
Datalog as a Lingua Franca for Provenance Querying and Reasoning

Saumen Dey∗ Sven Köhler∗ Shawn Bowers† Bertram Ludäscher∗

1 Introduction

The Open Provenance Model (OPM) [20] provides a
small, extensible core for representing and exchanging
provenance information in a technology-neutral manner.
By design, OPM is a least common denominator, leav-
ing aside certain aspects, including how to query prove-
nance information. Similarly, OPM comes with a set of
inference rules (e.g., for transitively closing some rela-
tions, or for stating temporal constraints that are implied
by provenance assertions), but as pointed out by [15],
the temporal semantics of OPM graphs is only partially
defined in [20], leading to ambiguous or incompletely
specified situations.

 P x
 used

y write read
 gen-by

 was-derived-from ??

Fig. 1: Do the observables x read→ P and P write→ y imply that
y was-derived-from x? Or that tread < twrite holds?

Example 1. Consider the provenance graph in Figure 1.
In OPM, it shows a (data) artifact x that was used by
process P, and another artifact y that was-generated-by
(short: gen-by) P. In the terminology used in the rest of
the paper, we say that the graph records a “read” and a
“write” observable, denoted x read→ P and P write→ y, respec-
tively. Given this information, it may seem natural to as-
sume that (1) y was-derived-from x (the dotted line), and
that (2) the read event (tread) occurred before the write
event (twrite), i.e., tread < twrite. However, neither (1) nor
(2) are logical consequences of the provenance in Fig-
ure 1, i.e., we cannot infer that y was-derived-from x!
Indeed, OPM correctly treats was-derived-from as a sep-
arate observable, e.g., P might have written y first, then
read x afterwards, and so we should not assume (and thus
not infer) that y was-derived-from x.1

If, on the other hand, the fact that y was-derived-from
x has been (independently) asserted, can we then infer

∗UC Davis, (scdey | svkoehler | ludaesch)@ucdavis.edu
†Gonzaga University, bowers@gonzaga.edu
1If the computation P is a function or service call, then P indeed

first consumes all inputs, then produces all outputs. This assumption
is often correct, but a process P is not necessarily limited to such strict
behavior and may interleave read/write events in many ways [13, 17].

 Pa ywrite1 Pb zwrite2x read1

read3
was-derived-from

read2

Fig. 2: z was-derived-from x. Does tread2 < twrite2 follow?

from Figure 1 that x was used by P before y was gener-
ated by P, i.e., that tread < twrite holds in our notation?
Again, the somewhat surprising answer is: No! For ex-
ample, the use (reading) and generation (writing) of x
and y by P are not necessarily the only things that hap-
pened. In particular, there might be another derivation of
y from x (which gave rise to the was-derived-from edge
in the first place), making tread > twrite a real possibility.

Example 2. Consider the provenance graph in Figure 2,
asserting that z was-derived-from x. Does tread2 < twrite2
or tread3 < twrite2 follow? As before, if no further infor-
mation is available, we cannot infer either proposition:
we simply don’t know whether the path x.Pa.y.Pb.z or the
path x.Pb.z (or yet another one, not included in the figure)
are the reason for the was-derived-from edge in Fig. 2.
The OPM semantics also handles this case correctly and
does not imply that treadi < twrite j (for any i≤ j). On the
other hand, OPM also does not provide a means to spec-
ify when such inferences would indeed be correct, e.g.,
in the common case where the result of a write is in fact
directly dependent on an earlier read.

When employing OPM as a model for provenance
recorded by a scientific workflow system [8], another
limitation becomes apparent: OPM only deals with
retroactive provenance (the usual data lineage captured
in a trace graph T), but not with so-called prospective
provenance2, i.e., workflow specifications W , which are
recipes for future (and past) derivations [18]. These were
out of scope for OPM and, apparently, are also out of
scope for current W3C standardization efforts [21].

On the other hand, it is easy to see that distinguishing
between traces T and workflows W (and then interpreting
the former as instances of the latter) can provide valuable
information and additional functionality for provenance
applications.

2This “near-oxymoron” captures a practically useful notion: When
a scientist is asked to explain how a certain result was obtained, in the
absence of runtime traces, he can point to the script/workflow that was
used to generate the data products; so workflows are provenance, too.

 a
ywrite

 b A

x

write

Yout
 B

X
outin

in

read

read

Fig. 3: Trace T (left) and workflow W (right).

Example 3. Consider the graphs in Figure 3: executing
workflow W , might have produced the trace T . In order
to validate T ’s structure, i.e., to check whether T can be
an instance of W , we link its nodes and edges to W : e.g.,
edges x read→ a and a write→ y in T (data x was read and data y
was written by process invocation a), have correponding
edges X in→ A and A out→ Y in W , linking data containers
X and Y to the process (or: actor) A. Clearly, in order to
validate T ’s structure, we have to have a representation
of the workflow structure W in the first place.

However, even if T is structurally valid w.r.t. W , other
(here: temporal) inconsistencies may arise: The cycle in
T indicates an inconsistent trace,3 but we cannot be sure
(for similar reasons as those in the previous examples).
On the other hand, the cycle in W is usually not a con-
cern: it simply means that W has a feedback loop, which
is a rather common workflow pattern (cf. Appendix A).

Overview and Contributions. We propose logic rules
as a formal foundation for graph-based, temporal models
of provenance, for querying provenance graphs (traces),
and for reasoning about traces and their connection to the
workflows that generated them. In particular, we argue
that Datalog provides a “lingua franca” for provenance:

(1) We adopt a semistructured data model, i.e., graphs
with labeled edges x `→ y, as a uniform representation of
all provenance information, i.e., traces (à la OPM) and
associated workflows of which they are instances. This
allows us to employ regular path queries [3] as a con-
venient “macro-language” for concisely expressing gen-
eralized reachability queries on traces and workflows.
By representing schema-level information (workflows)
and instance-level information (traces) together in a sin-
gle model, structural constraints can be expressed and
checked easily using Datalog rules.

(2) We propose to use integrity constraints, i.e., rules
of the form falseic(Ȳ)← denial(X̄)4 as a way to express
provenance semantics. Workflow systems differ in their
models of computation (MoCs) and thus make differ-
ent assumptions about how workflow components (a.k.a.
actors, processors, modules, etc.) work, i.e., whether,

3If read and write observables are temporally or causally linked, a
strict partial order is implied and a cycle shouldn’t have been observed.

4The rule body denial(X̄) specifies the “bad” situations to be
avoided; Ȳ ⊆ X̄ are witnesses of constraint violations.

A

a

X

x

in

read

Y

y

out

write

B

b

in

read

firing
constraint

data
constraint

homomorphism h

≤f ≤d

Z

z

out

write

in

read

Workflow W

Trace T

Fig. 4: Workflow W (top) vs Trace T (bottom): Traces
are associated to workflows, guaranteeing structural con-
sistency; workflow-level (firing or data) constraints in-
duce temporal constraints ≤f and ≤d on traces.

and in which way, they can be stateful; how they con-
sume their inputs, produce their outputs; and so on. As
a result, different systems use different models of prove-
nance (MoPs), with different temporal semantics. Thus,
instead of “hard-wiring” a fixed temporal semantics to
a particular graph-based MoP, we again use logic con-
straints to obtain a “customizable” temporal semantics.

(3) We illustrate this concept by providing firing con-
straints at the workflow level, which induce temporal
constraints ≤f at the level of traces (cf. Figure 4). These
temporal-constraint generating rules can be chosen to
conform to the temporal axioms in [15], or to accom-
modate a different temporal semantics, as implied by the
MoC of a specific workflow or workflow system.

Due to limited space, we only illustrate some of the
many ways in which logic rules and Datalog can be har-
nessed for provenance querying and reasoning; a detailed
exposition is reserved for a long version of this paper. In
the remainder, we give an overview of our approach and
provide a few illustrative examples; additional examples
and rules can be found in the appendix.

2 Unified Provenance Model

We would like to accommodate trace-level provenance
information, schema-level information (workflow speci-
fications), and temporal information in a single, uniform
representation. To this end, we employ an underlying
semistructured data model, which consists of labeled, di-
rected graphs of the form G = (V,E,L), with vertices V ,
labels L, and labeled edges E ⊆V ×L×V . In the follow-
ing, we view workflows W and traces T as subgraphs of
G. Similarly, our temporal model will consist of labeled
edges (modeling one or more “before” relations).

2

Workflows. A workflow W = (VW ,EW ,LW) is a la-
beled graph whose nodes VW = C∪P are data containers
C and processes P. Processes are computational entities
(often consisting of smaller internal steps, a.k.a. invoca-
tions or firings) that can send and receive data. Contain-
ers represent structures, e.g., FIFO queues, that hold data
during the communication between processes. In a work-
flow W , edges EW = Ein ∪ Eout are either input edges
Ein⊆C×{in}×P, or output edges Eout⊆P×{out}×C,
so LW = {in,out}. We also write in(C,P) and out(P,C) to
denote edges C

in→ P and P
out→ C, respectively. The former

means process P can read data artifacts from container
C, while the latter means that process P can write data
artifacts to container C.

Traces. A trace T = (VT ,ET ,LT) is a labeled graph
whose nodes VT = D∪ I are data artifacts D or process
invocations I; edges ET = Eread ∪ Ewrite ∪ Edf are read
edges Eread = D×{read}× I, write edges Ewrite = I×
{write}×D, or derived-from edges Edf = D×{df}×D,
so LT = {read,write,df}. The link between traces and
workflows is established through homomorphisms:

Definition 1. Let G = (V,E,L) and G′ = (V ′,E ′,L′) be
labeled graphs, and let h = (h1,h2) be a pair of mappings
h1 : V →V ′ and h2 : L→ L′. Then h is a homomorphism
from G to G′ if

(x `→ y) ∈ E implies (h1(x)
h2(`)→ h1(y)) ∈ E ′.

The functions h1 and h2 map nodes and labels from
G to corresponding ones in G′. The model described
here associates read and write edges in T with in and
out edges in W , so h2 = {read7→in,write 7→out}. The
mapping h1 is usually given as part of a trace, i.e., when
testing whether T is valid w.r.t. a workflow W , we do
not have to search for h. Instead, traces needing vali-
dation already have corresponding workflow annotations
embedded within them: We use mappings cont: D→C
and proc: I→ P to associate data items and process invo-
cations with data containers and processes, respectively.
The following rules derive false iff trace T with workflow
mappings cont and proc are not a homomorphism:
falseHom(read(D,I),in(C,P)) :−

read(D,I), cont(D,C), proc(I,P), ¬ in(C,P).
falseHom(write(I,D),out(P,C)) :−

write(I,D), cont(D,C), proc(I,P), ¬ out(P,C).

Thus, if falseHom is empty, trace T is structurally-valid
w.r.t. workflow W . Additional structural constraints for
traces can be easily defined in a similar manner:

A write-conflict occurs when a data artifact has mul-
tiple incoming write edges; a type-conflict occurs when
edges link nodes of the wrong type (e.g., directly linking
invocations, instead of going through data nodes). Rules
for checking such constraints are listed in Appendix C.

Temporal Model. We obtain a temporal semantics on
top of the graph-based model by using rules to define
a “before” relation (e.g., ≤f and ≤d in Fig. 4) amongst
events. During workflow execution, the following events
are observed: When a process is executed an invocation
event is recorded, when a data artifact is read by an invo-
cation a read event is recorded, and when an invocation
writes a data artifact a write event is recorded. In the tem-
poral model we constrain the order of events: bf(E1,E2)

means that E1 happened before E2 and bfs(E1,E2) means
that E1 happened before or simultaneously with E2.

A data-constraint between out-edges PA
out→ CY and in-

edges CY
in→ PB of a data container CY at the workflow-

level, implies an obvious temporal constraint at the trace-
level: A write (creation) of data y must come before any
read of y (also see Figure 4):

bf(write(I,D), read(D,J)) :− write(I,D), read(D,J).

Read, write, and derived-from edges in T capture
dataflow. This information gives rise to a temporal or-
der (“flow-time”) among events. We infer this tempo-
ral order and create the corresponding temporal relations
bf and bfs using the rules described here (and in the ap-
pendix). We make (safe) use of Skolem functions, e.g.,
to create unique identifiers, and to reify edges as nodes
of a temporal structure: e.g., the (unspecified) execution
time of an invocation is represented by a term invoc(I).

Before an invocation reads data, it must have started:
bfs(invoc(I), read(D,I)) :− read(D,I).

Similarly, a data artifact could not have been written
after an invocation has been completed:

bfs(write(I,D), invoc(I)) :− write(I,D).

When a data artifact is written by a process invocation
and read by another invocation, the former must not have
started after the latter has completed:

bfs(invoc(I), invoc(J)) :− write(I,D), read(D,J).

When a data artifact is derived from another data arti-
fact, the latter must have been written before the fomer:
bf(write(J,Y), write(I,X)) :− df(X,Y), write(I,X), write(J,Y).

A firing-constraint between in-edges CX
in→ PA and out-

edges PA
out→ CY of a process PA is defined via a relation

fc(CX ,PA,CY). This constraint ensures that any invocation
of process PA that reads data from container CX and that
writes into container CY has an associated temporal con-
straint: the invocation output depends on the read input.

If a user-defined constraint is provided by fc(X,B,Z) as
shown in Figure 4, then the bf(read(x,b),write(b,z)) tempo-
ral relation at the trace-level can be infered:
bf(read(X,I), write(I,Y)) :−

fc(C1,P,C2), read(X,I), proc(I,P),
write(I,Y), cont(X,C1), cont(Y,C2).

3

Wall-Clock Time: In addition to temporal dependen-
cies inferred from dataflow observables (“flow-time”),
a provenance recorder may record events with a wall-
clock timestamp. The observable time(E,T) means that
event E was recorded with wall-clock time T. Wall-clock
time and flow-time constraints can combined to infer ad-
ditional temporal information for a trace:

bf(E1, E2) :− time(E1, T1), time(E2, T2), T1 < T2.
bfs(E1, E2) :− time(E1, T1), time(E2, T2), T1 ≤ T2.

3 Conclusions

The theory and practice of provenance are not always as
well aligned as one may wish for.5 The DBLP (databases
& programming languages) community, among others,
has been advancing our understanding of fundamental
principles of provenance, and notions such as Why, How,
and Where provenance [2, 6], provenance semirings [11],
provenance as proof-trees, dependencies, program slic-
ing [5], relationships to causal reasoning [19, 4], etc.
are slowly becoming more widely known and under-
stood better. At the same time, the many practical ap-
plications of provenance have led practitioners and sys-
tem developers to move ahead rapidly with “provenance-
enabling” their systems, proposing models, languages,
and even W3C standards. As a contribution to further
grow the connections between theory and practice of
provenance [1], we have proposed to use logic rules, and
Datalog in particular for querying provenance, checking
structural constraints (e.g., whether a trace is valid, i.e.,
homomorph to its associated workflow), and specifying
temporal constraints.

Datalog seems particularly well-suited as a “lingua
franca” and bridge between theory and practice: On the
one hand, there is a rich body of research and formal
results about the complexity and expressiveness of Dat-
alog and numerous fragments or extensions [7]. Queries
on labeled graphs are well supported, e.g., regular path
queries have a direct encoding in Datalog, and theoreti-
cal results on query containment and view-based query
processing [3] can be exploited in various ways. Simi-
larly, Datalog variants such as Statelog [16] or Datalog-
LITE [10] provide means to naturally express temporal
queries over provenance graphs. From a practitioner’s
point of view, Datalog is also attractive: powerful Dat-
alog engines are available for experimentation with rule
sets (e.g., to test and compare different provenance se-
mantics, to query and debug programs [14] etc.), and can
be used to deploy provenance querying and reasoning
systems. Datalog prototypes for our approach are under
development and can be demonstrated at the workshop.

5In theory, there is no difference between theory and practice. But
in practice, there is.

Acknowledgements. Work supported in part by NSF
award OCI-0722079 and DOE award DE-FC02-
07ER25811.

References
[1] ACAR, U., BUNEMAN, P., CHENEY, J., VAN DEN BUSSCHE,

J., KWASNIKOWSKA, N., AND VANSUMMEREN, S. A graph
model of data and workflow provenance. In TaPP (2010).

[2] BUNEMAN, P., KHANNA, S., AND WANG-CHIEW, T. Why and
where: A characterization of data provenance. In ICDT (2001).

[3] CALVANESE, D., DE GIACOMO, G., LENZERINI, M., AND
VARDI, M. Reasoning on regular path queries. ACM SIGMOD
Record 32, 4 (2003), 83–92.

[4] CHENEY, J. Causality and the semantics of provenance. Arxiv
preprint arXiv:1004.3241 (2010).

[5] CHENEY, J., AHMED, A., AND ACAR, U. Provenance as depen-
dency analysis. In DBPL (Vienna, Austria, 2007), LNCS 4797,
pp. 138–152.

[6] CHENEY, J., CHITICARIU, L., AND TAN, W. Provenance in
databases: Why, how, and where. Foundations and Trends in
Databases 1, 4 (2009), 379–474.

[7] DANTSIN, E., EITER, T., GOTTLOB, G., AND VORONKOV, A.
Complexity and expressive power of logic programming. ACM
Computing Surveys 33, 3 (2001), 374–425.

[8] DAVIDSON, S., AND FREIRE, J. Provenance and scientific work-
flows: challenges and opportunities. In SIGMOD (2008).

[9] DIJKSTRA, E. W. Hamming’s exercise in sasl, 1981. EWD-792.

[10] GOTTLOB, G., GRÄDEL, E., AND VEITH, H. Datalog lite:
A deductive query language with linear time model checking.
TOCL 3, 1 (2002), 42–79.

[11] GREEN, T., KARVOUNARAKIS, G., AND TANNEN, V. Prove-
nance semirings. In PODS (2007), pp. 31–40.

[12] HEMMENDINGER, D. The “hamming problem” in prolog. ACM
SIGPLAN Notices 23, 4 (1988), 81–86.

[13] KAHN, G. The semantics of a simple language for parallel pro-
gramming. IFIP 74 (1974), 471–475.

[14] KÖHLER, S., LUDÄSCHER, B., AND SMARAGDAKIS, Y.
Declarative datalog debugging for mere mortals. submitted,
2012.

[15] KWASNIKOWSKA, N., MOREAU, L., AND VAN DEN BUSSCHE,
J. A formal account of the open provenance model. Tech. Rep.
21819, University of Southampton, December 2010.

[16] LAUSEN, G., LUDÄSCHER, B., AND MAY, W. On active deduc-
tive databases: The statelog approach. Transactions and Change
in Logic Databases (1998), 69–106.

[17] LEE, E., AND PARKS, T. Dataflow process networks. Proceed-
ings of the IEEE 83, 5 (1995), 773–801.

[18] LIM, C., LU, S., CHEBOTKO, A., AND FOTOUHI, F. Prospec-
tive and retrospective provenance collection in scientific work-
flow environments. In Services Computing (SCC) (2010).

[19] MELIOU, A., GATTERBAUER, W., HALPERN, J., KOCH, C.,
MOORE, K., AND SUCIU, D. Causality in databases. IEEE
Data Eng. Bull 33, 3 (2010), 59–67.

[20] MOREAU, L., CLIFFORD, B., FREIRE, J., FUTRELLE, J., GIL,
Y., GROTH, P., KWASNIKOWSKA, N., MILES, S., MISSIER, P.,
MYERS, J., ET AL. The open provenance model core specifica-
tion (v1.1). Future Generation Computer Systems 27, 6 (2011),
743–756.

[21] W3C. Provenance working group. http://www.w3.org/

2011/prov/. accessed 4/9/2012.

4

http://www.w3.org/2011/prov/
http://www.w3.org/2011/prov/

A Hamming Workflow Variants

To illustrate the earlier definitions of this paper, we use
two variants of a workflow to compute the Hamming
numbers6 H = {2i ·3 j ·5k | i, j,k≥ 0} incrementally, i.e.,
as an ordered sequence 1,2,3,4,5,6,8,9,10,12,15, . . .
Two workflow variants H1 and H3 are shown in Fig. 5.
Note that the workflow graphs contain the same nodes
(processes and containers), but are wired slightly differ-
ently (as it turns out, this makes a big difference). The
data containers Qi are queues (FIFO buffers); Q8 is the
distinguished output, where the Hamming numbers will
appear in the correct order. M1 and M2 are merge actors,
i.e., processes which take two ordered input sequences
and merge them into an ordered output sequence. If pre-
sented with the same item in both streams, the output
stream will only contain one copy of the element, so du-
plicates are removed. The actors X2, X3, and X5 multiply
their inputs with 2, 3, and 5, respectively. Last not least,
the sample-delay actors S2, S3, S5 are used “to prime the
pump”: initially (i.e., before reading any input), they out-
put the number 1 to get the loop(s) going. Subsequently,
they simply output whatever they received as an input.
By design, the Hamming workflows H1 and H3 define an
infinite output stream, i.e., the processes “run forever”.

X2

X3

X5

S2

S3

S5

Q1

Q2

Q3

M1

M2

Q4

Q5

Q6

Q7

Q8

(a) Hamming workflow H1: “one loop” variant

X2

X3

X5

S2

S3

S5

Q1

Q2

Q3

M1

M2

Q4

Q5

Q6

Q7

Q8

(b) Hamming workflow H3: “three loops” variant

Fig. 5: Workflow variants H1, H3; output queue is Q8.

A.1 Structural Validity
Figure 6 shows a (partial) trace TH , i.e., for computing
the Hamming numbers n≤ 15.7 In order to test if a trace
T is structurally-valid w.r.t. a workflow W , we check if
there is a homomorphism from T to W . Here, a homo-
morphism between TH , in Figure 6 and the 1-loop variant

6a.k.a. regular numbers; see [9, 12] for details
7Fig. 7 shows user-defined trace-views for n≤ 1000.

x2:1

x3:1

x5:1

s2:1

s3:1

s5:1

m1:1

m2:1

1

1

1

1

1

2

3

5

s2:2

s3:2

s5:2

m1:2

m2:2

2

3

5

2

2

x2:2

x3:2

4

6

s2:3

s3:3

m1:3 m2:34

6

3 3

m1:4 m2:4

x2:3 6 s2:4 6

4 4

m1:5 m2:56 5

x5:2 10 s5:3 10

x3:3 9 s3:4 9

x5:3 15 s5:4 15

Fig. 6: Excerpt of a Hamming workflow trace TH containing
solid (black) and dashed (red) edges: This trace is homomorph
to H1 in Fig. 5(a) but it is not homomorph to H3 in Fig. 5(b)
since the dashed (red) edges in TH cannot be mapped to corre-
sponding edges in H3.

H1 of the Hamming workflow in Figure 5(a) can be es-
tablished. However, when attempting to find a homomor-
phism between the same trace and the 3-loop variant H3
in Figure 5(b), corresponding in-edges cannot be found
for the dashed (red) read-edges in Figure 6. Note that the
“bad” (missing) edges can be found automatically with
the Datalog (denial) rules for falseHom in Section 2.

A.2 User-Defined Provenance Queries
Our unified provenance model can easily be queried fur-
ther using Datalog. For example, a user might want to
know the lineage of a particular Hamming number (i.e.,
which other Hamming numbers “went into it”), or how
many duplicates were derived in their particular work-
flow variant, etc. The dependencies between data items
can be obtained by focusing on the read/write observ-
ables of certain processes P:
q(D1,P,D2) :− read(D1,I), write(I,D2), proc(I,P), focus(P).

Here, focus is a user-defined predicate to limit query
answers to processes of interest, e.g., we may focus on

5

1

2

3

5

4

6

10

9

15

25

8

12

20

18

30

50

27

45

75

16

24

40

36

60

100

125

54

90

150

32

48

80

72

120

200

81

135

225

250

108

180

300

375

64

96

160

144

240

400

162

270

450

500

216

360

600

625

243

405

675

750

128

192

320

288

480

800

324

540

900

1000 432

720

486

810

256

384

640

576

960

648

729

864

972

512

768

(a)

1

2

3

5

4

6

10

9

15

25

8

12

20

18

30

50

27

45

75

16

24

40

36

60

100

125

54

90

150

32

48

80

72

120

200

81

135

225

250

108

180

300

375

64

96

160

144

240

400

162

270

450

500

216

360

600

625

243

405

675

750

128

192

320

288

480

800

324

540

900

1000

432

720

486

810

256

384

640

576

960

648

729

864

972

512

768

(b)

Fig. 7: User-defined provenance for Hamming numbers
up to 1000: (a) for H1 (“Fish”) and (b) for H3 (“Sail”)

X2, X3, and X5. Thus, tuples in the answer relation q

can be viewed as edges d1
p→ d2, linking data items to

each other, with the label p denoting the process (multi-
plication factor) involved. Figure 7 shows the resulting
graph structure8 for a trace containing the computation
of Hamming numbers up to 1000. Edge labels are repre-
sented via colors (here: green, red, and blue are used to
represent labels “x2”, “x3”, and “x5”, respectively).

One can clearly see on the in-degree of nodes that in
Fig. 7(a) many Hamming numbers are produced in mul-
tiple ways, i.e., the custom-provenance graph is a DAG.
In contrast, Hamming numbers in H3 are produced by
one path only without unnecessary duplicates as can be
seen in Fig. 7(b), i.e., this graph is a tree.

B Regular Path Queries

Our unified provenance model in Section 2 is based on
a semistructured data model, i.e., all information is rep-
resented using a labeled, directed graph G = (V,E,L).
Edges in this graph can be represented as triples g(x, `,y),
where nodes x,y∈V are connected via an `-labeled edge.

A standard method to query such graphs is using reg-
ular path queries (RPQ) [3]. Let Σ = {`1, . . . , `n} be a set
of base labels (here: Σ = L). Regular expressions over Σ

are built in the usual way: if R,R′ are regular expressions,
then so are R | R′ (alternation) and R ·R′ (concatenation),

8Nodes are not intended to be readable, but if desired can be
zoomed-into in the PDF version.

1

2

x2+

4x2+

8
x2+

16

x2+

6x2+.x3+

12

x2+.x3+

18x2+.x3+

24

x2+.x3+

30

x2+.x3+.x5+

3

x3+

9

x3+

27

x3+

5

x5+

25

x5+

x2+

x2+

x2+

x3+

x2+.x3+

x3+

x2+.x3+

10

x5+

x2+

x2+

x3+

x2+.x3+

20

x5+

x2+

x3+

x2+

x3+

x2+

x5+

x2+

x2+

x2+

x2+.x3+

x2+

x3+

x3+

15

x5+

x2+

x3+

x2+.x3+

x5+

x2+

x3+

x2+ x3+

x2+

x2+

Fig. 8: Result of regular path query x2+ ·x3+ ·x5+ on a subset
of the Hamming graph (for nodes N ≤ 30) in Fig. 7(a). Solid
edges have labels R1 ·R2 (blue: intermediate results; bold, red:
final results), while dashed edges have labels R+. Base edges
x2,x3, and x5 are omitted here.

as well as R+ (transitive closure), R∗ (reflexive transitive
closure), etc. A number of additional operations can be
defined, e.g., R? (optional edge), (any label), Rc (com-
plement of R), etc. On labeled graphs, also R− (inverse
edge direction) is common. It is easy to see that RPQs
can be easily expresses in Datalog: e.g., for R ·R′, R | R′,
and R+, the rules are (similarly for other expressions):

g(X,R1 conc R2,Y) :− conc(R1,R2, R1 conc R2),
g(X,R1,Z),
g(Z,R2,Y).

g(X,R1 or R2,Y) :− or(R1, , R1 or R2),
g(X,R1,Y).

g(X,R1 or R2,Y) :− or(,R2, R1 or R2),
g(X,R2,Y).

g(X,R plus,Y) :− plus(R, R plus),
g(X,R,Y).

g(X,R plus,Y) :− plus(R, R plus),
g(X,R,Z),
g(Z,R plus,Y).

The relations conc, or, and plus in the body can be defined,
e.g., using Skolem functions as follows:

conc(R1, R2, R3) :− R3 = f conc(R1,R2).
or(R1, R2, R3) :− R3 = f or(R1,R2).
plus(R1, R2) :− R2 = f plus(R1).

6

However, these rules are not safe under the standard
bottom-up Datalog evaluation procedure9, so instead we
create a finite set of facts, consisting only of the subex-
pressions of a given user query R. For example consider
the RPQ expression R = (x2+ · x3+) · x5+. The bold, red
relation in Fig. 8 shows the answer to the query:

ans(X,R,Y) :− g(X,R,Y), X ≤ 30, Y ≤ 30, derived(R).

where derived is defined as:
derived(R) :− conc(, ,R).
derived(R) :− or(, ,R).
derived(R) :− plus(,R).

and where the facts in conc and plus are obtained via the
subexpressions of the top-level user query:

conc((’x2+).(x3+)’, ’x5+’, ’((x2+).(x3+)).x5+’).
conc(’x2+’, ’x3+’, ’(x2+).(x3+)’).

plus(’x2’, ’x2+’).
plus(’x3’, ’x3+’).
plus(’x5’, ’x5+’).

Hamming Workflow Revisited. Consider again the
Hamming workflow variants in Fig. 5 and the resulting
user-defined provenance graphs in Fig. 7. It is easy to see
that the “Sail” variant in Fig. 7(b) produces only paths
that match the RPQ x2∗ · x3∗ · x5∗, whereas the more re-
dundant “Fish” variant in Fig. 7(a) contains paths that
match (x2 | x3 | x5)∗. In this way, RPQs can be used to
query and inspect the structure of provenance graphs.

Note that via the construction outlined above, we can
view RPQs as syntactic sugar for Datalog queries and
freely mix them with other Datalog rules, including tem-
poral queries in the style of Datalog-LITE [10].

9The usual top-down SLD-resolution of Prolog can handle such
rules, however would in turn not be safe for the recursive RPQ rules.

C Further Examples

In the remainder, we present some further examples and
rules, to illustrate our definitions in earlier sections. In
our integrity constraint rules we employ the following
auxilliary view for transitive dependencies:

dep(X,Y) :− read(X,Y).
dep(X,Y) :− write(X,Y).

tcdep(X,Y) :− dep(X,Y).
tcdep(X,Y) :− tcdep(X,Z), tcdep(Z,Y).

cycle(X,Y) :−tcdep(X,Y), tcdep(Y,X), ¬X=Y.

C.1 Structural Integrity Constraints
We compute the processes involved in a write-conflict
using the following rule:

falsewc(X,Y) :−
write(X,D), write(Y,D), ¬X=Y.

We compute type-conflict using the rule:

falsetc(X,Y) :−
dep(X,Y), cont(X,C1), cont(Y,C2).

falsetc(X,Y) :−
dep(X,Y), proc(X,P1), proc(Y,P2).

C.2 Temporal Integrity Constraints
An invocation must have started in order to read a data
artifact:
falserbi(D, I) :−

bf(read(D,I), invoc(I)).

A write event must occur while the invocation is still
executing:

falseibw(I, D) :−
bf(invoc(I), write(I,D)).

A dependent data must not be written before the write
event of the data artifact on which it is dependent on:

falsedbd(X,Y) :−
df(X,Y), bf(write(I,X), write(J,Y)).

When two nodes of a read event are in cycle, then data
artifact must not be read before the invocation. When
two nodes of a write event are in cycle, then invocation
must not be completed before the write:

falsecdt(X,Y) :−
cycle(X,Y), bf(read(X,Y), invoc(Y)).

falsecdt(X,Y) :−
cycle(X,Y), bf(invoc(X), write(X,Y)).

7

