BioLite, a lightweight bioinformatics framework with automated tracking of
diagnostics and provenance

Mark Howison
Brown University

Abstract

We present a new Python/C++ framework, BioLite,
for implementing bioinformatics pipelines for Next-
Generation Sequencing (NGS) data. BioLite tracks
provenance of analyses, automates the collection and re-
porting of diagnostics (such as summary statistics and
plots at intermediate stages), and profiles computational
requirements. These diagnostics can be accessed across
multiple stages of a pipeline, from other pipelines, and
in HTML reports. Finally, we describe several use cases
for diagnostics in our own analyses.

1 Introduction

As scientific data sets increase in size and analyses be-
come more complex, there is growing concern about the
need to track provenance: the exact origin and history of
all products of a study. Ad hoc or scripted analyses that
do not carefully document intermediate steps and results
can lead to poor science: results may not be reproducible
by other scientists (or even the scientist who conducted
the original analysis!); errors can be difficult to detect;
errors, once discovered, cannot be easily traced to ear-
lier stages of the analysis; and results can’t be verified by
extending the analyses to related data sets.

In the bioinformatics community, these problems have
become especially acute with the rise of Next-Generation
Sequencing (NGS) data. The sheer size of these data sets,
as well as the complexity of analyzing them, have exac-
erbated existing challenges and led to entirely new ones.
In addition to the final results of a NGS study (which
could include, for example, a de novo genome assembly,
quantitative transcriptome analysis, or ChIP-Seq profile),
there is new need for detailed diagnostics at each step.
These diagnostics usually come in the form of plots or
summary statistics. Comparing diagnostics across data
sets and analyses provides a rich source of information
to resolve issues with sample preparation methods and

Nicholas A. Sinnott-Armstrong
Brown University

Casey W. Dunn
Brown University

data collection, optimize parameters used in analyses,
and more accurately predict computational and storage
demands.

In this paper, we present a new framework, BioLite,
developed in Python and C++ for implementing bioin-
formatics pipelines. BioLite is designed around three pri-
orities: automating the collection and reporting of diag-
nostics, tracking provenance, and providing lightweight
tools for building out customized analysis pipelines. By
lightweight, we mean that we are targeting command-
line usage and emphasizing minimal resource overhead,
maximum performance, portability across systems, ease
of installation, and a minimal set of dependencies.

Our framework is accessible as a Python module and
can run on a wide range of hardware, from laptops
to large-memory servers to distributed-memory clusters,
with minimal configuration. Where possible, we wrap
existing bioinformatics tools, especially for assembly,
alignment and annotation. For analyses where a tool does
not exist or is not optimized for the high computational
and storage requirements of NGS data, we have devel-
oped custom tools in C++ after the standard UNIX “pipe
and filter” design pattern.

We have used BioLite to implement Agalma, a col-
lection of pipelines for de novo transcriptome assembly
from Illumina data. These pipelines are the source of the
examples in our Results section, but will be described in
more detail in a subsequent publication.

2 Previous Work

There are many available frameworks and workflow
management systems for bioinformatics analyses (for an
overview, see the review by Romano [8]). These ef-
forts have focused largely on increasing the accessibil-
ity of computational methods through GUI development;
on formalizing and abstracting workflow representations
(for instance, as directed-acyclic graphs); on addressing
the interoperability of data available in disparate formats

and from disparate sources; and on facilitating repro-
ducibility of analyses. Workflow management is a topic
of general interest across many scientific domains, not
just in the life sciences, especially as scientific inquiry
has become increasingly data-driven (i.e., as computa-
tion and simulation have grown into a “third branch” of
scientific inquiry, alongside experiment and theory) [3].

Of the available bioinformatics workflow frameworks,
Galaxy [1, 4] has the most extensive support for au-
tomatically tracking the provenance of data and analy-
ses. Although many of the systems reviewed by Romano
support some type of exchangeable, executable format
for sharing and rerunning analyses, only Galaxy collects
enough metadata to disambiguate which version of a tool
was used, or where input data is located. To a certain
extent, Galaxy has made a tradeoff that favors ease of
use (especially by biologists with minimal computational
experience) at the expense of making installation more
difficult. Installation can require extensive system ad-
ministration experience to properly configure a system
to support the supplied GUIs and other user tools. The
Galaxy project provides a free public server, hosted at
Penn State University, so that users can execute small
analyses without needing to install Galaxy on their own
machines. This service will not be sustainable as data
sets grow in size, as Galaxy’s authors note [1].

Both Ruffus [5] and PaPy [2] are lightweight pipeline
frameworks that are simpler to install than Galaxy. They
do not, however, track provenance. There is therefore
currently an unmet need for a bioinformatics that is both
lightweight and tracks provenance.

3 System Design

BioLite is designed to be as lightweight as possible, both
to simplify installation and maintain flexibility. There
is no dependency on a web server or networking infras-
tructure. Though implementing novel analyses requires
programming experience, many difficult bioinformatics
tasks are already abstracted, recording provenance is au-
tomatic, and there are simple hooks for logging diagnos-
tics. BioLite is agnostic to batch systems, instead relying
on the user to navigate the execution environment, which
may be a batch system on a compute cluster, a command-
line on a lab workstation, or even a cloud instance.

In addition, BioLite is designed to collect and aggre-
gate diagnostic data across runs to identify broader pat-
terns that will help optimize data collection and analysis.
No existing framework or system that we are aware of
provides these kinds of comparative diagnostics, which
we describe in more detail in our Results section.

3.1 Provenance and Diagnostics

To implement automated provenance tracking and di-
agnostics collection, a BioLite installation maintains a
SQLite database with three tables (see Figure 1). The
catalog table pairs metadata with the raw NGS data files
(identified by their absolute path on disk). It includes the
following:

o A unique ID for referencing the data set. If the data
is paired-end Illumina HiSeq data, the ID can be au-
tomatically generated using unique information in
the Illumina header.

e Paths to the raw sequence data. For paired-end Il-
lumina data, this is expected to be two FASTQ files
(possibly compressed) containing the forward and
reverse reads.

e Notes about the species, the sample preparation and
origin, the species, IDs from NCBI and ITIS tax-
onomies, and the sequencing machine and center
where the data were collected.

The catalog acts as a bridge between the BioLite diag-
nostics and a more detailed laboratory information man-
agement system (LIMS) for tracking provenance of sam-
ple preparation and data collection upstream of and dur-
ing sequencing. GNomEx [7] is an example of such
a system for NGS data that can track sample quality;
document library preparation, cluster generation, and se-
quencing; and record experimental parameters and doc-
ument laboratory protocols during data collection. In
contrast, the BioLite catalog contains the minimal con-
text needed to associate diagnostics reports of down-
stream analyses with the raw sequence data, but without
replicating or reimplementing the full functionality of a
LIMS.

The runs table allocates an incremental run ID and
documents the catalog ID, pipeline name, user name,
system name, and start time for each invocation of a
pipeline. Pipelines can be restarted if they fail, as dis-
cussed below, and in this case reuse the run ID already
assigned to the run. Thus, a run ID encapsulates a com-
pleted, successful run of a pipeline, even if this requires

catalog

£ id VARCHAR
diagnostics paths TEXT

id VARCHAR species VARCHAR
runid INTEGER nebi_id INTEGER
entity VARCHAR itis_id INTEGER
attribute VARCHAR extraction_id VARCHAR
value TEXT = - e library_id VARCHAR
timestamp DATETIME | VARCHAR library_type VARCHAR

tissue VARCHAR

name VARCHAR VARCHAR

hostname VARCHAR
username VARCHAR
timestamp DATETIME

sequencer
seq_center VARCHAR
note TEXT
sample_prep TEXT
tinestamp ~ DATETIME

Figure 1: Table schemas for BioLite’s SQLite database.

several restart invocations.

The diagnostics table archives summary statistics that
can be accessed across multiple stages of a pipeline, from
different pipelines, and in HTML reports. Diagnostic en-
tries are timestamped and stored as key/value pairs in-
dexed by run ID. An additional namespace field prevents
key collisions, since the same key could arise multiple
times within a pipeline run. By default, the namespace is
the pipeline name plus the stage name, so that key/value
pairs can be traced to the pipeline and stage during which
they were entered. Entries in the diagnostics table can in-
clude paths to derivative files, which can be summaries
of intermediate files that are used to generate reports or
intermediate data files that serve as input to other stages
and pipelines.

Detailed system utilization statistics, including mem-
ory high-water marks and compute wall-time are also
stored in the diagnostics table by the base pipeline and
wrapper classes. The diagnostics table has a complete
non-executable history of the analysis, which comple-
ments the original scripts that were used to run the anal-
ysis. In combination, the diagnostics table and original
scripts provide provenance for all analyses.

Storage requirements for the diagnostics are minimal.
Table 1 shows that for 168 pipeline runs on a collec-
tion of 30 Illumina HiSeq data sets, the footprint of the
SQLite database and related text files (e.g. histograms)
is a small fraction (0.03%) of the total run data. BioLite
also distinguishes between two types of storage for in-
termediate results: permanent and scratch. This reflects
the layout of file systems at most scientific computing
centers. Permanent files are kept long term, and scratch
files can be deleted at will. This arrangement allows the
user to inspect temporary intermediate files after a run
has completed, while simplifying garbage collection.

Table 1: Storage requirements for 168 runs

Data GB
raw data sets 1924
intermediate results (permanent) | 1,241.6
intermediate results (scratch) 1,057.1
diagnostics: SQLite and text files 0.073

3.2 Pipelines

BioLite borrows from Ruffus [5] the idea of using
Python function decorators to delineate pipeline stages.
Pipelines are created with a sequence of ordinary Python
functions decorated by a pipeline object, which registers
each function as a stage in the pipeline. The pipeline ob-
ject maintains a persistent, global dictionary, called the
state, and runs each stage by looking up the argument
names in the stage function’s signature, and calling the

function with the values in the state dictionary whose
keys match the function’s argument names. This is im-
plemented using the function inspection methods avail-
able from the inspect module in the Python standard
library. If the stage function returns a dictionary, it is in-
gested into the pipeline’s state by adding values for any
new keys and updating values for existing keys. Argu-
ments passed on the command-line to the pipeline script
form the initial data in the pipeline’s state.

Modularity is a key design goal, and it is possible to
reuse one or more stages of an existing pipeline when
building a new pipeline. It is also possible to build meta-
pipelines that connect together several sub-pipelines.

The pipeline object also incorporates fault tolerance.
At the end of each stage, the pipeline stores a checkpoint
by dumping its current state to a binary file with Python’s
pickle module. This way, if a run is interrupted, either
due to an internal error or to external conditions, such as
a kill signal from a batch system or a hardware failure,
the run can be restarted from the last completed stage (or,
optionally, from any previous stage in the checkpoint).

A pool of wrapper functions is available for commonly
used NGS tools, such as the Bowtie aligner [6] and Oases
transcriptome assembler [9], The base wrapper class can
be extended to support additional tools.

4 Results

4.1 Sample Preparation

c T
8 J
%
5
o
G
00

§1, o oooooo oo
3 (o)} o
o L ! ! ! L L

0 20 40 60 80 100

% non-ribosomal RNA

Figure 2: Diagnostics for the non-ribosomal RNA con-
tent after a filtering stage of our pre-assembly pipeline.

Diagnostics enable validation and optimization of
sample preparation methods. Figure 2 shows the per-
cent of non-ribosomal RNA reads remaining after a fil-
tering stage in our pre-assembly pipeline for transcrip-
tomes. The preparation methods that used two rounds of
purification beads were much more effective at remov-
ing ribosomal RNA, and therefore increasing the usable
content of sequence data for transcriptome assembly.

4.2 Automated Parameter Selection

Paired-end Illumina reads are sequenced with both a
“forward” and “reverse” read, which cover the begin-

2 Distribution of Insert Sizes .

Distribution of Insert Sizes

Distribution of Insert Sizes

frea
frea!

To0 200 500 500 200

300
Insert Size (bp)

(a) Run 56

300
Insert Size (bp)

(b) Run 77

a0 500 500 100 200 00 500 50

300
Insert Size (bp)

(c) Run 100

Figure 3: Diagnostics for distribution of insert sizes of three paired-end Illumina HiSeq data sets: (a) shows the
distribution observed for most of our data sets, while (b) and (c) show deviations that require further investigation.

ning and end of a DNA fragment. The total length of
the sequenced fragment, including the reads and any un-
sequenced DNA in between them, is called the insert
size. This is an important parameter for tools that use the
paired-end information, since it constrains the distance
between the two reads, and choosing a correct value for
the insert size is critical for accurate and efficient analy-
sis.

BioLite includes a tool insert_size that builds a
small sub-assembly of the paired-end input data with
oases, then maps another subset of reads against the as-
sembly with bowtie to construct a histogram of actual
insert sizes for the data (see Figure 3). If this step is
performed before any other analyses, these improved es-
timates of mean and standard deviation for insert size are
available in the diagnostics for all subsequent analyses
by tools that require the insert size of the data.

4.3 Resource Utilization

40 Input size vs. memory used in pre-assembly

o}

35f o

30f
25’ O
201 o

15¢ O@O
©0°
OO@ 000 lllumina TruSeq
000 NuGen Ovation

515 20 25 30 35 40 45 50 55
Read pairs (Millions)

101

Memory high-water mark (GB)

Figure 4: Diagnostics help correlate computational
and memory requirements with data input size for our
preassemble pipeline. Requirements vary with the
sample preparation method of the sequenced data.

BioLite automatically collects resource profiles for all
tools called through wrappers. This helps us infer the
relationship between resource requirements and problem
size (see Figure 4). Predicting these requirements helps
us plan efficient use of computational infrastructure, for
example by more accurately specifying memory and wall
time limits when submitting jobs to a compute cluster.
These data will also help users efficiently size new com-

puter purchases.

We can also construct detailed execution profiles to see
where time and memory are spent throughout a pipeline’s
execution (see Figure 5). This is informative for pipeline
development, as it shows which stages are the best tar-
gets for further optimization. In the case of the assembly
pipeline, both the samtools and subsample calls are
good candidates for optimization: we can avoid some of
the samtools calls by incorporating the C library for
BAM (binary SAM) files into our C++ tools, and we
can parallelize the subsample tool to use more avail-
able compute cores. The diagnostics allow us to better
prioritize software development tasks in terms of their
potential impact on performance.

5 Acknowledgments

Thanks to Freya Goetz for helping to interpret sample
preparation diagnostics.

BioLite has been developed with support from the fol-
lowing National Science Foundation awards:

e PSCIC Full Proposal: The iPlant Collaborative:
A Cyberinfrastructure-Centered Community for a
New Plant Biology [0735191]

e Collaborative Research: Resolving old questions in
Mollusc phylogenetics with new EST data and de-
veloping general phylogenomic tools [0844596]

o Infrastructure to Advance Life Sciences in the
Ocean State [1004057]

This research was conducted using computational re-
sources and services at the Center for Computation and
Visualization, Brown University.

6 Availability

BioLite is distributed under the GNU General Public Li-
cense version 3, and is available for download at

http://www.dunnlab.org/biolite

References

[1] AFGAN, E., BAKER, D., CORAOR, N., GOTO, H., PAUL, I. M.,
MAKOVA, K. D., NEKRUTENKO, A., AND TAYLOR, J. Harness-
ing cloud computing with Galaxy Cloud. Nature Biotechnology
29, 11 (Nov. 2011), 972-4.

o

Memory (G

25

20

15k - - - - - - o

10

5

0 =l |
0 5000 10000 15000 20000 25000 30000 35000 40000

Wall Time (s)

Bl velvetg B subsample oases filter_illumina interleave WM randomize M bowtie2-build M formcon
B samtools velveth bowtie2 exclude B cap3 I fastqc Il insert_stats

Figure 5: A diagnostics plot of execution time and memory usage of a transcriptome assembly pipeline implemented
in BioLite with 39 stages and 113 calls to 16 external C, C++ or Java tools. The tools are colored from greatest (red)
to least (blue) amount of cumulative execution time. Memory usage is reported as the high-water mark within the
invocation of a tool, and the dashed line shows the high-water mark across the entire pipeline run.

(2]

(3]

(4]

(5]

(6]

(71

(8]

[9]

CIESLIK, M., AND MURA, C. A lightweight, flow-based toolkit
for parallel and distributed bioinformatics pipelines. BMC Bioin-
formatics 12, 1 (Jan. 2011), 61.

DEELMAN, E., GANNON, D., SHIELDS, M., AND TAYLOR, I.
Workflows and e-science: An overview of workflow system fea-
tures and capabilities. Future Generation Computer Systems 25, 5
(2009), 528 — 540.

GOECKS, J., NEKRUTENKO, A., AND TAYLOR, J. Galaxy: a
comprehensive approach for supporting accessible, reproducible,
and transparent computational research in the life sciences.
Genome Biology 11, 8 (Jan. 2010), R86.

GOODSTADT, L. Ruffus: a lightweight Python library for compu-
tational pipelines. Bioinformatics 26,21 (Nov. 2010), 2778-9.

LANGMEAD, B., TRAPNELL, C., POP, M., AND SALZBERG,
S. L. Ultrafast and memory-efficient alignment of short DNA se-
quences to the human genome. Genome Biology 10, 3 (2009),
R25.

Nix, D., DI SERA, T., DALLEY, B., MILASH, B., CUNDICK, R.,
QUINN, K., AND COURDY, S. Next generation tools for genomic
data generation, distribution, and visualization. BMC Bioinformat-
ics 11,1 (2010), 455.

ROMANO, P. Automation of in-silico data analysis processes
through workflow management systems. Briefings in Bioinformat-
ics 9, 1 (Jan. 2008), 57-68.

SCHULZ, M. H., ZERBINO, D. R., VINGRON, M., AND BIRNEY,
E. Oases : robust de novo RNA-seq assembly across the dynamic
range of expression levels. Bioinformatics 28, 8 (2012), 1086—
1092.

