
Fine-grained provenance for linear algebra operators

Zhepeng Yan Val Tannen Zachary G. Ives
University of Pennsylvania

{zhepeng, val, zives}@cis.upenn.edu

Abstract
Provenance is well-understood for relational query operators. In-
creasingly, however, data analytics is incorporating operations ex-
pressed through linear algebra: machine learning operations, net-
work centrality measures, and so on. In this paper, we study prove-
nance information for matrix data and linear algebra operations.
Our core technique builds upon provenance for aggregate queries
and constructs a K−semialgebra. This approach tracks prove-
nance by annotating matrix data and propagating these annotations
through linear algebra operations. We investigate applications in
matrix inversion and graph analysis.

1. Introduction
For many years, data provenance was modeled purely as graphs
capturing dataflows among “black box” operations: this repre-
sentation is highly flexible and general, and has ultimately led
to the PROV-DM standard. However, the database community
has shown that fine-grained provenance with “white-box” oper-
ations [3] (specifically, for relational algebra operations) enables
richer reasoning about the relationship between derived results and
data provenance. The most general model for relational algebra
queries, provenance semirings [7, 1], ensures that equivalent re-
lational algebra expressions, as produced by a query optimizer,
have equivalent provenance encodings. Moreover, there is a natu-
ral means of computing trust [6] and authoritativeness [16] scores
for data, using provenance semiring expressions. Provenance can
even be used to support incremental updates to views [6]. Finally,
there are probabilistic mechanisms for learning weights or author-
itativeness scores for different provenance tokens in the semiring
model [16].

A natural question is whether the provenance semiring approach,
to this point limited to variations on relational queries, can be ex-
tended to a greater subset of data analytics tasks, e.g., to other “bulk
operations” over collections of data. We present a preliminary set
of provenance primitives, for one such class of operations: those
from linear algebra. Matrices and linear algebra are heavily used in
many data analytics applications, including image detection, signal
processing, network science, and machine learning. While prove-
nance libraries have been developed for matrix operations [17], no
techniques currently exist for automatically extracting provenance
from the various operations, and for reasoning based on this prove-
nance. Our work in this paper develops primitives for matrix op-

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page.

TaPP 2016, June 8–9, 2016, Washington, DC.
Copyright remains with the owner/author(s).

A

B C

D E

x

y

u v

I

I

I

0

0

0

0

Sx Sy

Tu

Tv

I =	iden'ty	matrix

0 =	zero	matrix	

I

Figure 1. Provenance partitioning and its selectors

erations such as addition, multiplication and inversion. We show
building blocks towards applications in principal component anal-
ysis (PCA), frequently used for dimensionality reduction, and in
computing PageRank-style scores over network graphs.

2. Tracking matrix data
Consider a d×n matrix A, and, as is often the case in machine
learning, consider an algorithm that begins by computing AAT .
In a typical situation A records n samples from a d-dimensional
feature space. Suppose we wish to track the provenance of the data
by partitioning both the features and samples. In a very simple
example the features might be of two types and we associate the
provenance tokens x, respectively y, with these types of features.

Suppose also that the samples come from two sources and we as-
sociate the provenance tokens u, respectively v, with these sources.
Again for simplicity, we assume that all the features associated with
x correspond to adjacent rows, and similar for y, u, v. This parti-
tions A into four submatrices B,C,D,E, see Figure 1.

Let x, y, u, v be from some set X of provenance tokens and let
N[X] be the provenance semiring of polynomials developed in [7].
Now we wish to annotate the submatrix B with the polynomial
xu corresponding to its source and feature subset, and similarly C
with xv, D with yu, and E with yv. From this, we will later want
to track which sources and feature subsets were used to produce
which portions of an output matrix.

Observe that

A = SxB Tu + Sx C Tv + SyDTu + Sy E Tv

with appropriate selectors Sx, Sy,Tu,Tv . Selectors (see Section 4)
are certain matrices whose elements are 0 or 1, and serve like a
“mask” specifying entries to exclude or include, respectively. In
our case, let p, respectively q, be the number of rows of provenance
x, respectively of provenance y, where p + q = d. Let also
k, respectively l, be the number of columns of provenance u,

respectively of provenance v, where k+ l = n. The dimensions of
the selectors are Sx : d×p, Sy : d×q,Tu : k×n,Tv : l×n. Each
of them consists of an identity matrix adjacent to a zero matrix,
see Figure 1. Note that the selectors do not contain data that is
subject to provenance tracking. We used x, y, u, v as subscripts in
the notation to make it easier to connect the formulas to the figure.

In this form we can annotate B, etc. with provenance polynomials.
Indeed, letM be the many-sorted 1 ring of matrices of real num-
bers. In Section 3 we show how to embed M into a semialgebra
of matrices annotated with polynomials, namely the tensor prod-
uct N[X] ⊗M. Indeed, B corresponds to 1 ⊗ B ∈ N[X] ⊗M
and annotation with xu ∈ N[X] corresponds to multiplication with
scalars: xu ∗ (1⊗B) = xu⊗B. In turn, the selectors, since they
do not contain data that needs to be tracked, remain with the neutral
annotation, e.g., 1 ⊗ Sx. For simplicity we denote 1 ⊗M with M
for any matrix M . Hence

A = Sx (xu ∗B)Tu + Sx (xv ∗ C)Tv

+ Sy (yu ∗D)Tu + Sy (yv ∗ E)Tv

The decomposition into submatrices using selectors is nicely com-
patible with transposition. Indeed we have:

AT = TT
u (xu ∗BT) ST

x + TT
u (yu ∗DT)ST

y

+ TT
v (xv ∗ CT) ST

x + TT
v (yv ∗ ET)ST

y

Now to multiply AAT we can (as will be justified in Section 3) use
any identity that is valid in matrix algebra (associativity, distribu-
tivity, etc.). We multiply two sums of four products each so that
will give a sum of sixteen products. Let’s just look at two of them

Sx(xu ∗B)TuT
T
u (yu ∗DT)ST

y Sx(xv ∗C)TvT
T
v (yv ∗ET)ST

y

We will show in Section 4 that Tu TT
u and Tv T

T
v are actually

identity matrices. Moreover, it will follow from Section 3 that

(xu∗B) (yu∗DT) = xyu2∗BDT (xv∗C) (yv∗ET) = xyv2∗CET

With these observations it has become clear that

AAT = Sx(x
2u2 ∗BBT + x2v2 ∗ CCT)ST

x

+ Sx(xyu
2 ∗BDT + xyv2 ∗ CET)ST

y

+ Sy(xyu
2 ∗DBT + xyv2 ∗ ECT)ST

x

+ Sy(y
2u2 ∗DDT + y2v2 ∗ EET)ST

y

Where are the other eight products? They become 0 since we show
in Section 4 that Tu TT

v and Tv T
T
u are actually 0 matrices!

Finally, to illustrate the flexibility of the framework that we develop
in Section 3 we remark that the terms of the expressions can often
be rewritten to emphasize various contributions by provenance. For
example we can rearrange the expression for AAT :

AAT = x2 ∗ (u2 ∗ SxBB
TST

x + v2 ∗ SxCC
TST

x)

+ xy ∗ [u2 ∗ (SxBD
TST

y + SyDB
TST

x)

+ v2 ∗ (SxCE
TST

y + SyEC
TST

x)]

+ y2 ∗ (u2 ∗ SyDD
TST

y + v2 ∗ SyEE
TST

y)

3. The semialgebra of annotated matrices
The m×n real matrices for various m,n ≥ 1 form a many-sorted
ring (M,+, ·, 0, I). As usual with matrices, when we write A+B
or CD we will assume that the sorts (dimensions) of A,B and
C,D are such that the operations are defined.

1 Because matrices can be added or multiplied only when their dimensions
are compatible.

Although in Section 2 we only made use of embedding the ring
of matrices into a N[X]-semialgebra, the construction works more
generally and this generality might prove useful in future research
projects that use different provenance semirings, as in [6].

Let (K,+K , ·K , 0K , 1K) be a commutative semiring. In previous
work [1] it was shown, using a tensor product-like construction,
how to embed aggregation domains, (specifically, commutative
monoids) into “most economical” K-semimodules that allow us
to track the provenance captured by the elements of K. Here we
consider matrices, a more complicated aggregation domain, since
it has two operations (+ and ·) so we aim for a richer algebraic
structure, that of (many-sorted) semialgebra. We shall embed M
into a structure that, likeM, forms a ring (K⊗M,+, ·, 0, I) (for
simplicity we use for the operations the same notation we used for
M). In addition, K⊗M forms a K-semialgebra, i.e., it also has
∗, a binary operation K × (K⊗M) → K⊗M that satisfies the
following algebraic identities.

DEFINITION 1. ∀ k, k1, k2 ∈ K ∀ A,A1, A2 ∈ K⊗M
k ∗ (A1 +A2) = k ∗A1 + k ∗A2 (1)

k ∗ 0 = 0 (2)
(k1 +K k2) ∗A = k1 ∗A+ k2 ∗A (3)

0K ∗A = 0 (4)
(k1 ·K k2) ∗A = k1 ∗ (k2 ∗A) (5)

1K ∗A = A (6)
(k1 ∗A1)(k2 ∗A2) = (k1 ·K k2) ∗ (A1A2) (7)

(In particular, (K⊗M,+, 0, ∗) is a (many-sorted)K-semimodule.)
In Section 2 we used the identity (xu ∗ B) (yu ∗ DT) = xyu2 ∗
BDT . Indeed, this is an instance of semialgebra axiom (7) above.
We proceed to sketch the construction of K⊗M.

Tensor product construction We start with K×M, sorted just
likeM, denote its elements k⊗A instead of 〈k,A〉 and call them
“simple tensors”. Next we consider the set Bag(K×M) of finite
bags of such simple tensors, i.e., functions f : K×M→ N whose
support, i.e., supp(f) = {k⊗A ∈ K×M | f(k⊗A) 6= 0}, is
finite. Let] be the usual bag union and ∅+ be the empty bag. For
f1, f2 ∈ Bag(K×M) define the (“convolution”) product as

f1 ? f2 = λ(k⊗A).
∑
f1(k1⊗A1)f2(k2⊗A2)

where the sum is over all k1⊗A1 ∈ supp(f1) and k2⊗A2 ∈
supp(f2) such that k1 ·K k2 = k and A1A2 = A. 2 Like matrix
multiplication, ? is not commutative.

PROPOSITION 2. (Bag(K×M),], ?, ∅+ , 1K⊗I) is a semiring.
Define a function ι :M→ Bag(K×M) such that ι(A) = 1K⊗A
(actually, the singleton bag with element 1K⊗A). It is easy to
see that ι is injective and is a homomorphism with respect to
multiplication. However, it is not a homomorphism with respect
to addition. This will be one of the things we will fix when we
take equivalence modulo a certain congruence, but there will be a
price to pay: ι will not stay injective, in general. Next we define
multiplication with scalars from K on Bag(K×M):

k ∗ f = λ(k′⊗A). (k ·K k′)⊗A

PROPOSITION 3. (Bag(K×M),], ?, ∅+ , 1K⊗I) satisfies axioms
(1,2,5,6,7) of Definition 1 but not axiom (3) or axiom (4).
Thus we have found that the algebraic structure on bags does not
identify enough elements to insure that it is a K-semialgebra and

2 These algebraic constructions are related to those of [11].

that ι is a semiring homomorphism. Thus, we will enforce the
desired identifications by quotienting with a congruence. Let ∼ be
the smallest congruence on Bag(K×M) with respect to], ? and
∗ that satisfies (for all k1, k2, A,A1, A2):

(k1 +K k2)⊗A ∼ k1⊗A] k2⊗A (8)
0K⊗A ∼ ∅+ (9)

1K⊗(A1 +A2) ∼ 1K⊗A1] 1K⊗A2 (10)
1K⊗0 ∼ ∅+ (11)

Denote by K⊗M = Bag(K×M)/∼. Its elements could be
called “tensors” since they are equivalence classes of bags of simple
tensors modulo ∼ and this whole construction generalizes a tensor
product construction (to the “semi-” situation). Because ∼ is a
congruence with respect to], ? and ∗, corresponding operations
are defined on the quotient set. As before, we abuse notation by
denoting them again by +, ·, ∗, We also use ι again for the function
that maps every A ∈M to the ∼-equivalence class of 1K⊗A.

PROPOSITION 4. K⊗M is a K-semialgebra and ι : M →
K⊗M is a semiring homomorphism satisfying the following uni-
versality property: for any K-semialgebra S and any semiring ho-
momorphism f :M→ S there exists a unique homomorphism of
K-semialgebras f∗ : K⊗M→ S such that f = f∗ ◦ ι.
Therefore ,K⊗M is the “most economical” (freely generated)K-
semialgebra thatM can be embeded into. As discussed in [1], ι is
not injective, in general. However, it is injective for K = N[X].
This justifies the identification of the annotated matrices 1⊗A with
A in Section 2.

4. Provenance propagation by decomposition
We have seen in Section 2 an example, in which a matrix is de-
composed into several contiguous blocks, each annotated with a
provenance polynomial. We have also illustrated there how to prop-
agate provenance under several operators. However, elements with
the same annotation are not necessarily adjacent. In this section,
we generalize provenance decomposition and propagation to non-
contiguous cases. We will build upon the notion of selector matrix.

DEFINITION 5. A matrix S is a selector matrix if it is a zero matrix
or can be constructed from inserting rows and columns of zeros
into an identity matrix. A selector matrix has at most a 1 in each
row and in each column.
Fix a matrix Am×n. We consider its submatrix defined by a set
of rows and columns, as follows. Let R = {r1, r2, · · · , rm′}
consist of m′ distinct row indices and C = {c1, c2, · · · , cn′}
consist of n′ distinct column indices, where ∀i, ri ≤ ri+1 and
∀j, cj ≤ cj+1. Let A′ be such matrix that A′(i, j) = A(i, j) when
i ∈ R∧ j ∈ C, and A′(i, j) = 0 otherwise. Let As be such matrix
that As(i, j) = A(ri, cj). There exist selectors S and T such that

SAsT = A′,

where row ri of S has a 1 in column i and column cj of T has a 1
in row j. We visualize S below (T is similarly structured).

Sm×m′ =





O(r1−1)×n′

r1 1 0 · · · 0
O(r2−r1−1)×n′

r2 0 1 · · · 0
...

. . .
. . .

...
rm′ 0 · · · 0 1

O(m−rm′)×n′

PROPOSITION 6. Given a matrix Am×n, let {(Ri, Ci)} be a set
of pairs of rows and columns such that {Ri} forms a partition of
[1..m] and {Ci} forms a partition of [1..n]. Let Ai be the sub-
matrix defined by Ri and Ci (as above). Then, there exist selector
matrices Si and Ti such that

A =
∑
i

SiAiTi.

This decomposition method enables analysis of provenance propa-
gation under various linear operations. For example,

AT = (
∑

iSiAiTi)
T =

∑
i(SiAiTi)

T =
∑

iT
T
i A

T
i S

T
i .

For multiplying two matricesA =
∑

iSiAiTi andB =
∑

jUjBjVj ,

AB =
∑

i,jSiAi(TiUj)BjVj . (12)

One can verify that (TiUj) is also a selector matrix. Further-
more, since not all columns in Ai and all rows in Bj contribute
to Ai(TiUj)Bj , summands in Equation 12 satisfy the following.

PROPOSITION 7. When SiAi(TiUj)BjVj does not evaluate to the
zero matrix, there exist submatrix A′i of Ai and B′j of Bj such that

SiAi(TiUj)BjVj = SiA
′
iB
′
jVj

5. Application: matrix inversion
Tracking provenance through determinant computation and through
exact matrix inversion seems to involve provenance that is too
complex to be easily usable. Instead, we illustrate in the follow-
ing example the Jacobi method [4] for iteratively computing so-
lutions to systems of linear equations.3 We consider the solution
to (A + B)x = b, where A and B are from two sources, with
provenance p and q, respectively:

A = p ∗
[]
2 1
1 2 , B = q ∗

[]
0 0
−2 0 , b =

[]
1
−1

The iterative method first splits A+B =M −N , where

M = p ∗
[]
2 0
0 2 , N = p ∗

[]
0 −1
−1 0 + q ∗

[]
0 0
2 0

Then it iteratively computes uk+1 =M−1Nuk+M
−1b. Suppose

that we start from u0 = [0, 0]T , then

u1 = p∗

[]
1
2

− 1
2
, u2 = p∗

[]
1
2

− 1
2

+p3 ∗

[]
1
4

− 1
4

+p2q∗

[]
0
− 1

2
, · · ·

Fully accepting all the data, i.e., p = 1 q = 1, results in the
vector u converging to [3

5
,− 1

5
]T . Provenance tracking also enables

incremental deletion propagation: when p = 1, q = 0, we have
uk = [1− 1

2k
,−1 + 1

2k
]T .

6. Application: largest eigenvalue
In principal component analysis (PCA), the largest eigenvalue de-
scribes the amount of variance of data projected onto the corre-
sponding eigenvector. Here we illustrate provenance tracking in
computing the largest eigenvalue using the power method. Suppose
that V is the following matrix:

V = p ∗
[]
2 1
1 2 + q ∗

[]
3 1
1 3 ,

The first summand’s eigenvalues λ1 = 3 and λ2 = 1 while the
second’s are λ1 = 4 and λ2 = 2. The power method starts

3 Matrix inversion can be reduced to solving systems of linear equations

with a vector u0, iteratively computes ut+1 = V ut, and returns
u1
t′+1/u

1
t′ for some t′. Starting from u0 = [2, 1]T , we have:

uT
2 = p2 ∗ [14, 13]T + pq ∗ [38, 34]T + q2 ∗ [26, 22]T

uT
3 = p3 ∗ [41, 40]T + p2q ∗ [165, 161]T

+ pq2 ∗ [222, 210]T + q3 ∗ [100, 92]T

This procedure can continue, however, we shall use deletion prop-
agation to verify that three iterations give a pretty good approxima-
tion. With p = 1 and q = 0 we have u1

3/u
1
2 = 41/14 ≈ 3, while

with p = 0 and q = 1 we have u1
3/u

1
2 = 100/26 ≈ 4.

7. Application: PageRank

1 3

2

5

4

Figure 2. A sample graph.

Consider the sample graph in Figure 2, with transition matrix

A =




0 1/2 1/3 0 1/5
1/2 0 1/3 0 1/5
1/2 1/2 0 0 1/5
0 0 0 0 1/5
0 0 1/3 1 1/5

Note that since node 5 has no outgoing edges, entries in the corre-
sponding column are equal to 1/5. The PageRank matrix is

M = (1− α)A+ αB

where B = 1
5
[1, 1, · · · , 1]T [1, 1, · · · , 1] and α ∈ (0, 1).

We now add some annotations. Suppose thatA andB are annotated
with p1 and p2 respectively, to capture the coefficients (i.e., M =
p1 ∗ A + p2 ∗ B). In addition, outgoing edges from nodes 1-
3 are annotated with q1 and the outgoing edge from node 4 is
annotated with q2. The annotated PageRank matrix is given by
M =M0 + p1q1 ∗M1 + q2 ∗M2 + p2 ∗B, where

M0 = [1, 1, 1, 1, 1]T [0, 0, 0, 0, 1/5]

M1 =




0 1/2 1/3 0 0
1/2 0 1/3 0 0
1/2 1/2 0 0 0
0 0 0 0 0
0 0 1/3 0 0

M2 = [0, 0, 0, 0, 1]T [0, 0, 0, 1, 0]

The power method starts from an initial PageRank score vector
v0 = [1

5
, 1
5
, 1
5
, 1
5
, 1
5
]T and iteratively computes vt+1 = Mvt. We

can track provenance as in previous examples.

8. Related work
The core building block of our algebraic construction is based on
provenance semirings [7]. Our framework goes beyond provenance
for aggregate queries [1], by constructing aK-semialgebra instead
of just a K-semimodule. Although there are several array database
management systems such as SciDB [15] and RasDaMan [2], only
until recently have various aspects of provenance been investigated.
This line of work includes APIs for encoding and querying for
lineage [17] and supporting uncertain array data [14]. Our work

differs in automatically tracking provenance from the operations,
and in preserving the semantics of the matrix operations.

Many systems support distributed machine learning based on Map-
Reduce or iterative linear algebra programs [19, 18, 12, 8, 10, 5, 9].
In addition, LINView [13] proposes methods for incremental com-
putation of iterative linear algebra programs when there are only
small changes (low-rank updates) to input matrices. Generaliza-
tions of our preliminary work could be incorporated into such plat-
forms based on their linear algebra operations.

9. Contributions and future work
This paper has presented the first steps towards a semantics-
preserving notion of fine-grained provenance for linear algebra
operations. While more work needs to be done, we believe there
is great promise for automatically tracking provenance in a wide
variety of applications. In the future, building upon our basic con-
struction, we seek to investigate provenance for more complex
linear algebra operators. We will also study how to implement this
framework in a real system.

References
[1] Y. Amsterdamer, D. Deutch, and V. Tannen. Provenance for aggregate

queries. In PODS, pages 153–164, 2011.
[2] P. Baumann, A. Dehmel, P. Furtado, R. Ritsch, and N. Widmann. The

multidimensional database system rasdaman. ACM SIGMOD Record,
27(2), 1998.

[3] J. Cheney, L. Chiticariu, and W. C. Tan. Provenance in databases:
Why, how, and where. Foundations and Trends in Databases, 1(4):
379–474, 2009.

[4] P. G. Ciarlet, B. Miara, and J.-M. Thomas. Introduction to numerical
linear algebra and optimisation. Cambridge University Press, 1989.

[5] A. Ghoting, R. Krishnamurthy, E. Pednault, B. Reinwald, V. Sind-
hwani, S. Tatikonda, Y. Tian, and S. Vaithyanathan. Systemml: Declar-
ative machine learning on mapreduce. In ICDE, 2011.

[6] T. J. Green, G. Karvounarakis, Z. G. Ives, and V. Tannen. Update
exchange with mappings and provenance. In VLDB, 2007. Amended
version available as Univ. of Pennsylvania report MS-CIS-07-26.

[7] T. J. Green, G. Karvounarakis, and V. Tannen. Provenance semirings.
In PODS, 2007.

[8] J. M. Hellerstein, C. Ré, F. Schoppmann, D. Z. Wang, E. Fratkin,
A. Gorajek, K. S. Ng, C. Welton, X. Feng, K. Li, et al. The MADlib
analytics library: or MAD skills, the SQL. PVLDB, 5(12), 2012.

[9] B. Huang, S. Babu, and J. Yang. Cumulon: Optimizing statistical data
analysis in the cloud. In SIGMOD, 2013.

[10] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad: dis-
tributed data-parallel programs from sequential building blocks. In
EuroSys, pages 59–72, 2007.

[11] C. Koch. Incremental query evaluation in a ring of databases. Techni-
cal Report 183766, EPFL, 2013. Extended version of the PODS 2010
paper.

[12] T. Kraska, A. Talwalkar, J. C. Duchi, R. Griffith, M. J. Franklin, and
M. I. Jordan. MLbase: A distributed machine-learning system. In
CIDR, 2013.

[13] M. Nikolic, M. ElSeidy, and C. Koch. Linview: incremental view
maintenance for complex analytical queries. In SIGMOD, 2014.

[14] L. Peng and Y. Diao. Supporting data uncertainty in array databases.
In SIGMOD, 2015.

[15] M. Stonebraker, J. Becla, D. J. DeWitt, K.-T. Lim, D. Maier,
O. Ratzesberger, and S. B. Zdonik. Requirements for science data
bases and scidb. In CIDR, 2009.

[16] P. P. Talukdar, M. Jacob, M. S. Mehmood, K. Crammer, Z. G. Ives,
F. Pereira, and S. Guha. Learning to create data-integrating queries. In
VLDB, 2008.

[17] E. Wu, S. Madden, and M. Stonebraker. Subzero: a fine-grained
lineage system for scientific databases. In ICDE, 2013.

[18] R. S. Xin, J. E. Gonzalez, M. J. Franklin, and I. Stoica. GraphX: A
resilient distributed graph system on Spark. In Workshop on Graph
Data Management Experiences and Systems, 2013.

[19] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley,
M. J. Franklin, S. Shenker, and I. Stoica. Resilient distributed datasets:
A fault-tolerant abstraction for in-memory cluster computing. In
NSDI, 2012.

A. Appendix

We first prove Proposition 2.

LEMMA 8. Let X be a set. (Bag(X),], ∅+) is a commutative
monoid. Moreover, every non-empty bag can be uniquely expressed
a a bag union of singletons, specifically, as the union of all its
possibly repreated elements, i.e., A =]ai for all ai ∈ supp(A),
each ai appearing in the union A(ai) times.
Proof We show that the following three axioms hold for any
A,B,C ∈ Bag(X).
• (commutativity) A] B = λx. A(x) + B(x) = λx. B(x) +
A(x) = B]A.

• (associativity) (A] B)] C = (λx. A(x) + B(x))] C =
λx. (A(x) +B(x)) + C(x)
= λx. A(x) + (B(x) + C(x)) = A] (λx. B(x) + C(x)) =
A] (B] C).

• (identity for plus) Since ∅+(x) = 0 for any x, we haveA]∅+ =
∅+]B = ∅+ .

Therefore, (Bag(X),], ∅+) is a commutative monoid.

Moreover, it follows immediately that for any bag A we have

A =
⊎

a∈supp(A)

A(a) a

(where for integer n > 0 and bag B, nB is short for the
⊎

of
n copies of B). For the uniqueness of this representation suppose
that for some bagAwe haveA =

⊎
ai where the ai’s are singleton

bags as well as elements of X (in view of our abuse of notation).
Then supp(A) must consist exactly of the ai’s and each ai appears
in the

⊎
exactly A(ai) times.

�

LEMMA 9. Let M be a monoid and A,B ∈ Bag(M).
(i) supp(A ? B) is finite.

(ii) (
⊎
ai) ? (

⊎
bj) =

⊎
ai ·M bj .

(iii) For any finite Y,Z ⊆ M such that supp(A) ⊆ Y and
supp(B) ⊆ Z we have

A ? B = λx.
∑
A(y)B(z)

where the sum is over all y ∈ Y and z ∈ Z such that y·M z = x.

Proof For each part:
(i) Let x ∈ M . Because N is “positive”, if (A ? B)(x) 6= 0

then at least one of the numbers in the sum
∑

A(y)B(z)
is non-zero so there exist y ∈ supp(A) and z ∈ supp(B)
such that y ·M z = x. Therefore, ·M defines a surjection from
supp(A) × supp(B) to supp(A ? B) which makes the latter
finite.

(ii) To check this, observe that an x appears in
⊎
ai ·M bj exactly

as many times as there are appearances of a y in
⊎
ai and of a

z’s in
⊎
bj such that x = y ·M z.

(iii) Indeed, each y ∈ Y \ supp(A) has A(y) = 0 and thus
contributes 0 to the sum. Same with z ∈ Z \ supp(B).

�

PROPOSITION 2. (Bag(K×M),], ?, ∅+ , 1K⊗I) is a semiring.

Proof Let M be K×M. We have already seen (Lemma 8) that
(Bag(M),], ∅+) is a commutative monoid. We need to show that
(Bag(M), ?, 1M) is also a monoid (not necessarily commutative),
that ? distributes over], and that ∅+ is the “zero” element for ?.
Let A,B and C be any elements in Bag(M).
• We now show that (Bag(M), ?, 1M) is a monoid as well, in

other words, that ? is associative and that 1M is the “neutral
element” for ?. We have

(A ? B) ? C = λx.
∑

(u·
M

v)·
M

w=x

A(u)B(v)C(w)

= λx.
∑

u·
M

(v·
M

w)=x

A(u)B(v)C(w) = A ? (B ? C).

We also have, because supp(1M) = {1M }:

A ? 1M = λx.
∑

y·
M

1
M

=x

A(y) 1 = λx.A(x) = A,

and similarly 1M ? A = A.
• For distributivity, we have

A ? (B] C) = λx.
∑

u·
M

v=x

A(u)(B(v) + C(v))

= λx.
∑

u·
M

v=x

A(u)B(v) +A(u)C(v)

= (A ? B)] (A ? C).

where we make us Lemma 9, Part (iii), to extend the unions
from supp(B) and supp(C) to supp(B) ∪ supp(C) =
supp(B] C). Similarly (A]B) ? C = (A ? C)] (B ? C).

• Since supp(∅+) is empty, we have A ? ∅+ = ∅+ ? B = ∅+ .
Hence, (Bag(M),], ?, ∅+ , 1M) is a semiring.
�

We now proceed to Proposition 3.

LEMMA 10. The function ι : M → Bag(K × M) that maps
s ∈M to the singleton bag with elements 1K⊗s is injective and is
a homomorphism between the multiplicative structures ofM and
Bag(K ×M).

Proof ι is clearly injective. Let s1, s2 ∈M, we have

ι(s1)ι(s2) = (1K⊗s1)(1K⊗s2) = (1K ·K 1K)⊗(s1 ·M s2)

= 1K⊗(s1 ·M s2) = ι(s1 ·M s2).
�

PROPOSITION 3. (Bag(K×M),], ?, ∅+ , 1K⊗I) satisfies axioms
(1,2,5,6,7) of Definition 1 but not axiom (3) or axiom (4).

Proof We show the following for any k, k′ ∈ K,A =
⊎
ki⊗si ∈

Bag(K ×M) and A′ =
⊎
k′j⊗s′j ∈ Bag(K ×M).

• k ∗ (A]A′) = (k ∗A)] (k ∗A′) directly by definition of ∗.
• k ∗ ∅+ = ∅+ also directly by definition of ∗.
• We have

(k+Kk
′)∗A =

⊎
((k+Kk

′)·Kki)⊗si =
⊎

(k·Kki+Kk
′·Kki)⊗si

and we also have

(k ∗A)] (k′ ∗A) =
⊎

(k ·K ki)⊗si] (k′ ·K ki)⊗si
To complete the verification of axiom (3) we would like to have

(k1 +K k2)⊗s = k1⊗s] k2⊗s

but this does not hold in general.
• We have 0K ∗A =

⊎
(0K ·K ki)⊗si =

⊎
0K⊗si. To complete

the verification of axiom (4) we would like to have

0K⊗s = ∅+
but again this does not hold in general.

• (k ·K k
′)∗A =

⊎
((k ·K k

′) ·K ki)⊗si =
⊎

(k ·K (k′ ·K ki))⊗si
= k ∗

⊎
(k′ ·K ki)⊗si = k ∗ (k′ ∗A).

• 1K ∗A =
⊎

(1K ·K ki)⊗si =
⊎
ki⊗si = A.

• (k ∗A) ? A′ = (
⊎

i(k ·K ki)⊗si) ? (
⊎

jk
′
j⊗s′j)

=
⊎

i,j((k ·K ki)⊗si)(k′j⊗s′j)
=
⊎

i,j((k ·K ki) ·K k′j)⊗(si ·M s′j)

=
⊎

i,j(k ·K (ki ·K k′j))⊗(si ·M s′j)

= k ∗
⊎

i,j(ki ·K k′j)⊗(si ·M s′j) = k ∗ (A ? A′)
• A ? (k ∗A′) = (

⊎
iki⊗si) ? (

⊎
j(k ·K k′j)⊗s′j)

=
⊎

i,j(ki⊗si)((k
′
j ·K k)⊗s′j)

=
⊎

i,j(ki ·K (k ·K k′j))⊗(si ·M s′j)

=
⊎

i,j(k ·K (ki ·K k′j))⊗(si ·M s′j) = k ∗ (A ? A′).

Note that for the last axiom we have made essential use of the fact
that K is a commutative semiring.
�
Finally, we prove Proposition 4.

PROPOSITION 4. K⊗M is a K-semialgebra and ι : M →
K⊗M is a semiring homomorphism satisfying the following uni-
versality property: for any K-semialgebra S and any semiring ho-
momorphism f :M→ S there exists a unique homomorphism of
K-semialgebras f∗ : K⊗M→ S such that f = f∗ ◦ ι.

Proof As is the case with any algebraic congruence, equational ax-
ioms that hold in the original structure continue to hold in the quo-
tient structure. Therefore, (K⊗M,+K⊗M , ·K⊗M , 0K⊗M , 1K⊗M) is
also a semiring, ∗K⊗M satisfies axioms (1,2,5,6,7) of semialgebras
and ι is a homomorphism for the multiplicative structures. Mo-
roever, after the quotienting, axioms (3,4) also hold as we have
shown in the proof of Proposition 3 and ι is also a homomorphism
for the additive structures because (8,9) now hold in K ⊗M.

We now proceed to the second part. We use +S , ·S , ∗S for operators
in S and +K⊗M , ·K⊗M , ∗K⊗M for operators in K ⊗M. Define f∗

first on bags of simple tensors as follows

f∗(
∑
ki⊗si) =

∑
ki ∗S f(si).

The first total sum uses +K⊗M and the second uses +S . Thus
f∗(ι(s)) = f∗(1K⊗s) = 1K ∗Af(s) = f(s). Then, we check that
f∗ is a homomorphism with respect to +S , ·S and ∗S , as follows.

• f∗((
∑
ki⊗si) +K⊗M (

∑
k′j⊗s′j))

= (
∑
ki ∗S f(si)) +S (

∑
k′j ∗S f(s

′
j))

= f∗(
∑
ki⊗si) +S f

∗(
∑
k′j⊗s′j).

• f∗((
∑
ki⊗si) ·K⊗M (

∑
k′j⊗s′j))

= f∗(
∑

i,j(ki⊗si) ·K⊗M (k′j⊗s′j))
= f∗(

∑
i,j(ki ·K k′j)⊗(si ·M s′j))

=
∑

i,j(ki ·K k′j) ∗S f(si ·M s′j)

=
∑

i,j(ki ·K k′j) ∗S (f(si) ·S f(s
′
j))

=
∑

i,j(ki ∗S f(si)) ·S (k′j ∗S f(s
′
j))

= (
∑

i(ki ∗S f(si))) ·S (
∑

j(k
′
j ∗S f(s

′
j)))

= f∗(
∑
ki⊗si) ·S f

∗(
∑
k′j⊗s′j).

• For any k ∈ K, f∗(k ∗K⊗M (
∑
ki⊗si))

= f∗(
∑

(k ·K ki)⊗si) =
∑

(k ·K ki) ∗S f(si)
= k ∗S (

∑
ki ∗S f(si)) = k ∗S f

∗(
∑
ki⊗si).

This implies that for f∗ to preserve ∼ it suffices to preserve
(8,9,10,11), which is checked as follows.

• f∗((k1 +K k2)⊗s) = (k1 +K k2) ∗S f(s)
= k1 ∗S f(s) +S k2 ∗S f(s) = f∗(k1⊗s+K⊗M k2⊗s)

• f∗(0K⊗s) = 0K ∗S f(s) = ∅+ = f∗(0K⊗M).
• f∗(1K⊗(s1 +S s2)) = 1K ∗S f(s1 +S s2)
= 1K ∗S (f(s1) +S f(s2)) = 1K ∗S f(s1) +S 1K ∗S f(s2)
= f∗(1K⊗s1 +K⊗M 1K⊗s2)

• Since f is a semiring homomorphism, for any swe have f(s) =
f(s + 0S) = f(s) +S f(0S), which yields that f(0S) must be
∅+ . Now, f∗(1K⊗0S) = 1K ∗S f(0S) = ∅+ = f∗(0K⊗M).

Since f∗ preserves ∼ it can be defined as above by picking a
representative from each equivalence class. Now let g : K⊗S →
A be another K-semialgebra homomorphism such that g ◦ ι = f .
Then

g(
∑
ki⊗si) = g(

∑
ki ∗K⊗M (1K⊗si))

=
∑
ki ∗S g(ι(si)) =

∑
ki ∗S f(si) = f∗(

∑
ki⊗si)

hence g = f∗, thus verifying the uniqueness of f∗.
�

	Introduction
	Tracking matrix data
	The semialgebra of annotated matrices
	Provenance propagation by decomposition
	Application: matrix inversion
	Application: largest eigenvalue
	Application: PageRank
	Related work
	Contributions and future work
	Appendix

