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Abstract
System and library call interception performed entirely in user-space
is a viable technique for provenance capture. The primary advantages
of such an approach are that it is lightweight, has a low barrier to
adoption and does not require root privileges to install and configure.
However, since both the user’s application and the provenance cap-
ture mechanism execute at the same privilege level and as part of the
same address there is ample opportunity for an untrustworthy user or
application to either circumvent or falsify provenance during capture.

We describe a security threat model for such provenance capture
mechanisms, discuss various attack vectors to circumvent or falsify
provenance collection and finally argue that hardening against such
attacks is possible if the application is sandboxed using contemporary
techniques in the area of user-space software-based fault isolation.

Categories and Subject Descriptors 500 [Information systems]:
Data provenance

General Terms provenance, security, sandbox

Keywords provenance, security, sandbox

1. Introduction
Provenance capture by observing applications as they execute and
logging events of interest in a structured, queryable format can be im-
plemented using a variety of approaches. Most systems implementers
have preferred the approach of capturing provenance in the kernel
by intercepting system calls [6–9]. This approach has several useful
properties for a provenance system: (i) The capture is performed at a
layer having a higher privilege level than that of the application, en-
suring provenance collection is secure and non-circumventable (as-
suming that the kernel cannot be compromised). (ii) Provenance cap-
ture is always-on and system-wide. (iii) The runtime overhead im-
posed by such a mechanism is reasonably low. However, a major ob-
stacle to this approach is that these systems are not easily deployable
since the capture mechanisms themselves rely on the installation of
customised kernels and new kernel features which may not be avail-
able widely, thereby resulting in a lack of adoption in practice.

In previous work [1] we have argued that the problem of lack of
adoption of provenance systems can be mitigated by designing sys-
tems that work entirely in user-space wherein the provenance capture
is done at the same privilege level and as part of the same address
space as that of the application. User-space provenance systems have
a number of advantages that make it attractive for an implementer:
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• The system becomes easier to deploy requiring no root privileges
to install and configure.

• The system can work on a variety of kernel versions or platforms
since it does not rely on specific kernel features or modifications
to kernel internals.

• The runtime overheads imposed can be comparable to that of
kernel based mechanisms.

• The system can be developed in a much richer ecosystem, allow-
ing for new features to be implemented quickly.

However, in order for provenance to be useful it must be trustable.
The implicit assumption in the user-space model of provenance cap-
ture is that the application or user can be trusted. This however may
not be the case in practice since we cannot guarantee that users and
applications are trustworthy/non-malicious. A user may wish to hide
his activities from the system by circumventing it completely or forge
results of his experiment by falsifying provenance data at the point of
collection. These capabilities defeat the purpose of provenance cap-
ture in the first place and render the system ineffective. This leads us
to the research question, “Is secure user-space provenance capture
possible in principle? What are the design requirements and limita-
tions for such a system?”.

There is a plethora of research in computer systems security that
looks at a variety of attack scenarios that can be carried out by a
malicious user and strategies to harden against such attacks. Most of
these scenarios assume that the application code is trusted and that
an attack happens by injecting malicious code into the application’s
address space. The application is then tricked into executing this
malicious code to gain control of the system. However, for secure
user-space provenance capture the problem is more challenging since
the user or application itself cannot be trusted. This increases the
attack surface and conventional techniques to harden against security
exploits may not be sufficient in this context.

In this paper we discuss various techniques for capturing prove-
nance in user-space and their characteristics. We then focus on a spe-
cific capture technique relevant to our system based on library in-
terposition and explore various attacks that a malicious user or ap-
plication could perform to circumvent the system or falsify prove-
nance data. Finally, we review application sandboxing techniques
based on software fault isolation (SFI) that user-space provenance
systems (based on system/library call interception) could employ to
harden against such attacks. We believe that the application of sand-
boxing in the context of secure user-space provenance capture is a
novel use-case and can open up a new direction of research for the
provenance community.

2. User-space provenance capture
Fine-grained tracing of applications has been an active area of re-
search both in academia and industry. Over the years a number of
techniques and primitives have been introduced to enable tracing of
user-level applications. Several tools have been developed on top of



these techniques to enable developers and users to debug and profile
their applications. From a systems perspective these same techniques
can be leveraged to collect provenance meta-data (typically system
call and library API call data).

However, several of these user-space tracing techniques were not
designed for the requirement of an always-on, system-wide, com-
plete provenance collection system nor were they designed for the se-
cure collection of provenance meta-data. Therefore as implementers
it is important to understand the characteristics of each of these tech-
niques. In the rest of the section we will briefly describe several tech-
niques available for user-space provenance capture and discuss the
advantages and disadvantages of each.

FUSE: is an interface that allows non-privileged users to create a
custom user-space file system. FUSE consists of two main compo-
nents, a kernel module that acts as a bridge to kernel interfaces and a
user level library libfuse that a user-space provenance capture agent
can link with to implement wrappers for various I/O activities that
an application can perform. Installation of FUSE requires the user to
have root permissions. Also from a performance standpoint, FUSE
can incur a high overhead for certain workloads [5]. However, the
main drawback of using FUSE for provenance capture is that only
I/O operations can be intercepted, other process level activities and
information pertaining to the process environment are not visible to
the system.

PTrace: is a system call that is supported by most Unix-like oper-
ating systems. PTrace provides a mechanism by which one process,
a tracer may observe and control the execution of another process.
With this technique whenever a specific event of interest (e.g. sys-
tem calls) occurs during the target programs execution, the kernel
stops the execution of the target process and transfers control to the
tracer. The tracer can then examine the target’s internal state such as
registers or memory and collect required information. This can be a
powerful technique for provenance capture as it provides complete
visibility into a program’s execution. An additional benefit of using
ptrace is that it does not require root privileges to be enabled unless
the target process being traced is running as root. However, a major
drawback with ptrace is the high runtime overheads (˜30%) it can
impose on applications due to the two context switches, from target
to tracer and back [2]. This makes PTrace impractical to use from
the point of view of implementing an always-on, system-wide prove-
nance system.

Kernel-assisted user-space tracing: Over the years Linux contrib-
utors have recognised the need for a flexible tracing infrastructure for
both the kernel and userland applications. As a result of this, support
for a number of mechanisms/tools such as SystemTap, DTrace, Up-
robes etc. have arisen in newer versions of the Linux kernel. With
these mechanisms a probe in the form of a kernel module is typically
loaded to monitor specific events e.g. system calls that applications
invoke. A benefit of this approach is that provenance collection hap-
pens within the kernel which executes at a higher privilege level and
and can therefore be deemed secure. A user will however require root
privileges to enable and install these probes. The major drawback of
these mechanisms however is that support for such kernel-assisted
tracing functionality may not be widely available on older kernel ver-
sions.

LD PRELOAD: is part of the linker/loader’s mechanism for ex-
tending the environment of a process at load time and is a lightweight
method for interposing library function calls. The LD PRELOAD en-
vironment variable specifies a list of shared library paths and the run-
time loader checks for the presence of this variable and loads the
list of libraries into the address space of the application it is trying
to bootstrap. During runtime the linker/loader resolves symbols by
searching for the symbol within the preloaded list of libraries first,

thereby providing an easy method to hook API functions for a given
target library. This is a viable method for provenance capture since
file and process related function calls made to the standard C library
can be interposed from within the application’s address space. The
runtime overheads incurred by this mechanism is relatively lower
(˜10%) when compared to ptrace. Also to enable this mechanism a
user need not require root permissions. This makes the deployment
of such systems much easier. However, a major drawback for systems
that use this mechanism for provenance capture is that a malicious
user or program can perform a variety of exploits to circumvent the
system completely or falsify provenance data at point of capture.

Binary rewriting: is the process of transforming executables by
adding or modifying individual instructions to implement a specific
requirement while still maintaining the binary’s original functional-
ity. This can be performed statically by disassembling the binary and
patching required instructions or dynamically by translating basic
blocks using a just-in-time compilation approach. Provenance sys-
tems could use this mechanism to rewrite specific instructions, for
example the syscall instruction and redirect the system call to a tram-
poline where required meta-data may be collected. Manually rewrit-
ing the binary by deciphering instruction opcodes may be a difficult
exercise. However, there are a number of tools/libraries available to-
day that ease this development effort by exposing a simpler inter-
face [10, 11]. A major benefit of using this technique for provenance
capture is that the system can be implemented entirely in user-space
without requiring root privileges. However, since the provenance
module executes as part of the same address space and privilege level
as that of the application, a malicious application could tamper with
the provenance module’s internal state or falsify the provenance data
captured.
Our focus for the next section will be to understand the security
vulnerabilities of user-space provenance capture especially for those
mechanisms where capture occurs within the application’s address
space. Therefore the attacks we describe are mainly applicable to
systems that use LD PRELOAD. However, a few attacks (DoS and
TOCTTOU) are applicable to binary rewriting as well.

3. Vulnerabilities of library level interposition
3.1 Threat Model & Assumptions
We consider a user that has logged into a machine using his account.
Provenance for all user activities for the session is captured using
library level interposition. The provenance is stored in a backend
database under a different userid on the same machine. For such user-
space provenance system there are two types of threats that we must
consider:

• Circumvention: The user may attempt to hide his activities by
completely circumventing the provenance system. For example,
the user could attempt to obtain a new uninterposed shell session
by invoking a system call instruction that executes the /bin/bash
program.

• Falsification: (i) The user could try to trick the system into col-
lecting false provenance information. For example, a user may
modify the file path passed to the open function call by using a
custom library in-between the provenance capture and standard C
library. (ii) The user may also attempt to forge provenance records
at point of collection. Since an application has access to its en-
tire address space, including the data sections of the provenance
collection library, it could modify provenance records directly in
memory.

We define the trusted computing base (TCB) to be the kernel, the
provenance collection library, the provenance storage backend, the
runtime linker/loader and the standard C library available as part of
the system. We consider all user level application binaries and user



supplied libraries to be untrusted. We assume that the user cannot
tamper with provenance data once it leaves the application’s address
space therefore any in-transit or stored provenance data is considered
safe from any exploits. We can justify this based on our assumption
that the kernel is trusted and therefore any IPC mediated by the kernel
is safe from exploits.

3.2 Types of attacks
Direct calls to standard C library: When an application invokes a
library function using its exported symbol for e.g. printf the com-
piler generates code to call a trampoline entry in the the PLT (Proce-
dure Link Table), e.g. call printf@plt. The code in the the PLT
invokes the linker and resolves the address of the symbol. This level
of indirection is required because shared libraries are typically com-
piled as PIC (Position-independent code) and the runtime address of
symbols in the shared library cannot be computed at compile time.
This indirection also enables the preloading of shared libraries passed
via the LD PRELOAD environment variable or the /etc/ld.so.preload
configuration file. When the preload option is enabled, the runtime
linker first searches the preload library list to resolve the symbol, al-
lowing us to interpose any exported symbol used in shared libraries.

An application can however skip this symbol resolution mecha-
nism and call or jump directly to the address of a function in a shared
library for e.g. the printf implementation in the standard C library,
effectively circumventing the interposition layer that collects prove-
nance. This attack can be implemented in two ways.

The first technique uses the interface exposed by the dynamic
linker. An application could use the linker’s dlsym function to lookup
the address of printf within the standard C library and call this
address using a function pointer. A simple fix to harden against this
attack is to override the interface exposed by the dynamic linker.

The other method of obtaining the address of the actual printf
function is to read the /proc/pid/maps entry for the process and
compute the address where the code segment of the standard C
library is loaded in memory. The application can then use the offset
of the printf function from the binary to jump directly into a valid
address within the function block after setting up the the stack. To
harden against this attack jump instructions to addresses within the
TCB should be disallowed.

Man-in-the-middle: The provenance collection mechanism relies
on the linker’s preload feature to interpose standard C library function
calls. A malicious user looking to trick the provenance system into
collecting false provenance data could employ the same interposition
technique and implement a custom library that hooks library calls
made by the application. A standard linker/loader implementation
will load any valid shared object supplied to it using the preload
mechanism as it assumes all user supplied libraries to be trusted.

To understand how this attack may be implemented let’s look at
the following scenario. A scientist is about to execute a program
that reads a file results.dat as part of an experiment. However,
the scientist would ideally like the program to read data from a
mod results.dat file which contains fudged data. To prove that his
experiment was performed with genuine data he also needs to trick
the system into capturing provenance for results.dat instead of
mod results.dat. To carry out this attack the scientist implements
a custom library that has overridden the open function call. The cus-
tom library is then added to the LD PRELOAD environment variable
after the provenance collection library. When the application calls the
open function with results.dat as argument, control is first trans-
ferred to the provenance capture library, which then forwards the re-
quest to the custom library. Within the custom library the argument to
open is modified to use mod results.dat. The provenance capture
library is however unaware of this change and captures meta-data
showing that the experiment was performed with results.dat. To
harden against this attack a secure policy based linker/loader imple-

mentation is required to ensure that only a predefined set of trusted
libraries are loaded.

Controlling the Instruction Pointer: The instruction pointer (IP) is
a register that indicates the address of the instruction currently being
executed by the processor. The IP is implicitly modified when a par-
ticular instruction is executed and cannot be manually set for exam-
ple using a mov instruction. However if an application is being traced
using the ptrace system call, the tracer program can manually set
the IP to any valid address in the instruction sequence using the set
registers feature. This immediately presents a security threat for the
provenance system since the application could completely circum-
vent provenance capture by stepping over the instruction sequences
that record and store provenance.

To harden against this attack the provenance system could either
intercept the ptrace system call and disallow it or IP register ma-
nipulation in user-space could be completely disabled with processor
support.

Direct system call invocation: The standard C library provides a
convenient interface for application developers to interact with the
kernel since it abstracts away the architecture and platform specific
complexities of invoking system calls. However, there is nothing
preventing a user-space application from directly invoking the sys-
tem call instruction. This presents a problem for library interposition
since direct system calls cannot be intercepted. A malicious applica-
tion can use this capability to circumvent the system. For example,
a user could implement a program that calls the architecture specific
syscall instruction to invoke the exec system call and pass the bash
path as argument. This will result in a new uninterposed shell session.

In order to harden against such attacks system calls must only be
allowed from within the TCB, i.e the standard C library. A naive way
to implement this in the kernel is for the syscall interface to check the
source address from where the system call is being invoked and allow
it if the source address is from a trusted part of memory. However,
since the application can transfer control to any code segment loaded
in memory, a jmp to a system call instruction sequence within the
TCB will be sufficient to circumvent the system. This naturally leads
to a model where the application executes within a sandbox and
control integrity is enforced.

Denial of service (DoS): With user-space provenance capture, all
modules (shared objects and the application binary) loaded in mem-
ory share access to a common pool of resources available for the
process. This includes file descriptors, heap memory, environment
variables etc. An application intending to disable provenance collec-
tion could launch a DoS attack either by completely exhausting the
resources used by the provenance module or by tampering with the
provenance module’s internal state. For example, a malicious appli-
cation may close a file descriptor used by the provenance module to
communicate provenance data to a backend for storage by directly
invoking the close system call. Similarly, a malicious application
having access to the data section of the provenance module could
modify the module’s internal state directly.

This attack is possible because the application has unrestricted
access to its address space and the capability to make system calls.
To harden against this attack the provenance module’s code and data
can be isolated from the application. Also, the application should not
be allowed to make system calls directly.

Time of check to time of use (TOCTTOU): The provenance cap-
ture module stores meta-data in memory before sending it to a stor-
age backend. This immediately poses a direct threat for the integrity
of provenance records because an application that shares the address
space with the provenance module can tamper with this in-memory
data. Techniques such as address space layout randomisation (ASLR)
can make finding the exact location of data in memory difficult. How-
ever, an application that has access to its entire process memory map



can compute the addresses of all code and data segments in memory
and use this information to falsify provenance records.

To harden against such attacks the data section of the provenance
collector should not be accessible from the application’s binary. This
can be implemented by sandboxing the application and restricting
code and data access to only a part of the address space. Also, to
ensure that buffer overflows occurring in the TCB do not overwrite
provenance data, the memory pages where provenance records reside
can be protected by guard pages that have read-only permissions.
Writing to these guard pages will cause the application to segfault.

4. Secure user-space provenance capture
User-space provenance capture suffers from several security vulner-
abilities as seen in the previous section. The attacks described pre-
viously arise as a result of (i) the application having unrestricted ac-
cess to its entire address space, including all code and data and (ii)
the capability of the application to execute any instruction that it has
privileges for in user-space. Security mechanisms such as ASLR and
policy based system call authorisation do no mitigate against these
problems because they are designed to harden against attacks where
malicious code is injected into the application to gain system access,
they do not assume that the application itself is malicious.

To mitigate against such attacks we argue that user-space prove-
nance systems should employ contemporary techniques in software-
based fault isolation and restrict the execution of user application
within a sandboxed environment. The sandboxing mechanism should
enforce three key constraints on the application:

• Control flow integrity: All direct and indirect branches in the ap-
plication code should reach a safe instruction within the sandbox.
The application should not be allowed to branch directly to a re-
gion of code in the TCB. All control transfers to the TCB should
happen via a validation layer.

• Data Integrity: No loads or stores should be permitted outside of
the sandbox. Once the binary is loaded into memory it should not
be writable.

• No unsafe instructions: The application should not be allowed to
invoke any system call instructions directly.

4.1 Application sandboxing
Google’s native client was one of the initial efforts to sandbox the ex-
ecution of native x86 code inside web browsers [4]. The Native client
technique for sandboxing ensures that direct and indirect branches in
the application stay within bounds of the sandbox and land on a safe
instruction. Similarly, for data access, load and store instructions are
constrained to remain within the sandbox. This is implemented with
the help of a custom compiler to add instrumentation to the applica-
tion binary and a runtime validation process.

The techniques implemented by Native Client are an effective
method for sandboxing applications, however, a major barrier to
adopting this approach for desktop applications is the requirement for
applications to be recompiled. More recent efforts [3] use dynamic
binary translation where each basic block in the code is checked for
the sandbox constraints at runtime and translated. The inherent ad-
vantage with this approach is that the translator processes one in-
struction at a time and can compute destination address of indirect
branches and memory accesses easily at runtime, requiring no sup-
port from the compiler or the hardware. Also, attacks that manipulate
the return address on the stack to transfer control can be thwarted by
implementing a shadow stack and verifying the validity of the return
address against the shadow stack before executing the ret instruc-
tion. However, dynamic binary translation can impose a high over-
head on application runtime, especially if every load and store oper-
ation needs to be checked. To mitigate against this hardware support
for sandboxing applications may be required.

4.2 A model for secure user-space provenance capture
Our model for the secure capture of provenance in user-space ex-
tends the the sandbox design for the safe execution of applications
using software-based fault isolation based on dynamic binary transla-
tion [3]. In our model the user supplied application binary and shared
libraries are considered untrusted and therefore executed within the
sandbox. A secure policy based loader implementation ensures that
the sandbox code is initialised first followed by the provenance col-
lection library before bootstrapping the application binary and other
shared libraries. The secure loader also ensures that only a prede-
fined set of trusted shared libraries are allowed for preloading (using
LD PRELOAD). Finally, the secure loader also marks the code, PLT,
GOT and other sections involved in dynamic linking for the untrusted
code base as non-writable to avoid exploits.

The dynamic binary translator translates and validates every in-
struction before execution. Target addresses of each branch instruc-
tion (direct and indirect) are checked so that it lands on a safe instruc-
tion within the sandbox. Similarly, addresses used in loads and stores
are computed and kept within bounds of the sandbox. Finally, instruc-
tion sequences that represent system calls are disallowed from inside
the sandbox. Only modules in the trusted computing base are allowed
to invoke the system call instruction. Any violation of these checks
cause the program to terminate with a security exception. These run-
time checks ensure that the constraints of the sandbox described pre-
viously are enforced.

However, under valid circumstances control transfers from the un-
trusted sandboxed modules to trusted modules are allowed, only via
the call instruction. For example if the application wants to invoke
an exported standard C library function. In such instances the con-
trol is first transferred to a trampoline function in the trusted runtime
where the instruction is validated, the target address is checked to see
if it is reachable and the symbol resolution via the GOT/PLT mecha-
nism is allowed to proceed. Function pointer based calls to the stan-
dard C library are rewritten and redirected to relevant symbols in the
provenance capture library. This ensures that the application cannot
bypass the provenance module and circumvent the system.

Limitations of our model

• Applications may use pointers to access parts of global memory
in other shared objects. For example, the environ pointer points
to a list of environment variable data maintained within the stan-
dard C library (Glibc). If the memory pointed to is within the TCB
the sandbox will prevent this access. To allow such accesses we
will need to in effect have a model where the environment vari-
ables and data specific to the sandboxed application lives inside
the sandboxed memory.

• The heap memory area for a process is common across all threads
and modules in the process. Heap memory allocated by the mod-
ules in the trusted computing base should not be be accessible
to the untrusted modules. This will require maintaining two heap
regions, requiring a custom memory allocator.

• The requirement for a custom secure loader is a change to the
user’s system and will require root privileges to install.

5. Conclusion
In this paper we discussed the vulnerabilities of user-space prove-
nance capture using library level interposition. We showed that these
vulnerabilities arise as a result of a lack of separation between the
provenance capture mechanism and the application. Finally, we ar-
gued that to harden against these vulnerabilities and enable secure
capture of provenance, implementers could employ contemporary
techniques in application sandboxing techniques.
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