
Cosh: clear OS data sharing in an incoherent world

Andrew Baumann† Chris Hawblitzel† Kornilios Kourtis§ Tim Harris‡ Timothy Roscoe§
†Microsoft Research §ETH Zurich ‡Oracle Labs∗

Abstract
This paper tackles the problem of providing familiar OS
abstractions for I/O (such as pipes, network sockets, and a
shared file system) to applications on heterogeneous cores
including accelerators, co-processors, and offload en-
gines. We aim to isolate the implementation of these facil-
ities from the details of a platform’s memory architecture,
which is likely to include a combination of cache-coherent
shared memory, non-cache-coherent shared memory, and
non-shared memory, all in the same system.

We propose coherence-oblivious sharing (Cosh), a new
OS abstraction that provides inter-process sharing with
clear semantics on such diverse hardware. We have im-
plemented a prototype of Cosh for the Barrelfish multi-
kernel. We describe how to build common OS functional-
ity using Cosh, and evaluate its performance on a hetero-
geneous system consisting of commodity cache-coherent
CPUs and prototype Intel many-core co-processors.

1 Introduction
This paper presents abstractions and mechanisms to allow
processes on different cores to efficiently share data with
clear semantics, regardless of whether the cores are cache-
coherent or, indeed, share physical memory.

Computer architecture is in a period of change and di-
versification: core counts are increasing, and heteroge-
neous cores, such as GPUs, programmable NICs, and
other accelerators, are becoming commonplace. Not only
are memory hierarchies getting deeper and more complex,
but the properties upon which much software relies, such
as cache-coherent shared memory, do not always hold.

We argue that this presents an important challenge to
system software, which frequently needs to share units
of data such as file contents, images, bulk operands for
computation, or network packets between tasks running
on different processors. Moreover, the OS should facili-
tate such sharing between applications as well.

∗Work completed while at Microsoft Research

The challenge is twofold. Firstly, to facilitate program-
ming such platforms, the OS should provide a way to
share data between cores whether or not they share mem-
ory, and whether or not any shared memory is cache-
coherent. Secondly, to cope with both the complexity of
memory arrangements in a modern machine, and the di-
versity of configurations across machines, the OS should
provide this functionality in a manner which is transpar-
ent: clients should work efficiently without needing to be
aware at compile time whether memory is shared.

In this paper we address this challenge with coherence-
oblivious sharing (Cosh), which abstracts the low-level
distinctions between different forms of memory. Pro-
grams managing data with Cosh run efficiently on cores
between which cache-coherent shared memory is avail-
able, or between which data can only be shared by using
a DMA engine to copy it. Cosh aims to balance the re-
quirements of protection, so that software can access only
the data that it should, performance, so that using Cosh is
never worse than using the hardware directly, and porta-
bility, so that the same software can run on a wide range
of current and future hardware platforms.

Cosh provides an abstraction based on explicit transfers
of bulk data. It is safe and natural for system program-
mers, yet nevertheless capable of unifying cache-coherent
shared memory, non-cache-coherent shared memory, and
cores which communicate only via DMA copies. For
applications on a traditional, cache-coherent machine,
Cosh exploits specially-mapped regions of shared mem-
ory, drawing on concepts developed for efficient inter-
process data transfer in systems such as IO-Lite [21].
In contrast to traditional distributed shared virtual mem-
ory (DSVM) systems [e.g., 1], explicit transfer semantics
make it clear at any point in the execution of a set of pro-
cesses using Cosh which data they have access to, and rule
out unsafe concurrent read/write sharing.

Our contributions are: (i) the design of the Cosh facil-
ity and semantics in Section 3, (ii) an implementation on
real hardware covering a range of memory models in Sec-
tion 4, (iii) showing how Cosh can be used to construct
system services, including pipes and a shared file system

1

buffer cache in Section 5, and (iv) an experimental evalu-
ation of Cosh’s performance in Section 6.

2 Motivation

In this section, we argue that system-wide coherent shared
memory is an unrealistic expectation in current computer
systems, and this situation is unlikely to change. We con-
clude this from two trends in computer architecture.

Whither cache-coherence? The first trend is short-
term: the use of GPUs and other accelerators in general-
purpose computing is now commonplace. Discrete GPUs
operate on private memory, which must be copied to and
from the host RAM by DMA transfers. Recent integrated
on-die GPUs have begun to relax this restriction, unify-
ing system and GPU memory spaces, but the performance
penalty for cache-coherent accesses to system memory is
substantial [11, 12].

Current software architectures for GPUs target appli-
cation developers through programming frameworks such
as CUDA [20] and OpenCL [14], and interact with the OS
only through low-level graphics-oriented driver APIs. Re-
gardless of hardware support, the patterns for data move-
ment and sharing between host cores and the GPU are
limited to whatever high-level facilities the programming
framework provides. As observed by Rossbach et al.
[26], the lack of OS abstractions for managing GPU-
based computation leads to significant performance penal-
ties when more than one application uses the GPU, and
much data is needlessly transferred. However, GPUs are
moving away from the single-application model to be-
come more amenable to management by system software.
AMD’s Fusion architecture is progressively adding sup-
port for general-purpose OS features such as virtual mem-
ory and context switching [25]. Finally, the utility of other
accelerators such as programmable NICs and storage con-
trollers has also been demonstrated [19, 29].

The second trend is longer term: it is possible that
hardware-supported system-wide cache-coherent shared
memory will no longer exist. As the number and variety
of cores increases, the cost, complexity, and power needed
to provided coherence at scale, and the achievable perfor-
mance, suffer [13, 18]. Several prototypes eschew cache-
coherence [9, 28] for this reason. A plausible outcome for
future commodity systems is a progressive relaxation of
hardware coherence. This may take various forms, such
as “coherence islands”, or “hybrid coherence”.

Coherence islands are local tightly-coupled groups of
cores (perhaps sharing a cache), with hardware cache-
coherence available only within an island. Hybrid co-

herence models, such as Cohesion [13], provide a basic
hardware coherence mechanism that may be dynamically
enabled by software on a per-memory-region basis. Dis-
abling coherence in such a model offers substantial gains
in memory performance, and frees up coherence hardware
(i.e., directory entries in a cache), also improving the per-
formance of the remaining hardware-coherence regions.

Overall, Cosh targets three different scenarios we ex-
pect in the future, and from which we aim to abstract with-
out sacrificing performance:

1. Cache-coherent shared memory. Cores access shared
memory, and observe coherent data, according to the
memory consistency model.

2. Non-cache-coherent shared memory. Cores access
shared memory, but software must perform explicit
flush (to evict modified data from a cache back to
memory) and invalidate (to discard possibly-stale
data from a cache) operations to ensure consistency.

3. No shared memory. Cores cannot access shared
memory and rely on an indirect communication
mechanism, such as a DMA controller, to copy data
between their private memories. DMA is often not
cache-coherent, so software may also need to flush
and invalidate caches for DMA. Since DMA copies
are typically high-bandwidth but also high-latency
due to setup costs, it is advantageous to perform them
in bulk. DMA is also asynchronous: a core initiates
a transfer and continues to execute while it occurs.

An example hardware platform The platform we use
to evaluate Cosh in this paper provides a good example of
these trends. Architecturally, it sits somewhere between
today’s GPU-accelerated systems and the kinds of inte-
grated, heterogeneous, non-cache-coherent platforms we
expect in the future. It consists of a commodity PC cou-
pled with a prototype Intel Knights Ferry co-processor.

The PC is based on a Intel DX58SO motherboard, and
has one Intel four-core “Bloomfield” i7-965 CPU clocked
at 3.20GHz. Each core has 256kB L2 cache, and the sys-
tem has an 8MB shared L3 cache and 2GB DDR3 RAM.

Knights Ferry is the software development vehicle for
Intel’s Many Integrated Core (MIC) architecture [10]. It
supports general-purpose parallel computing with 32 in-
order cores running at up to 1.2GHz. Each core has four
threads, a 512-bit SIMD vector unit, 32 kB L1 I- and D-
caches, and 256 kB L2 cache. The co-processor is located
on a PCIe card, with 2 GB GDDR5 memory on board.

The performance of Knights Ferry is not representative
of the Intel MIC product; nevertheless, it has an impor-
tant property for this work: memory on each co-processor

2

card is locally cache-coherent, and is therefore a coher-
ence island. This memory is private to the co-processor,
aside from regions which may be shared (non-coherently)
with the host via PCIe windows. The card also includes
DMA controllers for bulk copies to/from host memory.

In some respects, the Knights Ferry co-processor is
similar to a GPU: the many multi-threaded cores are
smaller and simpler than today’s desktop and server pro-
cessors, and are suited to data-parallel workloads that of-
ten benefit from GPU acceleration. However, unlike cur-
rent GPUs, the Intel MIC architecture incorporates full-
fledged x86 cores: it has all the features necessary to run
a general-purpose operating system, and is thus a good
basis for research into OS support for future platforms.

Implications for system software In response to the
shifts in architecture, recent research has proposed adopt-
ing techniques from distributed systems, and structuring
the OS as a message-passing “multikernel” system [2, 16,
30]. However, the availability of some shared memory
(regardless of its coherence model) is an important distin-
guishing characteristic from classical shared-nothing dis-
tributed systems, and effectively exploiting it is key to
achieving performance on multicore systems.

One alternative approach would be to provide an ab-
straction of coherent shared memory. Traditional DSVM
systems [1, 23] implement such an abstraction over com-
modity networks, and there has been a resurgence of inter-
est in shared virtual memory systems for non-coherent ac-
celerators and co-processors [15, 17]. However, we show
in this paper that the sharing semantics of the OS services
we target are sufficiently restricted to admit a looser ab-
straction than DSVM, and OS functionality does not fun-
damentally require coherent shared memory.

By choosing an abstraction for transferring and manip-
ulating bulk shared data that sits between the extremes
of shared-nothing message passing and shared-always
DSVM, we significantly simplify its implementation, and
enable better performance.

3 Design of Cosh
In Cosh, we focus on the communication that arises in
system services: structured sharing of bulk data between
processes using OS APIs, rather than very fine-grained
sharing of data structures between software threads.

Rather than providing a shared virtual memory model
of threads, shared data, and locks, Cosh exposes explicit
transfers of arbitrarily-sized data between processes run-
ning on different cores. Like message passing, transfers
are always explicit; however unlike most message-passing

systems, Cosh transfers do not imply copying. Implemen-
tations of Cosh can therefore provide this abstraction ef-
ficiently over different kinds of memory – with/without
physical sharing, and with/without cache coherence.

Cosh can be used in multiple settings: transfers be-
tween kernel and user-mode, transfers between code run-
ning in different protection domains on different cores, or
transfers between co-operating processes split over spe-
cialised cores and the main processor. In Section 3.1, we
illustrate this with some of the settings we have in mind
for using Cosh. We then introduce the design, principles,
and API of Cosh, starting with a basic page-granularity
transfer mechanism in Section 3.2, and then progressively
extending it to permit efficient use of shared memory
(Section 3.3) and transfer arbitrary byte-granularity ag-
gregates (Section 3.4).

We make a number of design choices to enable efficient
implementations: (i) Placement of received data is under
the control of the Cosh implementation. This enables di-
rect use of shared memory, without the need to copy data
to a particular location at the receiver. (ii) When making
a transfer, the sender promises how they will access the
data (after transmission) and the receiver promises how
they will access the data (after receipt). This identifies
cases where data can be shared directly (e.g., if neither
side will write to the data). (iii) The API distinguishes
between co-operative use (where the sender/receiver are
trusted to keep their promises) from protected use (where
Cosh must ensure that broken promises will be detected).
This distinction allows Cosh to avoid copying data or ad-
justing memory page protections when making transfers
between co-operative processes with shared memory.

3.1 Use cases

We begin with a discussion of use-cases for bulk data
movement and sharing that exist in common OS services.
We consider not only traditional UNIX abstractions (such
as POSIX I/O with its copy semantics) but also more flex-
ible variations on the same interaction patterns. As has
been observed by others [3, 4, 6], the performance gains
permitted by the use of move or share semantics for I/O,
rather than requiring copying, are substantial, and we do
not wish to exclude these by design.

Pipes and related producer/consumer inter-process
communication mechanisms transfer data that has origi-
nated in a single producer process to a single consumer
process. Logically, data moves from producer to con-
sumer. A pipe guarantees in-order delivery of byte-wise
data, without preserving any other structure (i.e. writes
may be coalesced). Extensions to classical pipes have

3

been proposed which relax the single producer and sin-
gle consumer requirements [5].

Network sockets are often used as an inter-process
communication mechanism, either with network proto-
cols over a loopback interface or UNIX domain sockets.
As with pipes, source data originates in a process writing
to the socket. For connection-oriented sockets, the data
may be queued, and is eventually moved to a single des-
tination. For datagram-oriented sockets, a packet may be
discarded or delivered to multiple recipients, depending
on its destination. Guarantees on reliability, ordering, and
packet boundaries vary between protocols.

File system I/O is an important form of structured
inter-process communication and sharing. APIs for ac-
cessing files vary; we consider here only the classic read-
/write interface, but note that in the absence of read/write
sharing between processes, support for memory-mapped
files is also possible in Cosh. Once written, data is long
lived, and may be read multiple times by arbitrary pro-
cesses until overwritten or deleted. Read and write oper-
ations are atomic and isolated: the results of a completed
read cannot change, even if the file contents are subse-
quently written. Finally, strict POSIX semantics (which
in practice are often weakened) require serialisability: a
read operation which can be proven to occur after a write
has completed must return the new data.

We observe that all of the above use cases, although com-
monly implemented using shared memory for the data, do
not require it. Rather, all have explicit points at which data
is transferred: APIs such as read, write, send and receive
delineate logical transfers in data ownership, even if they
are typically implemented by copying or remapping. This
observation motivates the design of Cosh.

3.2 Terminology and core primitives
We next define the terminology we use in describing
Cosh, and its core operations, along with the set of de-
sign invariants they preserve. In the sections that fol-
low, we then extend our core design in two respects: de-
coupling rights from virtual memory permissions for co-
operating domains (Section 3.3), and handling of arbitrary
size (byte-granularity) data (Section 3.4). We focus on
the viewpoint of a programmer using Cosh, rather than on
the mechanisms used within a Cosh implementation. The
API is intended to define functionality independently of
any particular underlying implementation or hardware.

We call the endpoints between which communication
occurs domains. For the purposes of Cosh, a domain has
the following properties: (i) it defines a protection bound-
ary; and (ii) memory may be shared arbitrarily within a

Table 1: Transfer modes

Mode Sender requires Sender retains Receiver gains

move read/write no access read/write
share read read-only read-only
copy read unchanged read/write copy

domain. When Cosh is used in a traditional OS, a process
meets these requirements.

A buffer is a contiguous region of memory, that is
aligned to a multiple of the system’s page size. Cosh is
unaware of the structure of any data within a buffer. In
typical target use cases, buffers are tens of kilobytes or
larger. As we discuss in Section 4, this guides choices
within our implementation.

Each buffer provides associated rights on the data
within it: either no access, read-only, or read/write. A
domain must promise that its memory accesses will re-
spect the rights associated with a buffer. If the domain
makes accesses that are not permitted, then the behaviour
of Cosh is undefined for that domain. We describe later
(Section 3.3) the exact guarantees that Cosh provides to
other domains when a domain breaks this contract.

Cosh supports a transfer operation initiated by a sender
domain. Each transfer specifies (i) a destination domain,
(ii) a list of buffers, (iii) a transfer mode, and (iv) optional
flags. A transfer consists of the following operations:

1. It checks that the sender holds the required rights on
all the buffers to initiate the transfer.

2. It downgrades the sender’s rights to the buffers, ac-
cording to the transfer mode.

3. It provides the destination with a new list of buffers.
These buffers contain the same data as the sender’s
buffers at the time of the transfer; its rights are deter-
mined by the transfer mode.

All sharing of data in Cosh occurs through the transfer
mechanism. Depending on the transfer mode, and the
functionality of the underlying hardware, a transfer may
be implemented by mapping virtual memory pages, copy-
ing, or a combination of both.

The set of transfer modes is shown in Table 1. Each
transfer mode specifies the minimum rights required by
the sender for the transfer to succeed, the rights retained
on buffers held by the sender, and the rights gained by the
destination after a transfer. These are:

Move: A sender with read/write rights hands data off

to a receiver, who acquires read/write rights. After the
transfer, the sender loses all rights to the buffers. This
mode is typical of producer/consumer arrangements such

4

as a processing pipeline where domains may modify data
in-place as it passes.

Share: A sender with read-only or read/write rights to
data passes it read-only to a receiver. If the sender had
read/write rights before the transfer, then its rights are
downgraded to read-only after the transfer. This transfer
mode is useful when multiple domains share read-only ac-
cess to data. We use this to implement a file system; it may
also be used for multicast pipes, where a sender transfers
the same data to multiple receivers.

Copy: A sender with read-only or read/write rights
to data transfers a copy of that data to a receiver, who
acquires read/write rights on the copy. The sender’s
rights are not affected. This is the only transfer mode
that may result in both sender and receiver holding read-
/write references to the data, however, whereas the other
transfer modes may be implemented by page remapping,
this mode guarantees that the resulting buffers behave as
copies. In practice, the copy may be performed at transfer
time, or lazily with copy-on-write techniques.

Design invariants These guided our design:

1. A transfer preserves no structure beyond a vector of
byte values. To allow optimisations such as scatter-
gather DMA, and handle possible variations in page
size, we do not guarantee to preserve the structure of
buffers in a transfer: for example, a transfer of two
8kB buffers may appear to the receiver as a single
16kB buffer, or (perhaps unlikely) four 4kB buffers.

2. Rights may be downgraded by a transfer, but never
upgraded. Once a buffer has been shared, it remains
read-only in all domains until deallocated. This pre-
vents read/write sharing.

3. It is always correct to implement a transfer as a copy
of the data. This allows DMA transfers when sender
and destination do not share memory, and enables
optimisations when it is more efficient to copy than to
remap memory. A corollary is that no domain should
observe changed buffers without an explicit transfer.

Cosh also provides a fundamental property: so long
as sender and receiver perform the correct transfer oper-
ations, and access their data only as promised, then they
cannot distinguish between execution with/without shared
memory, and with/without cache coherence.

3.3 Weak vs strong transfers
Until now, we have described the transfer operation in
terms of its effect on a domain’s rights to access the
buffers involved. We next define what guarantees Cosh

gives when a faulty or malicious application attempts to
access buffers to which it does not hold appropriate rights.

This is irrelevant for copies, but significant when the
transfer is implemented by memory remapping: if we
trusted all domains to behave correctly according to the
API, it would be possible to map all memory read/write
and implement transfer simply as meta-data updates and
cache flush/invalidate operations. Conversely, a pes-
simistic assumption of malicious domains would require
that virtual memory permissions be updated in sender and
receiver on each transfer. As we will show later in Sec-
tion 6, this has a large performance penalty for trusted
domains (e.g., OS services such as a file system).

Cosh therefore allows the programmer to choose be-
tween strong and weak transfers. Strong transfers are the
default case, with weak transfers available as an optimi-
sation where trust allows. After a strong transfer, Cosh
guarantees that no domain’s virtual memory permissions
exceed its rights to the transferred buffers; that is, no do-
main can observe a buffer to which it has no rights, or
modify a buffer to which it has read-only rights. However,
after a weak transfer, a domain’s virtual memory permis-
sions on shared buffers may continue to exceed its rights,
until such time that a future strong operation downgrades
them.

Weak transfers act as a hint to Cosh that permit it to
defer changing virtual memory mappings if this will re-
sult in better performance; the implementation is free to
ignore this hint. They are useful when sender and re-
ceiver have an appropriate trust relationship (for example,
if the sender is a system service that is trusted by the re-
ceiver not to modify a buffer after its transfer, or if the
receiver independently protects itself from such modifi-
cations). Note also that Cosh is not required to enforce
changes to virtual memory permissions when it performs
a strong transfer as a copy: strong transfers cannot be re-
lied upon to catch bugs arising from incorrect memory
accesses after a transfer, only to contain their effects.

Regardless of any prior weak transfers, rights are al-
ways strongly enforced upon (re)allocation of memory:
Cosh guarantees that freshly-allocated buffers cannot be
observed or modified by any other domain until trans-
ferred. Furthermore, when it is transferred, and a domain
first acquires access to a buffer, Cosh guarantees that the
domain’s virtual memory permissions will not exceed its
rights. Put another way, after a buffer is allocated and un-
til it is reallocated, the set of domains that may observe
its contents is limited to those that received it in a share
or move transfer, and the set of domains that may modify
them is limited to those that received it in a move transfer.
This results in the following guarantees:

5

Table 2: Summary of aggregate API

alloc(len, flags) -> agg Allocate storage for a new aggregate
incref(agg) Increment reference count
decref(agg) Decrement reference count and deallocate if zero
getlen(agg) -> length Return length of aggregate
getrights(agg) -> rights Return current rights on aggregate
iter start(agg, read|write, offset) -> iter Start iterator at the given byte offset within aggregate
iter next(iter) -> addr, length Return next portion of iterator
iter end(iter) Release iterator

concat(agg1, agg2) -> agg Create aggregate which is the concatenation of the inputs
select(agg, offset, length) -> agg Create aggregate which is a sub-region of the input

find related(agg, minrights) -> [agg] Find all related aggregates with at least minrights
downgrade(agg, rights) Downgrade rights on aggregate
transfer(agg, dest, transfer mode, flags) Initiate transfer of aggregate to domain dest
receive(src) -> agg, transfer mode, flags Wait to receive incoming transfer

Strong move: all domains other than the destination
are prevented from reading or writing to the buffers.

Weak move: domains who have previously received
access in a transfer may retain read/write permissions on
the buffers, but are trusted not to access them.

Strong share: all domains are prevented from writing.
Weak share: domains that previously received access

in a transfer (possibly including the destination) may re-
tain write permissions on the buffers, but are trusted not
to write to them.

Copy: the destination receives a copy of the data, and
may assume that no other domain can read or write it.
Copy transfers are strong, since memory is not shared.

In the Cosh API, a weak transfer may be requested by
the sender domain when initiating a transfer through an
optional flag parameter. The destination is notified of the
transfer type (including whether it is weak or strong) upon
delivery, and should treat an inappropriate transfer mode
as a protocol error by the sender.

3.4 Aggregates
Page-granularity buffers permit efficient implementations
of transfer using virtual memory remapping. However,
this constraint is ill-suited for some important target use-
cases: many I/O interfaces operate at smaller granulari-
ties, such as bytes. Cosh therefore supports an aggregate
abstraction, layered over the base primitives described
above, for operations on arbitrary byte-granularity data.

An aggregate is an ordered sequence of buffer sub-
regions, each of which has an arbitrary byte-granularity
size and offset within its containing buffer. Each aggre-
gate is local to a specific domain. An aggregate serves as
a container for data that is being managed using the Cosh
API. Like buffers, an aggregate has associated rights. An
aggregate’s rights change over time, but always apply to

the entire aggregate (rather than to subsets, such as indi-
vidual buffers). Cosh operations are defined so that the
rights on an aggregate never exceed those of its compo-
nent buffers.

A domain may transfer an aggregate to a destination,
using the same transfer modes (Table 1). As with buffer
transfer, Cosh preserves only the contents, not the struc-
ture of the aggregate: an aggregate consisting of many
small buffer regions on the sender side may be delivered
as an aggregate with a single contiguous buffer.

Aggregate API Table 2 summarises the high-level
aggregate-based API. From the programmer’s perspec-
tive, all operations manipulate the aggregate abstraction.
Aggregates are reference-counted, and the data they con-
tain is accessed using iterators.

Using the concat and select operations, it is possi-
ble to express modifications of data to which the domain
has read-only access by constructing a new aggregate that
combines portions of the original aggregate with portions
of modified data. Our file system implementation (de-
scribed in Section 5) exploits this.

Transfer uses a message-like API: the sender invokes
a call to initiate a transfer, which may return before the
transfer is complete. The destination independently in-
vokes a blocking receive call, which returns the new
aggregate and its metadata. As we later discuss, our
use of the AC (“Asynchronous C”) language [8] permits
lightweight asynchrony for aggregate transfers without
the need for extra software threads.

Related aggregates The concat and select operations
create a new aggregate based on one or more existing ag-
gregates in the same domain. We say that the new aggre-
gate is related to the input aggregates; relationship is tran-
sitive and symmetric, and captures the fact that, within a
domain, a set of aggregates may refer to the same buffers.

6

When an aggregate is transferred, Cosh downgrades the
sender’s rights on the transferred aggregate according to
the transfer mode. However, since other related aggre-
gates may also refer to the same buffers, we must also
specify what happens to them as a result of a transfer. This
choice has important implications for the usability of the
API; we considered three alternatives:

1. The rights on all related aggregates are downgraded
as a side-effect of the transfer, along with the trans-
ferred aggregate.

2. If there are any existing related aggregates whose
rights exceed those to which the transfer would
downgrade the transferred aggregate, the transfer op-
eration fails.

3. The transfer operation downgrades rights only on
the transferred aggregate, not related aggregates. If
any related aggregates with excessive rights refer
to buffers to be transferred, the affected portions of
the aggregate must be transferred by copying (rather
than remapping), to preserve the access rights of
those related aggregates.

The first two options permit all aggregate transfers to be
implemented by virtual memory remapping, but our expe-
rience shows that they are difficult to use in systems with
non-trivial data flow or sharing between components, be-
cause the shared nature of related aggregates prevents lo-
cal reasoning about the semantics of a transfer operation.
In particular, it is undesirable for a local operation in one
software module (a transfer) to affect an aggregate held
by another module that may happen to refer to the same
memory, or to be able to fail as a result of the actions of
that module. The Cosh aggregate API therefore maintains
local semantics for a transfer by requiring copies (or copy-
on-write) where necessary. However, the API also allows
the caller to request that the transfer fail in the presence
of related aggregates, and includes a separate operation to
locate such related aggregates. We expect that this would
be used primarily for debugging.

4 Implementation
In this section, we summarise our implementation on the
target system of x86 and Knights Ferry. To enable this
prototype, we first ported Barrelfish [2] to run on our het-
erogeneous target system. This consisted primarily of: (i)
porting the CPU driver (the per-core kernel-mode com-
ponent of Barrelfish) to run on Knights Ferry cores, (ii)
implementing a message-passing interconnect driver for
sending short messages between host and co-processor,

(iii) orchestrating the bootstrap of the system, and (iv)
implementing a driver for performing DMA transfers be-
tween the host system RAM and co-processor memory.
Our version of Barrelfish supports message passing be-
tween arbitrary processes on host and Knights Ferry cores,
and shares most system services that do not rely on shared
memory (such as naming) between host and co-processor.
As we discuss in Section 7, Barrelfish provided a useful
prototyping platform, but Cosh does not depend on it, nor
its multikernel architecture.

Our prototype implementation consists of a client li-
brary, which implements the API and is linked into each
program using Cosh, and a service daemon termed the
block manager which manages the memory used by
Cosh and mediates transfers. One block manager in-
stance is responsible for each distinct pool of physical
memory in a system, as described below. The client li-
brary and block managers communicate using the built-in
message-passing facility of Barrelfish, which supports by-
value transfers of small (several words) typed messages.
They are implemented in AC [8], an extension of the C
language which supports composable asynchronous I/O.
The use of AC permits the code to be written in a sim-
ple nested style, using “blocking” remote procedure calls,
and yet operate asynchronously without the cost, non-
determinism, and added complexity of multi-threading.
Our initial implementation uses 1398 lines of AC code
in the block manager and 1010 in the client library.

We chose to implement the block manager functional-
ity as a separate service for simplicity and implementa-
tion expedience; it is not required by the design of Cosh.
Indeed, this structure imposes a performance penalty for
communication with the block manager, and is a potential
scalability bottleneck. We see Cosh as core OS function-
ality which may ultimately be implemented in the kernel
of a traditional OS, or, in a multikernel OS like Barrelfish,
as part of the trusted monitor which runs on every core.

Block managers Block managers are the trusted service
component of our Cosh prototype. One block manager
instance serves each physical memory domain (regardless
of cache coherence); for example, on our target system,
we run one block manager for the host PC and one for
each Knights Ferry card. Each core in the system has ac-
cess to one “local” block manager, whose memory it can
access via virtual mappings. Clients only communicate
directly with their local block manager.

A block is a fixed-size region of memory of at least
page granularity. The block size in our implementation
defaults to 16kB. Where hardware support and application
requirements permit, blocks may be shared by memory
mappings in multiple domains. Each block is uniquely

7

block ID
offset
length

0

800

800

1

0

1000

block chunk

3

0

800

Figure 1: Internal structure of an aggregate

identified among the domains that might have access to it,
and is managed by a single block manager.

Client library The client library is linked into each ap-
plication using Cosh, and is responsible for implementing
the API and communicating with its local block manager.
Aggregates and the operations that manipulate them are
implemented almost entirely within the client library. We
describe the separation of concerns between the client li-
brary and block managers by introducing some further ter-
minology:

A chunk is a portion of a block. It is identified by
reference to the block and a (byte-granularity) size and
offset within the block. A chunk may be as large as its
containing block, but no larger. An aggregate is stored,
transferred, and manipulated as a sequence of chunks.
Within the client library, a linked-list representation is
used, however, when communicating with the block man-
ager, address-independent block identifiers, offsets and
lengths are used.

Although it maintains each aggregate as a list of
chunks, the client library transparently combines con-
tiguous chunks in its implementation of the iterator API,
and returns these larger buffers to the program. This
permits programmers to assume, for example, that a
freshly-allocated aggregate occupies a contiguous buffer,
although it may be split over multiple blocks.

Figure 1 illustrates a sample aggregate that consists of
three chunks (located in three different blocks). Since two
of these chunks are contiguous, they will be presented to
the application as a single buffer when it iterates over the
aggregate. For each aggregate, the client library maintains
the list of chunks making up the aggregate, the domain’s
current rights on the aggregate, the set of related aggre-
gates, and a reference count.

The only API calls that communicate with the block
manager are alloc, decref (when the reference count
reaches zero), transfer and receive. All other opera-
tions are implemented locally in the client library, by ma-
nipulating aggregates. For example, select constructs a
new aggregate by copying the meta-data for the appropri-
ate chunks from the input aggregate, and marking the two
aggregates as related.

Transfer When the application initiates a transfer, the
client library first checks for appropriate permissions on
the aggregate. It then transforms the aggregate to a form
suitable for block-level transfer, by copying and coalesc-
ing chunks where required, updates its rights on the ag-
gregate as required by the transfer mode, and contacts the
local block manager to perform the transfer of blocks.

Some complexity arises from the fact that aggregates
(and their chunks) are of arbitrary byte-granularity sizes,
whereas the blocks that can efficiently be transferred by
page remapping are much larger. As we described in Sec-
tion 3.4, the behaviour of Cosh depends on a flag specified
by the application. By default, portions of the aggregate
which occupy the same blocks as any related aggregates
are copied into new blocks before the transfer, and the
rights on the related aggregates are unaffected. Alterna-
tively, if any related aggregates have rights that exceed
those they would be downgraded to by the transfer, the
operation fails. The application may locate the related ag-
gregates using the find related API call.

At this point, the client library has constructed a vec-
tor of chunks to be transferred to the destination. It next
contacts the local block manager, requesting it to perform
the transfer and providing the vector. If the destination
domain is a client of the same local block manager, the
block manager adjusts permissions on the blocks upgrad-
ing them in the destination and downgrading them in the
sender’s domain as appropriate. If the client has requested
a strong transfer, the block manager also downgrades the
permissions on virtual memory pages mapping the block
in any domains other than the destination. The block man-
ager finally sends a message to the destination domain
informing it of the transfer, and including the meta-data
(block ID, offset and size for each chunk) from which the
client library may construct the new aggregate.

As a performance optimisation, if the client requested a
weak transfer, and the receiving domain already has suit-
able virtual memory mappings to all the blocks, there is
no need to communicate with the block manager; instead,
the transfer meta-data can be sent directly to the destina-
tion. We have not yet implemented this optimisation.

If the destination domain is not a client of the local
block manager, it downgrades the sender’s rights appro-
priately, determines the block manager responsible for the
destination, and sends a message to the remote block man-
ager to initiate a transfer. The remote block manager allo-
cates local memory to receive the transfer, and then initi-
ates a copy (e.g., on Knights Ferry, using the DMA con-
troller). When the transfer is complete, the remote block
manager notifies both the recipient and the source block
manager, which releases an internal reference it was hold-

8

ing on the blocks for the duration of the transfer.
Our implementation assumes that data can be copied di-

rectly between any two block managers. Systems where
this is not the case are out of scope for our initial imple-
mentation, but straightforward to handle, particularly if
at most one intermediate copy (for example, through host
system memory) is required.

5 Cosh Applications

This section describes the implementation of two common
OS services using Cosh: pipes, and a shared file system
cache. We include simplified code snippets to illustrate
the use of the API, but elide error handling and other ex-
traneous aspects.

Pipes We begin with a simple producer/consumer
mechanism, equivalent to Unix pipes. A pipe moves data
from a producer process to a consumer, however rather
than copying data in and out of a kernel buffer, we use
Cosh to transfer data directly from producer to consumer.

First, the producer allocates a new aggregate and fills
it with data, or acquires it from some other source (such
as the file system, below). It then initiates a strong move
transfer of the aggregate to the consumer domain. It also
releases its reference, since it no longer has access rights
to the data, as shown below:

void pipe_write(wpipe *pipe, cosh_agg *agg) {
cosh_agg_transfer(agg, pipe->dest, COSH_MOVE,

COSH_TRANSFER_STRONG);
cosh_agg_decref(agg);
}

When the transfer completes, the consumer domain gains
access to the aggregate. It is queued by Cosh for delivery
to the next matching receive call, shown below:

cosh_agg *pipe_read(rpipe *pipe) {
cosh_agg *agg; cosh_tx_mode mode; cosh_tx_flags flags;
cosh_agg_receive(pipe->src, &agg, &mode, &flags);
if (mode != COSH_MOVE || (flags & COSH_TRANSFER_WEAK)) {
// protocol error by sender; tear down pipe
cosh_agg_decref(agg); return NULL;
}
return agg;
}

The consumer may process the data, or pass it to other
interface that accepts aggregates (for example, writing it
to another pipe or file). When it is finished with the data,
it decrements the aggregate’s reference count.

The implementation of a producer/consumer mecha-
nism such as a pipe using Cosh requires only a handful of
lines of code in either domain, and offers the same seman-
tics regardless of whether producer and consumer share
cache-coherent memory, or lack shared memory entirely.

The astute reader may notice that our pipe lacks flow
control: that is, in the presence of a slow or stalled con-
sumer, a producer may continue to allocate memory and
transfer data without bound. This can be avoided by using
“out-of-band” inter-process messages between libraries in
the producer and consumer to negotiate window sizes. In
practice, we have not yet required it, since the Barrelfish
messaging system provides its own flow control, but a
portable Cosh application should not rely on this property.

File system and cache We next describe CoshFS, an
in-memory file system and cache built using Cosh. Since
our goal here is to exercise the Cosh API and gain experi-
ence with its use, rather than to build a high-performance
scalable file system, our implementation errs on the side
of simplicity, and maintains strict POSIX semantics:
namely, (i) the results of a read operation are a stable snap-
shot of the file’s contents at the time of the read, and (ii)
a read always returns the results of a write (by any pro-
cess) that occurred before the read. This has important
implications for our implementation and our use of Cosh.

Property (i) requires that any memory used to store the
results of a read operation remains immutable, even in the
presence of subsequent writes to the file. We achieve this
through the use of share transfers in Cosh, described be-
low, which ensure that the file buffers are read-only.

Property (ii) requires serialising all read and write oper-
ations on the same file, and we achieve this by centralising
all file system meta-data in a single service domain. As
with distributed file systems, we expect that weakening
this property would allow greater scalability.

Our implementation maintains a simple in-memory
structure for file and directory meta-data. Each file is
stored as an aggregate, to which the file system holds a
reference. When a user domain writes to a file, it trans-
fers the aggregate to the file system, and separately sends
it a message containing the meta-data for the operation
(i.e., file handle and offset).

Upon receiving the transfer for a write request, the file
system checks that the transfer is strong, and rejects the
request if not. The file system does not require write per-
missions to the data, so it does not matter whether the
transfer is a strong move, strong share, or copy, since all
three modes guarantee that other domains are prevented
from modifying the buffer after the transfer completes.
The file system then performs the write, by using the
select and concat operations to construct a new aggre-
gate for the modified file – it selects the portions of the
original file before and after the write location, and con-
catenates them with the newly-written data:
void write_handler(client *cl, inode_t inode, size_t offset,

cosh_attach_ticket tkt) {
// receive aggregate to be written

9

cosh_agg *wdata; cosh_tx_mode mode; cosh_tx_flags flags;
cosh_attach_recv(cl->domainid, tkt, &mode, &flags, &wdata);
if ((flags & COSH_TRANSFER_WEAK)) {
// protocol error by client; fail request
}

// validate inode, retrieve agg for file
cosh_agg *file = lookup_inode(cl, inode);
cosh_agg *newfile;
if (...) {
// handle special cases; e.g., write beyond EOF
} else {
// general case: construct aggregate for modified file
size_t flen = cosh_agg_getlen(file);
size_t wlen = cosh_agg_getlen(wdata);
cosh_agg *pre = cosh_agg_select(file, 0, offset);
cosh_agg *post = cosh_agg_select(file, offset + wlen,

flen - (offset + wlen));
cosh_agg *tmp = cosh_agg_concat(pre, wdata);
newfile = cosh_agg_concat(tmp, post);
cosh_agg_decref(pre);
cosh_agg_decref(post);
cosh_agg_decref(tmp);
}

// update stored aggregate
update_inode(inode, newfile);
cosh_agg_decref(file);
}

This code includes an example of a common pattern in
Cosh: sending an aggregate concurrently with an IPC (or
RPC) message with metadata for an operation. To support
this pattern on Barrelfish, we wrote a small user-mode li-
brary on top of the aggregate API. It provides two primi-
tives to transfer and receive aggregates: attach transfer
takes the same parameters as transfer and initiates the
transfer of an aggregate, but also returns a ticket, which is
an opaque integer (and thus may be sent in an IPC mes-
sage) uniquely identifying the aggregate for that source
and destination pair; its counterpart attach recv takes a
source domain ID and ticket, and blocks until aggregate
with a matching ticket is received from the given domain.

When a user performs a read, the file system creates an
aggregate for the appropriate portion of the file using the
select API, and transfers it to the client as a weak share
transfer. A weak transfer is appropriate here, because the
clients trust the file system not to modify the file data,
and because the file system is guaranteed that the client
cannot receive a read/write mapping to a buffer that was
only transferred as a share.
void read_handler(client *cl, inode_t inode, size_t offset,

size_t bytes, cosh_attach_ticket *ret_tkt) {
// validate inode, retrieve agg for file
cosh_agg *file = lookup_inode(cl, inode);

// select portion to be read
size_t len = min(cosh_agg_len(file) - offset, bytes);
cosh_agg *agg = cosh_agg_select(file_agg, offset, len);

// transfer to client
cosh_attach_transfer(agg, cl->domainid, COSH_SHARE,

COSH_TRANSFER_WEAK, ret_tkt);
cosh_agg_decref(agg);
}

The result of these transfer modes is that each domain
reading a file receives a read-only reference to the same
data. When those domains share memory, Cosh is free to
avoid copies by mapping the same physical memory. Over
time, the memory backing a file may become fragmented
and sparse, as a result of reads and writes through many
aggregates. This is handled by coalescing fragmented por-
tions of files to new aggregates.

The structure we have described above is efficient when
client domains and file system share memory, but can per-
form poorly when Cosh must perform DMA copies for
each read or write. To mitigate this problem, CoshFS
also includes a cache, akin to a shared (OS level) client-
side cache in a network file system. Unlike a networked
system, however, we assume both reliable message de-
livery and absence of failures, significantly simplifying
the implementation. We cache both metadata and file
data, thereby avoiding redundant communication with the
central CoshFS service daemon, while maintaining strict
POSIX semantics using exclusive write locks.

Support for legacy APIs The systems described above
both use a “Cosh-aware” interface where user applications
directly manipulate aggregates using the Cosh API. How-
ever, for legacy support, compatibility with traditional
APIs using contiguous buffers may be desired. This can
be trivially supported in a compatibility layer, at the cost
of extra copies between aggregates and user buffers. We
evaluate the cost of this copying in the context of the file
system in the following section, however we note that in
a fully shared-memory system, the number of copies im-
posed by the use of Cosh is no greater than those imposed
by the legacy API itself, since an efficient Cosh imple-
mentation will copy only when it is faster than remapping
virtual memory in this scenario.

6 Performance

Cosh primitives We begin with a microbenchmark
showing the overhead of aggregate transfers. Two do-
mains repeatedly transfer the same aggregate back and
forth. Figure 2a plots the mean one-way latency (half the
round trip time), measured in thousands of CPU cycles,
for varying aggregate sizes and transfer modes. We run
the two domains pinned to separate cores of the host PC
when the system is otherwise idle, and repeat each trans-
fer 100 times. Error bars show standard deviation.

The base cost for a transfer is approximately 6k cycles.
This arises from our prototype implementation, requiring
two RPCs rather than system calls for each transfer, which
would be cheaper. The cost of a weak move is effec-

10

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 20 40 60 80 100 120

La
te

nc
y

(k
cy

cl
es

)

Size (kB)

copy
strong move
weak move

(a) Transfers between host cores

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 20 40 60 80 100 120

Ti
m

e
(k

cy
cl

es
 a

t h
os

t)

Size (kB)

one-way transfer latency
pipelined mean inter-arrival time

(b) DMA transfer to Knights Ferry cores

 0

 20

 40

 60

 80

 100

 120

 0 20 40 60 80 100 120

La
te

nc
y

(k
cy

cl
es

)

Size (kB)

ramfs
CoshFS + copy

CoshFS

(c) File system reads

Figure 2: Results of microbenchmarks

tively independent of aggregate size, since the memory
remains mapped read/write into both domains after the
initial transfer. We also see that strong move transfers,
which use page remapping, are generally cheaper than
copy transfers, with the exception being small aggregates
(here, less than 8 kB) where it is faster to copy.

These results are not surprising, but they confirm the
value of supporting different transfer modes: for appli-
cation uses such as file system reads that can tolerate the
sharing semantics provided by weak transfers, they offer a
significant performance improvement. Moreover, because
it is always correct to implement a transfer as a copy, any
case in which copying is faster than remapping can be ex-
ploited as a performance optimisation. This allows the im-
plementation to use a variety of heuristics or online mea-
surements to choose when to copy or remap memory.

We next measure the performance of transfers that cross
the coherence and sharing boundary between host cores
and the Knights Ferry co-processor. We use the same
unmodified benchmark application as in Figure 2a, but
vary the placement of one domain so that it runs on a co-
processor. Since all transfers in this case are implemented
as DMA copies, the transfer mode is irrelevant. Figure 2b
shows the results, again measured as mean one-way la-
tency in thousands of host CPU cycles.

DMA transfers have a significant fixed cost (approxi-
mately 550 thousand host CPU cycles, or 172 µs). How-
ever, much of this overhead is asynchronous and can
be amortised through pipelining, as seen in the second
dashed line on the graph, which shows the sustained mean
inter-arrival rate for back-to-back transfers. This second
line represents the achievable performance for a pipe or
similar throughput-bound workload.

File system To evaluate our Cosh-based file system
(CoshFS), we use as a baseline the default memory-
backed filesystem in Barrelfish, named ramfs. We orig-
inally created CoshFS by modifying ramfs to use aggre-
gates, so the two are directly comparable. The key dif-

ference is in the data transfer and API, since CoshFS
supports file read and write operations using aggregates,
whereas ramfs uses a more traditional API (i.e., void *
and size t arguments), and transfers data by copying it
through a pre-established memory region shared with the
client.

We first conducted a microbenchmark of repeated
read() calls to the same file, shown in Figure 2c. This
synthetic workload represents the ideal case for CoshFS,
which uses Cosh to weakly share the buffer containing
the file contents with the client, and thus automatically
satisfies every subsequent read from the same previously-
mapped buffer in the client’s virtual address space. By
comparison, ramfs, which always copies the data, per-
forms better only for small reads where the overhead of
communication with the Cosh block manager dominates.
Beyond 4kB however, this cost is overtaken by the copy-
ing time, and CoshFS significantly outperforms ramfs.
This can be seen as further motivation for the Cosh API
property allowing all or part of any transfer to be im-
plemented by copying: an optimised implementation of
Cosh could exploit it to perform as well as ramfs for small
reads, and do so without changing any code in CoshFS.

Figure 2c also shows a line labelled “CoshFS + copy”,
which simulates the cost of implementing a legacy (non-
aggregate-based) read() API atop CoshFS, by copying
the data once out of the aggregate into the application’s
buffer on the client side. For sufficiently large buffers, this
still outperforms ramfs, which must make two copies for
each read. This shows that although there are performance
benefits to the use of the aggregate API, Cosh can also be
used effectively in the implementation of legacy OS APIs.

For a more realistic test of CoshFS performance, since
Barrelfish on MIC is not yet capable of supporting a
full runtime environment, we replay the I/O generated by
stitching and blending a sample panorama (using Hugin
and Panorama Tools). This is illustrative of a multime-
dia processing workload that benefits from a co-processor

11

Table 3: Panorama stitching I/O trace

File system Host (ms) Co-processor (ms)

ramfs 145 unsupported
CoshFS 144 49742
CoshFS + cache 2464

such as Knights Ferry, and would exploit the shared vir-
tual file system made possible by Cosh: rather than writ-
ing custom data movement code to transfer the input im-
ages to the co-processor, and then retrieve the results, the
user can simply run the existing image processing appli-
cation using the shared file system. The I/O trace was
generated by strace on Linux; and then all file I/O calls
were replayed, using the configurations shown in Table 3.

The middle column in Table 3 compares ramfs and
CoshFS running on the host PC, where we find that both
systems perform equivalently. This is due to a signifi-
cant fraction of small I/Os (more than 80% of reads and
writes in the trace are 4kB or less) where ramfs outper-
forms CoshFS, balanced by a “long tail” of large I/Os (up
to 1MB in size) where CoshFS significantly outperforms
ramfs. Given an optimised implementation of Cosh that
copies rather than remapping pages for small transfers, we
expect CoshFS to outperform ramfs by a larger margin.
Nevertheless, the present result is encouraging: due to its
use of Cosh, CoshFS is both more portable than ramfs and
supports a much wider range of hardware.

We next move the replay program to one of the Knights
Ferry co-processors, a configuration that cannot be sup-
ported by ramfs, since it assumes shared memory. We see
that when accessing CoshFS on the host PC, the high cost
of DMA transfers (shown in Figure 2b) for every I/O dom-
inates, with the trace taking 50 seconds to replay. This is
an unrealistic configuration, and motivates our addition of
the cache (described in Section 5). By caching reads lo-
cally at the co-processor and avoiding the need to transfer
intermediate data from the host, the overall replay time is
reduced to 2.5 seconds. This is slower than when run en-
tirely locally on the host for two reasons: first, the input
images are initially un-cached and the DMA transfer time
for these remains significant, and second, the trace replay
runs serially on a single Knights Ferry core, which exe-
cutes many times slower than a host core with its higher
clock rate and out-of-order architecture.

Overall, our unoptimised Cosh prototype shows that the
approach is tractable but does not yet achieve a desired
level of performance. Nevertheless, Cosh enables signif-
icant added functionality while maintaining an API with
clear and consistent semantics for applications, regardless
of the hardware on which they run.

7 Discussion and future work

Alternative implementations We chose to implement
our Cosh prototype on Barrelfish because the OS was a
good fit for our target platform. However, nothing in Cosh
requires Barrelfish, and it is instructive to consider the im-
plementation of Cosh both for different OS environments
and hardware. An implementation for a monolithic kernel
such as Linux or Windows running on a cache-coherent
system would place the functionality of the block manager
in kernel mode, and make the Cosh API available for use
by other kernel components such as the file system, and
to user processes through system calls. It would support
aggregate transfer to other kernels (e.g., running on a co-
processor such as Knights Ferry) using copies, much as
our block managers transfer aggregates between memory
sharing domains. The resulting system would inevitably
be less integrated than Barrelfish, but nevertheless, Cosh
would facilitate sharing and communication between ap-
plications on the different kernels.

While we primarily considered general-purpose pro-
cessors in the design of Cosh, the ability to perform all
transfers as by-value copies makes it possible to imple-
ment a form of Cosh even for today’s GPU architectures,
where the GPU driver (and not the OS) is responsible for
data transfers to and from the GPU. Given current GPU
programming models, the initial use for Cosh on GPUs
would likely be as a uniform transport for application-
level data, that offers the same abstraction regardless of
GPU vendor and core type. However, as GPUs acquire
more general-purpose functionality (a trend we outlined
in Section 2), it becomes possible to offer access to OS
abstractions such as the file system from a GPU [27].

Future work Cosh is intended to support bulk data
movement and sharing in OS APIs. A significant source
of this data is I/O from device drivers, so a natural use of
Cosh would be to integrate it further into the device stack.
For example, reading (via DMA) from a storage device
into an aggregate’s buffers, moving the aggregate into the
system’s buffer cache, and sharing it with an application
that reads from the file should be possible, all without re-
quiring copies of the data (in the shared memory case).

One could also adapt a network stack to use Cosh as its
data transport mechanism. Networking APIs partly mo-
tivated the design of byte-granularity aggregates, where
headers may be appended to or removed from packets
in-place. Even high-performance user-mode packet pro-
cessing, such as netmap [24], fits within the Cosh API:
it is possible to preallocate a large pool of aggregates,
and use weak move transfers along a processing pipeline.
Rather than deallocating an aggregate upon completion,

12

however, the established mappings could be maintained
by using a further weak move back to the source domain
(e.g. the NIC driver). This keeps all allocation and conse-
quent memory remapping off the fast-path for a group of
mutually-trusting domains. Thus, Cosh is flexible enough
to match the performance of user-level shared memory
mechanisms, yet still fall back to slower (but semantically
equivalent) copying or remapping when required.

8 Related work

High-performance I/O As an OS abstraction for shar-
ing and transferring bulk data, Cosh is related to high-
performance I/O mechanisms for server applications [4,
6, 21, 22, 24]. This previous work has focused on opti-
mising inter-process data transfer, particularly for produc-
er/consumer scenarios. Significant performance gains are
achieved through avoidance of copies, buffer management
overhead and protection domain crossings. Cosh stands to
benefit from many of the same optimisations. In contrast
to Cosh, these previous systems operate within a fully
cache-coherent shared memory environment. Cache co-
herence allows data and control information to be shared
directly between the processes involved. The Cosh API
permits sharing without cache coherence or shared physi-
cal memory, while nevertheless providing clear semantics.

The design of IO-Lite [21], in particular, inspired por-
tions of the Cosh API. IO-Lite integrates the OS buffer
cache with an efficient shared-memory bulk data trans-
port mechanism. As with Cosh, IO-Lite features an API
based on buffer aggregates, whose contents become im-
mutable (read-only) upon a transfer out of the originat-
ing process. However, while IO-Lite used the mecha-
nism for efficient snapshot semantics while using shared
buffers for file reads, Cosh has a different purpose: to
permit clean semantics over non-coherent or non-shared
memory. Moreover, Cosh is more general than IO-Lite,
in terms of its hardware support, target applications, and
transfer modes. Finally, Cosh makes a distinction between
weak and strong transfers. This enables an application to
express the required level of protection, allowing the im-
plementation to avoid unnecessary copying or page pro-
tection when enforced isolation is not required.

OS support for specialised cores Systems such as Hy-
dra [29], Helios [19], PTask [26] and GPUfs [27] have
demonstrated the benefits of OS support for accelerators.

Hydra and PTask target offload engines and GPUs re-
spectively, with new application frameworks and runtime
environments. Both transfer data across coherence and
memory sharing boundaries, and the models adopted stem

from the target hardware. PTask exposes a data-flow
model, while Hydra uses dynamically-bound channels.

Like Cosh, GPUfs showed the value of giving GPU ap-
plications access to a shared file system. Because GPUfs
is focused solely on file systems (rather than data transfer
generally), the authors developed GPU-specific file sys-
tem mechanisms such as parallel reads/writes and weak-
ened consistency. A GPUfs-like file system could be im-
plemented using Cosh as the data transfer component,
which may address some of the performance limitations
evident in our strictly-consistent CoshFS prototype.

Helios extends OS-level abstractions to “satellite ker-
nels” running on heterogeneous cores. The semantics of
inter-process communication in Helios derive from the
Singularity OS [7]: all message transfers are expressed as
a change in ownership from a source process to a destina-
tion, akin to a move in Cosh. Transfers are implemented
using either shared memory or DMA copies (across co-
herence boundaries). Helios and Singularity rely on the
use of type-safe managed code for applications and the
OS, which allows move semantics to be cheaply enforced
(ensuring that applications cannot observe or modify mes-
sage contents after sending them) without the need to ma-
nipulate virtual memory permissions.

Cosh is more general than these systems, since it sup-
ports local sharing within a coherence boundary, and shar-
ing between arbitrary (native) applications. In particular,
share transfers permit processes to concurrently share a
buffer, and weak and strong transfers allow applications
to express the appropriate level of protection.

9 Conclusion

We presented Cosh, an OS abstraction for sharing and
bulk data transport with clear semantics. Cosh does not
depend upon shared memory, but can exploit it locally
when available, regardless of whether it is cache-coherent.

We see an abstraction such as Cosh as a new portabil-
ity layer, isolating OS services dependent upon data shar-
ing from the details of hardware that provides it, which
will become increasingly significant as hardware becomes
more heterogeneous, and support for system-wide cache-
coherent shared memory is diminished.

Acknowledgements

We thank Intel for access to the Knights Ferry hardware.
We also thank the anonymous reviewers, Barry Bond,
Galen Hunt, Ed Nightingale and our shepherd Robbert
van Renesse for feedback.

13

References
[1] C. Amza, A. L. Cox, S. Dwarkadas, P. Keleher, H. Lu,

R. Rajamony, W. Yu, and W. Zwaenepoel. TreadMarks:
Shared memory computing on networks of workstations.
IEEE Computer, 29(2), 1996.

[2] A. Baumann, P. Barham, P.-E. Dagand, T. Harris,
R. Isaacs, S. Peter, T. Roscoe, A. Schüpbach, and A. Sing-
hania. The multikernel: a new OS architecture for scalable
multicore systems. In 22nd ACM Symposium on Operat-
ing Systems Principles, pages 29–44, Oct. 2009.

[3] J. C. Brustoloni and P. Steenkiste. Effects of buffering se-
mantics on I/O performance. In 2nd USENIX Symposium
on Operating Systems Design and Implementation, pages
277–291, 1996.

[4] W. de Bruijn and H. Bos. Beltway buffers: Avoiding the
OS traffic jam. In INFOCOM, 2008.

[5] W. de Bruijn, H. Bos, and H. Bal. Application-tailored
I/O with Streamline. ACM Transactions on Computer Sys-
tems, 29:6:1–6:33, May 2011. ISSN 0734-2071.

[6] P. Druschel and L. L. Peterson. Fbufs: A high-bandwidth
cross-domain transfer facility. In 14th ACM Symposium
on Operating Systems Principles, pages 189–202, 1993.

[7] M. Fähndrich, M. Aiken, C. Hawblitzel, O. Hodson,
G. Hunt, J. R. Larus, and S. Levi. Language support for
fast and reliable message-based communication in Singu-
larity OS. In EuroSys Conference, Apr. 2006.

[8] T. Harris, M. Abadi, R. Isaacs, and R. McIlroy. AC: Com-
posable asynchronous IO for native languages. In 26th
ACM SIGPLAN Conference on Object-Oriented Program-
ming Systems, Languages, and Applications, pages 903–
920, Oct. 2011.

[9] J. Howard, S. Dighe, Y. Hoskote, S. Vangal, D. Finan,
G. Ruhl, D. Jenkins, H. Wilson, N. Borkar, G. Schrom,
F. Pailet, S. Jain, T. Jacob, S. Yada, S. Marella, P. Salihun-
dam, V. Erraguntla, M. Konow, M. Riepen, G. Droege,
J. Lindemann, M. Gries, T. Apel, K. Henriss, T. Lund-
Larsen, S. Steibl, S. Borkar, V. De, R. Van Der Wijngaart,
and T. Mattson. A 48-core IA-32 message-passing proces-
sor with DVFS in 45nm CMOS. In International Solid-
State Circuits Conference, pages 108–109, Feb. 2010.

[10] Intel Corporation. Many integrated core (MIC) ar-
chitecture. http://www.intel.com/content/www/us/en/
architecture-and-technology/many-integrated-core/
intel-many-integrated-core-architecture.html, Apr.
2012.

[11] D. Kanter. AMD Fusion architecture and
Llano. Real World Technologies, June 2011.
http://www.realworldtech.com/page.cfm?ArticleID=
RWT062711124854.

[12] D. Kanter. Intel’s Sandy Bridge graphics archi-
tecture. Real World Technologies, Aug. 2011.
http://www.realworldtech.com/page.cfm?ArticleID=
RWT080811195102.

[13] J. H. Kelm, D. R. Johnson, W. Tuohy, S. S. Lumetta, and
S. J. Patel. Cohesion: An adaptive hybrid memory model
for accelerators. IEEE Micro, 31:42–55, 2011. ISSN
0272-1732.

[14] The OpenCL Specification, Version 1.0. Khronos Group,
2009.

[15] S. Lankes, P. Reble, O. Sinnen, and C. Clauss. Revisiting
shared virtual memory systems for non-coherent memory-
coupled cores. In 2012 International Workshop on Pro-
gramming Models and Applications for Multicores and
Manycores, pages 45–54, 2012.

[16] R. Liu, K. Klues, S. Bird, S. Hofmeyr, K. Asanović, and
J. Kubiatowicz. Tessellation: Space-time partitioning in
a manycore client OS. In 1st USENIX Workshop on Hot
Topics in Parallelism, Mar. 2009.

[17] W. Liu, B. Lewis, X. Zhou, H. Chen, Y. Gao, S. Yan,
S. Luo, and B. Saha. A balanced programming model
for emerging heterogeneous multicore systems. In 2nd
USENIX Workshop on Hot Topics in Parallelism, June
2010.

[18] T. G. Mattson, R. Van der Wijngaart, and M. Frumkin.
Programming the Intel 80-core network-on-a-chip teras-
cale processor. In 2008 ACM/IEEE Supercomputing Con-
ference, pages 1–11, 2008.

[19] E. B. Nightingale, O. Hodson, R. McIlroy, C. Hawblitzel,
and G. Hunt. Helios: heterogeneous multiprocessing with
satellite kernels. In 22nd ACM Symposium on Operating
Systems Principles, pages 221–234, 2009.

[20] CUDA Programming Guide. NVIDIA, 2011.
[21] V. S. Pai, P. Druschel, and W. Zwaenepoel. IO-Lite: a

unified I/O buffering and caching system. ACM Transac-
tions on Computer Systems, 18:37–66, Feb. 2000. ISSN
0734-2071.

[22] J. Pasquale, E. Anderson, and P. K. Muller. Container
shipping: Operating system support for I/O intensive ap-
plications. IEEE Computer, Mar. 1994.

[23] J. Protić, M. Tomašević, and V. Milutinović. Distributed
shared memory: Concepts and systems. IEEE Parallel and
Distributed Technology, 4(2):63–79, 1996.

[24] L. Rizzo. netmap: a novel framework for fast packet
I/O. In 2012 USENIX Annual Technical Conference, June
2012.

[25] P. Rogers. The programmer’s guide to the APU
galaxy. http://developer.amd.com/afds/pages/keynote.
aspx, June 2011. AMD Fusion Developer Summit.

[26] C. J. Rossbach, J. Currey, M. Silberstein, B. Ray, and
E. Witchel. PTask: operating system abstractions to man-
age GPUs as compute devices. In 23rd ACM Symposium
on Operating Systems Principles, pages 233–248, 2011.

[27] M. Silberstein, B. Ford, I. Keidar, and E. Witchel. GPUfs:
Integrating a file system with GPUs. In 18th Interna-
tional Conference on Architectural Support for Program-
ming Languages and Operating Systems, Mar. 2013.

[28] C. Thacker. Beehive: A many-core computer for FPGAs

14

http://www.intel.com/content/www/us/en/architecture-and-technology/many-integrated-core/intel-many-integrated-core-architecture.html
http://www.intel.com/content/www/us/en/architecture-and-technology/many-integrated-core/intel-many-integrated-core-architecture.html
http://www.intel.com/content/www/us/en/architecture-and-technology/many-integrated-core/intel-many-integrated-core-architecture.html
http://www.realworldtech.com/page.cfm?ArticleID=RWT062711124854
http://www.realworldtech.com/page.cfm?ArticleID=RWT062711124854
http://www.realworldtech.com/page.cfm?ArticleID=RWT080811195102
http://www.realworldtech.com/page.cfm?ArticleID=RWT080811195102
http://developer.amd.com/afds/pages/keynote.aspx
http://developer.amd.com/afds/pages/keynote.aspx

(v5). MSR Silicon Valley, Jan. 2010. http://projects.csail.
mit.edu/beehive/BeehiveV5.pdf.

[29] Y. Weinsberg, D. Dolev, T. Anker, M. Ben-Yehuda, and
P. Wyckoff. Tapping into the fountain of CPUs: on operat-
ing system support for programmable devices. In 13th In-
ternational Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, pages 179–

188, 2008.
[30] D. Wentzlaff, C. Gruenwald III, N. Beckmann,

K. Modzelewski, A. Belay, L. Youseff, J. Miller,
and A. Agarwal. An operating system for multicore
and clouds: Mechanisms and implementation. In ACM
Symposium on Cloud Computing (SOCC), June 2010.

15

http://projects.csail.mit.edu/beehive/BeehiveV5.pdf
http://projects.csail.mit.edu/beehive/BeehiveV5.pdf

