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Abstract

Although provenance gained much attention, solutions to
capture provenance do not meet all the requirements. For
instance, most solution currently assume a closed world
and are explicitly designed to capture provenance. Thus,
they fail in integrating the provenance concern into ex-
isting environments. Hence, we argue that provenance
should be considered as cross-cutting concern that can
easily be integrated into existing systems and aims at es-
tablishing a universe of provenance. In this paper, we
propose a solution concept, introduce different types of
provenance systems, adequate software engineering tech-
niques, and report our experiences from a first prototype.

1 Introduction
As provenance gained much attention in the recent years,
there exist several solutions that are explicitly designed
to capture provenance. For instance, a prominent ex-
ample to capture provenance for scientific workflows is
the Kepler system [6]. Moreover, formal approaches for
database systems and respective prototypes as Orchestra
for the semiring model [4] are proposed in the litera-
ture [3]. However, we argue that in practice capturing
provenance efficiently is still one of the major challenges.
This becomes even worse when considering complex IT-
landscapes, including systems with limited knowledge
about their implementation (e.g., third party services).
Furthermore, human interactions or non-computational
steps may introduce highly different levels of granularity
and the necessity for different ways to collect provenance.
Finally, different user interests and changing privacy poli-
cies may influence provenance even at capturing level
(despite respective query models). As a result, designing,
linking, and adapting solutions that are explicitly designed
to capture provenance is costly, inflexible, and in some
cases even impossible. To overcome these limitations, we
argue that, especially for complex IT-landscapes, prove-
nance should be considered as cross-cutting concern that

can seamlessly be integrated into existing systems and
thus is able to gather provenance in a flexible and efficient
way. To achieve this vision:
• we propose a solution concept addressing prove-

nance on different granularity levels, where we
change black-box into more white-box computation,
• we describe different types of systems based on im-

plementation details and the way the desired prove-
nance information is spread across these systems,
• we show how to use techniques, known from soft-

ware engineering, to integrate the provenance con-
cern depending on the system type and report expe-
riences from a first prototype we implemented.

2 Solution concept
To realize our vision of ubiquitous and flexible prove-
nance capturing, we analyzed ways to link coarse-grained
forms of provenance to more fine-grained forms in a sys-
tematic way. In fact, our results indicate that several
approaches proposed in the literature form a conceptual
framework indicating what to capture at different levels
of granularity [10]. However, this conceptual framework
does not specify how to capture the desired data. In con-
trast, with our proposed concept we can apply a flexible
and formal approach (if there is one) that indicates what
data to capture. To this end, we use adequate software
engineering techniques to collect the provenance data.

2.1 Overview on our Solution
A major goal of our solution is that it is generally usable.
This means that we want to be able to exchange the col-
lected provenance data among different systems heading
toward a universe of provenance. Consequently, we use
an internal representation that is based on the Open Prove-
nance Model (OPM) [8, 10], a commonly accepted model
to exchange provenance data. However, our internal repre-
sentation contains two major extensions compared to the
OPM. First, we introduce complex artifacts (having inter-
nal structure), which are similar to collections in the OPM,
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allowing for instance to link parts of the input to parts
of the output. In contrast to collections that are mainly
associated to arrays or queues, complex artifacts may also
represent objects in object-oriented programming or a
database containing several tables, which again have tu-
ples etc. The second extension are complex processes,
which are mainly inspired by user-views [2]. However,
in combination with complex artifacts and implicit de-
pendencies and due to the advantage of considering the
zooming-problem already when collecting the data, we
are more flexible in visualizing different levels of granu-
larity in the provenance graph [10].

The basic term for our provenance capturing is the ex-
ecution of a certain function and its respective in- and
output (equivalent to OPM processes), encapsulating a
certain computation in a black box manner. This proce-
dure is similar to the one used by Amsterdamer et al. for
the operations of the pig latin language [1]. However, they
map the operations of the pig latin language to a nested
relational calculus to apply the semiring model allowing
very detailed provenance capturing. In contrast, for user
defined functions they keep the black box representation.
Since we are interested in complex IT landscapes, the
problems we face are similar to those of user defined
functions. Hence, we additionally refine these functions if
and only if (1) additional implementation details or a for-
mal approach are known and (2) this particular function
is of user interest. Note that this allows to flexibly change
the implementation, for example, if there are advances
in formalizing provenance capturing or changes of the
user interest for instance due to privacy policy changes.
Summarily, the provenance information for the execution
of a certain function we are looking for are: (1) input
and output, (2) (optional) call hierarchy (for zooming),
(3) input classification into exogenous and endogenous
input in spirit of [7], (4) (optional) linking input parts to
parts of the output, and (5) (currently only for database
operations) value origin.

2.2 Provenance capturing for object-
oriented programs

As we assume that many programs in a heterogeneous
IT-environment are object-oriented programs, we need
to specify how to capture provenance within these sys-
tems. To the best of our knowledge, there is currently
no commonly accepted formalism that allows for prove-
nance collection, if the information we are looking for is
represented by the structure of the program itself. Thus,
we currently map the elements of such a program to the
information we are looking for with the help of our own
approach. In the following, we will briefly explain this
approach with he help of the example in Figure 1. Due to
space limitations, we refer the reader to Appendix A for a
more formal and detailed description.

1
2
3
4
5
6
7
8
9
10
11 } }

class Foo{
private int memOne = 3;
private Foo2 memTwo;//never used

RetType[] somefunc(int arg1/*=2*/){
RetType[] ret = new  RetType[arg1];
memOne++;
for (int i=0; i<arg1; i++)

ret[i] = new RetType(memOne);
return ret;

Figure 1: Provenance for object-oriented programs

Points of interest
To initiate a specific provenance collection event, we need
distinct points in the structure of a program, called points
of interest (PoI). As our basic term for provenance captur-
ing is a function, we refer to method and constructor

calls. For instance, in Figure 1 there are two possible PoIs:
(1) call of the method Foo.somefunc(int) in Line 5
and (2) a constructor call RetType.RetType(int) in
Line 9. Hence, a PoI contains a return type, a function
name, and a list of argument types (from the function call).
Note that we currently do not consider array constructors
(Line 6), as they mainly allocate the required memory.
The basic idea to achieve flexibility is that a user defines
the PoIs and we collect provenance only at these distinct
points. The provenance capturing procedure at each point
is the same as we will explain in the following.

2.3 Two phases for black box provenance
When reaching a PoI, we need two phases to collect
in- and output of a function (black box). This is due
to the fact that, when entering the function, we do not
know the return values (output). Furthermore, when
leaving the function, possibly input values may have
changed (or are already destroyed). To explain how to
determine in- and output of a function, we assume that
there is only one PoI in our example (c.f. Figure 2 Line
14): Foo.somefunc(int) and the method is called with
arg1 = 2. Furthermore, we assume that class member
memOne is equal to three. We will explain how we cap-
ture provenance with the help of a reference approach.
This approach is furthermore used to compare this ap-
proach to alternative ones. The necessary source-code
modification to capture provenance for the example in
Figure 1 are depicted in Figure 2. The basic idea is to use
if-condition to decide whether a PoI is active.

Entering a function: Pre-phase. The pre-phase of
each PoI creates the function entry (including time-
stamps) and determines the respective input. For
Foo.somefunc(int) the pre-phase is executed when
entering the function (Figure 2 Line 2-4). First, all argu-
ments of the method call are part of the input. For the
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13
14 SOMEFUNC = true;
15 REF_CONSTRUCTOR = false;}

RetType[] somefunc(int arg1/*=2*/){
if(ActivePOI.SOMEFUNC){

Object input ={arg1,memOne,memTwo};
ProvenanceHandler.prePhase(input);}

RetType[] ret = new  RetType[arg1];
memOne++;
for (int i=0; i<arg1; i++)

ret[i] = new RetType(memOne);
if(ActivePOI.SOMEFUNC)

ProvenanceHandler.postPhase(ret);
return ret;

interface ActivePOI{

Figure 2: Source-code modification to capture provenance
using the reference approach

example, we therefore add arg1. Second, we need to add
all class members to the input, as they can be used within
the method code. Thus, memOne and memTwo are added.
Finally, for all arguments passed by reference, we state
the current values. This is because any modification of
these arguments may be visible for different parts of the
program and thus we have to add this input artifact to
the list of output artifacts if there was any modification.
Note that we currently do not consider changes to the
internal state (members), because we may not see every
modification, which is the main difference to [1].
Leaving a function: Post-phase. The post-phase deter-
mines the output of the function and persistently saves the
provenance records when leaving the function (Figure 2
Line 9-10). To this end, we first add the return value of the
method or constructor and then every argument (i.e., no
class members) that is (1) called by reference and (2) was
modified within this function. As a result, we know in-
and output, but we do not have knowledge how parts of
the input are mapped to parts of the output. For instance,
the return value in our example is an array containing
two object of type RetType. To solve this problem, we
connect different fragments (cf. Section 2.4) when the
required details are known and additional PoIs are defined
within the execution of this particular function.

2.4 From black box to white box
To turn a black box computation step into a more white
box one, we use call hierarchies of the functions, which
is highly related to granularity. In Figure 3, we depict
the linked provenance data, captured at both PoIs in our
example, in graph notation. The call hierarchies indicate
which additional functions were called while executing
a specific function. For instance, we know that function
Foo.somefunc(int) called two additional functions in
Figure 1 Line 9 (in this case constructors). Now we
want to link parts of the input to parts of the output. In
particular, we want to know which artifacts are used to

somefunc(arg1=2, 
                (memOne=3,
                 memTwo))

RetType(memTwo=4) 
RetType(memTwo=5)

retret[0] ret[1]output

output
outputcalledBy

calledBy

produced by PoI 
somefunc(int)
produced by PoI 
RetType(int)
Complex 
artifact

Figure 3: Toward white box computation

create the single parts of array ret. To this end, we need a
second PoI RetType(int) that collects the provenance
data whenever this constructor is executed. As a result, we
know that each RetType was created using an integer

from the calling function. Furthermore, because each
artifact has a unique id we know that memOne is used to
create each part of ret and its current value, because it
is a simple artifact directly linked to a value.

3 Toward efficient provenance capturing
Since we want to collect the provenance information effi-
ciently, we need criteria to evaluate different software en-
gineering techniques that allow to implement provenance
capturing. Furthermore, we need a reference technique to
qualify alternative solutions.

3.1 Evaluation criteria
The criteria we consider are: (1) Invasiveness, (2) Manual
implementation overhead, and (3) Runtime overhead. In
the following, we will briefly introduce these criteria and
motivate their significance.
Invasiveness determines the amount of changes to the
original program and the ability to automatically remove
the code implementing a specific point of interest if it is
no longer of interest.
Manual implementation effort states the effort to im-
plement the provenance collection. It is introduced to
give credit to solutions that (semi)-automatically inject
the additionally required source code.
Runtime overhead includes the additional amount of
time as well as additional memory consumption for prove-
nance capturing.

Properties of the reference approach. For the
dynamic-if approach (cf. Section 2.3), which is the
reference approach, we have to manually introduce if-
conditions for every PoI. As a result, this approach is
maximally invasive as we permanently modify the source
of the program and cannot automatically remove the mod-
ification. Furthermore, this technique requires maximum
implementation effort, as we have to manually locate and
implement the modification for each PoI.

3.2 Groups of provenance systems
The basic idea behind introducing different groups of
provenance systems is that we want to identify software
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engineering techniques that are beneficial for a certain
group, rather than to consider every system in isolation.
Furthermore, we want to show the general feasibility of
our approach based on the groups and find properties
in the program structure that are either beneficial for in-
tegrating the provenance concern or impose a specific
drawback. For instance, implementation effort highly
depends on the number and distribution of the PoIs in
the source code of the system. Thus, specific techniques
that introduce high performance overhead but require low
implementation effort may be feasible for one system
while a different system requires very low performance
overhead (e.g., databases).

Group 1: No source code access. For third party ser-
vices such as APIs and respective libraries or proprietary
database systems, we have no access to the source code
and thus cannot modify the implementation. However, as
we want to collect provenance for these system as well,
we need to get as close as possible. For databases, we may
use modified drivers to capture provenance (i.e., query
and respective result), or link the provenance collection
event to certain functions of an API. Generally, we as-
sume that there is only a limited number of PoIs (because
we cannot capture fine-grained provenance). As a result,
using techniques that have high implementation or perfor-
mance overhead seem to be possible for these systems.
1
2
3
4
5
6
7
8
9 //get Class members, requires reflection
10
11

aspect ProvenanceImplementation{
//PoI specific
pointcut SOMEFUNC() : execution(int Foo.somefunc(..));
before() : SOMEFUNC () { getInput(thisJoinPoint); }
after() returning (Object o) : SOMEFUNC(){ getOutput, o);}
//works for all PoI
void getInput(JoinPoint jp){

Object[] inputArgs = joinPoint.getArgs();

ProvenanceHandler.prePhase(inputArgs, classMembers);}

Figure 4: Source-code modification to capture provenance
using AspectJ

Group 2: Congruent PoIs. Having congruent PoIs
means that the PoIs are represented by the structure of the
program as described in Section 2.2. As a result, our func-
tion is linked to the execution of one particular method.
This is, for instance, the case when debugging programs
that will possibly introduce a high number of PoIs. An
example for congruent PoIs is given in Figure 2. Hence,
we hypothesize that using aspects (e.g., ApsectJ [5]) for
these systems is beneficial.

Group 3: Scattered PoIs. The basic characteristic of
these systems is that the functions of interest are not neces-
sarily congruent to the methods but scattered over multiple
methods of the system. Furthermore, we are typically in-
terested only into small parts of the system. For instance,
for database-like provenance, query processing is only a

part of the overall system. Moreover, the specific imple-
mentation of a relational algebra operator may cut across
multiple methods. Consequently, we need to assemble
the provenance and locate the respective source code loca-
tions. As a result, we need more flexible and fine-grained
techniques than for congruent PoIs.

To sum up, these groups give a first hint what tech-
niques may be beneficial for a certain system. However,
in the remainder we will show that not the system itself,
but the user interest is the decisive criterion that maps a
system to one of these groups.

4 First prototype and experience report
In this section, we introduce software engineering tech-
niques to integrate the provenance concern. Moreover,
we report experiences of applying specific techniques for
a certain group of systems with the help of an implemen-
tation prototype. Furthermore, we want to emphasize that
the provenance we collect highly depends on the user
interest. We choose one system that can, dependent on
the user interest, belong to each of the groups. In the
remainder of this Section, we use the open-source Java
DBMS HyperSQL as example system and give respective
use cases when the system belongs to which group.

Group 1: No source code access. When a user is not
interested into the details of the computation or we have
no source code access as for proprietary DBMS, the sim-
plest way to capture provenance is to relate the queries
to the query response. Hence, we do not refine the black
box characteristic of the function. For the prototype we
modified the JDBC driver, using aspects and two PoIs.
Particularly, the benefits of using AspectJ is that we can
use the implementation for every JDBC driver, because
the PoI is directly defined on the methods of the inter-
face that each JDBC driver has to implement. Hence, we
conclude that when there is some communication infras-
tructure, such as a JDBC driver, or a service infrastructure,
using aspects is beneficial, because we simply link an as-
pect to the particular class implementing this commonly
used part of the infrastructure.

Group 2: Congruent PoIs. In a current research
project, we modify the HyperSQL table manager to store
tables column-wise (instead of row-wise) to analyze the
benefit of column stores in general and different materi-
alization techniques in particular. We used provenance
for debugging the system, to visualize the changes, and
to keep reference to the original implementation. As our
modifications are in fact changes to the program structure,
we have congruent PoIs and can use techniques such as
AspectJ to keep track of the changed program structure.

To explain how aspects work and why they are benefi-
cial for this group of systems, we use the already known
example in Figure 1. In Figure 4, we depict source code
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that allows to capture provenance with the help of as-
pects. First, we have to define a pointcut (Line 3), which
is our PoI. Furthermore, we define that before and af-
ter this pointcut the methods getInput and getOutput

are executed respectively. To specify new PoIs we sim-
ply need new pointcuts, that means three lines of code
per PoI. Furthermore, we can create one pointcut for a
whole packages using wildcards in the pointcut definition,
which is highly useful to flexibly adapt the provenance
collection process. Finally, as we do not permanently
modify the original source code, we can totally remove
the additional source code that collects the provenance,
for instance when benchmarking different variants of the
modified DBMS. However, our first results indicate a sig-
nificant performance overhead using aspects. The main
reason therefore is not the aspect itself but the reflective1

determination of class members (e.g. to get tuple IDs
etc.). To sum up, one of the lessons learned is, when there
are frequently executed functions (e.g., for every row in a
database table) our current approach needs improvement.
Group 3: Scattered PoIs. When collecting provenance
for tuples, we have scattered PoIs. This is because only
small parts of the DBMS are used for the relational opera-
tions and different parts such as transaction management
are of minor interest. Furthermore, tuple operations are
scattered over multiple methods, some operations are
mixed (e.g., projection and selection), and some informa-
tion such as tuple identifiers are not visible at all in these
methods. As a result, we do not use aspects here for two
reasons. First, we discovered a significant performance
overhead using aspects, which is undesirable for a DBMS.
Second, we need more flexible techniques as some of the
desired information are only visible in certain blocks of
a method (i.e., not when entering or leaving a method).
Moreover, as the main challenge is to identify the source
code locations implementing a certain PoI, which is cur-
rently done manually, automatic code injection currently
introduces no benefit. Thus, we use a preprocessor-based
technique. Hence, we can manually introduce source
code at any location within the system (even to modify
existing statements). As this technique furthermore does
not wrap around methods, our first measurements indicate
a smaller runtime overhead than using aspects. Finally,
it is also possible to remove unnecessary source code au-
tomatically if not needed (e.g., if we are only interested
into why-provenance, but not in where-provenance).

5 Conclusion and future work
This paper addresses the challenge of capturing prove-
nance efficiently in existing complex IT-environments.
While in previous work we focused on how to exchange
provenance annotated data with the help of invertible wa-
termarks in a reliable way [9], this paper paper deals with

1http://java.sun.com/developer/technicalArticles/ALT/Reflection/

efficient provenance capturing in one system. We present
a first approach that allows for provenance capturing in
object-oriented programs beyond black-box assumption.
Furthermore, we introduce evaluation criteria and a refer-
ence approach to qualify software engineering technique
that can be used to efficiently integrate the provenance.
Based on the distribution of the provenance concern, we
introduce different classes of systems that act differently
w.r.t. to the evaluation criteria. For instance, if the prove-
nance concern is represented by the structure of the pro-
gram (classes and methods) and the performance is not a
major challenge using aspects (e.g. AspectJ) is beneficial.
In contrast, if performance is a major challenges using
aspects is problematic mainly due to reflection, which has
a significant drawback on performance.

For future work, we intend to examine how the prove-
nance concern is distributed in existing systems and for
different producer consumer relationships. Based on these
results and our system classes we will work out a catalog
that shall help programmers to choose an adequate en-
gineering technique to integrate the provenance concern.
Additionally, we will state properties of a program that
allow for easy provenance integration. Furthermore, we
will determine how programming conventions, such as
always use get() set() methods to access class mem-
bers, simplify our provenance capturing. Finally, we need
to examine technical limits and their practical relevance
of our approach.
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A Terminology

Table 1: This table lists the terms used to collect the provenance data from Section 2.2 in a more formal way.

Term Definition Description

Point of interest id Unique id of the PoI.
name Fully qualified name of the PoI.
return type Type of the return value.
arguments List of argument types.

Function execution id Unique id of the function execution.
id Reference to the PoI that triggered the provenance collection event.
Input List of input artifacts for this function execution.
output List of output artifacts for this function execution.
begin time Timestamp when execution of this function starts.
stop time Timestamp when execution of this function is finished.

Artifact - Each artifact either is a complex or a simple artifact.
Simple artifact id ID, unique for all artifacts.

name Optional name.
type Type or role: E.g. for Java (int, double, etc.).
value Value of this simple artifact, interpretation depends on the type.

Complex artifact id ID, unique for all artifacts.
name Optional name.
type Type or role: E.g. for Java everything that is called by reference.
simple children Contained simple artifact.
complex children List of IDs pointing to contained complex artifacts.

Call invoker ID of the invoking function.
called function ID of the called function.

Current values function Reference to the executing function.
complex artifacts Sublist of IDs of input artifacts called by reference.
hash Hash value representing current state.

Exogenous input function Reference to the executing function.
artifacts Sublist of IDs of input artifacts that can be omitted

in computation without changing the result.

Table 2: This table lists functions used to collect the provenance data.

Name Definition Description

identity identity : Returns true if both artifact have the same ID,
arti f act×arti f act→{true| f alse} else false.

weak identity weak identity : Returns true in case of the same structure and all
arti f act×arti f act→{true| f alse} contained simple artifacts have the same value.

value value : Returns a hash value that represents the current
arti f act→ N state of the contained simple artifacts.
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