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Abstract
Cryptographic systems often rely on the secrecy of cryp-
tographic keys given to users. Many schemes, however,
cannot resist coercion attacks where the user is forcibly
asked by an attacker to reveal the key. These attacks,
known as rubber hose cryptanalysis, are often the easiest
way to defeat cryptography. We present a defense against
coercion attacks using the concept of implicit learning
from cognitive psychology. Implicit learning refers to
learning of patterns without any conscious knowledge of
the learned pattern. We use a carefully crafted computer
game to plant a secret password in the participant’s brain
without the participant having any conscious knowledge
of the trained password. While the planted secret can
be used for authentication, the participant cannot be co-
erced into revealing it since he or she has no conscious
knowledge of it. We performed a number of user studies
using Amazon’s Mechanical Turk to verify that partici-
pants can successfully re-authenticate over time and that
they are unable to reconstruct or even recognize short
fragments of the planted secret.

1 Introduction

Consider the following scenario: a high security facility
employs a sophisticated authentication system to check
that only persons who know a secret key, possess a hard-
ware token, and have an authorized biometric can enter.
Guards ensure that only people who successfully authen-
ticate can enter the facility. Now, suppose a clever at-
tacker captures an authenticated user. The attacker can
steal the user’s hardware token, fake the user’s biomet-
rics, and coerce the victim into revealing his or her secret
key. At this point the attacker can impersonate the victim
and defeat the expensive authentication system deployed
at the facility.

So-called rubber hose attacks have long been the bane
of security systems and are often the easiest way to de-

feat cryptography [22]. The problem is that an authen-
ticated user must possess authentication credentials and
these credentials can be extracted by force [19] or by
other means.

In this work we present a new approach to preventing
rubber hose attacks using the concept of implicit learn-
ing [5, 17] from cognitive psychology. Implicit learn-
ing is believed to involve the part of the brain called the
basal ganglia that learns tasks such as riding a bicycle or
playing golf by repeatedly performing those tasks. Ex-
periments designed to trigger implicit learning show that
knowledge learned this way is not consciously accessible
to the person being trained [17]. An everyday example
of this phenomenon is riding a bicycle: we know how to
ride a bicycle, but cannot explain how we do it. Section 2
gives more background of the relevant neuroscience.

Implicit learning presents a fascinating tool for design-
ing coercion-resistant security systems. In this paper we
focus on user authentication where implicit learning is
used to plant a password in the human brain that can be
detected during authentication, but cannot be explicitly
described by the user. Such a system avoids the problem
that people can be persuaded to reveal their password.
To use this system, participants would be initially trained
to do a specific task called Serial Interception Sequence
Learning (SISL), described in the next section. Training
is done using a computer game that results in implicit
learning of a specific sequence of key strokes that func-
tions as an authentication password. In our experiments,
training sessions last approximately 30 to 45 minutes and
participants learn a random password that has about 38
bits of entropy. We conducted experiments to show that
after training, participants cannot reconstruct the trained
sequence and cannot even recognize short fragments of
it.

To be authenticated at a later time, a participant is pre-
sented with multiple SISL tasks where one of the tasks
contains elements from the trained sequence. By ex-
hibiting reliably better performance on the trained ele-
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ments compared to untrained, the participant validates
his or her identity within 5 to 6 minutes. An attacker
who does not know the trained sequence cannot exhibit
the user’s performance characteristics measured at the
end of training. Note that the authentication procedure
is an interactive game in which the server knows the
participant’s secret training sequence and uses it to au-
thenticate the participant. Readers who want to play
with the system can check out the training game at
brainauth.com/testdrive.

While in this paper we focus on coercion-resistant
user authentication systems, authentication is just the tip
of the iceberg. We expect that many other coercion-
resistant security primitives can be designed using im-
plicit learning.

Threat model. The proposed system is designed to be
used as a local password mechanism requiring physical
presence. That is, we consider authentication at the en-
trance to a secure location where a guard can ensure that
a real person is taking the test without the aid of any elec-
tronics.

To fool the authentication test the adversary is allowed
to intercept one or more trained users and get them to re-
veal as much as they can, possibly using coercion. Then
the adversary, on his own, engages in the live authentica-
tion test and his goal is to pass the test.

We stress that as with standard password authentica-
tion, the system is not designed to resist eavesdropping
attacks such as shoulder surfing during the authentica-
tion process. While challenge-response protocols are a
standard defense against eavesdropping, it is currently
an open problem to design a challenge-response proto-
col based on implicit learning. We come back to this
question at the end of the paper.

Benefits over biometric authentication. The trained
secret sequence can be thought of as a biometric key
authenticating the trained participant. However, unlike
biometric keys the authenticating information cannot be
surreptitiously duplicated and participants cannot reveal
the trained secret even if they want to. In addition, if
the trained sequence is compromised, a new identifying
sequence can be trained as a replacement, resulting in a
change of password.

We discuss other related work in Section 6, but briefly
mention here a related result of Denning et al. [4] that
uses images to train users to implicitly memorize pass-
words. This approach is not as resistant to rubber hose
attacks since users will remember images they have seen
versus ones they have not, giving an attacker informa-
tion that can be used for authentication. Additionally,
image-based methods require large sets of images to be
prepared and used only once per user making the system
difficult to deploy. Our combinatorial approach lets us

lower bound the entropy of the learned secrets, is simple
to set up, and is designed to leave no conscious trace of
the trained sequences.

User studies. To validate our proposal we performed
a number of user studies using Amazon’s Mechanical
Turk. We asked the following core questions that explore
the feasibility of authentication via implicit learning:

• Is individual identification reliable? That is, can
trained users re-authenticate and can they do it over
time?
• Can an attacker reverse engineer the sequence from

easily obtained performance data from a trained par-
ticipant?

Across three experiments, we present promising initial
results supporting the practical implementation of our
design. First, we show that identification is possible
with relatively short training and a simple test. Second,
the information learned by the user persists over delays
of one and two weeks: while there is some forgetting
over a week, there is little additional forgetting at two
weeks suggesting a long (exponentially shaped) forget-
ting curve. Finally, in a third experiment we examined an
attack based on having participants complete sequences
containing all minimal-length fragments needed to try to
reconstruct the identification sequence: our results show
that participants do not express reliable sequence knowl-
edge under this condition, indicating that the underlying
sequence information is resistant to attack until longer
subsequences are guessed correctly by the attacker.

2 An Overview of the Human Memory
System

The difference between knowing how to perform a well-
learned skill and being able to explain that performance
is familiar to anyone who has acquired skilled expertise.
This dissociation reflects the multiple memory systems
in the human brain [14]. Memory for verbally reportable
facts, events and episodes depends on the medial tem-
poral lobe memory system (including the hippocampus).
Damage to this system due to stroke, Alzheimer’s dis-
ease neuropathology, or aging leads to impairments in
conscious, explicit memory. However, patients with im-
pairments to explicit memory often show an intact abil-
ity to acquire new information implicitly, including ex-
hibiting normal learning of several kinds of skills. The
types of learning preserved in memory-disordered pa-
tients are those learned incidentally through practice:
even in healthy participants the information thus ac-
quired cannot be easily verbally described.

Several decades of experimental cognitive psychology
have led to the development of tasks that selectively de-
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pend on this type of implicit, non-conscious learning sys-
tem. These tasks typically present information covertly
with embedded structure in a set of experimental stim-
uli. Although participants are not attempting to learn this
structure, evidence for learning can be observed in their
performance.

The covertly embedded information often takes the
form of a statistical structure to a sequence of responses.
Participants exhibit improved performance when the re-
sponses follow this sequence and performance declines
if the structure is changed [12]. The improvement in
performance can occur completely outside of awareness,
that is, participants do not realize there is any structure
nor can they recognize the structure when shown [17].
The lack of awareness of learning indicates the mem-
ory system supporting learning is not part of the explicit,
declarative memory system and instead is hypothesized
to depend on the basal ganglia and connections to motor
cortical areas [6].

Less is known about the information processing char-
acteristics of the cortico-striatal memory system oper-
ating in the connections between the basal ganglia and
motor cortical areas. Most prior research has examined
learning of simple structures with small amounts of in-
formation, typically repeating sequences of actions 10-
12 items in length. However, more recent studies have
found that long, complex sequences can be learned fairly
rapidly by this memory system and that learning is rela-
tively unaffected by noise [18]. The ability to learn re-
peating sequences that are at least 80 items long rela-
tively rapidly and the fact that this training can be hid-
den within irrelevant responses (noise) during training
suggests an intriguing possibility for covertly embedding
non-reportable cryptographic data within the cortico-
striatal memory system in the human brain.

2.1 The SISL Task and Applet

The execution of the Serial Interception Sequence Learn-
ing (SISL) task is central to the authentication system
that we have developed. Here we introduce the SISL task
in the context of the human memory system in order to
provide background for describing our design and prac-
tical experiments.

Originally introduced in [17], SISL is a task in
which human participants develop sensitivity to struc-
tured information without being aware of what they have
learned. The task requires participants to intercept mov-
ing objects (circles) delivered in a pre-determined se-
quence, much like this is done in the popular game “Gui-
tar Hero”. Initially each object appears at the top of one
of four different columns, and falls vertically at a con-
stant speed until it reaches the “sink” at the bottom, at
which point it disappears. The goal for the player is to

intercept every object as it nears the sink. Interception
is performed by pressing the key that corresponds to the
object’s column when the object is in the correct verti-
cal position. Pressing the wrong key or not pressing any
key results in an incorrect outcome for that object. In
a typical training session of 30-60 minutes, participants
complete several thousand trials and the order of the cues
follows a covertly embedded repeating sequence on 80%
of trials. The game is designed to keep each user at (but
not beyond) the limit of his or her abilities by gradually
varying the speed of the falling circles to achieve a hit
rate of about 70%. Knowledge of the embedded repeat-
ing sequence is assessed by comparing the performance
rate (percent correct) during times when the cues follow
the trained sequence to that during periods when the cues
follow an untrained sequence.

All of the sequences presented to the user are de-
signed to prevent conspicuous, easy to remember pat-
terns from emerging. Specifically, training as well as
random sequences are designed to contain every ordered
pair of characters exactly once with no character appear-
ing twice in a row, and thus the sequence length must
be 4× 3 = 12 when four columns (characters) are used.
The result is that while the trained sequence is performed
better than an untrained sequence, the participant usually
does not consciously recognize the trained sequence. In
order to confirm this in experimental work, after SISL
participants are typically asked to complete tests of ex-
plicit recognition in which they specify how familiar var-
ious sequences look to them.

Figure 1: Screenshot of the SISL task in progress.

For the current application, we extended the traditional
definition of the SISL task in order to accommodate its
use as an authentication mechanism. First, we increased
the number of columns to six, which increases the poten-
tial complexity of the trained sequence. Using the same
constraints on sequence order as the 4-column version of
the task, the training sequences are 30 items long. As a
result, the number of possible sequences that can be used
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as a secret key is increased exponentially from only 256
to nearly 248 billion, as explained in the next section.
Second, we added an empty column in the middle of the
layout (Figure 1). In early experimental testing we found
out that the empty column facilitates the visual percep-
tion of the falling objects and helps the user to “map”
them to the correct hand, especially for objects in the
middle columns which are otherwise easily confused at
high speed.

The SISL task is delivered to users as a Flash appli-
cation via a web browser. Participants navigate to our
web site, www.brainauth.com, and are presented with a
consent form. Once they agree to participate, the ap-
plet downloads a random training sequence and starts the
game. Upon completion of the training and test trials, the
explicit recognition test is administered, and results are
uploaded to the server. Once we describe our authenti-
cation system, we will return to describe how the SISL
applet functions in the bigger scheme of our experiments
with multiple users.

3 The Basic Authentication System Using
Implicit Learning

The SISL task provides a method for storing a secret key
within the human brain that can be detected during au-
thentication, but cannot be explicitly described by the
user. Such a system avoids the problem that people can
be persuaded to reveal their password and can form the
basis of a coercion-resistant authentication protocol. If
the information is compromised, a new identifying se-
quence can be trained as a replacement—resulting in a
change of password.

The identification system operates in two steps: train-
ing followed by authentication. In the training phase, the
secret key learned by the user is as in the expanded SISL
task, namely a sequence of 30 characters over the set
S = {s,d, f , j,k, l}. We only use 30-character sequences
that correspond to an Euler cycle in the graph shown in
Figure 2 (i.e. a cycle where every edge appears exactly
once). These sequences have the property that every non-
repeating bigram over S (such as ‘sd’, ‘dj’, ’fk’) appears
exactly once. In order to anticipate the next item (e.g., to
show a performance advantage), it is necessary to learn
associations among groups of three or more items. This
eliminates learning of letter frequencies or common pairs
of letters, which reduces conscious recognition of the
embedded repeating sequence [5].

Let Σ denote the set of all possible secret keys, namely
the set of 30-character sequences corresponding to Eu-
ler cycles in Figure 2. The number of Euler cycles in
this graph can be computed using the BEST theorem [20]

Figure 2: The secret key we generate is a random 30-
character sequence from the set of Euler cycles in this
directed graph. The resulting sequence contains all bi-
grams exactly once, excluding repeating characters.

which gives

#keys = 64 ·246 ≈ 237.8 .

Hence the learned random secret has about 38 bits of
entropy which is far more than the entropy of standard
memorized passwords.

Training. Users learn a random 30-item secret key k ∈ Σ

by playing the SISL game in a trusted environment. To
train users we experimented with the following proce-
dure:

• While performing the SISL task the trainee is pre-
sented with the 30-item secret key sequence re-
peated three times followed by 18 items selected
from a random other sequence (subject to the con-
straint that there will be no back-to-back repetitions
of the same cue), for a total of 108 items.

• This sequence is repeated five times, so that the
trainee is presented with a total of 540 items.

• At the end of this sequence there is a short pause in
the SISL game and then the entire sequence of 540
items (including the pause at the end) is repeated six
more times.

During the entire training session the trainee is presented
with 7× 540 = 3780 items which takes approximately
30-45 minutes to complete. After the training phase
completes, the trainee runs through the authentication
test described next to ensure that training succeeded.
The system records the final playing speed that the user
achieved.
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SISL Authentication. To authenticate at a later time, a
trained user is presented with the SISL game where the
structure of the cues contains elements from the trained
authentication sequence and untrained elements for com-
parison. By exhibiting reliably better performance on
the trained elements compared to untrained, the partic-
ipant validates his or her identity. Specifically we exper-
imented with the following authentication procedure:

• Let k0 be the trained 30-item sequence and let k1,k2
be two additional 30-item sequences chosen at ran-
dom from Σ. The same sequences (k0,k1,k2) are
used for all authentication sessions.

• The system chooses a random permutation π

of (0,1,2,0,1,2) (e.g., π = (2,1,0,0,2,1) ) and
presents the user with a SISL game with the fol-
lowing sequence of 540 = 18×30 items:

kπ1 ,kπ1 ,kπ1 , . . . ,kπ6 ,kπ6 ,kπ6 .

That is, each of k0,k1,k2 is shown to the user ex-
actly six times (two groups of three repetitions), but
ordering is random. The game begins at the speed
at which the training for that user ended.

• For i = 0,1,2 let pi be the fraction of correct keys
the user entered during all plays of the sequence ki.
The system declares that authentication succeeded
if

p0 > average(p1, p2)+σ (3.1)

Where σ > 0 is sufficiently large to minimize the
possibility that this gap occurred by chance, but
without causing authentication failures.

In the above, preliminary formulation, the authenti-
cation process is potentially vulnerable to an attack by
which an untrained user degrades his performance across
two blocks hoping to exhibit an artificial performance
difference in favor of the trained sequence (and obtain-
ing a 1/3 chance of passing authentication). We discuss
a robust defense against this in Section 5, but for now
we mention that two simple precautions offer some pro-
tection, even for this simple assessment procedure. First,
verifying that the authenticator is a live human makes it
difficult to consistently change performance across the
foil blocks k1,k2. Second, the final training speed ob-
tained during acquisition of the sequence is known to
the authentication server and the attacker is unlikely to
match that performance difference between the trained
and foil blocks. A performance gap that is substantially
different from the one obtained after training indicates an
attack.

Analysis. The next two sections discuss two critical as-
pects of this system:

• Usability: can a trained user complete the authenti-
cation task reliably over time?

• Security: can an attacker who intercepts a trained
user coerce enough information out of the user to
properly authenticate?

4 Usability Experiments

We report on preliminary experiments that demonstrate
feasibility and promise of the SISL authentication sys-
tem. We carried out the experiments in three stages.
First, we established that reliable learning was observed
with the new expanded version of the SISL task using
Mechanical Turk. Second, we verified that users retain
the knowledge of the trained sequence after delays of one
and two weeks. Finally, we investigated the effectiveness
of an attack on participants’ sequence knowledge based
on sampling the smallest fragments from which the orig-
inal sequence could potentially be reconstructed.

The experiments were carried out online within Ama-
zon’s Mechanical Turk platform. The advantages of Me-
chanical Turk involve a practically unlimited base of par-
ticipants, and a relatively low cost. One drawback of run-
ning the experiments online is the relative lack of control
we had over users coming back at a later time for repeat
evaluations. We discuss all of these considerations to-
wards the end of the section.

4.1 Experiment 1: Implicit and Explicit
Learning

Our first experiment confirmed that implicit learning can
be clearly detected while explicit conscious sequence
knowledge was minimal. Experimental data from 35 par-
ticipants were included in the analysis.

The experiment used the training procedure described
in the previous section where the training phase con-
tained 3780 total trials and took approximately 30-45
minutes to complete. Recall that training consists of
seven 540-trial training blocks. After the training ses-
sion, participants completed a SISL authentication test
that compares performance on the trained sequence to
performance on two random test sequences.

Learning of the trained sequence is shown in Figure 3
as a function of the performance advantage (increase in
percent correct responses) for the trained sequence com-
pared with the randomly occurring noise segments. On
the test block following training, participants performed
the SISL task at an average rate of 79.2% correct for
the trained sequence and 70.6% correct for the untrained
sequence. The difference of 8.6% correct (SE 2.4%)1

1SE is short hand for Standard Error.
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Figure 3: Across training participants gradually begin
to express knowledge of the repeating sequence by ex-
hibiting a performance advantage for the trained se-
quence compared to randomly interspersed noise seg-
ments. Note that overall performance on the task stays
at around 70% throughout due to the adaptive nature of
the task by which the speed is increased as participants
become better at general SISL performance.

indicated reliably better performance for the trained se-
quence. By one-sample t-test versus zero, the expected
difference between trained and untrained if there was no
learning2 would be t(34) = 3.55, p < .01.

Group-level differences in performance are commonly
seen on tests of implicit learning, but being able to reli-
ably assess individual learning is necessary for an au-
thentication method. On an individual participant ba-
sis, performance on the trained sequence could be dis-
criminated from the untrained sequence on the 540 test
trials (by chi-squared analysis at p < .05) in 25 of 35
cases. For authentication purposes, the individual relia-
bility of the assessment will need to be further improved
by longer training to establish the implicitly learned se-
quence. However, the ability to identify learning in a
large fraction of individuals with relatively short train-
ing is a feature of the SISL task not seen in most tests of
implicit learning.

Explicit recognition test. After the training and test
blocks, participants were presented with five different an-
imated sequences and asked how familiar each looked on
a scale of 0 to 10). Of the five sequences, one was the
trained sequence and the other four were randomly se-
lected foils. This test assessed explicit recognition mem-
ory for the trained sequence.

On the recognition test, participants rated the trained

2In other words, if the percent correct measurements for trained
and untrained sequences followed the same normal distribution, the t-
value calculated with N = 35 samples (and thus N − 1 = 34 degrees
of freedom), should be near zero—less than 3.55 with 99% probability
(p = 0.01); in contrast, the value we obtained was 8.6. The t-test is a
standard statistical method used to confirm that the manipulated vari-
able (here, sequence type) affects the measured variable (performance
correct).

sequence as familiar at an average of 6.5 (SE 0.4) on the
0-10 scale and rated novel untrained sequences at 5.15
(SE 0.3). The modestly higher recognition of the trained
sequence was reliable across the group, t(34) = 3.69,
p < .01, but did not correlate with SISL performance
(r = 0.13) indicating that it did not contribute to the im-
plicit test. Slightly higher recognition of the trained se-
quence is often seen in implicit learning experiments as
healthy participants find some parts of the training se-
quence familiar after practice. It is worth noting that
implicit memory does not transform into explicit knowl-
edge, even with repeated use, and the structure and length
of the training and test sequences specifically aim to re-
duce the possibility that explicit knowledge is accumu-
lated over time.

The general small difference in recognition ratings
(5.15 vs. 6.5) indicates that participants would not be
able to recall the 30-item sequence meaning that they
could not consciously produce the training information
(e.g. to compromise the security of the authentication
method). One participant remarked in a follow-up email
message:

“... To be honest I was not that sure of the quizzes
at the end. When I played the tempo was so high it
was incredibly difficult to keep a track of the circles.
Most of the time my fingers moved by themselves, at
least it felt that way. I noticed two repeating pat-
terns over all the levels. (I’m not totally sure what
the buttons were, was it DFG JKL?) One was D-
F-G-F-D I think and the other I’m not quite sure
the sequence but it was a four or five button series
which went from the left to the right and back to the
left...”.

We discuss the reconstruction question further in our
third experiment.

4.2 Experiment 2: Recall Over Time
An authentication mechanism is only useful if authen-
tication can still be accurately performed at some time
after the password is memorized. In Experiment 2,
we confirmed that sequence-specific knowledge acquired
by users was retained over prolonged periods of time.
Although skill learning generally persists over time, a
SISL-based test had never been conducted with a sub-
stantial delay and a sufficient number of participants.

In Experiment 2, participants agreed to perform the
SISL task over two sessions. In the first session, par-
ticipants completed a training sequence which the same
structure as the one in Experiment 1. The training was
immediately followed by the same SISL test to assess
sequence knowledge before the delay. A group of 32
participants returned to the online applet after 1 week to
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Figure 4: Across training participants gradually begin
to express knowledge of the repeating sequence by ex-
hibiting a performance advantage for the trained se-
quence compared to randomly interspersed noise seg-
ments. Learning performance was similar across both
groups and similar to Experiment 1, as expected.

perform a retention test and recognition assessment for
the trained sequence. A separate group of 80 participants
returned after a 2 week delay for the retention and recog-
nition tests. For the 1-week group, the test session con-
sisted of a 540-trial implicit sequence learning assess-
ment. For the 2-week group, the test session was doubled
in length to additionally evaluate whether a longer test
provided better sensitivity to individual sequence knowl-
edge. For both groups, the initial speed of the test on the
delay session was set to match the speed with which the
participants had been performing the task at the end of
the training session. A short warm-up block of 180 trials
was used to adjust this initial speed so that participants
were performing at around the target 70% correct at the
beginning of the retention test.

Figure 4 shows gradual learning of the trained se-
quence during the first session for both groups as in Ex-
periment 1. Implicit sequence knowledge at both im-
mediate and delayed tests is shown in Figure 5. On
all five assessments, participants exhibited reliable se-
quence learning as a group, ts > 4.3, ps < .01. On the
one-week delay test, 15 of 32 participants exhibited in-
dividually reliable sequence knowledge. However, for
the two-week delay group, 49 of 80 participants exhib-
ited reliable sequence knowledge reflecting the increased
sensitivity in the longer assessment test used. Future
research will examine both increased training time and
assessment tests with increased sensitivity to individual
knowledge to provide a reliable and accurate identifica-
tion method by SISL performance.

Even at one and two weeks delay, participants exhib-
ited the same modest tendency for better recognition of
the trained sequence, ts > 2.8, ps < .05. Again, recog-
nition performance did not correlate with expression of
sequence knowledge, rs < .16 and did not suggest any

Figure 5: Participants exhibited reliable sequence knowl-
edge on both immediate assessments (shown for Exper-
iment 1 and both conditions of Experiment 2) shown by
a performance advantage for the trained sequence com-
pared with untrained, novel sequences at test. Sequence
knowledge is retained at both the 1 and 2 week delay
test sessions. While there is some reduction in expressed
knowledge after either delay, the lack of significant ad-
ditional decay from 1 to 2 weeks suggests that informa-
tion is likely to persist for significant periods following 2
weeks (exponential or power-law decay curves are com-
monly observed for many types of memory).

ability to recall the entire 30-item trained sequences.

4.3 Mechanical Turk

Running our experiments over Mechanical Turk required
considerable thought and effort to ensure that the experi-
ments do not suffer from selection bias and are conducted
fairly for both participants and researchers.

One of the early initial questions was that of setting the
price for user participation. The training block, which
comprises the bulk of the initial session, takes approxi-
mately 30-40 minutes to complete depending on player
skill. We wanted to motivate our participants to per-
form to the best of their abilities, and thus set a price
of $5.00 for standalone sessions, assuming a total of
approximately one hour of work involved. Apart from
isolated complaints from users who thought the game
moved too slowly (likely due to them not pressing keys,
or playing incorrectly), most users were happy to partic-
ipate and even solicited additional work. We defined our
HIT (Human Intelligence Task) such that each worker
could participate only once in it and we believe that there
were few—if any—cases where the same user submitted
multiple responses.

We had to design special incentives for participants to
return and complete the second part in the case of two-
session experiments. The approach that worked well for
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us was to price the initial (much lengthier) part at $2.00
and the follow-up 15-minute session at $6.00. We also
explained clearly that this is a two-HIT sequence, and
that payment for both parts will only be processed once
the second part is done. No-shows at the second ses-
sion would get no payment at all. Additionally we used
Amazon’s command line tools to automatically send re-
minders to participants when the second session was
available and due. As a result, we saw over 90% of the
people who completed the first session return and finish
the second part.

Due to the special requirements of the SISL applica-
tion we had to create what is considered to be an “ex-
ternal HIT”, exposing the task as a public website. In
order to make sure that results submitted in Amazon cor-
respond to valid submissions in our system, we designed
a system that involves a receipt code for every success-
fully completed session. The code is a 6-digit number
between 100000 and 999999—we chose this size to pre-
vent people from easily guessing the code, but not make
it difficult for them to write it down (especially useful
in two-session experiments, where we also have to fetch
the correct follow-up sequence that matches the user’s
first visit). After follow-up sessions we provided the user
with a second code that needed to be submitted to the
separate second HIT in order to receive payment.

Naturally we were concerned about the security of our
system, so we took measures to only accept limited types
of input as parameters, leaving the website open mostly
to denial of service attacks which we had no reason to
expect. In comparison, our fear of legitimate users trying
to cheat the system and getting paid without completing
quality work was somewhat more justified. We saw some
limited instances of behavior in this category:

• There were users who, against the instructions, sub-
mitted an invalid receipt code. We immediately re-
jected any such submissions.

• Some users submitted sequences that were so long
that they did not fit in our generous allowance on the
server. Upon examination we found out that these
were due primarily to excessive wrong key presses
(sometimes 5 or more key presses for the same ob-
ject, which suggests that possibly an automated tool
was used to complete the task).

• In relatively few situations we noticed users who
had unusually long intervals of inactivity. We ex-
cluded the most outrageous submissions but leaned
towards including the rest in the results of the study
in order to avoid biasing our data towards people
who did well.

The scope of these abuses never amounted to more
than 5% of the submissions, and we believe that the

Submissions
Experiment Part All Paid Used
baseline 46 39 34
1 week delay initial 35 32 32
1 week delay follow-up 45 32 32
2 week delay initial 100 95 (a) 82
2 week delay follow-up 111 84 (b) 82
trigrams 37 34 32

Table 1: Total number of participants in each experi-
ment. The higher number of submissions on follow-up
session are due to more failed opportunistic attempts by
users to get paid $6.00 for no work because HIT assign-
ments were remaining available longer, waiting for eli-
gible users to show up. Notes: (a) we paid more people
than necessary due to the 16-day auto-approval config-
uration of the HIT; (b) we paid, but did not evaluate a
submission which came in after the cut-off time; (c) the
variation in number of participants across experiments
was due to varying response and acceptance rates—our
primary goal was to collect enough data to be able to
make statistical inferences, and we deliberately collected
more data for the most difficult experiment (the 2-week
delay).

organization of the Mechanical Turk system is at least
partially to thank: workers need to register, and provide
some sort of payment account which makes their identity
relatively easy to track; moreover, rejected work nega-
tively affects a worker’s score and as a result most users
genuinely try to do the best they can, get entertained
if possible, and earn some extra money in the process.
Overall, we consider our use of Mechanical Turk to have
been a big success: it allowed us to conduct each exper-
iment practically overnight, drawing on the huge avail-
able pool of participants.

5 Security Analysis

In this section we analyze the security of the basic au-
thentication protocol from Section 3 and propose a num-
ber of extensions that improve security. We also experi-
ment with a particular attack that attempts to extract the
secret sequence from the user one fragment at a time.
Our Mechanical Turk experiment shows that this attack
works poorly on humans.

5.1 Implicit Learning as a Cryptographic
Primitive

We begin with an abstract model of the new function-
ality enabled by implicit learning. Traditional modeling

8



of participants in a cryptographic protocol are as enti-
ties who hold secrets unknown to the adversary. These
assumptions fall apart in the face of coercion since all
secrets can be extracted from the participant.

Implicit learning provides the following new abstract
functionality: the training phase embeds a predicate

p : Σ→{0,1}

in the user’s brain for some large set Σ. Anyone can ask
the user to evaluate his or her predicate p at a point k ∈
Σ. The predicate evaluates to 1 when k has been learned
by the user and evaluates to 0 otherwise. The number
of inputs at which p evaluates to 1 is relatively small.
Most often p will only evaluate to 1 at a single point
meaning that the user has been trained on only one secret
sequence.

The key feature of implicit learning is that even under
duress it is impossible to extract a point k ∈ Σ from the
user for which p(k) = 1. This abstract property captures
the fact that the secret sequence k is implicitly learned by
the user and not consciously accessible. In this paper, we
use the implicit learning primitive to construct an authen-
tication system, but one can imagine it being used more
broadly in security systems.

The authentication procedure described in Section 3
provides an implementation of the predicate p(·) for
some sequence k0 in Σ. If the procedure declares suc-
cess we say that p(k0) = 1 and otherwise p(k0) = 0. The
predicate p is embedded in the user’s brain during the
training session.

The basic coercion threat model. The SISL authenti-
cation system from Section 3 is designed to resist an ad-
versary who tries to fool the authentication test. We as-
sume the test requires physical presence and begins with
a liveness check to ensure that a real person is taking the
test without the aid of any instruments. To fool the au-
thentication test the adversary is allowed the following
sequence of steps:

• Extraction phase: intercept one or more trained
users and get them to reveal as much as they can,
possibly using coercion.

• Test phase: the adversary, on his own, submits to
the authentication test and his or her goal is to pass
the test. In real life this could mean that the adver-
sary shows up at the entrance to a secure facility and
attempts to pass the authentication test there. If he
fails he could be detained for questioning.

This basic threat model gives the attacker a single
chance at the authentication test. We consider a model
where the attacker may iterate the extraction and test

phases, alternating between extraction and testing, later
on in this section.

We also note that the basic threat model assumes that
during the training phase, when users are taught the cre-
dential, users are following the instructions and are not
deliberately trying to mislead the training process. In ef-
fect, the adversary is only allowed to coerce a user after
the training process completes.

It is straight-forward to show that the system of Sec-
tion 3 is secure under this basic threat model, assum-
ing the training procedure embeds an implicitly learned
predicate p in the user’s brain. Indeed, if the attacker
intercepts u trained users and subjects each one to q
queries, his chances of finding a valid sequence is at
most qu/|Σ|. Since each test takes about five minutes,
we can assume an upper bound of q = 105 trials per
captured user (this amounts to about one year of non-
stop testing per user which will either interfere with the
user’s learned password rendering the user useless to
the attacker, or alert security administrators due to the
user’s absence prompting a revocation of the creden-
tials). Hence, even after capturing u = 100 users, the
attacker’s success probability is only

100×105/|Σ| ≈ 2−16 .

Further complicating the attacker’s life is the fact that
subjecting a person to many random SISL games may
obliterate the learned sequence or cause the person to
learn an incorrect sequence thereby making extraction
impossible.

We note that physical presence is necessary in authen-
tication systems designed to resist coercion attacks. If
the system supported remote authentication then an at-
tacker could coerce a trained user to authenticate to a re-
mote server and then hijack the session.

Security enhancements. The security model above
gives the attacker one chance to authenticate and the at-
tacker must succeed with non-negligible probability. If
the attacker is allowed multiple authentication attempts
— iterating the extraction and test phases, alternating be-
tween the two — then the protocol may become insecure.
The reason is that during an authentication attempt the at-
tacker sees the three sequences k0,k1,k2 and could mem-
orize one of them (30 symbols). He would then train
offline on that sequence so that at the next authentica-
tion attempt he would have a 1/3 chance in succeeding.
If the attacker could memorize all three sequences (90
symbols), he could offline subject a trained user to all
three sequences and reliably determine which is the cor-
rect one and then train himself on that sequence. He is
then guaranteed success at the next authentication trial.
We note that this attack is non-trivial to pull off since
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it can be difficult for a human attacker to memorize an
entire sequence at the speed the game is played.

Another potential attack, already discussed in Sec-
tion 3, is an attacker who happens to be an expert player,
but deliberately degrades his performance on two of the
sequences presented. With probability 1/3 he will show
a performance gap on the correct sequence and pass the
authentication test. We described a number of defenses
in Section 3. Here we describe a more robust defense.

Both attacks above can be defeated with combina-
torics. Instead of training the user on a single sequence,
we train the user on a small number of sequences, say
four. Experiments [18] suggest that the human brain can
learn multiple sequences and these learned sequences do
not interfere with one another. Equivalently we could
train the user on a longer sequence and use its fragments
during authentication. While this will increase training
time, we show that it can enhance security.

During authentication, instead of using one correct se-
quence and two foils, we use the four correct sequences
randomly interspersed within 8 foils. Authentication
succeeds if the attacker shows a measurable performance
gap on the correct 4 out of 12 presented sequences. An
attacker who slows down on random sequences will now
have at most a 1/

(12
4

)
≈ 1/500 chance in passing the test.

The number of trained sequences (4) and the number of
foils (8) can be adjusted to achieve an acceptable tradeoff
between security and usability.

Similarly, a small number of authentication attempts
will not help a direct attacker pass the test. However,
memorizing the authentication test (360 symbols) and
later presenting it to a coerced user could give the adver-
sary an advantage. To further defend against this memo-
rization attack we add one more step to the authentication
procedure: once the authentication server observes that
the user failed to demonstrate a measurable gap on some
of the trained sequences, all remaining trained sequences
are replaced with random foils. This ensures that an
attacker who tries to authenticate with no prior knowl-
edge will not see all the trained sequences and therefore
cannot extract all trained sequences from a coerced user.
Consequently, a one-shot attack on a coerced user is not
possible. Nevertheless, by iterating this process — tak-
ing the authentication test, memorizing the observed se-
quences, and then testing them out on a coerced trained
user — the attacker may eventually learn all trained se-
quences and succeed in fooling the authentication test.
During this process, however, the attacker must engage
in the authentication test where he demonstrates knowl-
edge of a strict subset of the trained sequences, but can-
not demonstrate knowledge of all sequences. This is a
clear signal to the system that it is under attack at which
point the person engaging in the authentication test could

be detained for questioning and the legitimate user is
blocked from authenticating with the system until he or
she is retrained on a new set of sequences.

Eavesdropping security. Traditional password authen-
tication is vulnerable to eavesdropping (either via client-
side malware or shoulder surfing) and so is the authenti-
cation system presented here. An eavesdropper who ob-
tains a number of valid authentication transcripts with a
trained user will be able to reconstruct the learned se-
quence(s). It is a fascinating direction for future research
to devise a coercion-resistant system where an implicitly
learned secret is used in a challenge-response protocol
with the server. We come back to this question at the end
of the paper.

5.2 An Experiment: Extracting Sequence
Fragments

One of the potential attacks on our system involves a
malicious party profiling the legitimate user’s knowledge
and using that information to reverse engineer the trained
sequence to be able to pass the authentication test. Al-
though the number of possible trained sequences is too
large to exhaustively test on any single individual each
sequence is constructed according to known constraints
and knowledge of subsequence fragments might enable
the attacker to either reconstruct the original sequence or
enough of it to pass an authentication test.

The training sequences are constrained to use all 6 re-
sponse keys equally often, so analysis of individual re-
sponse probabilities cannot provide information about
the trained sequence. Likewise all 30 possible response
key pairs (6 ∗ 5 = 30, since keys are not repeated) occur
equally often during training meaning that bigram fre-
quency also provides no information about the trained se-
quence. However, each 30-item sequence has 30 unique
trigrams (of 150 possible). If the specific training trigram
fragments could be identified, the underlying training se-
quence could be reconstructed.

An attack based on this information would be to have
a trained user perform a SISL test that contains all 150
trigrams equally often. If the user exhibited better perfor-
mance on the 30 trained trigrams than the 120 untrained,
the sequence could be reconstructed. This attack would
weaken the method’s relative resistance to external pres-
sure to reveal the authentication information.

However, while the sequence information can be de-
termined at the trigram level it is not known if partici-
pants reliably exhibit sequence knowledge in such short
fragments. In Experiment 3, we evaluated performance
on this type of trigram test to assess whether the sequence
information could be reconstructed.
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Participants were again recruited through Mechanical
Turk and completed the same training sessions used in
Experiments 1 and 2. At test, participants performed a
sequence constructed to provide each of the 150 trigrams
exactly 10 times by constructing ten different 150-trial
units that each contain all possible trigrams in varying
order. Performance on each trigram was measured by
percent correct as a function of the current response and
two responses prior.

To evaluate whether these data could be used to recon-
struct the sequence, the percent correct on each trigram
was individually calculated and a rank order of all tri-
grams was created for each individual. If performance
on the trained trigrams was superior to others, the trained
trigram ranks should tend to be lower (e.g., performance
expression would lead the sequence trigrams to be the 30
best performed responses). However, average rank and
average percent correct on the trained trigrams was in-
distinguishable from untrained trigrams. Participants did
not exhibit their trained sequence knowledge on this type
of test, indicating that their sequence knowledge cannot
be attacked with a trigram-based method. More specifi-
cally, for each user we compared the average percent cor-
rect measurements for the 30 trained-sequence trigrams
to those for the 120 remaining trigrams. The 34 par-
ticipants averaged 73.9% correct (SE 1.2%) for trigrams
from the trained sequence and 73.2% correct (SE 1.1%)
for the rest. The difference was not reliable.

While the trigram test did not lead to expression of se-
quence knowledge, it is likely that participants’ sequence
knowledge could be assessed for some longer fragments.
However, the number of fragments to assess grows ex-
ponentially with the length to be assessed and the abil-
ity to test all fragments is limited by the need to rely
on human performance to do the assessment. For exam-
ple, for length 4 fragments (quad-grams), there are 750
fragments to assess multiple times each to try to identify
which ones had been trained.

Future work. In future work we will assess sequence
expression at various lengths to find the minimal length
at which sequence knowledge can be expressed. This
minimal length likely reflects a basic operating charac-
teristic of the brain regions that support implicit sequen-
tial skill learning. If this length suggests the possibility
of attack, the sequence can be increased in complexity by
increasing the number of characters, using inter-response
timing (known to be important to learning [7]) or more
complex sequence structures than simple repeating se-
quences.

Recall that in our experiments we assumed that users
are honest during the training phase and the adversary
only gets to coerce users after they have been trained.

We leave it for future work to design a coersion-resistant
authentication protocol that remains secure when users
can be coerced during the training phase.

6 Related Work

There is a large body of related work in user authenti-
cation and biometrics for user access control. The work
can been broken down into biometrics (“who you are”),
tokens (“what you have”), and passwords (“what you
know”). There is significant past work in each of the
three main areas. Our work may fall into a new cate-
gory of implicit learning (“what you know you know but
do not know”), or could be categorized as a subclass of
behavioral biometric measurement.

Classic biometrics identifying a user based on who
they physically are can be grouped into physiologi-
cal and behavior categories. Physiological characteris-
tics include fingerprint, face recognition, DNA prints,
palm print, hand geometry, iris recognition, and retinal
scans. Behavioral characteristics include measurements
of typing rhythm and other dynamics, dynamic signa-
ture, walking gait, voiceprints, and eye movement pat-
terns [11, 10, 2, 15]. Our work differs from these in en-
abling quick training in new randomly seeded patterns.
It might be very difficult to learn to walk a new way,
and nearly impossible to change one’s iris pattern, but it
should be easy to learn a new cortical crypto sequence
with a modest training regime. Further, if one relies on
retinal patterns for identification, each system could cap-
ture all the information content of the retina, and thus a
single compromised retina reader could reveal to an ad-
versary the entire set of information. Our approach en-
ables key revocation and multiple keys per user for dif-
ferent systems where there need not be any information
leakage from one system to the next.

Denning et al. [4] propose an authentication model
based on implicit learning of sets of images. An ear-
lier study [21] compared the learning of images, artifi-
cial words, and outputs from finite-state automata. Both
of these works develop authentication systems that al-
low users to easily memorize strong passwords, how-
ever the resulting systems are not as resistant to rubber
hose attacks because they depend on the user consciously
studying sets of images or strings and as a result the
user retains some conscious knowledge of the creden-
tial. When using the SISL task we were able to verify
that little conscious knowledge of the trained secret is
retained. Image-based authentication mechanisms also
require curated image sets in order to reduce errors in the
authentication process; in contrast SISL-based authenti-
cation uses automatically generated sequences sampled
from a well-defined high entropy combinatorial space.
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Deniable encryption. In the context of encryption, de-
niable encryption [3, 13] enables a user who encrypts a
message to open the ciphertext in multiple ways to pro-
duce different cleartexts from the same ciphertext. Such
systems enable a user to reveal an encryption key, which
produces a document that contains plausible cleartext,
but which is different from the actual document the user
wishes to protect. This technique protects encrypted doc-
uments, but does not apply to authentication credentials.
Further, a properly motivated user of deniable encryp-
tion could choose to reveal the correct decryption key,
enabling the coercive adversary offline access to all ver-
sions of the document. Our approach develops a sys-
tem where the user cannot, even if strongly motivated,
reveal to another any information useful for an adver-
sary to replicate the user’s access without the user being
present. Deniability has also been studied in the context
of elections [9].

Coercion detection. Since our aim is to prevent users
from effectively transmitting the ability to authenticate
to others, there remains an attack where an adversary
coerces a user to authenticate while they are under ad-
versary control. It is possible to reduce the effective-
ness of this technique if the system could detect if the
user is under duress. Some behaviors such as timed re-
sponses to stimuli may detectably change when the user
is under duress. Alternately, we might imagine other
modes of detection of duress, including video monitor-
ing, voice stress detection, and skin conductance moni-
toring [8, 16, 1]. The idea here would be to detect by
out-of-band techniques the effects of coercion. Together
with in-band detection of altered performance, we may
be able to reliably detect coerced users.

7 Conclusions and Future Work

We have presented a new approach to protecting against
coercion attacks using the concept of implicit learning
from cognitive psychology. We described a proof of
concept protocol and preliminary experiments conducted
through Mechanical Turk demonstrating a basis for con-
fidence that it is possible to construct rubber hose resis-
tant authentication.

Much work remains. We hope to further analyze the
rate at which implicitly learned passwords are forgotten,
and the required frequency of refresher sessions. In ad-
dition we would like to find methods to detect or predict
when individual users reliably learn (collecting more de-
mographic data about our users might be a good first step
in this direction, along with multi-session long-term ex-
periments). We also hope to explore some of the limits of
the approach, for example by finding out the minimum
lengths at which parts of learned sequences are distin-

guishable to an attacker versus a legitimate authenticator,
as well as by strengthening the test procedures and analy-
sis to increase reliability across a larger fraction of users,
or reduce the required testing time, false positives, and
false negatives. Using variable timing between cues and
measuring user performance as a function of game speed
can further help in making the test protocol more reli-
able. Implicit learning of multiple credentials is yet an-
other area that can benefit from additional experiments,
building upon prior work that has so far found no evi-
dence of interference when users learn distinct 12-item
sequences, while also being capable of learning implic-
itly sequences as long as 80 items.

Another future direction for this work is in testing
whether more complex structures—for example Markov
models—can be learned implicitly. We would like to use
such learning to build challenge-response authentication
which is resistant to eavesdropping in addition to coer-
cion. Finally, beyond authentication, we would like to
investigate the construction of a variety of cryptographic
primitives based on implicit learning.
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