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Abstract

Traditionally, applications use sockets to access the net-
work. The socket API is well understood and simple
to use. However, its simplicity has also limited its ef-
ficiency in existing implementations. Specifically, the
socket API requires the application to execute many sys-
tem calls like select, accept, read, and write. Each
of these calls crosses the protection boundary between
user space and the operating system, which is expensive.
Moreover, the system calls themselves were not designed
for high concurrency and have become bottlenecks in
modern systems where processing simultaneous tasks is
key to performance. We show that we can retain the orig-
inal socket API without the current limitations. Specifi-
cally, our sockets almost completely avoid system calls
on the “fast path”. We show that our design eliminates
up to 99% of the system calls under high load. Perhaps
more tellingly, we used our sockets to boost NewtOS, a
microkernel-based multiserver system, so that the per-
formance of its network I/O approaches, and sometimes
surpasses, the performance of the highly-optimized Linux
network stack.

1 Introduction

The BSD socket API is the de facto standard for accessing
the network. Today, all popular general-purpose systems
provide a set of system calls for implementing sockets.
However, sockets were invented over 30 years ago and
they were not designed with high performance and concur-
rency in mind. Even on systems like Linux and FreeBSD,
which have optimized their network stacks to the extreme,
the overall network performance is crippled by the slow
BSD socket API on top of it. The core problem of the
socket API is that every operation requires a system call.
Besides the direct cost of the trap into the operating sys-
tem and back, each system call gums up the caches, the
CPU pipelines, the branch predictors, and the TLBs. For

some calls (like bind or 1isten), this is not a problem,
because they occur only once per server socket. Calls like
read, write, accept, close, and select, on the other
hand, occur at very high rates in busy servers—severely
limiting the performance of the overall network stack.

A clean way to remove the bottleneck is simply to
redesign the API. Many projects improve the network
processing speeds by introducing custom APIs [8, 14, 35].
Megapipe [20] also deliberately takes a clean-slate ap-
proach, because the generality of the existing API limits
the extent to which it can be optimized for performance.
In addition, it offers a fallback to a slower but backward
compatible implementation for legacy software. The ob-
vious drawback of all these approaches is that the new
APIs are not compatible with the widely adopted BSD
sockets and thus require software rewrites to make use of
them. In addition, custom APIs typically look different
on different operating systems and are frequently tailored
to specific application domains.

In this paper, we investigate to what extent we can
speed up traditional sockets. We do so by removing the
worst bottlenecks, system calls, from the socket’s ‘data
path’: the time between the socket / accept and close
system calls—during which the socket is actively used.
The potential savings are huge. For instance, “system”
calls that we resolve in user space are 3.5 times faster
than equivalent calls in Linux. In NewtOS, removing the
system calls improves the performance of lighttpd and
memcached by 2x to 10x. Instead of system calls, the
socket API relies on a user space library to implement
performance-critical socket functions. We do keep the
system calls for less frequent operations like bind and
listen, as they do not influence performance much.

Note that removing the system calls from the socket im-
plementation is difficult. For instance, besides send and
recv, we also need to move complex calls like select
and accept out of the operating system. We are not
aware of any other system that can do this.

As aresult, our design helps scalability in speed, com-



patibility with legacy code, and portability between plat-
forms. To the best of our knowledge, our socket design
supports the networking requirements of every existing
UNIX application. Moreover, without changing a single
line of code, we speed up the network performance of ap-
plications like 1ighttpd and memcached to a level that
is similar to, and sometimes better than, that of Linux—
even though we run them on a slower microkernel-based
multiserver operating system. For instance, we support
up to 45,000 requests/s for small (20B—11kB) files on a
single thread of 1ighttpd (where the application and the
protocol stack run on separate hardware threads).

The key to our solution is that we expose the socket
buffers directly to the user applications. Doing so has
several advantages. For instance, the user process places
the data directly where the OS expects them so there
is no need for expensive copying across address spaces.
Moreover, applications can check directly whether a send
or recv would block (due to lack of space or lack of data,
respectively). Again, the interesting point of our new
design is that applications can do all this while retaining
the familiar socket API and without any system calls.

Our solution is generic and applies to both monolithic
and multiserver OS designs with one important condition:
it should be possible to run the network stack on cores
or hardware threads that are different from those used by
the applications. Fortunately, this is increasingly the case.
Because running the OS and the applications on different
cores is good for concurrency, such configurations are
now possible on some monolithic systems like Linux [34]
and AIX [33], and multiserver systems like NewtOS [22].

Monolithic systems. Many monolithic systems uni-
formly occupy all the cores, with the execution of system
code interleaving the execution of the applications. How-
ever, FlexSC [34] demonstrated that it is advantageous
for systems like Linux to separate the execution of appli-
cations and operating system between different cores, and
to implement system calls without exceptions or traps.
Rather than trap, the application writes the system call
information on a page that it shares with the kernel. The
kernel asynchronously picks up these requests, executes
the requested system call and ships the results back. This
decouples execution of the applications and system calls.

Multiserver systems. There is even more to gain for
microkernel-based multiserver systems. In the multicore
era, such systems are becoming more popular and new
microkernels like Barrelfish [11] emerge. Multiserver
systems follow highly modular designs to reduce com-
plexity and facilitate crash recovery [22] and “hot swap-
ping” [12, 19]. Long thought to be unbearably slow, mod-
ern multiserver systems benefit from the availability of
multicore hardware to overcome some of their histori-
cal performance issues [21, 22]. Multiserver systems
consist of multiple unprivileged server (or device driver)

processes which run on top of a microkernel. A single
system call on a multiserver system may lead to many
messages between the different servers involved in han-
dling the call, and hence significant overhead. On the
other hand, it is easy to spread multiserver systems across
multiple cores so that performance critical tasks run on
dedicated cores, independent of the applications. Since
spatial separation of the OS and the applications is exactly
what our socket implementation requires and system calls
are particularly expensive, multiserver systems are a good
target for sockets without system calls.

Contributions The contributions of our work are:

1. We show a new design of BSD network sockets
in which we implement most network operations
without any system calls.

2. We show how this design allows applications to run
undisturbed while the network stack works on their
requests asynchronously and concurrently.

3. We evaluate the performance of the novel design in
the context of reliable multiserver systems (New-
tOS [22]), using lighttpd web server and the
memcached distributed memory object caching sys-
tem to show that the new implementation can also
bring competitive performance to systems long
thought to be unbearably slow.

The rest of the paper is organized as follows. First, in
Section 2 we discuss recent efforts to enhance network
I/0, highlighting the weak points and describing how we
address them. We present the details of our design in
Section 3, 4 and 5, its implementation in Section 6 and
implications for reliability in Section 7. We evaluate the
design in Section 8 and we conclude in Section 9.

2 Motivation and Related Work

Although the socket API is well understood and broadly
adopted, it has several performance issues. Primarily,
the API was not designed with high concurrency in
mind. Reading from and writing to a socket may block—
suspending the entire application. To work around this
limitation, applications spawn multiple processes (one for
each connection), or use multiple threads [28]. Both of
these approaches require switching of threads of execution
with significant performance overhead, and mutual syn-
chronization, which also affects performance and makes
the software complex and error prone.

Nonblocking variants of socket operations allow han-
dling of multiple sockets within a single thread of execu-
tion. However, probing whether a system call would suc-
ceed requires potentially many calls into the system. For
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Figure 1: Net stack configurations : (a) Linux / BSD / Windows (b) FlexSC / IsoStack (c) Multiserver system.

instance, a nonblocking read is likely to return EAGAIN
frequently and consume resources unnecessarily.

To avoid needless system entries, system calls like
select, poll, and their better optimized variants like
epoll or kqueue [24] let the application ask the system
whether and when it is possible to carry out a set of op-
erations successfully. Although select greatly reduces
the number of system calls, the application needs to use
it first to query the system which of the potential writes
and reads the system will accept. This still leaves many
system calls which cross the protection boundary between
the applications and the system.

Besides using select and friends, developers may
improve efficiency by means of asynchronous I/O. Such
operations initially communicate to the operating system
the send or receive requests to execute, but do not wait
for the operation to complete. Instead, the application
continues processing and collects the results later. The
POSIX asynchronous I/O calls provide such send, recv,
read and write operations, but even in this case, the
execution of the application is disrupted by the system
calls to initiate the requests and to query their status.

Monolithic systems like Linux implement system calls
by means of exceptions or traps which transfer the exe-
cution from the application to the kernel of the operating
system (Figure 1a). The problem of this mode switch and
its effect on the execution of the application has been stud-
ied by Soares et al. in FlexSC [34]. They demonstrated
that if the system runs on a different core, it can keep
its caches and other CPU structures warm and process
the applications’ requests more efficiently in terms of the
instructions-per-cycle ratio. Multithreaded applications
like Bind, Apache and MySQL can issue a request and
instead of switching to the kernel, they can keep working
while the kernel processes the requests.

Although FlexSC is a generic way to avoid exceptions
when issuing system calls, single threaded high perfor-
mance servers can take little advantage without modifica-
tion of their code using the libflexsc library [35]. Event-
driven servers based on the libevent library [4] like ng-
inx [10] and memcached [9] need only modest changes,
however modification of other servers like lighttpd [5]
would require more work. In addition, the kernel still
needs to map in the user memory to copy between the

application’s address space and its own.

IsoStack [33] does not offer a generic solution to the
system call problem and focuses solely on the AIX net-
work stack. In particular, it reduces contention on data
structures and the pollution of CPU structures that results
from the interleaved execution of the network stack and
applications by running the stack on separate core(s) (Fig-
ure 1b). Since the stack has its own core, it can poll the
applications for data. To pass commands to the IsoStack,
applications need to use the kernel—to access per-core
notification queues that are shared by all applications on
the core. Although each socket has its own command
and status queues, there is only one notification queue per
core, so the number of queues to poll is limited.

MegaPipe [20] features per-core queues for commands
and completions. Unlike IsoStack, the applications do not
share those queues. Specifically, each application opens
its own private queue for each core on which it runs.
Since the applications using MegaPipe do not run side-
by-side with the network stack but on top of the kernel,
the stack cannot poll those queues, but MegaPipe reduces
the overhead of system calls by batching them. Making
one kernel call for multiple system calls amortizes the
overhead, and the batching is hidden by a higher level
API. However, the API differs significantly from POSIX.
The authors explicitly opted for a clean-slate approach,
because the generality of the existing socket API “limits
the extent to which it can be optimized in general”.

Windows introduced a similar mechanism in version 8,
the so-called registered I/O, also known as “RIO” [8]. The
internals of the communication between user space and
the kernel in Windows is much more exposed. Program-
mers need to create a number of queues tailored to the
problem they are solving, open the sockets independently
and associate them with the queues. One significant dif-
ference is that RIO explicitly addresses the optimization
of data transfer. Specifically, the user needs to preregister
the buffers that the application will use so the system can
lock the memory to speed up the copying.

Microkernel-based multiserver systems implement sys-
tem calls by means of message passing. Typically, the
application first switches to the kernel which then delivers
the message to the process responsible for handling the
call and, eventually, sends back a reply. This makes the



system call much more costly than in a monolithic system
and more disruptive. It involves not only the application
and the kernel, but also one or more additional processes
(servers), as shown in Figure 1c. For instance, the first
column in Table 1 shows the cost in cycles of a recvfrom
call that immediately returns (no data available) in New-
tOS if the kernel is involved in every IPC message and the
system call traverses three processes on different cores—a
typical solution that is, unfortunately, approximately 170
times slower than the equivalent call in Linux.

One of the problems of such an implementation is that
the network stack asks the kernel to copy the data between
the application process and itself. Compared to mono-
lithic systems, remapping user memory into the address
space of the stack is much more expensive, as the mem-
ory manager is typically another independent process. To
speed up the communication, we have proposed to convert
the messaging into an exception-less mechanism when
the system uses multiple cores [22]. Specifically, the user
process performs a single system call, but the servers
themselves communicate over fast shared-memory chan-
nels in user space. As shown in the second column of
Table 1, doing so speeds up the recvfrom operation by a
factor of 4.

However, if we avoid the system call altogether and
perform the entire operation in (the network library of)
the user process, we are able to reduce the cost of the
recvfrom to no more than 137 cycles—150 times better
than the fast channel based multiserver systems, and even
3.5 times faster than Linux.

Rizzo et al. use their experience with netmap [30] to
reduce overheads for networking in virtual machines [31],
in which case it is important to reduce the amount of VM
exits, data allocation and copying. While they work on
the network device layer, the VM exits present similar
overhead as the system calls for sockets.

Marinos et al. [25] argue for user space network stacks
that are tightly coupled with applications and specialized
for their workload patterns. The applications do not need
to use system calls to talk to the stack and do not need
to copy data as the software layers are linked together.
The stack uses netmap for lightweight access to the net-
work cards. Similarly, mTCP [23] argues for user space
network stack since decoupling the application and the
heavy processing in the Linux kernel (70-80% of CPU
time) prohibits network processing optimizations in the
application. These setups trade performance for loss of
generality, portability and interoperability (the network
stacks are isolated within their applications) and usually
monopolize network interfaces.

Solarflare’s OpenOnload [7] project allows applica-
tions to run their own network stack in user space and by-
pass the system’s kernel. While it provides a low-latency
POSIX interface, it works only with Solarflare NICs as it

Kernel msgs Linux

79800

User space msgs

19950 137 478

No system calls

Table 1: Cycles to complete a nonblocking recvfrom()

needs rich virtualization and filtering hardware features.
Our design draws inspiration from all the projects dis-
cussed above. As none of them solves the problem of
marrying reliable systems to high-performance using the
existing socket API, we opt for a new implementation that
eleminates the system calls during the active phase of a
socket’s lifetime (between socket creation and close).

3 Sockets without System Calls

The socket API consists of a handful of functions. Besides
the socket management routines like socket, close,
connect, set/getsockopt or fcntl, applications can
only read/receive from and write/send to the sockets, al-
though there are different calls to do so. A socket can act
as a stream of data or operate in a packet-oriented fashion.
Either way, the application always either sends/writes a
chunk of data (possibly with attached metadata), or re-
ceives/reads a chunk of data. We limit our discussion to
general reads and writes in the remainder of this paper,
but stress that the arguments apply to the other calls too.
To help the reader, we will explicitly mention what parts
of NewtOS are similar to existing systems. The main
point of our work is of course entirely novel: high-speed
BSD sockets that work with existing application and with-
out system calls in the active phase, designed for reliable
multiserver systems .

The focus of our design is to avoid any system calls
for writing and reading data when the application is un-
der high load. We achieve this by exposing the socket
buffers to the application. When reading and writing sock-
ets using legacy system calls, applications cannot check
whether or not the call will succeed, before they make it.
To remedy this, we allow the applications to peek into the
buffer without involving the operating system at all. Thus,
when the application sees that the operating system has
enough space in the socket buffer, it can place the data
in the buffer right away. Similarly, when it sees that the
buffer for incoming data is not empty, it fetches the data
immediately.

In summary, our key design points are:

1. The socket-related calls are handled by the C library
which either makes a corresponding system call (for
slow-path operations like socket, or if the load is
low), or implements the call directly in user space.

2. The API offers standard BSD sockets, fully compati-
ble with existing applications.
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Figure 2: Exposed socket buffers — no need to cross the
protection boundary (dashed) to access the socket buffers.

3. We use a pair of queues per socket and the queues
also carry data. Each queue is the socket buffer itself.

4. The application polls the sockets when it is busy and
wakes up the stack by a memory write to make sure
the stack attends to its requests very quickly.

5. The network stack polls on per-process basis (rather
than each socket individually).

6. We avoid exception-based system calls without any
batching, and the application only issues a blocking
call when there is no activity.

Although we discuss the design of the buffers and the
calls separately in Sections 4 and 5, they are closely re-
lated. For instance, we will see that exposing the buffers
to the application allows a reduction in the number of
system calls, as applications can check directly whether
or not a read or write operation would fail.

4 Socket Buffers

A socket buffer is a piece of memory the system uses to
hold the data before it can safely transmit it and, in the
case of connection oriented protocols, until it is certain
that the data safely reached the other end. The receive
buffer stores the data before the application is ready to
use it. Our socket buffers are different from traditional
ones in that they are premapped and directly accessible
by the application as presented in Figure 2. We exposed
the socket buffers to user space much like netmap [30]
exposes buffers of network interfaces and it is similar
to how FBufs [15], Streamline [14] or IO Lite [29] map
data buffers throughout the system for fast crossing of
isolation domains.

4.1 Exposing the Buffers

The system allocates the memory for the socket and maps
it into the address space of the application right after
socket creation. The advantage is that the system does
not need to create the mappings when it transfers the data
between its address space and the application. This is
similar to Windows RIO. However, unlike RIO, the pro-
grammers do not need to register the buffers themselves.

—data_head —data_tail

Figure 3: A socket buffer — ring queue and data buffer.
White and shaded present free and used / allocated space.

Instead, buffers are ready at the time the socket opens.
This keeps the use of sockets simple.

The socket buffers are split in two parts—one for in-
coming and one for outgoing data. Each of these parts
is further split into an unstructured memory area for data
and an area that forms a ring queue of data allocation
descriptors, as presented in Figure 3. Both the application
and the system use the queues to inform the other side
about the data they have placed in the socket. This is sim-
ilar to IsoStack’s [33] per socket data queues. However,
we do not require notification queues.

Mapping the buffers entirely in the address space of the
application makes the data path (e.g., reads and writes)
cheaper and the control path (e.g., the socket call) more
expensive as the mapping takes place when creating the
socket. Thus, it is a potential performance bottleneck
for servers which open and close many connections. In
RIO, the mappings are initiated by the application after it
opens the socket and only then the application associates
them with the socket. In contrast, we amortize the cost
of mapping the buffers by reusing the same mappings (as
we describe in Section 5.5), which is trivially possible
because the operating system creates them.

With traditional “hidden-buffer” sockets, the applica-
tion lacks feedback on how quickly the network stack can
drain the buffers when sending. This contributes to the
so-called Buffer Bloat [17] problem. In general, it means
that applications blindly send as much data as they are
allowed, hoping that the network will somehow deliver
them. As a result, too much data accumulates in network
stacks, staying too long in large buffers before eventually
being dropped and retransmitted. Linux partially fixes the
problem by employing an algorithm called Byte Queue
Limits (BQL) [6], which limits the number of bytes the
system can put in the buffers of the network interfaces. In-
stead of blindly pushing as much data as it can, it checks
how much data the interface sent out during a period of
time and sets this as a limit for itself. Unfortunately, the
process is completely hidden from the application. For in-
stance a video streaming server could decrease the video
quality to reduce the bitrate if it knew that the connection
cannot transmit fast enough. The exposed socket buffers’
head and tail pointers provide enough information for a
BQL-like algorithm in the library to limit the number of



bytes the applications write in the socket (e.g., by failing
the write call). POSIX provides ioctl calls to query
such information, however, our sockets can do it cheaply,
without the overhead of system calls.

4.2 Socket Buffers in Practice

The ring buffer part of the socket has 64 slots in our
prototype and the application can change the size of the
buffer and also change the number of slots of each of
the ring buffers (using setsockopt) as the needs of each
application can differ. For instance, senders with many
small writes or receivers with mostly small requests may
prefer higher slot counts with a smaller area for data.

Using single-producer, single-consumer ring buffers
(or queues) is convenient as they are lock-free [18] and de-
tecting whether they are empty or full is achieved inexpen-
sively by examining the head and tail pointers. Likewise,
it is simple to indicate activity by incrementing the head
or tail pointer. Due to the pipe-like socket nature, we can
allocate the data sequentially also, and deallocate them in
the same order, so there is no fragmentation and testing
for full or empty is equally cheap as for the descriptor
ring.

Since the ring queues are in shared memory and the
operating system cannot trust the application, it uses mem-
ory protection for the ring structure so that the receiver
cannot change the values that the system later uses for
deallocating the data. Only the head pointer is writable by
the consumer—as it must modify it to indicate progress.
We place the head pointer in a separate memory page to
enforce the protection.

Both the application and the network stack must free
the buffers when the consumer has processed the data.
The C library, which implements POSIX, tries to reclaim
buffers after we successfully completed a write to a socket,
keeping the socket free for new writes and avoiding block-
ing and system calls or when allocation fails. Of course,
if the socket buffer is full and the operation is blocking,
the application must block as we describe in Section 5.4.

The POSIX system call API does not guarantee correct-
ness of execution when multiple threads or processes use
the same socket. However, it provides a certain degree of
consistency and mutual exclusion as the operating system
internally safeguards its data structures.

For example, many simultaneous calls to accept result
in only one thread acquiring a socket with the new connec-
tion. Although programmers avoid such practices, above
all for performance reasons (e.g., Facebook uses different
UDP ports for different memcached threads [27]), our
library uses a per-socket spinlock to provide the same
protection. In a well structured program, there is no con-
tention on this lock. However, when a process forks or
sends a socket descriptor through a pipe, we cannot guar-

antee that different processes do not cause each other
harm. Therefore, the system catches such situations and
transparently reverts to slow but fully compliant sockets.
For this reason, the performance of legacy servers like
apache or opensshd does not improve—nor does it worsen.
In contrast, the vast majority of client software like wget,
ftp or web browsers, and modern event-driven servers
like 1ighttpd, nginx and memcached, do not need any
change to take full advantage of the new sockets.

5 Calls and Controls

In this section we describe how the network stack and
the applications communicate with each other, how
we implement the system calls and signaling without
involving the kernel.

5.1 Notifying the System

When an application writes to a socket, it needs to tell
the system to handle the request. When the application
runs “on top of” an operating system (i.e., the system’s
kernel runs only upon requests from user processes, or
when an external event occurs), the only practical means
for an application to tell the system about its request is
a system call. Although it is possible to have a system
thread which periodically polls the sockets, much like in
VirtuOS [26], we think this is impractical. It would not
only make running of the system thread dependent on the
scheduler, but it would also require descheduling of the
user process to switch to the polling thread, which would
impact the performance of all the threads sharing the core.
It also requires a good estimate for how long and how
frequently to poll, which is highly workload dependent.

In contrast, we exploit the fact that the network stack
runs on a different core than the applications. The stack
can poll or periodically check the sockets without disrupt-
ing the execution of applications. On modern architec-
tures, it is possible to notify a core about some activity by
a mere write to a piece of shared memory. For instance,
x86 architectures offer the MWAIT instruction which halts
a core until it detects a write to a monitored memory re-
gion, or until an interrupt wakes it up. This allows for
energy-efficient polling.

Using the memory to notify across cores has several ad-
ditional important advantages. First, it is cheap. Although
the write modifies a cache line, which may invalidate it
in the cache of other cores resulting in some stalls in the
execution, this is a much smaller overhead than switching
to the system, which would suffer the same caching prob-
lem, but on a much larger scale. Second, the sender of the
notification can continue immediately. More importantly,
the notification does not interrupt the work of the code
on the receiver side. Therefore, when the network stack



is busy, it can continue its work in parallel to the appli-
cations and check the socket eventually. Interrupting its
execution would only make things worse without passing
any additional useful information to the network stack.

5.2 Notifying the Application

NewtOS has no need to keep notifying the applications.
Applications are structured to keep processing as long as
they can find a socket to read from, which our sockets
allow without direct interaction with the system. Under
high load, there is usually a socket with data available.
When the load is low, making a system call to block the
application is generally fine and it is the only way to avoid
wasting resources and energy by polling. This way appli-
cations explicitly tell the system to wake them up when
new work arrives. In the rare case that the application do-
main demands extremely low latency and cares less about
resource usage and energy consumption, the sockets can
switch to active polling instead.

Traditionally, applications use select-like system
calls to suspend their execution, as they cannot efficiently
decide whether an operation would block. We still of-
fer select for legacy applications, but as we will see in
Section 5.4 our implementation requires no trap to the
operating system if the load is high.

5.3 Socket Management Calls

Except for extremely short connections, reads and writes
make up the majority of the socket-related calls during a
socket’s lifetime. Nevertheless, busy servers also accept
and close connections at a very high rate. Since our
sockets lack a command queue from the application to
the operating system, it appears, at first glance, that we
cannot avoid a high rate of system calls to create and
manage the sockets. In reality, we will show that we can
handle most of them in user space. Specifically, while we
still implement the socket call as a true system call, we
largely avoid other calls, like accept and close.

Fortunately, the socket call itself is not used fre-
quently. For instance, the server applications which
use TCP as the primary communication protocol use the
socket call to create the listening server socket, setting
up all data-carrying sockets by means of accept. In
client applications the number of connections is limited
to begin with, and the socket call is typically not used at
high rates. Phrased differently, a slightly higher overhead
of creating the connection’s socket is acceptable.

In general, we can remove the system calls only from
those API functions that the application either uses to
collect information from the system, or that it can fire and
forget. As all other calls may fail, the application needs

to know their result before continuing. We implement the
management calls in the following way:

accept As mentioned earlier, the operating system
premaps the buffers for a pending connection in the
listening socket’s backlog—before the system an-
nounces its existence to the application. As a result,
the accept itself can be handled without a system
call. The application reads the mapping informa-
tion from the listening socket and writes back the
acknowledgment that it accepted the connection.

close Closing a connection always succeeds, unless the
file descriptor is invalid. After checking the valid-
ity of the descriptor, the library injects a close data
descriptor, returns success to the application and for-
gets about the call. The system carries it out once it
has drained all data from the socket, asynchronously
with the execution of the application. It also unmaps
the socket from the application’s address space. In
case SO_LINGER is set, we check whether the buffer
is not empty in which case we must block and a
system call is acceptable.

listen, bind These calls are infrequent as they are needed
only once for a server socket. For performance, it
makes no difference whether they make system calls.

connect Connecting to a remote machine is slow and the
overhead of the system call is acceptable. We imple-
ment connect on a nonblocking socket by writing a
“connect” descriptor into the socket buffer and we
collect the result later when the system replies by
placing an error code in the socket buffer.

In the remaining subsections, we discuss the control
calls that we execute in user space (select, accept, and
close) in more detail.

5.4 Select in User Space

Our sockets enable the application to use cheap nonblock-
ing operations to poll the buffers to check whether it is
possible to read or write. However, many legacy applica-
tions perform this check by issuing select or a similar
call. In this case, our library select routine sweeps through
all the sockets indicated by the file descriptor sets sup-
plied and returns immediately if it discovers that any of
the sockets would accept the desired operation. Only
if there is no such socket, it issues a call to the system,
passing along the original descriptor sets. A blocking
call internally checks whether it can complete or whether
it needs to block using select, however, without the
overhead of copying an entire set of file descriptors.

It is possible to optimize the polling further. For in-
stance, the application can keep polling the sockets longer



before deciding to make the system call. The polling algo-
rithm may also adapt the polling time based on the recent
history, however, this is beyond the scope of this paper.
We implemented one simple optimization. Since the
head and tail pointers of the ring buffers reside in mem-
ory shared between different cores, reading them often
may result in cache line bouncing as another core may
be updating them. We do not always need to read the
pointers. After we carried out the last operation, we make
a note whether the same operation would succeed again,
i.e. whether there is still space or data in the buffer. As we
complete the operation, the values of the pointers are in
local variables assigned to registers or local cache. Taking
the note preserves the information in non-shared mem-
ory. In addition, we can condense the information into a
bitmap so we can access it in select for all the sockets
together, thus not polluting the local cache unnecessarily.
Although it is not part of POSIX and hence not portable,
we also implemented a version of epoll as it is more
efficient than pure select. The library injects the file
descriptors to monitor by means of writes to the socket
used for epoll, and polls this socket by means of reads
and a select-like mechanism for the pending events. In
contrast to Linux and similar to our writes, applications
can issue many epoll_ctl calls without the system call
overhead. Likewise epoll_wait often returns the events
right away in user space, much like our select. The
benefit of epoll is not only because it is O(1), more
importantly, it allows the library to poll fewer sockets.

5.5 Lazy Closing and Fast Accepts

The obvious bottleneck of our approach is that we must
set up the mappings of the buffers before we can use the
sockets. This is a time consuming operation, especially in
a multiserver system because it requires a third component
to do the mappings on behalf of the network stack. This
is typical for multiserver systems.

We amortize some of this cost by not closing the socket
completely, but keeping some of the mappings around for
reuse when the application opens new ones. This is espe-
cially useful in the case of servers as they handle many
simultaneous connections over time. Once a connection
closes, the server accepts a new one shortly thereafter.

We let the system decide when to finalize closing a
socket. It allows the network stack to unmap some of the
buffers in case of memory pressure. For instance, when
an application creates and closes a thousand connections
and keeps the sockets around while it does not use them,
the stack can easily reclaim them. Note that once the
application tells the system that it has closed a socket and
thus will not use it any more, the system is free to unmap
its memory at any time and the application must not make
any assumptions about the algorithm. If the application
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touches the socket’s memory without opening/accepting
a new one, the application may crash.

The default algorithm we use keeps the sockets in a
“mapped” state as long as at least half of the sockets are
in use. Once the number of the active sockets is smaller
than the number of the closed ones, we unmap all the
closed ones. The idea is that the number of connections
a server application uses at a time oscillates around an
average value with occasional peaks. Thus, it is good to
have some preopened sockets available. However, when
the number of connections drops significantly, we want to
free many of them and start exploring for the new average.
Of course, when the application wants more connections,
the stack creates them at a higher cost and latency.

For applications, the accept and close calls are very
cheap operations. On accept, the library reads a descrip-
tion of the new socket, but the mappings are already
present. Similarly, on a close, the application writes a
close descriptor into the socket, while the unmapping
occurs asynchronously in the background.

6 Fast Sockets in NewtOS

We implemented the new sockets in a multiserver system,
which are often found in deployments where reliability
is the primary concern, for example QNX [32]. Fixing
the performance limitations of multiserver systems is (a)
challenging as the solution must not compromise the reli-
ability and (b) urgently needed to allow their wider accep-
tance. Instead of trading performance for reliability, we
use more memory (which is nowadays plentiful) and more
cores (which are becoming equally abundant, e.g., Intel
announced new 72-core Knights Landing chip [3]). The
reliability of these systems typically consists of a modular
design that facilitates properties like fault isolation, crash
recovery, and live updatability.

In an extremely modular design, NewtOS’ network
stack itself is broken into several single-threaded servers
(TCP, UDP, IP, packet filter) and device drivers. Figure 4
presents a subset of the components. The syscall server
dispatches the system calls. The solid arrows represent
communication without system calls and kernel involve-
ment, while the dashed one stands for a traditional kernel
IPC based system calls. NewtOS demonstrated [22] that
pinning individual servers to dedicated cores removes
the biggest overhead of multiserver systems—context



switching— and further increases the performance as var-
ious servers execute in parallel.

Our implementation introduces asynchrony and paral-
lelism between the system and the applications. We let
applications, which have internal concurrency, submit re-
quests to the system asynchronously. Unlike IsoStack [33]
or FlexSC [35] which require the introduction of addi-
tional (kernel) threads into the system, multiserver sys-
tems are already partitioned into isolated processes and
satisfy very easily our requirement that the network stack
must run on its own core(s) or hardware thread(s). One
of the benefits of our design is that the OS components
run independently and hardly ever use the kernel.

6.1 Polling within the Network Stack

The TCP and UDP processes of the network stack poll
the sockets when the applications are busy but are idle
when there is no work. However, the applications do
not know when the stack is idle. Therefore they keep
signaling the stack by writes to a special memory area
to indicate that there is some activity in user space. The
stack first needs to check where the activity comes from.
The MWAIT instruction can monitor only a single memory
location at a time, usually of a cache line size. Because
all simultaneously running applications must have write
access to this memory, passing specific values would
compromise their isolation. It is also impractical for the
stack to always sweep through all the existing sockets,
as that would mean fetching at least the tail pointer of
each socket (a whole cache line) into its local cache. If
there were too many idle sockets, this would result in
thrashing the cache while not helping the progress. For
this reason, both MegaPipe [20] and IsoStack [33] ruled
out per-socket command queues.

Our implementation maps one additional shared mem-
ory region in the application’s address space once it cre-
ates the first network socket. This region is private to the
application and has an integer-sized part at its beginning
where the application indicates that it has been active
since we last checked. The rest of the memory is a bitmap
with one bit for each socket that belongs to the application.
The stack polls the activity field of each application and
only if it is positive, it inspects the bitmap. The bitmap
grows and shrinks with the number of sockets the appli-
cation uses concurrently. The network stack never polls
any socket or application indefinitely to avoid starvation.

It is possible that the application is setting bits in the
bitmap at the same moment as the stack clears them to
mark the already processed sockets. To avoid possible
races, we require the application to use an atomic instruc-
tion to set the bits in the bitmap. The stack processes the
bitmap in chunks which it reads and clears at the same
time using an atomic “swap” instruction. According to

the findings in [13], x86 atomic and regular cross-core
operations are similarly expensive, hence the atomicity
requirement does not constitute a major bottleneck. In
case the application does not comply, the application it-
self may suffer, as the stack may miss some of its updates.
However, doing so will not affect the correctness of the
execution of the stack, or other applications.

6.2 Reducing TX Copy Overhead

When an application sends data (writes to a socket), the
system must copy them into its own buffers so it can
let the application continue. Otherwise the application
would need to wait until the data were transmitted from
the supplied buffer as it is free to reuse the buffer once it
returns from the write. In a monolithic system like Linux
the kernel must do the copy. In multiserver systems, it is
typically done by the kernel too, since only the kernel can
access all memory and transfer data between protection
domains. Asking the kernel to copy the data unnecessarily
disrupts the execution of other applications and servers
due to the contention on the kernel as microkernels usually
have one kernel lock only.

Therefore we use shared memory to transfer the data
between the address space of the application and the net-
work stack. Similar to Isostack [33], by exposing the
DMA ready socket buffers to the application, the applica-
tion can directly place the data where the network stack
needs it so it does not have to touch the payload at all. The
last and only copy within the system is the DMA by the
network interface. On the other hand, since the POSIX
API prescribes copy semantics, this means that the ap-
plication must do the copy instead of the system. Doing
so is cheaper than constantly remapping the buffers in a
different address space. In addition, since the applications
do not share their cores with the system, the copy over-
head is distributed among them, relieving the cores which
host the servers of the network stack. This is extremely
important as, for the sake of simplicity for reliability, the
TCP and UDP servers in NewtOS are single threaded and
do not scale beyond using a single core each.

Unfortunately, it is not possible to remove copying
within the TCP and UDP servers when receiving data as
the hardware would need more complex filtering logic
(e.g, Solarflare [7]) to be able to place the data in the
buffers of the right socket. However, the copy is within
the same address spaces, not between protection domains.

7 Implications for Reliability

Multiserver systems are touted for their superior reliabil-
ity and are capable of surviving crashes of their servers.
Clearly, our fast socket implementation should not lower
the bar and trade reliability back for performance. Shared



memory in particular is a source of potential problems for
reliability, especially if one thread or process may corrupt
the data structures of another one. We now explain why
our sockets are safe from such problems.

First, note that the new sockets implementation uses
shared memory in a very restricted way—to exchange
data. The only data structure we share is a ring queue of
descriptors. As this data structure is writable only by its
producer, while the consumer cannot modify it, it is not
possible for consumers to harm the producers.

Of course, our most important requirement is that appli-
cations cannot damage the network stack and compromise
the system. Since the queue has a well defined format and
only contains information about sizes and offsets within
the data part of the mapped socket buffer, the consumer
is always able to verify whether this information points
to data within the bounds of the data area. If not, it can
be ignored or reported. For instance, the network stack
can ask the memory manager to generate a segmentation
fault for the application. Even if the application is buggy
and generates overlapping data chunks in the data area,
or points to uninitialized or stale data, it does not compro-
mise the network stack. Although POSIX copy semantics,
as implemented by commodity systems, prohibits applica-
tions changing data under the system’s hands, the fact that
our sockets allow it is no different from the applications
generating garbage data in the first place.

The only serious threat to the network stack is that the
application does not increment the head pointer of a queue
properly or does not stop producing when the queue is full.
Again, this may only result in the transmission of garbage
data or in not transmitting some data. This behavior is
not the result of a compromised system, but of an error
within the application.

Similarly, an application can keep poking the stack and
waking it up without submitting any writes to its sockets.
This is indeed a waste of resources; however, it does not
differ from an application keeping the system busy by
continuously making a wrong system call.

8 Evaluation

We evaluated our design in our system using a 12 core
AMD Opteron Processor 6168 (1.9 GHz) with a 10G Intel
182599 card and we compared it to Linux 3.7.1 running
on the same machine. We ran the benchmarks on a dual-
socket quad-core Intel Xeon 2.26 GHz (E5520) running
Linux 3.6.6 connected with the same network card.

For a fair evaluation of the system call overhead, we
present a performance comparison of our network stack
with sockets that use our new design and those that use
system calls. The baseline implementation uses exactly
the same code, but the stack does not poll and the ap-
plications use system calls to signal writes and to check
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whether reading is possible. Since we use the exposed
buffers to transfer data between the stack and the appli-
cation in both cases, the baseline already benefits from
kernel not copying between protection domains. It makes
it already significantly faster than any previous implemen-
tation of sockets in a multiserver system as reported, for
example for MINIX 3 or NewtOS, in [22].

Our network stack is based on the LwIP [16] library
which is highly portable but not optimized for speed.
Performance-wise, it has severe limitations. For instance,
all active TCP control blocks are kept in a linked list
which is far from optimal when the number of connec-
tions is high. As this is neither a fundamental limitation,
nor the focus of our paper, we limited the evaluation to
128 concurrent connections. The socket implementation
is independent of LwIP and we can use any other library
which implements the protocols. To put our results in
perspective, we also compared against Linux, one of the
best performing production systems. We stress that it is
not an apples-to-apples comparison due to the different
designs, complexity and scalability of the systems.

Although our sockets are designed for general use, their
main advantage is that they avoid system calls when the
applications experience high load—something that ap-
plies mostly to servers. We therefore conducted the evalu-
ation using the popular lighttpd [S] and memcached [9], a
wide-spread distributed memory object caching system.

For fair comparison with Linux, we configured lighttpd
to use write and both application to use select in
Linux as well as in the case of NewtOS. Using epol1l did
not make any measurable difference for our benchmarks.
In addition, it shares sendfile’s lack of portability. We
always ran a single server process/thread as scalability
of our stack and the one in Linux are fundamentally
different.

8.1 lighttpd

To generate the web traffic, we used httperf [2] which
we modified to allow a fixed number of simultaneous
connections. We patched lighttpd to cache files in memory
to avoid interference with the storage stack (as we focus
solely on the performance of the sockets),

In the first test, we used httperf to repeatedly request
a trivial “Hello World” page of 20 bytes. In this test, the
web server accepts a connection, reads the request, writes
the HTTP header crafted by the HTTP engine and writes
the tiny content which always fits in the socket buffer.
That means all the writes avoid a system call. In addition,
lighttpd immediately reads from the connection again
as HTTP 1.1 connections are persistent by default. The
additional read is issued speculatively as a nonblocking
operation and is always resolved in the user library. Either
there are available data or not. Similarly lighttpd makes
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speculative accept calls as it always tries to accept many
connections at once. As long as the number of simulta-
neous connections is low, every other call may just fail.
This we resolve in the library as well.

Figure 5 shows that the new sockets easily outperform
sockets that use system calls. In case of a single connec-
tion, the request rate is similar as the new sockets make
many system calls due to low load and the latency of the
connections hides the overheads for the old sockets. How-
ever, two connections are sufficient to demonstrate the
advantages and the performance further scales to a level
similar to Linux. We cannot compete with Linux when the
number of connections is low due to higher latency within
our stack (as several processes handle each packet). On
the other hand, lightly loaded servers and small numbers
of connections are typically not a performance problem.

In the second test, we kept each connection open for 10
request—response round trips (as servers tend to limit the
number of requests per connection). Doing so removes the
high latency of setting up TCP connections and increases
the load on the server. Although throughput increases
both for Linux and NewtOS, Figure 6 shows that in such
a case the low overhead of lighttpd’s speculation using
the new sockets pays off and the performance quickly
diverges and even significantly surpasses Linux.
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According to [1], the average size of the 1000 most
popular web sites (in 2012) was 1114 kB, made of 100 ob-
jects, or an average object size of approximately 11 kB [1].
In [25], 22 kB is used for evaluation as the size for static
images. We use the 11 kB size in another test. Although
the write size is significantly larger, the request rate is
similar (Figure 7) to serving the tiny files.

In the next test we use persistent connections for 10 re-
quests for the 11 kB objects, sent one by one or pipelined,
that means sending them using a single connection with-
out waiting. Pipelining the requests (lines with x points
in Figure 8) helps Linux to avoid some reads when the
load is low as several requests arrive back-to-back and the
application reads them at once. It helps our new sockets
even more when the load is high as we can avoid not only
reads but writes as well as several replies fit in the socket.

To demonstrate how many system calls we save, we
present a break down of the pipelined test in Table 2. The
first column shows the percentage of all the socket calls
the lighttpd makes and which are satisfied within the user
space library. Even for the lowest load, we save over
90% of all system calls. 50% of accept calls and, more
importantly, 69.48% of reads that would enter the system
only to return EAGAIN error, fail already in user space.
The remaining calls return success without entering the



user space select sel / all accept read

1 91.20 % 9946 % 8.84% 50.00%  69.48 %

2 92.79 % 8197% 879% 4874 %  68.36 %

4 94.97 % 6283% 799% 47.07% 69.35%

8 98.16 % 3397% 539% 4434% 72.04 %
16 99.93 % 4.20 % 1.59% 3235%  80.80 %
32 99.99 % 250%  027%  846% 8427 %
64 99.98 % 9.09%  0.12%  3.63% 8443 %
128 99.97 % 1783% 0.14% 411% 8434 %

Table 2: Pipelined 10x 11 kB test — percentage of calls
handled in user space, fraction of selects that block, ratio
of selects to all calls, accepts and reads that would block
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Figure 9: 1 request for a 512 kB file per connection

system at all. Since all other calls are nonblocking, only
select can actually enter the system. Although 99% of
them do so, it is less then 9% of all socket calls. As the
load increases, the chance of accepting a connection is
higher and the speculation pays off. On the other hand,
many reads would block and we save many trips to the
system and back. Interestingly, the number of select
calls dramatically drops below 1% of all calls. Effectively,
lighttpd replaces select by the nonblocking calls and
takes full advantage of our new socket design which saves
over 99% of all calls to the system. Although the fraction
of select calls that block increases when the number of
connections is higher than 32, the total ratio to other calls
remains close to 0.1%. Since other calls do not block more
frequently, it only indicates that they can successfully
consume all available work. Although infrequently, the
user process needs to block time to time.

In the last test we request one 512 kB file for each
connection. This workload is much less latency sensitive

as transmitting the larger amount of data takes more time.

In contrast to the smaller replies, the data throughput
of the application and the stack is important. Although
Linux is faster when latency matters, results in Figure 10
show that minimizing the time lighttpd spends calling the
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system and the overhead of processing the calls allows us
to handle more than 4 x as many requests as when using
system calls with the same stack and 40% more requests
than Linux when the load is high. Not surprisingly, the
number of requests is an order of magnitude smaller than
in the other tests, however, the bitrate surpasses 8 Gbps.

8.2 memcached

We use memslap provided by libmemcached, to stress
the server. The test preloads different key-value pairs of
the same size to a memcached server and we measure
the time needed for the clients to simultaneously query
10,000 pairs each without any cache misses. For the
limited space we only show a set of results for 128 client
threads (Figure 9), requesting values of 1kB, 5SkB, 10kB,
50kB and 100kB, respectively. The results clearly present
the advantage of not using system calls in NewtOS, while
it shows that the performance of this test is comparable to
running memcached in Linux. In general, the benefits for
memcached are similar as for the lighttpd web server.

8.3 Scalability

At first glance, scalability may be an issue with our net-
work stack as an individual core used by the network
stack may get overloaded (refer to [21] for the CPU us-
age of the network stack). Observe that the new sockets
significantly reduce the CPU load of the TCP (and UDP)
core, since copying of the data is now done by the user
space library. Hence the CPU usage of TCP is similar
to IP and the driver: roughly 56% (TCP), 45%(1P) and
64% (driver) for the peak load of the test presented in
Figure 6. Even though the utilization is around 50%, the
stack can handle up to 4 instances of the same test before
it gets overloaded, peaking at 180k requests per second.
Although it is counter intuitive that the cores can handle
such an increase in the load, the reason is that a signif-
icant portion of the CPU usage is spent in polling and
suspending when the load is low while it is used more



efficiently when the load is high and the components do
processing most of the time, as we discussed in [21] as
well. Especially drivers tend to have excessively high
CPU usage when the load is low due to polling devices
across the PCI bus.

Note that the problem of overloading a core is not di-
rectly related to the implementations of the sockets as it is
possible to use them with any stack that runs on dedicated
cores, for instance in a system like IsoStack or FlexSC.
Nor is the network stack of NewtOS set in stone. For
instance, NewtOS can also use a network stack, which
combines all its parts into a single system server, simi-
lar to the network stack of MINIX 3. Doing so removes
communication overheads and a multithreaded implemen-
tation of such a network stack can use multiple cores and
scale in a similar way as the Linux kernel or threaded
applications. Our choice to split the network stack into
multiple isolated components is primarily motivated by
containing errors in simpler, smaller and single threaded
processes.

Most importantly, however, is that even such a net-
work stack scales quite well as NewtOS can run multiple
instances of the network stack. The new sockets make
it transparent to the applications since once a socket is
mapped, the application does not need to know which
stack produces or consumes the data. Some architectural
support from the network interfaces is needed to make
sure that the right instance of the network stack handles
the packets. We have built such a multistack variant of our
system, and are currently evaluating it. However, the de-
sign and implementation are out of the scope of this paper
and we present results that only hint at the possibilities.
Specifically, with the number of cores (12) available on
our test machine we ran 2 instances of the network stack
and an additional fifth instance of lighttpd. This setup
handles 49k requests per second more to make it the total
of 229k, while the network stack is not overloaded yet.
We can also use 3 instances of the single component net-
work stack to achieve a total of 302k requests per second
using 6 instances of lighttpd. The rest of the system, the
driver and the syscall server use the remaining 3 cores.

9 Conclusions

We presented a novel implementation of the BSD socket
API that removes most system calls and showed that it
increases network performance significantly. Specifically,
our sockets provide competitive performance even on mul-
tiserver systems which may have been praised by some
for their modularity and reliability, but also derided be-
cause of their lack of speed. We trade performance for
higher resource usage as we run the network stack on
dedicated core(s) and preallocate more memory, arguing
that this is justifiable given the abundance of memory and
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growing number of cores. We evaluated the design using
lighttpd and memcached which can take full advantage
of our socket design without any modification, and show
that for the first time, the network performance of a reli-
able multiserver OS is comparable to a highly optimized
production network stack like that of Linux.
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