Provenance Segmentation

Rui Abreu

Palo Alto Research Center
rui@parc.com

James Cheney

University of Edinburgh
jcheneyQ@inf.ed.ac.uk

Abstract

Using pervasive provenance to secure mainstream systems has re-
cently attracted interest from industry and government. Recording,
storing and managing all of the provenance associated with a sys-
tem is a considerable challenge. Analyzing the resulting noisy, het-
erogeneous, continuously-growing provenance graph adds to this
challenge, and apparently necessitates segmentation, that is, ap-
proximating, compressing or summarizing part or all of the graph
in order to identify patterns or features. In this paper, we describe
this new problem space for provenance data management, contrast
it with related problem spaces addressed by prior work on prove-
nance abstraction and sanitization, and highlight challenges and
future directions toward solutions to the provenance segmentation
problem.

1. Introduction

The relationship between provenance and security has been con-
sidered by a number of authors over the last few years. Some re-
searchers have proposed using provenance as a basis for security
(e.g. provenance-based access control [20]) as well as of the secu-
rity implications of provenance-tracking (e.g. techniques for prove-
nance abstraction, sanitization, or redaction; see [6] for a survey).
An emerging application of provenance is its use in analyzing cause
and effect in system activity as a means of identifying security
threats to that system.

An advanced persistent threat (APT) is a stealthy, long-term ap-
plication intended to penetrate a system, persist in it, and carry out
either pre-determined or dynamically updated instructions from an
adversary. Those instructions may result in continuing exfiltration
of sensitive data as seen in the Office of Personnel Management
(OPM) data breach [19], continuing corruption of data [8], or the
capability to shut down [3] or damage [[10] critical systems such as
the industrial control systems that manage power grids. The stealth-
iness of APTs makes it difficult to detect them. APTs tend to rely
on actions that violate no system security policies, nor any social

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page.

TaPP 2016, June 8-9, 2016, Washington, DC.

Copyright remains with the owner/author(s).

Dave Archer

Galois, Inc.
dwa@galois.com

Hoda Eldardiry

Palo Alto Research Center
hoda.eldardiry@parc.com

Erin Chapman

Galois, Inc.
erin@galois.com

Adria Gascén

University of Edinburgh
agascon@inf.ed.ac.uk

Incoming provenance data

3 -
7 1 N

Classification, normalcy detection and diagnostics

Figure 1. Architectural overview

norms (such as work schedules) of the authorized users of targeted
systems.

The increase in such sophisticated threats has motivated the
use and mining of pervasive provenance to identify relationships
among system activities that may indicate malicious actions un-
detectable by policy-driven approaches. For example, DARPA’s
recently-funded Transparent Computing research program aims to
instrument critical systems with pervasive logging of system ac-
tivities, and apply provenance analysis that continuously monitors
such logs to identify actions that could be part of an APT. The idea
of monitoring provenance-like records to aid security has appeared
in several places [14}[16l 21]], but there are numerous challenges to
making it a reality.

In a transparent computing system, there is a separation of
concerns between provenance recorders, which run on the critical
systems we wish to protect, and provenance analysis, which may
run on separate systems, either in forensic (batch processing) or
online (stream processing) mode. It is expected that provenance
recorders will provide large volumes of data at high velocity (at
least in streaming mode). Therefore, provenance analysis systems
will need to deal with large and rapidly growing data sets and do so
with latencies that allow cyber network defense (CND) operators
to mount effective defenses.

We are among the participants in the ADAPT (A Diagnostic
Approach to Advanced Persistent Threat detection) project within
the DARPA Transparent Computing program, whose goal is to
analyze and recognize advanced persistent threats in provenance
graphs. Our approach seeks to combine state-of-the-art provenance

and database management technology, statistical anomaly detec-
tion, machine learning and diagnostics techniques [1]. In the initial
stages of the design of this system, we have identified the inter-
face between the large-scale provenance graph data and the inputs
expected by existing anomaly detection and classification and di-
agnostics techniques as a key design question. In particular, it ap-
pears necessary to perform some kind of approximation or down-
sampling on the raw provenance graph in order to provide inputs of
manageable size for later stages. We call this problem provenance
segmentation.

The ADAPT system (illustrated in Fig. [I)) receives provenance
graph data emitted by other systems. It ingests the data by stor-
ing the raw provenance graph in a graph database, then segments
the graph to define an approximate provenance graph (which we
call the segment layer) that can be used as a high-level proxy for
the raw graph. Feature extraction is then performed on segments to
summarize their contents. The segment layer and feature annota-
tions are intended for the use of later stages (not shown) that recog-
nize various types of activity detected in the graph, detect normal or
abnormal behavior, or diagnose potential APT activity by analyz-
ing causal relationships and matching patterns of behavior against
known strategies recorded in a knowledge base. The intent is that
most of the work of later stages can be performed at the segment
layer, and when potential attacks are identified at that layer, the raw
graph of the relevant segments can be inspected in detail.

In this paper, we present our analysis of the segmentation prob-
lem, whose requirements and design constraints have turned out to
be relatively difficult to pin down, and differs in subtle but impor-
tant respects from prior work on graph abstraction. This is work in
progress, and we do not report on a fully-evaluated research con-
tribution, but rather we hope that carefully describing the problem
space will be of interest to other researchers seeking challenges
in provenance data management. We believe that the problem(s)
of segmentation are likely to be shared by other research projects
seeking to analyze large amounts of continuously growing prove-
nance data, and hope that calling attention to this problem will spur
progress in this area.

2. Problem statement

We assume standard notation for directed, labeled graphs G =
(VECV XV,A: VUE — X) where X is some set of labels
on vertices and edges. We define a segment to be a subgraph of G
and write Seg(G) for the set of all segments of G.

We consider two high-level forms of the segmentation problem.

e The batch segmentation problem takes as input a graph (the
raw graph), a collection of segmentation criteria that define
segments and the relationships among them, and produces as
output a summary graph (the segment layer), along with cross-
links from the nodes of the segmentation layer to the associated
subgraphs.

The incremental segmentation problem takes as input a raw
graph, segmentation criteria and a sequence of insertions to the
graph. The problem is to initialize and maintain the segmenta-
tion layer efficiently as the updates to the graph are performed.

In both cases, the principal output is the segment layer G’ =
(V' E’,X') along with a mapping Sg : V' — Seg(G) from
vertices of the segment layer to their associated segments, that is,
subgraphs of G.

We do not assume that we have control over the behavior of
the provenance recorders providing the input graph. Therefore, al-
though we informally refer to the input graph as the provenance
graph and the edge relationships as causal, this terminology should
be taken with a grain of salt: it assumes a level of shared under-

Figure 2. Example of lossy segmentation

standing between recorders and analyzers concerning the seman-
tics of the provenance graphs that has not yet been attained. In this
paper, we focus on defining segmentation pragmatically in terms
of structural properties of the input graph, and place the question
of whether the input graph is “correct” or “complete” outside the
scope of this paper.

The provenance recorders will provide data by which to struc-
ture G as well as data that will describe the nodes and edges of G.
For the moment, we consider two basic kinds of segmentation cri-
teria based on such properties attached to nodes and edges in G. We
note that these kinds of segmentation can obviously be combined
or generalized:

e neighborhood segments consisting of all nodes and edges
within a given distance of a given node; for example, all ac-
tivity involving the process with PID 9002.

e temporal segments containing all activity observed (or re-
ported) in some time interval (of any length); e.g. all activity
between 11:00 and 11:05 GMT on December 1, 2015, or all
activity during December 2015.

We believe that the former has direct application to APT dis-
covery, while the latter may or may not, because APTs are typi-
cally extended campaigns with activities that occur over months to
years, possibly eluding short-term time-based analysis. Segmenta-
tion may also draw on techniques for pattern-based semantic an-
notation of the graph (which we call “pattern extraction” in our
current architecture).

2.1 Requirements

The functional requirements on the solution of the segmentation
problems introduced above are related to the specific purpose of
the segmentation process. The architectural overview depicted in
Figure |1} in particular in the case of the incremental segmentation
problem, can be seen as an instance of runtime verification. Run-
time verification is a program analysis technique based on monitor-
ing the execution of a running system in order to react to observed
behavior satisfying a certain property. In runtime verification, an
execution trace, i.e. a fixed representation of the execution, is pro-
vided in an online fashion to some inference system that checks the
property to be verified. The segmentation process of the ADAPT
system can be seen as an abstraction/annotation process of the exe-
cution trace to be provided to the inference systems that ultimately
detect an ongoing attack.

Although detailing the algorithms that operate on the segmented
graph produced by the segmenter is out of the scope of this paper,
we identify several classes of requirements.

Updatability The interaction between the segmenter and the
classification and diagnosis algorithms could also use feedback
from such inference systems to refine the segmentation, as in a
Counterexample-Guided Abstraction Refinement (CEGAR) [7]. A

scalable approach using this kind of technique would require an ef-
ficient way of updating the segmentation. This would require a data
model for segments that supports efficient updates, which would in
turn provide a way for the algorithms in charge of ultimately find-
ing attacks to “guide” the segmentation.

Validity Intuitively, we would like it to be the case that the seg-
mentation layer does not lose information with respect to the full
graph: for example, does not introduce or remove existing paths.
However, since the purpose of segmentation is to provide a more
compact and tractable representation of the graph, information loss
is sometimes inevitable. For example, Figure[Zillustrates a segmen-
tation of a graph and an edge that is required in order to preserve
paths, but also introduces a false path. Therefore, “correctness” will
generally be a weaker property, such as that all paths are preserved
(but some false paths are introduced), or vice versa.

Hierarchical decomposition The segment layer should enable
multi-resolution modeling where activity recognition algorithms
can operate on high-level representations of the graph, and also
zero in on low-level details when necessary. The goal of the activ-
ity classifier is to annotate the provenance graph with semantic de-
scriptions of activities within each segment. This can involve recog-
nizing composite activities. For example, an activity “remote shell
access” is composed of a sequential set of logged events “browser
forking bash”, “bash initiating Netcat”, and “Netcat listening on
new port”. The segmentation technique should therefore capture
the various levels of semantic abstraction.

Features The segment layer should provide summary informa-
tion useful for activity classification and normalcy detection mod-
els. These models will consume feature vectors that characterize
key properties of the provenance graph (e.g., graph normality), per-
form intelligent analysis of these features, and output normalcy
scores or activity descriptions. Different segmentations will pro-
vide different “views” of information in the provenance graph that
will be useful to construct these features. For example, one view of
the data may produce vectors that correspond to login activity or
activity related to a system resource, such as a password file. This
will enable ADAPT to implement powerful information fusion ap-
proaches to combine multiple sources of evidence during prove-
nance analysis [11]. As a starting point, features could consist of
any aggregate queries answerable from the segment extent.

Boundary definitions The segment layer should provide bound-
ary definitions that allow useful local activity classifications within
segment boundaries. The diagnostic engine can then globally rec-
ognize APT activities that span multiple segments, crossing these
segment boundaries. Key challenges such as segmentation noise
and fuzzy boundaries, where activities span multiple segments,
should be considered.

Properties of the segmentation layer It is not yet clear what
properties are desirable for the segmentation layer; this is a topic of
active discussion. For example, some diagnosis algorithms require
a directed acyclic graph, whereas there may easily be cycles in the
segmentation layer according to the relationships mentioned at the
beginning of this section. Do these cycles need to be removed (as,
for example, in PASS [18]]), in some principled way? Likewise,
the segmentation layer is redundant, in the sense that it may be
recomputed. Are segments themselves persistent or volatile? How
long should they persist?

2.2 Design Considerations

Scale and Incremental Processing 'We are interested in segmen-
tation in order to mediate between a large, and rapidly growing,
amount of detailed data and sophisticated classification or diagno-
sis algorithms. Thus, the segmentation process itself must scale to

large amounts of data. This suggests that segments should be rel-
atively small, simple and easy to identify. Likewise, assuming the
raw graph is stored in a database, it seems advantageous for seg-
ments to be easily definable via queries (and recorded using up-
dates) in the same formalism.

Segment constraints and representations Other forms of prove-
nance abstraction make stronger assumptions on the structure of
the abstracted subgraphs, such as convexity (see the next section
for additional discussion). We also want to record the relationship
between a node in the segment layer and its extent (the actual sub-
graph it represents). Representing a segment explicitly as a set of
nodes and edges could become expensive, however. If segments are
assumed convex, then only the set of nodes needs to be recorded
and the edges can be inferred. For non-convex segments, efficient
representations (and techniques for recovering the extent from the
representation) may need to be designed.

Incomplete information Temporal segments can be defined ei-
ther in terms of the transaction time (that is, the time the corre-
sponding raw graph data is recorded or entered into the database)
or valid time (that is, the time the recorded events actually hap-
pened, according to the monitor). Valid time appears preferable,
but complete valid time for all events may not be available, which
leads to a problem of incomplete information (similar to that stud-
ied by Kwasnikowska et al. [15] for OPM). If transaction time is
used, this may affect the extent to which time-based information at
the segmentation layer is useful to later processing.

3. Related approaches

Provenance segmentation is similar to several previously-studied
problems, such as user views [4l, hierarchical provenance [3],
provenance publishing [9], and provenance abstraction [17]. We
surveyed several provenance abstraction techniques previously [6];
here we focus only on closely related work.

User views, as implemented in the ZOOM system [4], mediate
the full detail of the provenance graph for consumption by users
who may only be interested in high-level details. Given a workflow
and a specification of the workflow steps that are of interest to the
users, ZOOM computes a provenance graph that (roughly speak-
ing) combines uninteresting nodes as much as possible. While the
end result is similar to the segmentation layer, ZOOM requires a
pre-defined workflow graph that can be annotated with user prefer-
ences. In our setting, we have no such workflow and even if we did,
it is not clear how to elicit appropriate preferences.

Buneman et al. [S] proposed a hierarchical data model for
provenance, and a technique for populating the hierarchical rep-
resentation starting from simple functional programs, and using
the call hierarchy as the basis for extracting abstract “views” of the
raw graph. The segmentation layer we consider can be viewed as
an instance of this data model (with just one layer of abstraction),
but the techniques for populating and viewing the data are not di-
rectly applicable in this setting because (as with ZOOM) there is
no fixed, known “program” generating the provenance graph.

Archer et al. proposed a hierarchical model for provenance of
relational data as part of the Multi-granularity, Multi-Provenance
Model (MMP) [2]]. MMP encodes provenance at the coarsest gran-
ularity for each relational algebra operation. MMP database in-
stances thus store the minimum metadata needed to represent com-
plete provenance of the data. The segmentation layer we consider
can be viewed as a data model layer analogous to the higher levels
of the relational model such as records or relations. However, the
techniques proposed in that work only apply to relational data and
the usual operators used to define, manipulate, and query such data.

The ProPub system [9] “publishes” provenance according to
a policy, specifying the requirements on what components of the

provenance graph to make visible and what components to abstract.
The ProvAbs system [[17] considers provenance graph abstraction
operations such as taking the “convex closure” of a subgraph (to in-
clude all nodes and edges between existing nodes of the subgraph),
extending subgraphs to make them compatible with an abstracted
node type, and replacing a subgraph with an abstracted node. Both
ProPub and ProvAbs operate on provenance graphs and do not re-
quire a workflow or program to be specified in advance. However,
segments need not be convex and the segmentation graph need not
be a provenance graph so it is unclear whether ProPub or ProvAbs
policies match the requirements for provenance segmentation.

Provenance segmentation also appears related to the problem of
streaming graph partitioning [12| 22]]. The goal of graph partition-
ing is to distribute graph data across nodes so as to allow efficient
distributed query processing. When the graph data is continuously
growing, it is of interest (just as in the case of provenance segmen-
tation). However, the end result of (streaming) graph partitioning is
a fixed partition of the whole graph, possibly with a query workload
in mind [12]. In contrast, segments may overlap and not all nodes
are part of a segment.

Provenance segmentation is also related to graph summariza-
tion. Related work [[13] aims to exploit the graph structure to sum-
marize and compress relational knowledge. This is done by ex-
tracting patterns and compressing structural knowledge encoded
within relational graphs. Potential compression paths are found
within repetitive or sequential structures. This makes it possible to
augment initial knowledge by adding qualitative relationships over
generalized entities.

4. Conclusions and open problems

We have introduced the provenance segmentation problem and dis-
cussed it in the context of a specific application, in which classifica-
tion and diagnostics algorithms are to be performed on an approx-
imate representation of the raw provenance graph. We can gener-
alize this picture to consider any analysis that is too expensive to
be performed routinely on the full provenance graph, but may be
able to work with an approximation of the graph. Given such an
algorithm, the following general problems seem worthwhile to in-
vestigate:

e Validity of segmentation: What formal guarantees need to hold
in order for algorithms working on the segment layer to produce
acceptable results with respect to the raw graph?

Incremental segmentation: Given a segmentation strategy, how
can we incrementalize it so that whenever the raw graph is
(additively) updated, we can quickly produce the new segments
and edges for the updated graph?

e Adaptive segmentation: Given algorithms that operate on the
segment layer, and an annotated training set that we can use to
evaluate how well the algorithms are doing using a given seg-
mentation strategy, can we learn a good segmentation strategy?

Acknowledgements This material is based upon work partially
supported by the Defense Advanced Research Projects Agency
(DARPA) under contract FA8650-15-C-7557.

References

[1] Rui Abreu, Daniel G. Bobrow, Hoda Eldardiry, Alexander Feldman,
John Hanley, Tomonori Honda, Johan de Kleer, Alexandre Perez,
Dave Archer, and David Burke. Diagnosing advanced persistent
threats: A position paper. In Proceedings of the 26th International
Workshop on Principles of Diagnosis (DX-2015), pages 193-200,
2015.

[2] David W. Archer, Lois M. L. Delcambre, and David Maier. User
trust and judgments in a curated database with explicit provenance.

In In Search of Elegance in the Theory and Practice of Computation,
volume 8000 of Lecture Notes in Computer Science, pages 89—111.
Springer, 2013.

[3] M. Assante. Confirmation of a coordinated attack on the ukrainian
power grid. 2016.

[4] Olivier Biton, Sarah Cohen-Boulakia, Susan B. Davidson, and
Carmem S. Hara. Querying and managing provenance through user
views in scientific workflows. In ICDE, pages 1072-1081. IEEE,
2008.

[5] Peter Buneman, James Cheney, and Egor V. Kostylev. Hierarchical
models of provenance. In TaPP 2012, pages 10-10, Berkeley, CA,
USA, 2012. USENIX Association.

[6] James Cheney and Roly Perera. An analytical survey of provenance
sanitization. In JPAW 2014, number 8628 in Lecture Notes in Com-
puter Science, pages 113-126. Springer-Verlag, 2015.

[7] Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Hel-
mut Veith. Counterexample-guided abstraction refinement for sym-
bolic model checking. J. ACM, 50(5):752-794, 2003.

[8] D. Deka, R. Baldick, and S. Vishwanath. Data attacks on power grids:
Leveraging detection. Innovative Smart Grid Technologies Conference
(ISGT), 2015.

[9] Saumen C. Dey, Daniel Zinn, and Bertram Ludéscher. ProPub: To-
wards a declarative approach for publishing customized, policy-aware
provenance. In SSDBM, pages 225-243, 2011.

[10] Marcos Donolo, Armando Guzman, Venkat Mynam, Doug Salmon,
and Mark Zeller. Mitigating the aurora vulnerability with existing
technology. 2009.

[11] Hoda Eldardiry, Kumar Sricharan, Juan Liu, John Hanley, Robert
Price, Oliver Brdiczka, and Eugene Bart. Multi-source fusion for
anomaly detection: using across-domain and across-time peer-group
consistency checks. Journal of Wireless Mobile Networks, Ubiquitous
Computing, and Dependable Applications, 5(2):39-58, 2014.

[12] Hugo Firth and Paolo Missier. Workload-aware streaming graph par-
titioning. In Workshop on Querying Graph Structured Data (GraphQ
2016),2016. http://ceur-ws.org/Vol-1558/paper26.pdf.

[13] Scott E. Friedman. Exploiting graph structure to summarize and com-
press relational knowledge. In Workshop on Qualitative Reasoning.,
2015.

[14] Eleni Gessiou, Vasilis Pappas, Elias Athanasopoulos, Angelos D.
Keromytis, and Sotiris Ioannidis. Towards a universal data provenance
framework using dynamic instrumentation. In SEC 2012, pages 103—
114,2012.

[15] Natalia Kwasnikowska, Luc Moreau, and Jan Van den Bussche. A
formal account of the open provenance model. TWEB, 9(2):10, 2015.

[16] Michael P. Mesnier, Matthew Wachs, Raja R. Sambasivan, Julio
Lépez, James Hendricks, Gregory R. Ganger, and David R.
O’Hallaron. //trace: Parallel trace replay with approximate causal
events. In FAST 2007, pages 153-167, 2007.

[17] Paolo Missier, Jeremy Bryans, Carl Gamble, Vasa Curcin, and Roxana
Danger. ProvAbs: Model, policy, and tooling for abstracting PROV
graphs. In JPAW 2014, pages 3-15, 2014.

[18] Kiran-Kumar Muniswamy-Reddy, David A. Holland, Uri Braun, and

Margo Seltzer. Provenance-aware storage systems. In USENIX Annual
Technical Conference, pages 43-56, 2006.

[19] US Office of Personnel Management Office of the Inspector General.
Final audit report, report number 4a-ci-00-14-016. 2014.

[20] Jaehong Park, Dang Nguyen, and Ravi S. Sandhu. A provenance-
based access control model. In PST 2012, pages 137-144, 2012.

[21] Manolis Stamatogiannakis, Paul Groth, and Herbert Bos. Decoupling
provenance capture and analysis from execution. In 7aPP ’15, Edin-
burgh, Scotland, July 2015. USENIX Association.

[22] Isabelle Stanton and Gabriel Kliot. Streaming graph partitioning for
large distributed graphs. In KDD 2012, pages 1222-1230, New York,
NY, USA, 2012. ACM.

A. Overview of current approach

In this appendix, we provide details of our current prototype ap-
proach to segmentation. This is work in progress and likely to
change in future versions of the system as we gain experience with
real data.

A.1 Segmentation specifications

We use segmentation specifications to describe what kinds of seg-
ments to construct and how to annotate the resulting segment layer
nodes.

The abstract syntax of segmentation specifications is as follows:

<rule> ::= segment <name> (<prop> = <exp>, ...)
by <specs>

<specs> ::= <spec> | <spec> and <specs>

<spec> ::= time window <time>

(from <time>)?
(starting <var>)?

| radius <num> from <prop>=<exp>
(following <edges>)

<prop> = ... //property names
<var> = ... // variables

<exp> = <num> | <string> | <var>
<num> = ... // numbers

<string> = ... // string literals
<time> = ... // times/durations
<edges> = ... // sets of edge names

In our prototype implementation, we represent such specifica-
tions as JSON data structures to save effort on parsing. An example
is shown in Figure3]

The idea here is that each spec is a rule for identifying match-
ing subgraphs, and this matching process may also result in binding
some variables to values. The segment name is a special property
that every segment has, so that we can tell different kinds of seg-
ments apart, and the additional <prop>=<exp> pairs are additional
properties that get added to the resulting segment node, so that we
can see that e.g. a given segment is for PID 42’s activity starting at
a given time. We can choose to include more information (such as
the duration) or less.

For time window segments

time window td from ts starting T

the window time td is the duration of each segment, and the
optional time ts is the time of the first segment in the window
series. starting T means that for each resulting segment, X is
bound to the start time of the segment’s time window. (The end
time could also be stored, but is recoverable from the segment
specification and the start time.)

For radius segments

radius n from prop=X following {el,...,em}

the idea is that we start by identifying nodes having the property
prop (whose value is bound to a variable X) and follow up to n
edges (in either direction) whose labels are among el, . .. ,em.
Each specification produces (conceptually) a set of subgraphs
and a binding of the variables in the specification. This results
in a new segment node linked to (the nodes of the) subgraph,
with a segment name property set to the declared name, and any
additional properties set using the values of the variables. The and
operation (conceptually) combines the results of two specifications
as follows: for each pair (SG1,envi) in the result of specy and
(SG2,env2) in the result of speca, if SG1 overlaps with SG2
and env; and env, are compatible environments, produce (SG1 N
SG2,envi W envz) where envi W envs is the merge of the two

environments. (It probably makes sense to restrict attention to rules
that do not reuse variables, so that combining environments is
always possible).

A.2 Formal semantics

Fix sets I' of property names, 3 of edge labels, and D of data
values. We assume that there is a special attribute time associating
certain nodes with times.

We extend the graph model to allow for properties and their
values. Let G = (V, E,a, \) be a graph where o« : V. X T' — D
associates each property name with an optional data value, and
A : V UE — X associates a label to each vertex and edge.

A graph G’ = (V' E’, o/, \) is a subgraph of G if (as usual)
V' CV,E' C E and the labels in G’ are compatible with those in
G, thatis, forallv € V' and all p € T we have o’ (v, p) = a(v, p),
and similarly for all e € E’ we have \'(e) = A(e). Since o’
and)\’ are obtainable by restriction, we can represent a subgraph
just as a set of nodes and edges. A valuation is a partial mapping
p + Var — D, from variables to data values. The result of
segmentation of a graph G is a set of pairs (SG, p) where SG is a
subgraph of G and p is a valuation.

In what follows, we fix an ambient graph G by which all subse-
quent definitions are parameterized and we discuss how to segment
a graph G’ = (V', E) which may be G itself (initially) or a sub-
graph of G.

To segment according to rule

radius N from p = X following S

suppose [V is the radius, p is the property name and S is the set of
possible edge labels to follow. Suppose v € V’. Then we define
Radius(G’,v, N, S) to be the subgraph of G’ obtained by adding
v and all nodes reachable from v by paths of length < /N following
edges whose labels are in S. Then the result of segmentation is

{(Radius(G',v,N,S),[X =d] | a(v,p) = d}

that is we generate one segment for each node in G’ having p = d
for some d, and we record this choice in the valuation.
To segment according to the rule

time window T_s from T_s starting X

suppose ¢ is the start time, and ¢,, is the window length. Consider
the periodic intervals starting at t,, with period ¢4 as follows:

[tsyts+ta), [ts +ta,ts +2ta),. .., [ts +nta,ts + (n+1)tq),. ..

In a finite graph G’ there is a finite subset of these intervals that
contains all time property values present in G’. Let Starts(G")
be the set of starting times of such intervals, that is,

Starts = {ts+nty | v € V'its4ntqe < alv, time) < ts+(n+1)tq}

We define Time(G’,I) as the subgraph of G’ obtained by
retaining all nodes with a time property in interval I, and all edges
between such nodes.

{(Time(G', [t,t + ta)),[X =t]) | t € Starts(G')}

To segment the conjunction of two rules spec; and specs, let
Y7 be the result of segmenting G’ according to speci and Y the
result of segmenting according to specs. The result of segmenting
according to specl and spec2is:

{(SG1 N SG2,p1Wp2) | (SG1, p1) € Y1,(SG2, p2) € Ya}

where we consider only the compatible pairs p1, p2 that agree on
any common variable values.

To segment the sequential composition of two rules speci then speca,

let Y7 be the result of segmenting G’ according to spec;. For any
subgraph SG of G, let Y2(SG) be the result of segmenting SG

segment byPidTime(pid=X, startTime=T)
by radius 3 from PID=X

following {"wasDerivedFrom", "used", "wasGeneratedBy",
"wasAssociatedWith", "wasInvalidatedBy"}
and time window 24:00:00 from 2013-03-16T00:00:00 starting T

{"segmentation_specification"
{"segment"
{"name": "byPidTime",

"args": [{"property" "Pid", "value" : {"var"
{"property" : "startTime", "value" : {"var"
"specifications" : [

{"radius" : { "r" : 3,
"from" : {"property" "PID",
"edges" ["wasDerivedFrom",
“used",
"wasGeneratedBy",

"wasAssociatedWith",
"wasInvalidatedBy"]}},

{"time" : {"window" : {"days" : O,

"hours" : 24,
"minutes" : O,
"seconds" : 0},
"from" "2013-03-16T00:00:00",
"starting" : {"var" "T"}}}
]
}
}

nxu}}’

"T"}}],

uxn},

Figure 3. An example segmentation specification and its JSON representation

according to specz. Then the result is:
{(SG2, p1 W p2) | (SG1,p1) € Y1, (SG2, p2) € Y2(SG1)}

where we again consider only the compatible pairs p1, p2 that agree
on any common variable values.

The difference between and and then is that and considers
each specification independently on the current graph, and takes
the intersection of the resulting subgraphs, whereas then segments
using the first specification, then “focuses” on each resulting sub-
graph and segments each one using the second specification. The
variable bindings are combined using W in either case.

In our current prototype, each segment in the final result is
recorded in the graph database as a new segment node, whose name
property is set to the declared segment name, and other properties
in the segment header are set to the values obtained from the
corresponding variable bindings. The segment node is also linked
to all of the nodes in the segment.

Notice that we include empty segments in the result, as it may
be interesting to record the fact that a segment with given meta-
data was considered and is indeed empty (e.g. process 42 had no
activity between midnight and lam on Friday.) It may, of course,
be worthwhile to consider compression techniques to avoid storing
large numbers of empty segments explicitly.

A.3 Edges among segments

We can consider several kinds of relationships among segments, de-
fined in terms of the raw graph, that can be recorded as edges in the
segment layer. We say that a segment overlaps another segment if
they have vertices in common, otherwise the segments are disjoint.
Two segments are contiguous if the shortest path between them is

of length 1. A segment S depends on S if there is a directed path
from S; to S2 in G. Two segments are concurrent if each depends
on the other. Two segments are independent if neither depends on
the other. If S5 depends on S; but S7 does not depend on S» then
we say that S1 happens before Ss.

Currently we do not define explicit edges among segments dur-
ing segmentation. However, since the segments are linked to the
nodes of their subgraphs, such edges can be defined implicitly as
queries. For example, we could define an edge relationship between
segment nodes to hold if there is a (directed) path from a node in
one segment to a node in another. It is not yet clear whether we
want to (or need to) persist such edges in the database or simply
generate them on the fly when the segment layer is analyzed by
later stages, such as the diagnostic engine [1].

	Introduction
	Problem statement
	Requirements
	Design Considerations

	Related approaches
	Conclusions and open problems
	Overview of current approach
	Segmentation specifications
	Formal semantics
	Edges among segments

