
Origin-Bound Certificates: A Fresh Approach to Strong Client
Authentication for the Web

Michael Dietz
Rice University

mdietz@rice.edu

Alexei Czeskis
University of Washington

alexei@czeskis.com

Dirk Balfanz∗

Google Inc.
balfanz@google.com

Dan S. Wallach
Rice University
dwallach@rice.edu

Abstract
Client authentication on the web has remained in the

internet-equivalent of the stone ages for the last two
decades. Instead of adopting modern public-key-based
authentication mechanisms, we seem to be stuck with
passwords and cookies.

In this paper, we propose to break this stalemate by
presenting a fresh approach to public-key-based client
authentication on the web. We describe a simple TLS
extension that allows clients to establish strong authenti-
cated channels with servers and to bind existing authen-
tication tokens like HTTP cookies to such channels. This
allows much of the existing infrastructure of the web to
remain unchanged, while at the same time strengthening
client authentication considerably against a wide range
of attacks.

We implemented our system in Google Chrome and
Google’s web serving infrastructure, and provide a per-
formance evaluation of this implementation.

1 Introduction

In the summer of 2011, several reports surfaced of at-
tempted man-in-the-middle attacks against Google users
who were primarily located in Iran. The Dutch certifi-
cation authority DigiNotar had apparently issued certifi-
cates for google.com and other websites to entities not
affiliated with the rightful owners of the domains in ques-
tion1. Those entities were then able to pose as Google
and other web entities and to eavesdrop on the commu-
nication between users’ web browsers and the websites
they were visiting. One of the pieces of data such eaves-
droppers could have conceivably recorded were authen-
tication cookies, meaning that the man-in-the-middle

∗The opinions expressed here are those of the authors and do not
necessarily reflect the position of Google.

1It later turned out that the certificates had, in fact, been created
fraudulently by attackers that had compromised DigiNotar.

could have had full control over user accounts, even after
the man-in-the-middle attack itself was over.

This attack should have never been possible: authen-
ticating a client to a server while defeating man-in-the-
middle attacks is theoretically a solved problem. Simply
put, client and server can use an authenticated key agree-
ment protocol to establish a secure permanent “channel.”
Once this channel is set up, a man-in-the-middle cannot
“pry it open”, even with stolen server certificates.

Unfortunately, this is not how authentication works on
the web. We neither use sophisticated key agreement
protocols, nor do we establish authenticated “channels.”
Instead, we send secrets directly from clients to servers
with practically every request. We do this across all lay-
ers of the network stack. For example, to authenticate
users, passwords are sent from clients to servers; SAML
or OpenID assertions are sent from clients to servers in
order to extend such user authentication from one web-
site to another; and HTTP cookies are sent with every
HTTP request after the initial user authentication in or-
der to authenticate that HTTP request.

We call this pattern bearer tokens: the bearer of a
token is granted access, regardless of the channel over
which the token is presented, or who presented it2.

Unfortunately, bearer tokens are susceptible to cer-
tain classes of attacks. Specifically, an adversary that
manages to steal a bearer token from a legitimate user
can impersonate that user to web services that require
it. For different kinds of bearer tokens these attacks
come in different flavors: passwords are usually ob-
tained through phishing or keylogging, while cookie
theft happens through man-in-the-browser malware (e.g.,
Zeus [16]), cross site scripting attacks, or adversaries that
manage to sniff the network or insert themselves into the
network between the client and server [1, 7]).

The academic community, of course, has known of
authentication mechanisms that avoid the weaknesses of

2Bearer tokens, originally called “sparse capabilities” [25], were
widely used in distributed systems, well before the web.

bearer tokens since before the dawn of the web. These
mechanisms usually employ some form of public-key
cryptography rather than a shared secret between client
and server. Authentication protocols based on public-
key cryptography have the benefit of not exposing secrets
to the eavesdropper which could be used to impersonate
the client to the server. Furthermore, when public/private
key pairs are involved, the private key can be moved out
of reach of thieving malware on the client, perhaps us-
ing a hardware Trusted Platform Module (TPM). While
in theory this problem seems solved, in practice we have
seen attempts to rid the web of bearer tokens gain near-
zero traction [10] or fail outright [13].

In this paper, we present a fresh approach to using
public-key mechanisms for strong authentication on the
web. Faced with an immense global infrastructure of
existing software, practices and network equipment, as
well as users’ expectations of how to interact with the
web, we acknowledge that we cannot simply “reboot”
the web with better (or simply different) authentication
mechanisms. Instead, after engaging with various stake-
holders in standards bodies, browser vendors, operators
of large website, and the security, privacy and usability
communities, we have developed a layered solution to
the problem, each layer consisting of minor adjustments
to existing mechanisms across the network stack.
The key contributions of this work are:

• We present a slight modification to TLS client au-
thentication, which we call TLS-OBC. This new
primitive is simple and powerful, allowing us to cre-
ate strong TLS channels.

• We demonstrate how higher-layer protocols like
HTTP, federation protocols, or even application-level
user login can be hardened by “binding” tokens at
those layers to the authenticated TLS channel.

• We describe our efforts in gaining community sup-
port for an IETF draft [2], as well as support from
major browser vendors; both Google’s Chrome and
Mozilla’s Firefox have begun to incorporate and test
support for TLS-OBC.

• We present a detailed report on our client-side im-
plementation in the open-source Chromium browser,
and our server-side implementation inside the serv-
ing infrastructure of a large website.

• We give some insight into the process that led to
the proposal as presented here, contrasting it with
existing work and explaining real-world constraints,
ranging from privacy expectations that need to be
weighed against security requirements, to deploy-
ment issues in large datacenters.

Summary. The main idea of this work is easily
explained: browsers use self-signed client certificates

within TLS client authentication. These certificates are
generated by the browser on-the-fly, as needed, and con-
tain no user-identifying information. They merely serve
as a foundation upon which to establish an authenticated
channel that can be re-established later.

The browser generates a different certificate for every
website to which it connects, thus defeating any cross-
site user tracking. We therefore call these certificates
origin-bound certificates (OBCs). This design choice
also allows us to completely decouple certificate gener-
ation and use from the user interface; TLS-OBC client
authentication allows the existing web user experience
to remain the same, despite the changes under the hood.

Since the browser will consistently use the same client
certificate when establishing a TLS connection with an
origin, the website can “bind” authentication tokens (e.g.,
HTTP cookies) to the OBC, thereby creating an authen-
ticated channel. This is done by simply recording which
client certificate should be used at the TLS layer when
submitting the token (i.e., cookie) back to the server. It
is at this layer (in the cookie, not in the TLS certificate)
that we establish user identity, just as it is usually done
on the web today.

TLS-OBC’s channel-binding mechanism prevents
stolen tokens (e.g., cookies) from being used over other
TLS channels, thereby making them useless to token
thieves, solving a large problem in today’s web.

2 Threat Model

We consider a fairly broadly-scoped (and what we be-
lieve to be a real-world) threat model. Specifically, we
assume that attackers are occasionally able to “pry open”
TLS sessions and extract the enclosed sensitive data by
exploiting a bug in the TLS system [22], mounting a man
in the middle (MITM) attack through stolen server TLS
certificates [1], or utilizing man-in-the-browser mal-
ware [16]. These attacks not only reveal potentially pri-
vate data, but in today’s web will actually allow attack-
ers to impersonate and completely compromise user ac-
counts by capturing and replaying users’ authentication
credentials (which, as we noted earlier, are usually in the
form of bearer tokens). These attacks are neither theo-
retical nor purely academic; they are being employed by
adversaries in the wild [24].

In this paper we focus on the TLS and HTTP lay-
ers of the protocol stack, and on protecting the authen-
tication tokens at those layers—mostly HTTP cookies
(but also identity assertions in federation protocols)—by
binding them to the underlying authenticated TLS-OBC
channel. We have a parallel effort under way to pro-
tect the application-layer user logins, but that is mostly
outside the scope of this paper. To model this distinc-
tion, we consider two classes of attacker. The first class

is an attacker that has managed to insert themselves as
a MITM during the initial authentication step (when
the user trades his username/password credentials for a
cookie), or an attacker that steals user passwords through
a database compromise or phishing attack. The second
class of attacker is one that has inserted themself as a
MITM after the initial user authentication step where
credentials are traded for an authentication token. The
first class of attacker is strictly stronger than the second
class of attacker as a MITM that can directly access a
user’s credentials can trade them in for an authentication
token at his leisure. While the second class of attacker,
a MITM that can only steal the authentication token, has
a smaller window of opportunity (the duration for which
the cookie is valid) for access to the user’s private infor-
mation.

For the purposes of this paper, we choose to focus on
the second class of attacker. In short, we assume that the
user has already traded their username/password creden-
tials to acquire an authentication token that will persist
across subsequent connections. Our threat model allows
for attackers to exploit MITM or eavesdropping attacks
during any TLS handshake or session subsequent to the
initial TLS connection to a given endpoint—including at-
tacks that cause a user to re-authenticate as discussed in
Section 4.3. Attacks that target user credentials during
the initial TLS connection, rather than authentication to-
kens during subsequent TLS connections, are dealt with
in a forthcoming report.

3 TLS-OBC

We propose a slightly modified version of traditional
TLS client certificates, called Origin-Bound Certificates
(OBCs), that will enable a number of useful applications
(as discussed in Section 4).

3.1 Overview

Fundamentally, an Origin-Bound Certificate is a self-
signed certificate that browsers use to perform TLS
Client Authentication. Unlike normal certificates, and
their use in TLS Client Authentication (see Section 8.1),
OBCs do not require any interaction with the user.
This property stems from the observation that since the
browser generates and stores only one certificate per ori-
gin, it’s always clear to the browser which certificate it
must use; no user input is necessary to make the deci-
sion.

On-Demand Certificate Creation If the browser does
not have an existing OBC for the origin it’s connecting
to, a new OBC will be created on-the-fly. This newly
generated origin-bound certificate contains no user iden-

tifying information (e.g., name or email). Instead, the
OBC is used only to prove, cryptographically, that sub-
sequent TLS sessions to a given server originate from the
same client, thus building a continuous TLS channel3,
even across different TLS sessions.

User Experience As noted earlier, there is no user in-
terface for creating or using Origin-Bound Certificates.
This is similar to the UI for HTTP cookies; there is typi-
cally no UI when a cookie is set nor when it is sent back
to the server. Origin-Bound Certificates are similar to
cookies in other ways as well:

• Clients uses a different certificate for each origin.
Unless the origins collaborate, one origin cannot dis-
cover which certificate is used for another.

• Different browser profiles use different Origin-Bound
Certificates for the same origin.

• In incognito or private browsing mode, the Origin-
Bound Certificates used during the browsing session
get destroyed when the user closes the incognito or
private browsing session.

• In the same way that browsers provide a UI to in-
spect and clean out cookies, there should be a UI that
allows users to reset their Origin-Bound Certificates.

3.2 The Origin-Bound Certificates TLS
Extension

OBCs do not alter the semantics of the TLS handshake
and are sent in exactly the same manner as traditional
client certificates. However, because they are generated
on-the-fly and have no associated UI component, we
must differentiate TLS-OBC from TLS client-auth and
treat it as a distinct TLS extension. Figure 1 shows, at
a high level, how this extension fits in with the normal
TLS handshake protocol; the specifics of the extension
are explained below.

The first step in the client-server decision to use OBCs
occurs when the client advertises acceptance of the TLS-
OBC extension in its initial ClientHello message. If
the server chooses to accept the use of OBCs, it echoes
the TLS-OBC extension identifier in its ServerHello
message. At this point, the client and server are consid-
ered to have negotiated to use origin-bound client certifi-
cates for the remainder of the TLS session.

After OBCs have been negotiated, the server sends a
CertificateRequest message to the client that spec-
ifies the origin-bound certificate types that it will ac-
cept (ECDSA, RSA, or both). Upon a client’s receipt
of the CertificateRequest, if the client has already
generated an OBC associated with the server endpoint,

3We use the same notion as TAOS [27] does, of a cryptographically
strong link between two nodes.

Figure 1: TLS-OBC extension handshake flow.

the existing OBC is returned to the server in the client’s
ClientCertificate message. If this is the first con-
nection to the server endpoint or if no acceptable existing
OBC can be found, an origin-bound certificate must be
generated by the client then delivered to the server in the
client’s ClientCertificate message.

During the OBC generation process, the client cre-
ates a self-signed client certificate with common and dis-
tinguished names set to “anonymous.invalid” and an
X509 extension that specifies the origin for which the
OBC was generated.

4 Securing Web Authentication Mecha-
nisms with TLS-OBC

We now show how origin-bound certificates can be used
to strengthen other parts of the network stack: In Sec-
tion 4.1 we explain how HTTP cookies can be bound to
TLS channels using TLS-OBC. In Section 4.2 we show
how federation protocols (such as OpenID or OpenID
Connect) can be hardened against attackers, and in Sec-
tion 4.3 we turn briefly to application-level user authen-
tication protocols.

4.1 Channel-binding cookies
OBCs can be used to strengthen cookie-based authen-
tication by “binding” cookies to OBCs. When issuing
cookies for an HTTP session, servers can associate the
client’s origin-bound certificate with the session (either
by unforgeably encoding information about the certifi-
cate in the cookie value, or by associating the certificate
with the cookie’s session through some other means).
That way, if and when a cookie gets stolen from a client,
it cannot be used to authenticate a user when communi-
cated over a TLS connection initiated by a different client
– the cookie thief would also have to steal the private
key associated with the client’s origin-bound certificate

Figure 2: Process of setting an OBC bound cookie

– a task considerably harder to achieve (especially in the
presence of Trusted Platform Modules or other Secure
Elements that can protect private key material).

Service Cookie Hardening One way of unforgeably
encoding an OBC into a cookie is as follows. If a tradi-
tional cookie is set with value v, a channel bound cookie
may take the form of:

〈v, HMACk(v + f)〉

where v is the value, f is a fingerprint of the client
OBC, k is a secret key (known only to the server), and
HMACk(v + f) is a keyed message authentication code
computed over v concatenated to f with key k. This
information is all that is required to create and verify a
channel bound cookie. The general procedure for set-
ting a hardened cookie is illustrated in Figure 2. Care
must be taken not to allow downgrade attacks: if both
v and 〈v, HMACk(v + f)〉 are considered valid cook-
ies, a man-in-the-middle might be able to strip the sig-
nature and simply present v to the server. Therefore,
the protected cookie always has to take the form of
〈v, HMACk(v + f)〉, even if the client doesn’t support
TLS-OBC.

Cookie Hardening for TLS Terminators The tech-
nique for hardening cookies, as discussed above, as-
sumes that the cookie-issuing service knows the OBC
of the connecting client. While this is a fair assumption
to make for most standalone services, it is not true for
many large-scale services running in datacenters. In fact,
for optimization and security reasons, some web services
have TLS “terminators”. That is, all TLS requests to and
from an application are first passed through the TLS ter-
minator node to be “unwrapped” on their way in and are
“wrapped” on their way out.

There are two potential approaches to cookie harden-
ing with TLS terminators. First, TLS terminators could
extract a client’s OBC and pass it, along with other infor-
mation about the HTTP request (such as cookies sent by

Figure 3: MITM attack during a TLS handshake

the client) to the backend service. The backend service
can then create and verify channel-bound cookies using
the general procedure in the previous section.

The second approach involves using the TLS termina-
tor to channel-bind the cookies of legacy services that
cannot or will not be modified to deal with OBC in-
formation sent to them by the TLS terminator. Us-
ing this approach, TLS terminators must receive a list
of cookie names to harden for each service to which
they cater. When receiving an outbound HTTP response
with a Set-Cookie header for a protected cookie, the
TLS terminator must compute the hardened value us-
ing the OBC fingerprint, rewrite the cookie value in the
Set-Cookie header, and only then wrap the request in
a TLS stream. Similarly, the TLS terminator must in-
spect incoming requests for Cookie headers bearing a
protected cookie, validate them, and rewrite them to only
have the raw value. Any inbound request with a channel-
bound cookie that fails verification must be dropped by
the TLS verifier.

Channel-Bound Cookies Protect Against MITM

As mentioned earlier, TLS MITM attacks happen and
some can go undetected (see Figure 3 for a depiction of a
conventional MITM attack). Channel-bound cookies can
be used to bring protection against MITM attacks to web
users.

Recall that our threat model assumes that at some time
in the past, the user’s client was able to successfully au-
thenticate with the server. At that point, the server would
have set a cookie on the client and would have bound
that cookie to the client’s legitimate origin-bound certifi-
cate. This process is shown in Figure 2. Observe that on
a subsequent visit, the client will send its cookie (bound
to the client’s OBC). However, the MITM lacks the abil-
ity to forge the client’s OBC and must substitute a new
OBC in its handshake with the server. Therefore, when
the MITM forwards the user’s cookie on to the server,
the server will recognize that the cookie was bound to a
different OBC and will drop the request. This process
is shown in Figure 4. The careful reader will observe
that a MITM attacker may strip the request of any bearer
tokens completely and force the user to provide his user-
name/password once more or fabricate a new cookie and

Figure 4: Using OBCs and bound cookies to protect
against MITM. The server recognizes a mismatch be-
tween the OBC to which the cookie is bound and the cert
of the client (attacker) with who it is communicating.

log the user in as another identity. We cover this more in
Section 4.3 and in an upcoming report.

4.2 Hardening Federation Protocols

Channel-binding cookies with OBCs allows a single en-
tity to protect the authentication information of its users,
but modern web users have a plethora of other login cre-
dentials and session tokens that make up their digital
identity. Federation protocols like OpenID [20], OpenID
Connect [23], and BrowserID [14] have been proposed
as a way to manage this explosion of user identity state.
At a high level, these federation protocols allow the user
to maintain a single account with an identity provider
(IdP). This IdP can then generate an identity assertion
that demonstrates to relying parties that the user con-
trols the identity established with the identity provider.
While these federation techniques reduce the number of
credentials a user is responsible for remembering, they
make the remaining credentials much more valuable. It
is therefore critical to protect the authentication creden-
tials for the identity provider as well as the mechanism
used to establish the identity assertion between identity
provider and relying party. Towards that end, we explore
using TLS-OBC and channel-binding to harden a generic
federation system against attack.

PostKey API The first step towards hardening a feder-
ation protocol is to provide a way for an identity provider
and relying party to communicate in a secure, MITM re-
sistant manner. We introduce a new browser API called
the PostKey API to facilitate this secure communica-
tion. This new API is conceptually very similar to the
PostMessage [11] communication mechanism that al-
lows distinct windows within the browser to send mes-
sages to each other using inter-process communication

iFrame:
https://idp.com

Browser

window:
https://rp.com

Cert idp
C user

Cert idp

Cert

rp.postKey(https://idp.com)

rp

[K] , [K]idp K rp Krp idp

https://rp.com

Cert rp

K rp

Kidp

AuthRequest{U, [K] , [K] }idp rp K idpK rp

IdentityAssertion {U, K , nonce}Krp idp

IdentityAssertion {U, K , nonce}Krp idp

https://idp.com

Cuser@rp.com

1
2

3

4

5

Figure 5: Simplified federation protocol authorization
flow using PostKey and OBCs.

rather than the network. The goal of PostKey extends be-
yond a simple communication mechanism to encompass
the secure establishment of a “proof key” that commu-
nicates the public key of an OBC to a different origin
within the browser by exposing a new browser window
function:

otherWindow.postKey(message, targetOrigin)

This postKey call works like the existing postMessage
call but additional cert and crossCert parameters are
added to the event received by the recipient window’s
message handler. The cert parameter contains a cer-
tificate that is signed by the receiver’s origin-bound key
and includes: the sender’s origin, the sender’s OBC pub-
lic key, the receiver’s origin, and an X509 extension
that includes a random nonce. The crossCert has the
sender and receiver’s roles reversed (i.e., it contains the
receiver’s key, signed by the sender’s key) and includes
the same random nonce as in cert.

These certificates form what is called a cross certifica-
tion, where the recipient of the certification can establish
that the sender’s public key is KS because KS has been
signed, by the browser, with the receiver’s private key
KR. Additionally, the caller’s public key cross-certifies
the receiver’s public key to establish that both keys be-
long to the same browser.

It’s important to note that the sender does not get to
choose the keys used in this cross certification process.
Instead, the browser selects the OBCs associated with
the origins of the sender and receiver and automatically
performs the cross certification using the keys associated
with the found OBCs.

Putting it all together The combination of the PostKey
API and origin-bound certificates can be used to improve
upon several federation protocols.

Figure 5 shows the steps required to federate a user’s
identity in a generic federation protocol that had been
modified to work with the PostKey API and OBCs. In
step 1 the relying party issues a PostKey javascript re-
quest to the IdP’s iFrame and the IdP receives a cross

certification from the web browser. In step 2, an Autho-
rization Request is issued to the IdP. Since the request
is sent over the TLS channel authenticated with KIdP the
server associates the incoming request with the user U
associated with KIdP. The authorization request contains
the cross certification that asserts that KRP and KIdP be-
long to the same user’s browser so upon user consent, the
IdP can respond (in step 3) with a single use Identity As-
sertion that asserts that KRP is also associated with user
U. The IdP’s iFrame then passes the Identity Assertion
to the RP’s frame where, in step 4, the Identity Assertion
is forwarded to the relying party’s server. The relying
party verifies that the Identity Assertion was delivered
over a channel authenticated with KRP, has been prop-
erly signed by the IdP, and has not been used yet. If this
verification succeeds the RP can now associate user U
with key KRP by setting a cookie in the user’s browser as
shown in step 5.

4.3 Protecting user authentication

We’ve largely considered the initial user-authentication
phase, when the user submits his credentials (e.g., user-
name/password) in return for an authenticated session, to
be out of scope for this paper. However, we now briefly
outline how TLS-OBC can be leveraged in order to se-
cure this tricky phase of the authentication flow.

As a promising direction where TLS-OBC can make a
significant impact, we explore the ideas put forth by a re-
cent workshop paper by Czeskis et al. [8], where the au-
thors frame authentication in terms of protected and un-
protected login. They define unprotected login as an au-
thentication during which all of the submitted credentials
are user-supplied and are therefore vulnerable to phish-
ing attacks. For example, these types of logins occur
when users first sign in from a new device or after having
cleared all browser state (i.e., cleared cookies). The au-
thors observe that to combat the threats to unprotected lo-
gin, many websites are moving towards protected login,
whereby user-supplied credentials are accompanied by
supplementary, “unphishable” credentials such as cook-
ies or other similar tokens. For example, websites may
set long-lived cookies for users the first time they log in
from a new device (an unprotected login), which will not
be cleared when a user logs out or his session expires.
On subsequent logins, the user’s credentials (i.e., user-
name/password) will be accompanied by the previously
set cookie, allowing websites to have some confidence
that the login is coming from a user that has already had
some interaction with the website rather than a phisher.
The authors argue that websites should move all possible
authentications to protected login, minimize unprotected
login, and then alert users when unprotected logins oc-
cur. The paper argues that this approach is meaningful

because phishers are not able to produce protected logins
and will be forced to initiate unprotected logins instead.
Given that unprotected logins should occur rarely for le-
gitimate users, alerting users during an unprotected login
will make it significantly harder for password thieves to
phish for user credentials.

It’s important to note that websites can’t fully trust
protected logins because they are vulnerable to MITM
attacks. However, with TLS-OBC, websites can pro-
tect themselves by channel-binding the long-lived cookie
that enables the protected login. Combining TLS-
OBC with the protected login paradigm allows us to
build systems which are resilient to more types of at-
tacks. For example, when describing the attack in Fig-
ure 4, we mentioned that attackers could deliver the
user cookie, but that would alert the server to the pres-
ence of a MITM. We also mentioned that attackers could
drop the channel-bound cookie altogether and force the
user to re-authenticate, but that this attack was out of
scope. However, using TLS-OBC along with the pro-
tected/unprotected paradigm, if the attacker forced the
user to re-authenticate, the server could force an unpro-
tected login to be initiated and an alert would be sent to
the user, notifying him of a possible attack in progress.
Hence, channel-bound cookies along with TLS-OBC
would protect the user against this type of attack as well.

The careful reader will observe that protecting first
logins from new devices (an initial unprotected login)
is difficult since the device and server have no pre-
established trust. We are currently in the beginning
stages of building a system to handle this case and leave
further discussion as future work.

5 Implementation

In order to demonstrate the feasibility of TLS origin-
bound certificates for channel-binding HTTP cookies,
we implemented the extensions discussed in Section 3.
The changes made while implementing origin-bound
certificates span many disparate systems, but the major
modifications were made to OpenSSL, Mozilla’s Net-
work Security Services (used in Firefox and Chrome),
the Google TLS terminator, and the open-source
Chromium browser.

5.1 TLS Extension Support

We added support for TLS origin-bound certificates to
OpenSSL and Mozilla’s Network Security Stack by im-
plementing the new TLS-OBC extensions, following the
appropriate guidelines [5]. We summarize each of these
changes below.

NSS Client Modifications Mozilla’s Network Se-

curity Stack (NSS) was modified to publish its ac-
ceptance of the TLS-OBC extension when issuing a
ClientHello message to a TLS endpoint. Upon receipt
of a ServerHello message that demonstrated that the
communicating TLS endpoint also understands and ac-
cepts the TLS-OBC extension, a new X509 certificate
is generated on-the-fly by the browser for use over the
negotiated TLS channel. These NSS modifications re-
quired 108 modified or added lines across 6 files in the
NSS source code.

OpenSSL Server Modifications The OpenSSL TLS
server code was modified to publish its acceptance of
the TLS-OBC extension in its ServerHello message.
Furthermore, if during the TLS handshake the client and
server agree to use origin bound certificates, the normal
client certificate verification is disabled and the OBC ver-
ification process is used instead.

The new verification process attempts to establish that
the certificate delivered by the client is an OBC rather
than a traditional client authentication certificate. The
check is performed by confirming that the certificate is
self-signed and checking for the presence of the X509
OBC extension. With these two constraints satisfied, the
certificate is attached to the TLS session for later use by
higher levels of the software stack.

An upstream patch of these changes is pending and
has preliminary support from members of the OpenSSL
community. The proposed patch requires 316 lines of
modification to the OpenSSL source code where most
of the changes focus on the TLS handshake and client
certificate verification submodules.

5.2 Browser Modifications

In addition to the NSS client modifications discussed
above, Chromium’s cookie storage infrastructure was
adapted to handle the creation and storage of TLS origin-
bound certificates. The modifications required to gen-
erate the OBCs resulted in a 712 line patch (across 8
files) to the Chromium source code. Storage of OBCs
in the existing Chromium cookie infrastructure required
an additional 1,164 lines added across 15 files. These
changes have been upstreamed as an experimental fea-
ture of Chromium since version 16.

6 Performance Evaluation

We have conducted extensive testing of our modifica-
tions to TLS and have found them to perform well, even
at a significant scale. We report on these results below.

6.1 Chromium TLS-OBC Performance

Experimental methodology In order to demonstrate
that the performance impact of adding origin-bound
certificates to TLS connections is minimal, we evalu-
ated the performance of TLS-OBCs in the open-source
Chromium browser using industry standard benchmarks.
All experiments were performed with Chromium version
19.0.1040.0 running on an Ubuntu (version 10.04) Linux
system with a 2.0GHz Core 2 Duo CPU and 4GB of
RAM.

All tests were performed against the TLS secured
version of a Google’s home page. During the tests
JavaScript was disabled in the browser to minimize the
impact of the JavaScript engine on any observed results.
Additionally, SPDY connection pooling was disabled,
the browser cache was cleared, and all HTTP connec-
tions were reset between each measured test run in order
to eliminate any saved state that would skew the exper-
imental results. The Chromium benchmark results dis-
cussed in section 6.1.1 were gathered with the Chromium
benchmarking extension [12] and the HTML5 Naviga-
tion Timing [19] JavaScript interface.

6.1.1 Effects on Chromium TLS Connection Setup

We first analyzed the slowdown resulting the TLS-OBC
extension for all connections bound for our website’s
HTTPS endpoints. The two use-cases considered by
these tests were the first visit, which requires the client-
side generation of a fresh origin-bound certificate, and
subsequent visits where a cached origin-bound certificate
is used instead.

No TLS-OBC ECDSA 1024 RSA 2048 RSA
TLS-OBC type

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

ti
m

e
 (

m
s)

105

251

440

1011

Figure 6: Observed Chromium network latency (ms)
with TLS-OBC certificate generation.

The first test shown in Figure 6 shows the total net-
work latency in establishing a connection to our web site
and retrieving the homepage on the user’s first visit. We

measured the total network latency from the Navigation
Timing fetchStart event to the responseEnd event, encap-
sulating TLS handshake time as well as network commu-
nication latency.

No TLS-OBC ECDSA 1024 RSA 2048 RSA
TLS-OBC type

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

ti
m

e
 (

m
s)

105 104 108 117

Figure 7: Observed Chromium network latency (ms),
TLS-OBC certificate pre-generated.

The results shown in Figure 7 represent subsequent re-
quests to our web site where there is a cache hit for a
pre-generated origin-bound certificate. We observed no
meaningful impact of the additional CertificateRequest
and Certificate messages required in the TLS handshake
on the overall network latency.

ECDSA 1024 RSA 2048 RSA
TLS-OBC type

0

200

400

600

800

1000

1200

1400

1600

1800

2000

ti
m

e
 (

m
s)

12

129

1016

Figure 8: NSS certificate generate times (ms).

The differences between the latencies observed in Fig-
ures 6 and 7 imply that origin-bound certificate genera-
tion is the contributing factor in the slowdown observed
when first visiting an origin that requires a new origin
bound certificate. We measured the performance of the
origin-bound certificate generation routine, as shown in
Figure 8, and found that the certificate generation does
seem to be the contributing factor in the higher latencies

seen when first connecting to an origin with an origin-
bound certificate.

Client Performance Analysis These observations
demonstrate that certificate generation is the main source
of slowdown that a client using origin-bound certificates
will experience. The selection of public key algorithm
has a significant impact on the fresh connection case,
and an insignificant impact on subsequent connections.
This suggests that production TLS-OBC browsers should
speculatively use spare CPU cycles to precompute pub-
lic/private key pairs, although fresh connections will still
need to sign origin-bound certificates, which cannot be
done speculatively.

6.2 TLS Terminator Performance
We also measured the impact of TLS-OBC on Google’s
high-performance TLS terminator used inside the data-
center of our large-scale web service. To test our sys-
tem, we use a corpus of HTTP requests that model real-
world traffic and send that traffic through a TLS termina-
tor to a backend that simulates real-world responses, i.e.,
it varies both response delays (forcing the TLS termina-
tor to keep state about the HTTP connection in memory
for the duration of the backend’s “processing” of the re-
quest) as well as response sizes according to a real-world
distribution. Mirroring real-world traffic patterns, about
80% of the HTTP requests are sent over resumed TLS
sessions, while 20% of requests are sent through freshly-
negotiated TLS sessions.

We subjected the TLS terminator to 5 minutes of
3000 requests-per-second TLS-only traffic and periodi-
cally measured memory and CPU utilization of the TLS
terminator during that period.

We ran four different tests: One without origin-bound
certificates, one with a 1024-bit RSA client key pair, one
with a 2048-bit RSA client key pair, and one with a 163-
bit client key pair on the sect163k1 elliptic curve (used
for ECDSA). We also measure the latency introduced by
the TLS terminator for each request (total server-side la-
tency minus backend “processing” time).

Figure 9 shows the impact on memory. Compared to
the baseline (without client certificates) of about 1.85GB,
the 2048-bit RSA client certs require about 12% more
memory, whereas the 1024-bit RSA and ECDSA keys
increase the memory consumption by less than 1%.

Figure 10 shows the impact on CPU utilization. Com-
pared to the baseline (without client certificates) of sat-
urating about 4.3 CPU cores, we observed the biggest
increase in CPU utilization (of about 7%) in the case of
the ECDSA client certificates.

Finally, Figure 11 through Figure 14 show latency his-
tograms. While we see an increase in higher-latency re-
sponses when using client-side certificates, the majority

No TLS-OBC ECDSA 1024 RSA 2048 RSA
TLS-OBC type

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

M
e
m

o
ry

 (
G

B
)

1.855 1.873 1.865

2.082

Figure 9: Server-side memory footprint of various client-
side key sizes.

No TLS-OBC ECDSA 1024 RSA 2048 RSA
TLS-OBC type

0

1

2

3

4

5

6

C
P
U

 (
co

re
s)

4.31
4.61

4.43 4.40

Figure 10: Server-side CPU utilization for various client-
side key sizes.

of requests are serviced in under one millisecond in all
four cases.

Server Performance Analysis If we cared purely
about minimizing the memory and CPU load on our TLS
terminator systems, our measurements clearly indicate
that we should use 1024-bit RSA. As 1024-bit RSA and
163-bit ECDSA are offer equivalent security [4], how-
ever the ECDSA server costs might be worth the client-
side benefits.

7 Discussion – Practical Realities

We now discuss a variety of interesting details, chal-
lenges, and tensions that we encountered while dealing
with the actual nature of how applications are developed
and maintained on the web.

Figure 11: Latency without client certificates.

Figure 12: Latency with 1024-bit RSA certificate.

7.1 Domain Cookies and TLS-OBC

In Section 4 we explained how cookies can be channel-
bound using TLS-OBC, hardening them against theft.
However, this works only as long as the cookie is
not set across multiple origins. For example: when a
cookie is set by origin foo.example.com for domain ex-
ample.com, then clients will send the cookie with re-
quests to (among others) bar.example.com. Presumably,
however, the client will use a different client certificate
when talking to bar.example.com than it used when talk-
ing to foo.example.com. Thus, the channel-binding will
break.

Bortz et al. [6] make a convincing argument that do-
main cookies are a poor choice from a security point-of-
view, and we agree that in the long run, domain cookies
should be replaced with a mix of origin cookies and high-
performance federation protocols.

In the meantime, however, we would like to address
the issue of domain cookies. In particular, we would like
to be able to channel-bind domain cookies just as we’re
able to channel-bind origin cookies.

To that end, we are currently considering a “legacy
mode” of TLS-OBC, in which the client uses whole do-
mains (based on eTLDs), rather than web origins, as the

Figure 13: Latency with 2048-bit RSA certificate.

Figure 14: Latency with 163-bit ECDSA certificate.

granularity for which it uses client-side certificates. Note
that this coarser granularity of client certificate scopes
does not increase the client’s exposure to credential theft.
All the protocols presented in this paper maintain their
security properties against men-in-the-middle, etc. The
only difference between origin-scoped client certificates
and (more broadly-scoped) domain-scoped client certifi-
cates is that in the latter case, related domains (e.g.,
foo.example.com and bar.example.com) will be able to
see the same OBC for a given browser.

It is also worth noting that even coarse-grained
domain-bound client certificates alleviate many of the
problems of domain cookies, if those cookies are
channel-bound – including additional attacks from the
Bortz et al. paper.

In balance, we feel that the added protection afforded
to widely-used domain cookies outweighs the slight risk
of “leaking” client identity across related domains, and
are therefore planning to support the above-mentioned
“legacy mode” of TLS-OBC.

7.2 Privacy
The TLS specification [9] indicates that both client and
server certificates should be sent in the clear during the

handshake process. While OBCs do not bear any infor-
mation that could be used to identify the user, a single
OBC is meant to be reused when setting up subsequent
connections to an origin. This certificate reuse enables
an eavesdropper to track users by correlating the OBCs
used to setup TLS sessions to a particular user and track
a users browsing habits across multiple sessions.

Client ClientHello

ServerHello

Certificate: Cs

CertificateRequest

ServerHello Done

Certificate: Cc

ClientKeyExchange

CertificateVerify

ChangeCipherSpec

ChangeCipherSpec

Server Client ClientHello

ServerHello

Certificate: Cs

CertificateRequest

ServerHello Done

ChangeCipherSpec

ChangeCipherSpec

Server

Certificate: Cc

ClientKeyExchange

CertificateVerify

Figure 15: TLS encrypted client certificates

Towards rectifying this issue, we propose to combine
TLS-OBC with an encrypted client certificate TLS ex-
tension. This extension modifies the ordering of TLS
handshake messages so that the client certificate is sent
over an encrypted channel rather than in the clear. Fig-
ure 15 shows the effect this extension has on TLS mes-
sage ordering.

7.3 SPDY and TLS-OBC

The SPDY [26] protocol multiplexes several HTTP re-
quests over the same TLS connection, thus achieving
higher throughput and lower latency. SPDY has been im-
plemented in Google Chrome for some time, and will be
supported in Firefox 11. SPDY always runs over TLS.

One feature of SPDY is IP pooling, which allows
HTTP sessions from the same client to different web ori-
gins to be carried over the same TLS connection if: the
web origins in question resolve to the same IP address,
and the server in the original TLS handshake presented
a certificate for all the web origins in question.

For example, if a.com and b.com resolved to the
same IP address, and the server at that IP address pre-
sented a valid certificate for a.com and b.com (presum-
ably through wildcard subject alternative names), then
a SPDY client would send requests to a.com and b.com
through the same SPDY (and, hence, TLS) connection.

Remember that with TLS-OBC, the client uses a dif-
ferent client TLS certificate with a.com than with b.com.
This presents a problem. The client needs to be able to
present different client certificates for different origins.

In fact, this is not a problem unique to TLS-OBC, but
applies to TLS client authentication in general: theoreti-
cally speaking, a client might want to use different non-
OBC TLS certificates for different origins, even if those
origins qualify for SPDY IP pooling.

One solution to would be to disallow SPDY IP pooling
whenever the client uses a TLS client certificate. Instead,
the client would have to open a new SPDY connection
to the host to which it wishes to present a client certifi-
cate. This solution works well when client certificates
are rare: most of the time (when no client certificates
are involved), users will benefit from the performance
improvements of SPDY IP pooling. When TLS client
certificates become ubiquitous, however (as we expect it
to be the case through TLS-OBC), most of the time the
client would not be able to take advantage of SPDY IP
pooling if this remained the solution to the problem.

Therefore, SPDY needs to address the problem of
client certificates and IP pooling. From version 3 on-
ward, it does this by adding a new CREDENTIAL con-
trol frame type. The client sends a CREDENTIAL frame
whenever it needs to present a new client certificate to
the server (for example, when talking to a new web ori-
gin over an IP-pooled SPDY connection). A CREDEN-
TIAL frame allows the client to prove ownership of a
public-key certificate without a new TLS handshake by
signing a TLS extractor value [21] with the private key
corresponding to the public-key certificate.

7.4 Other Designs We Considered

Before settling on TLS-OBC, we considered, and re-
jected, a number of alternative designs. We share these
rejected ideas below to further motivate the choice for
TLS-OBC.

Application-Level Crypto API In this design, web
client applications would be able to use a crypto API
(similar to a PKCS#11 API, but accessible by JavaScript
in the browser). JavaScript would be able to generate key
pairs, have them certified (or leave the certificates self-
signed), use the private key to sign arbitrary data, etc.,
all without ever touching the private key material itself
(again, similar to PKCS#11 or similar crypto APIs).

Every web origin would have separate crypto key con-
tainers, meaning that keys generated in one web origin
would not be accessible by Javascript running in other
web origins. It would be up to individual applications
to sign relevant (and application-specific) authentication
tokens used in HTTP requests (e.g., special URL query
parameters) with keys from that web origin. The applica-
tion could further design its authentication tokens in such
a way that they don’t grant ambient authority to a user’s
account, but rather authorize specific actions on a user’s

account (e.g., to send an email whose contents hashes to
a certain value, etc.).

Such a system would give some protection against a
TLS MITM: being unable to mint authentication tokens
itself, the attacker could only eavesdrop on a connection.
Also, this approach doesn’t require changes in the TLS or
HTTP layers, and is therefore “standards committee neu-
tral”, except for the need for a standardized JavaScript
crypto API, which presumably would be useful in other
contexts (than authentication) as well.

Note, however, that TLS-OBC with channel-bound
cookies provides strictly more protection, preventing
men-in-the-middle from eavesdropping. This approach
is also vulnerable to XSS attacks and requires applica-
tions to be re-written to use these application-level au-
thentication tokens (instead of existing cookies).

We didn’t consider the advantages mentioned above
strong enough to outweigh the disadvantages of this ap-
proach.

Signed HTTP Requests We also explored designs
where the client would sign HTTP requests at the HTTP
layer. For example, imagine an HTTP request header
“X-Request-Signature” that contained a signature of the
HTTP request. The key used to sign requests would be
client-generated, per-origin, etc., just like for TLS-OBC.
Unlike TLS-OBC, this would not require a change in
TLS, or HTTP for that matter. This design, however,
quickly morphed into a re-implementation of TLS at the
HTTP layer. For example, protection against replay at-
tacks leads to timestamps, counters, synchronization is-
sues, and extra round trips. Another example is session
renegotiation, questions of renegotiation protocols, and
the resulting induced latency.

TLS solves all these issues for us: it protects against
replay attacks, allow session renegotiation to be multi-
plexed with data packages, and many other issues that
would have to be addressed at the HTTP layer. We felt
that the TLS extension we’re proposing was far less com-
plex than the additions to the HTTP layer that would have
been necessary to get to comparable security, hence our
focus on TLS.

8 Related Work

Origin-bound certificates are closely related to traditional
client certificates; we take this opportunity to explain
why traditional client certificates don’t work in today’s
web. We also briefly mention various similar efforts to
remedy the security issues with authentication on the
web, and explain why they stop short of a complete so-
lution.

8.1 Traditional TLS Client Certificates

While TLS server authentication is widely used across
the web, the client authentication aspect of TLS is used
much less frequently. Just like TLS server authentication
identifies a web server to a client (i.e., browser), TLS
client authentication uses public key cryptography to au-
thenticate a client to a web server; this process is an op-
tional part of the TLS handshake.

While effective in small, managed systems such as en-
terprise networks, the flaws of TLS client authentication
begin to emerge as we examine them at web scale:

Bad User Experience One issue that prevents conven-
tional TLS client authentication from becoming the stan-
dard for web authentication is the cumbersome, com-
plicated, and onerous interface that a user must wade
through in order to use a client certificate. Typically,
when web servers request that browsers generate a TLS
client certificate, browsers display a dialog where the
user must choose the certificate cipher and key length.
Even worse, when web servers request that the browser
provide a certificate, the user is prompted to select the
client certificate to use with the site they are attempting to
visit. This “login action” happens during the TLS hand-
shake, before the user can inspect any content of the web-
site (which presumably would help her decide whether
or not she wanted to authenticate to the site in the first
place).

Layer Confusion Arguably, TLS client authentication
puts user identity at the wrong layer in the network stack.
An example that reveals this layer confusion is multi-
login: Google has implemented a feature in which mul-
tiple accounts can be logged into the website at the same
time (multiple user identities are encoded in the cookie).
This makes it easy to quickly switch between accounts
on the site, and even opens up the potential to show a
“mashup” of several users’ accounts on one page (e.g.,
show calendars of all the logged-in accounts). With TLS
client authentication, the user identity is established at
the TLS layer, and is “inherited” from there by the HTTP
and application layers. However, client certificates usu-
ally contain exactly one user identity, thus forcing the
application layer to also only see this one use identity.

Privacy Once a user has obtained a certificate, any site
on the web can request TLS client authentication with
that certificate. The user can now choose to not be logged
in at all, or use the same identity at the new site that they
use with other sites on the web. That is a poor choice.
Creating different certificates for different sites makes the
user experience worse: Now the user is presented with a
list of certificates every time they visit a website requir-
ing TLS client authentication.

Portability Since certificates ideally are related to a
private key that can’t be extracted from the underlying
platform, by definition, they can’t be moved from one
device to another. So any solution that involves TLS
client authentication also has to address and solve the
user credential portability problem. Potential solutions
include re-obtaining certificates from the CA for differ-
ent devices, extracting private keys (against best security
practices) and copying them from one device to another,
or cross-certifying certificates from different devices. So
far we have not been able to come up with good user
interfaces for any of these solutions.

Trusted Computing Base in Datacenters Large dat-
acenters often terminate TLS connections at the datacen-
ter boundary [3], perhaps even using specialized hard-
ware for this relatively expensive part of the connection
setup between client and server. If the TLS client certifi-
cate is what authenticates the user, then the source of that
authentication is lost at the datacenter boundary.

This means that the TLS terminators become part of
the trusted computing base – they simply report to the
backends who the user is that was authenticated during
the TLS handshake. A compromised TLS terminator
would in this case essentially become “root” with respect
to the applications running in the datacenter.

Contrast this with a cookie-based authentication sys-
tem, in which the TLS terminator forwards the cookie
that the browser sends to the app frontend. In such a sys-
tem, the cookies are minted and authenticated by the app
frontend, and the TLS terminator would not be able to
fabricate arbitrary authentic cookies. Put another way,
in a cookie-based authentication system a compromised
TLS terminator can modify an incoming request before
it is delivered to the backend service, but cannot forge a
completely new request from an arbitrary user.

In summary, TLS client authentication presents a
range of issues, ranging from privacy to usability to de-
ployment problems that make it unsuitable as an authen-
tication mechanism on the web.

8.2 Other Related Efforts

CardSpace Microsoft’s CardSpace [13] authentica-
tion system attacked two of the problems mentioned so
far: First, it replaced passwords with a public-key based
protocol, thus eliminating one kind of bearer tokens.
Second, it moved user identity from the TLS layer to the
application layer.

It allowed users to manage multiple digital identities
from a single user interface. CardSpace stored user iden-
tities in the form of identity “cards”. When visiting a
website that implemented the CardSpace protocol, users
could choose which card, and hence which identity, to

use to authenticate with that website. Instead of a user-
name/password pair, a cookie, or a TLS client certificate,
CardSpace would authenticate users by sending crypto-
graphic tokens that encoded the user identity. There is no
consensus on why CardSpace did not become an indus-
try standard; however, we believe the same complexity
that gave CardSpace a wide variety of features, also con-
tributed to its demise by unnecessarily complicating the
user interface, interaction, and development models.

CardSpace by itself was also agnostic to the use of
bearer tokens in lower layers of the protocol stack once
the user was logged in. In this paper we approach the
problem from the opposite direction: we build a strong
foundation at the TLS layer that allows us to harden other
protocols (HTTP, application-specific login, etc.), so the-
oretically origin-bound certificates and CardSpace are
more complementary than competing proposals – in par-
ticular one could imagine a “channel-bound” CardSpace
token that results in a channel-bound cookie (see Sec-
tion 4). However, we strive to learn from CardSpace’s
failure in the market and carefully designed our system
to not alter the user experience (and burden developers)
too much from what users (and developers) are already
used to.

BrowserID Mozilla has recently developed a
prototype of an authentication mechanism called
BrowserID [14], which abstracts identity to the level of
email addresses. BrowserID is aimed at the password
bearer token, at least for websites that choose to become
relying parties to email providers. For those, instead
of using a password, users authenticate by providing a
cryptographic proof of email ownership. Similarly to
CardSpace, the browser maintains a cache of emails
(identities) and generates the respective proofs (tokens)
for the user. Unlike CardSpace, BrowserID is based
on both a simpler model of identity (email addresses
vs. a variety of claims) and a simpler implementation
platform (JWTs vs. WS-Trust).

BrowserID is complementary to the ideas put forth in
this paper. Since it mostly plays at the application layer,
it is agnostic to the use of bearer tokens at lower layers
(e.g., HTTP cookies). It could easily be adjusted by bind-
ing BrowserID identity assertions to the underlying TLS
channel if the browser supports origin-bound certificates.

TLS-SA As another approach, Opplinger et al. address
the disconnect between user authentication and TLS
channels in their proposed TLS Session Aware (TLS-
SA) User Authentication scheme [17, 18]. TLS-SA is in-
tended to solve the man-in-the-middle (MITM) problem
by providing the server side of a TLS connection with
the information necessary to determine if a user’s cre-
dentials have been sent over a different TLS session than
the session that the client thought the credentials were

being sent over. However, these protections apply only
to the initial user credentials and not to the subsequent
bearer tokens. To our knowledge TLS-SA has neither
been implemented nor tested on a mass, web scale.

Hardening Cookies Some work has also focused on
hardening the information stored in HTTP cookies. For
example, Murdoch presented a method for toughening
cookies by encoding values not only based on on a secret
server key, but also on a hash of the user’s password [15].
This approach has the benefit of making it harder for at-
tackers to fabricate fake cookies (even if the secret server
key has been compromised), but does not protect the user
if the cookie is ever stolen.

9 Conclusion

In this paper we presented TLS origin-bound certificates
as a new approach to TLS client certificates. TLS-OBCs
act as a foundational layer on which the notion of an au-
thenticated channel for the web can be established.

We showed how TLS-OBCs can be used to harden ex-
isting HTTP layer authentication mechanisms like cook-
ies, federated login protocols, and user authentication.

We implemented TLS-OBCs as an extension to the
OpenSSL and NSS TLS implementations and deployed
TLS-OBC to the Chromium open source browser as well
as the TLS terminator of a major website.

Finally, we demonstrated that the performance over-
head imparted by using TLS-OBC is small in terms of
CPU and memory load on the TLS server and observed
latency on the TLS client.

We see origin-bound certificates as a first step towards
enabling more secure web protocols and applications.

10 Acknowledgements

A great number of individuals have contributed to the
work presented in this paper. We would like to thank
the team at Google, including Mayank Upadhyay, Adam
Langley, Wan-Teh Chang, Matt Mueller, Ryan Hamilton,
Diana Smetters, Adam Barth and Warren Zhang for help-
ing us develop the ideas presented in this paper, and for
implementing and testing them. Our thanks go out to Ben
Adida, Mike Hanson and Brian Smith from Mozilla, as
well as the members of the IETF TLS Working Group for
sanity-checking and improving our proposals. We would
also like to thank Tadayoshi Kohno for his support.

Finally, we would like to thank the anonymous review-
ers of our manuscript for helping us make this a better
paper.

References

[1] H. Adkins. An update on at-
tempted man-in-the-middle attacks.
http://googleonlinesecurity.blogspot.com/2011/08/update-
on-attempted-man-in-middle.html, Aug 2011.

[2] D. Balfanz. TLS Origin-Bound Certificates.
http://tools.ietf.org/html/draft-balfanz-tls-obc-01, Nov
2011.

[3] J. Barr. AWS Elastic Load Balanc-
ing: Support for SSL Termination.
http://aws.typepad.com/aws/2010/10/elastic-load-
balancer-support-for-ssl-termination.html, Oct 2010.

[4] S. Blake-Wilson, T. Dierks, and C. Hawk. ECC Ci-
pher Suites for TLS. http://tools.ietf.org/html/draft-ietf-
tls-ecc-01, March 2001.

[5] S. Blake-Wilson, M. Nystrom, D. Hopwood,
J. Mikkelsen, and T. Wright. Transport layer secu-
rity (tls) extensions. http://tools.ietf.org/html/rfc4366,
Apr 2006.

[6] A. Bortz, A. Barth, and A. Czeskis. Origin cookies: Ses-
sion integrity for web applications. In Web 2.0 Security &
Privacy, 2011.

[7] E. Butler. Firesheep. http://codebutler.com/firesheep,
2010.

[8] A. Czeskis and D. Balfanz. Protected Login. In Proceed-
ings of the Workshop on Usable Security (at the Finan-
cial Cryptography and Data Security Conference), March
2012.

[9] T. Dierks and C. Allen. The TLS Protocol, Version 1.0.
Internet Engineering Task Force, Jan. 1999. RFC-2246,
ftp://ftp.isi.edu/in-notes/rfc2246.txt.

[10] T. Dierks and E. Rescorla. The Trandsport Layer Security
(TLS) Protocol Version 1.2 – Client Certificates, 2008.
http://tools.ietf.org/html/rfc5246#section-7.4.6.

[11] I. Hickson. HTML5 Web Messaging.
http://dev.w3.org/html5/postmsg/, Jan 2012.

[12] J. Hurwich. Chrome benchmarking exten-
sion. http://www.chromium.org/developers/design-
documents/extensions/how-the-extension-system-
works/chrome-benchmarking-extension, Sept 2010.

[13] Microsoft. Introducing windows cardspace, 2006. http:
//msdn.microsoft.com/en-us/library/aa480189.aspx.

[14] Mozilla. BrowserID, 2012. https://developer.mozilla.org/
en/BrowserID.

[15] S. Murdoch. Hardened stateless session cookies. Security
Protocols XVI, pages 93–101, 2011.

[16] A. Mushaq. Man in the Browser: Inside the Zeus
Trojan, 2010. http://threatpost.com/en_us/blogs/man-
browser-inside-zeus-trojan-021910.

[17] R. Oppliger, R. Hauser, and D. Basin. SSL/TLS
session-aware user authentication–or how to effectively
thwart the man-in-the-middle. Computer Communica-
tions, 29(12):2338–2246, 2006.

[18] R. Opplinger, R. Hauser, and D. Basin. SSL/TLS session-
aware user authentication revisited. Computers & Secu-
rity, 27(3-4):64–70, 2008.

[19] S. Park and D. L. Dill. Verification of cache coherence
protocols by aggregation of distributed transactions. The-
ory of Computing Systems, 31(4):355–376, 1998.

[20] D. Recordon and B. Fitzpatrick. OpenID authentica-
tion 1.1. http://openid.net/specs/openid-authentication-
1_1.html, May 2008.

[21] E. Rescorla. Keying Material Exporters for Transport
Layer Security (TLS). http://tools.ietf.org/html/rfc5705,
March 2010.

[22] J. Rizzo and T. Duong. Beast.
http://vnhacker.blogspot.com/2011/09/beast.html, Sept
2011.

[23] N. Sakimura, D. Bradley, B. de Mederiso, M. Jones,
and E. Jay. OpenID connect standard 1.0 - draft 07.
http://openid.net/specs/openid-connect-standard-1

[24] C. M. Shields and M. M. Toussain. Subterfuge: The
MITM Framework. http://subterfuge.googlecode.com/
files/Subterfuge-WhitePaper.pdf, 2012.

[25] A. S. Tanenbaum, S. J. Mullender, and R. van Renesse.
Using sparse capabilities in a distributed operating sys-
tem. In 6th International Conference on Distributed
Computing Systems, pages 558–563, Cambridge, Mas-
sachusetts, May 1986.

[26] The Chromium Project. SPDY, 2012. http://www.
chromium.org/spdy.

[27] E. Wobber, M. Abadi, M. Burrows, and B. Lampson. Au-
thentication in the Taos operating system. ACM Transac-
tions on Computer Systems (TOCS), 12(1):3–32, 1994.

