proxy between the application market and the device.

3 Evaluation

We have evaluated Aurasium on a collection of Android
applications to ensure that the application repackaging
succeeds and that our added code does not impede the
original functionality of the application. We have con-
ducted a broad evaluation that includes a large number of
benign applications as well as malware collection. Our
evaluation was conducted on a Samsung Nexus S phone
running Android 2.3.6 “Gingerbread”.

3.1 Setting Up An Evaluation Framework
Aurasium consists of scripts that implement the repack-
aging process described in Figure 2. It transforms each

APK file in the corpus to the corresponding hardened
repackaged application. We scripted to load the applica-
tion onto the Nexus S phone, start the application auto-
matically, and capture the logs generated by Aurasium.
Android Monkey [8] is used to randomly exercise the
user interface (UI) of the application.
Monkey is a program running on Android that feeds

the application with pseudo-random streams of user
events such as clicks and touches, as well as a number
of system-level events. We use Monkey to stress-test the
repackaged applications in a random yet repeatable man-
ner. The captured logs allow us to determine whether the
application has started and is being executed normally or
whether it crashes due to our repackaging process. As a
random fuzzer, Monkey is fundamentally unable to ex-
ercise all execution paths of an application. But in our
setup, running random testing over a large number of in-
dependent applications proves useful, covering most of
Aurasium’s policy logic and revealing several bugs.

3.2 Repackaging Evaluation
We first performed an evaluation to determine how many
APK files can successfully be repackaged by Aurasium.
Table 1 shows a breakdown of the Android APK files cor-
pus on which we ran our evaluation. We applied Aura-
sium to 3491 applications crawled from a third-party
application store7 and 1260 known malicious applica-
tions [39]. Table 1 shows the success rate of repackaging
for each category of applications.

Type of App #of Apps Repackaging Success
Rate

App store corpus 3491 99.6%(3476)
Malware corpus 1260 99.8%(1258)

Table 1: Repackaging Evaluation Results

We have a near 100% success rate in repackaging ar-
bitrary applications. Our failures to repackage an appli-
cation are due to bugs in apktool in disassembling and
reassembling the hardened APK file. We are working on
improving apktool to achieve a 100% success rate.

3.3 Runtime Robustness
As we pointed out earlier, Aurasium is able to run on
all major Android versions (2.2, 2.3, 3.x) without any
problem. We performed the robustness evaluation on a
Samsung Nexus S phone running Android 2.3.6 (which
is among the most widely used Android distributions

7http://lisvid.com

9



2.3.3− 2.3.7 [10]). For each hardened application we
use Monkey to exercise the application’s functionalities
by injecting 500 random UI events. These hardened ap-
plications are built with a debug version of Aurasium
that will output a log message when Aurasium success-
fully intercepts an API invocation. Out of 3476 suc-
cessfully repackaged application, we performed tests on
3189 standalone runnable applications8 on the device.
We were able to start all of the applications in the sense
that Aurasium successfully reported the interception of
the first API invocation for all of them.

3.4 Performance Evaluation

We take two Android benchmark applications from the
official market and apply Aurasium to them in order to
check if Aurasium introduces significant performance
overhead to a real-world application. In both cases, the
benchmark scores turn out to be largely unaffected by
Aurasium (Table 2).

Benchmark App without with
Aurasium Aurasium

AnTuTu Benchmark 2900 Pts 2892 Pts
BenchmarkPi 1280 ms 1293 ms

Table 2: Performance on Benchmark Applications

Aurasium introduces the most overhead when the ap-
plication performs API invocations, which is not the
most important test factor of these benchmarks. So we
synthesized an artificial application that performs a large
number of API invocations, in order to find Aurasium’s
performance overhead in the worst cases. Because these
APIs all involve IPC with remote system services, they
are expected to induce the most overhead as Aurasium
needs to fully parse the Binder communication. Results
in Table 3 show that Aurasium introduces an overhead
of 14% to 35% in three cases, which we believe is ac-
ceptable as IPC-based APIs are not frequently used by
normal applications to become the performance bottle-
neck. In objective testing we did not feel any lagging
when playing with an Aurasium-hardened application.

3.5 Size Overhead

We evaluated application size after being repackaged
with Aurasium code, as shown in Figure 8. On aver-
age, Aurasium increases the application size by only 52

8The rest are applications that do not have a main launchable Activ-
ity, and applications that fail to install due to clashes with pre-installed
version.

200 API Without With Overhead
Invocations Aurasium Aurasium
Get Device Info 106 ms 143 ms 35%
Get Last Location 41 ms 55 ms 34%
Query Contact List 1270 ms 1340 ms 14%

Table 3: Performance on Synthesized Application

Kb, which is a very small overhead for the majority of
applications.

Size Increase After Repackaging / Kb
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Figure 8: Application Size Increase After Repackaging.

3.6 Policies Enforcement
We observe the various behaviors intercepted from the
3031 runnable applications that were previously repack-
aged and run on the Nexus S device under Monkey. Table
4 shows a breakdown of the application corpus into per-
mission requested in the manifest file of the applications.
It also shows which applications actually make use of the
permission to access the requested service.

Permission Requested Accessed
Internet Permission 2686 1305
GPS Permission 846 132
Phone State Permission 1243 378

Table 4: Permission Requested and Permissions Used

Due to the random fuzzing nature of our evaluation,
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the accessed permission is most likely to be an underes-
timate. We also observed that 226 applications included
native code libraries in their application bundle.

4 Attack Surfaces

Because fundamentally Aurasium code runs in the same
process context as the application’s code, there is no
strong barrier between the application and Aurasium.
Hence, it is non-trivial to argue that Aurasium can re-
liably sandbox arbitrary Android applications. We de-
scribe possible ways that a malicious application can
break out of Aurasium’s policy enforcement mechanism
and discuss possible mitigation against them.

4.1 Native Code
Aurasium relies on being able to intercept calls to Bionic
libc functions by means of rewriting function pointers
in a module’s global offset table. This is robust against
arbitrary Java code, but a malicious application can em-
ploy native code to bypass Aurasium completely either
by restoring the global offset table entries, by making
relevant system calls using its own libc implementation
rather than going through the monitored libc, or by tam-
pering with the code or private data of Aurasium. How-
ever, because Android runtime requires applications to
bootstrap as Java classes, the first load of native code
in even malicious applications has to go through a well-
defined and fixed pathway as defined by JNI. This gives
us an upper hand in dealing with potential untrusted na-
tive code: because of the way our repackaging process
works, Aurasium is guaranteed to start before the appli-
cation’s code and hence be able to intercept the applica-
tion’s first attempt to load alien native code (invocation
of dlopen() function in libc). As a result, Aurasium
is guaranteed to detect any potential circumvention at-
tempts by a malicious application.

What can Aurasium do with such an attempt? Silently
denying the load of all native code is not satisfactory be-
cause it will guarantee an application crash and some
legitimate applications use native code. Even though
Aurasium has the power to switch off the unknown na-
tive code, the collateral damage caused by false positives
would be too severe.

If Aurasium is to give binary decisions on whether or
not to load some unknown native code, then it reduces
to the arms race between malware and antivirus software
that we have seen for years. Aurasium tries to classify
native code in Android applications, while malware au-
thors craft and obfuscate it to avoid being detected. It is
better not to go down the same road; and a much neater
approach would be letting the native code run, but not
with unlimited power.

Previous work [28, 40, 34] on securely executing un-
trusted native code provides useful directions for exam-
ple, by using dynamic binary translation. In our sce-
nario we are required to restrict the application’s native
code from writing to guarded memory locations (to pre-
vent tampering with Aurasium and the libc interposition
mechanism), using special machine instructions (to ini-
tiate system calls without going through libc), and per-
forming arbitrary control flow transfer into libc. Due to
time constraints we have not implemented such facilities
in Aurasium. Currently, Aurasium prompts the user for
a decision, and informs the user that if the load is al-
lowed then Aurasium can be rendered ineffective from
this point onwards. We consider this problem a high pri-
ority for future work.

Unlike the filtering-based hybrid sandboxes that are
prone to the ‘time of check/time of use’ race condi-
tions [25, 38], Aurasium’s sandboxing mechanism is del-
egation based and hence much easier to defend against
this class of attack.

4.2 Java Code
A possible attack on Aurasium would be using Java’s
reflection mechanism to interfere with the operation of
Aurasium. Because currently Aurasium’s policy en-
forcement logic is implemented in Java, a malicious ap-
plication can use reflection to modify Aurasium’s inter-
nal data structures and hence affect its correct behavior.
We prevent such attacks by hooking into the reflection
APIs in libdvm.so and preventing reflection access to
Aurasium’s internal classes.

Note that dynamically loaded Java code (via Dex-
ClassLoader) poses no threat to Aurasium, as the code is
still executed by the same Dalvik VM instance and hence
cannot escape Aurasium’s sandbox. Native Java methods
map to a dynamically loaded binary shared object library
and are subject to the constraints discussed in the previ-
ous section, which basically means that attempts of using
them will always be properly flagged by Aurasium.

4.3 Red Pill
Currently Aurasium is not designed to be stealthy. The
existence of obvious traces such as changed application
signature, the existence of Aurasium native library and
Java classes allow applications to find out easily whether
it is running under Aurasium or not. A malicious ap-
plication can then refuse to run under Aurasium, forcing
the user to use the more dangerous vanilla version. A
legitimate application may also verify its own integrity
(via application signature) to prevent malicious repack-
aging by malware writers. Due to Aurasium’s control
over the application’s execution, it is possible to clean
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up these traces for example by spoofing signature access
to PackageManager, but fundamentally this is an arms
race and a determined adversary will win.

5 Related Work

With the growing popularity of Android and the growing
malware threat it is facing, many approaches to secur-
ing Android have been proposed recently. Many of the
traditional security approaches adopted in desktops have
been migrated to mobile phones in general and Android
in particular. Probably the most standard approach is to
use signature-based malware detection, which is in its in-
fancy when it comes to mobile platforms. This approach
is ineffective against zero-day attacks, and there is little
reason to believe that it will be more successful in the
mobile setting. Program analysis and behavioral analy-
sis have been more successfully applied in the context of
Android.

Static Analysis Static analysis of Android applica-
tion package files is relatively more straightforward than
static analysis of malware prevalent on desktops in gen-
eral. Obfuscation techniques [41] used in today’s mal-
ware are primarily aimed at impeding static analysis.
Without effective ways to deobfuscate native binaries,
static analysis will always suffer major drawbacks. Be-
cause of the prevalence of malware on x86 Windows
machines, little effort has been focusing on reverse en-
gineering ARM binaries. Static analysis of Java code
is much more attainable through decompilation of the
Dalvik bytecode. The DED [20] and dex2jar [5] are
two decompilers that aim at achieving translation from
Dalvik bytecode to Java bytecode.

Dynamic Analysis Despite its limitations, dynamic
analysis remains the preferred approach among re-
searchers and antivirus companies to profile malware and
extract its distinctive features. The lack of automated
ways to explore all the state space is often a hindering
factor. Techniques such as multipath exploration [31]
can be useful. However, the ability of mobile malware
to load arbitrary libraries might limit the effectiveness of
such techniques. The honeynet project offers a virtual
machine for profiling Android Applications [36] simi-
lar to profiling desktop malware. Stowaway [23] is a
tool that detects overprivilege in compiled Android ap-
plications. Testing is used on the Android API in order
to build the permission map that is necessary for detect-
ing overprivilege, and static analysis is used to determine
which calls an application invokes.

Monitoring The bulk of research related to securing
Android has been focused on security policy exten-
sion and enforcement for Android starting with [21].
TaintDroid [19] taints private data to detect leakage of
users’ private information modifying both Binder and the
Dalvik VM, but extends only partially to native code.
Quire [17] uses provenance to track permissions across
application boundaries through the IPC call chain to pre-
vent permission escalation of privilege attacks. Crepe
[15] allows access to system services requested through
install-time permission only in a certain context at run-
time. Similarly, Apex [33] uses user-defined runtime
constraints to regulate applications’ access to system ser-
vices. AppFence [27] blocks application access to data
from imperious applications that demand information
that is unnecessary to perform their advertised function-
ality, and covertly substitute shadow data in place. Air-
mid [32] uses cooperation between in-network sensors
and smart devices to identify the provenance of malicious
traffic.

Virtualization Recent approaches to Android security
have focused on bringing virtualization technology to
Android devices. The ability to run multiple version of
the Android OS on the same physical device allows for
strong separation and isolation but comes at a higher per-
formance cost. L4Android [30] is an open source project
derived from the L4Linux project. L4Android combines
both the L4Linux and Google modifications of the Linux
kernel and thus enables running Android on top of a mi-
crokernel. To address the performance issues when us-
ing virtualization, Cells in [11], is a lightweight virtu-
alization architecture where multiple phones run on the
same device. It is possible to run multiple versions of
Android on a bare metal hypervisor and ensure strong
isolation where shared security-critical device drivers run
in individual virtual machines, which is demonstrated
by [26]. Finally, logical domain separation, where two
single domains are considered and isolation is enforced
as a dataflow property between the logical domains with-
out running each domain as a separate virtual machine,
can also be employed [35].

6 Conclusion and Future Work

We have presented Aurasium, a robust and effective tech-
nology that protects users of the widely used Android OS
from malicious and untrusted applications. Unlike many
of the security solutions proposed so far, Aurasium does
not require rooting and device reflashing.

Aurasium allows us to take full control of the execu-
tion of an application. This allows us to enforce arbi-
trary policies at runtime. By using the Aurasium security
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manager (ASM), we are able to not only apply policies
at the individual application level but across multiple ap-
plications simultaneously. This allows us to effectively
orchestrate the execution of various applications on the
device and mediate their access to critical resources and
user’s private data. This allows us to also detect attempts
by multiple applications to collaborate and implement a
malicious logic. With its overall low overhead and high
repackaging success rate, it is possible to imagine Aura-
sium implementing an effective isolation and separation
at the application layer without the need of complex vir-
tualization technology.

Even though Aurasium currently only treats applica-
tions as black boxes and focuses on its external behav-
ior, the idea of enforcing policy at per-application level
by repackaging applications to attach side-by-side moni-
toring code is very powerful. By carefully instrumenting
the application’s Dalvik VM instance on the fly, it is even
possible to apply more advanced dynamic analysis such
as information flow and taint analysis, and we leave this
as a possible direction of future work. We also plan on
expanding our investigation of the potential threat mod-
els against Aurasium and provide practical ways to mit-
igate them, especially in the case of executing untrusted
native code.
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