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ABSTRACT 
The Security Behavior Observatory (SBO) is a longitudinal field-
study of computer security habits that provides a novel dataset for 
validating computer security metrics. This paper demonstrates a 
new strategy for validating phishing detection ability metrics by 
comparing performance on a phishing signal detection task with 
data logs found in the SBO. We report: (1) a test of the robustness 
of performance on the signal detection task by replicating 
Canfield, Fischhoff, and Davis (2016), (2) an assessment of the 
task's construct validity, and (3) evaluation of its predictive 
validity using data logs. We find that members of the SBO sample 
had similar signal detection ability compared to members of the 
previous mTurk sample and that performance on the task 
correlated with the Security Behavior Intentions Scale (SeBIS). 
However, there was no evidence of predictive validity, as the 
signal detection task performance was unrelated to computer 
security outcomes in the SBO, including the presence of malicious 
software, URLs, and files. We discuss the implications of these 
findings and the challenges of comparing behavior on structured 
experimental tasks to behavior in complex real-world settings.   

1. INTRODUCTION 
Maintaining security on a home computer requires knowing which 
security practices are most important [18] and implementing those 
practices, even when they may be inconsistent with users’ mental 
models of computer security [3, 43, 44]. Users are expected to 
keep their software up to date (both individual programs and their 
operating system), avoid suspicious links and attachments (i.e. 
phishing attacks), choose secure passwords, and install security 
programs (e.g. anti-virus). Many struggle to understand and 
follow all these recommendations, despite good intentions.  

Meanwhile, cyberattacks are becoming more varied and pervasive 
[39, 40], where about 1 in every 2,600 emails are phishing attacks 
(primarily targeted spear phishing attacks), resulting in losses of 
over $3 billion from business email compromise scams over the 

last three years [39]. Phishing attacks are no longer limited to 
email, but can occur over instant messenger, social media, or text 
messages [39]. Phishing is often used to introduce malware to a 
computer [37], resulting in prolonged risk. Although there are 
products to help protect users, none are perfect. For example, 
email providers use spam filters, browsers employ blacklists to 
block malicious websites, and security programs block and delete 
malicious files and software. In some cases, this requires user 
engagement, such as updating security programs (if automatic 
updating is not enabled). In other cases, such as browser 
blacklists, users have little control. 

Growing concern over phishing risks is driving the need for 
timely, cost-effective measures of individuals’ vulnerability. Such 
metrics might be derived from actual behavior or a dedicated test. 
Any metric faces three challenges: (a) it must differentiate 
between users’ ability (e.g. to detect phishing emails and maintain 
software) and the technology in place to protect them (e.g. spam 
filters and blacklists, automatic updates); (b) it must account for 
the low base rate of phishing attacks; and (c) it must be able to 
extrapolate from the observed circumstances to those where users 
are faced with actual attacks. A simple test with predictive 
validity could guide targeted interventions if it provided useful 
performance measures. 

Here, we demonstrate a new strategy for validating metrics, by 
triangulating performance on an experimental task with real-world 
system outcomes. The experimental task was developed by 
Canfield, Fischhoff, and Davis [4] (referred to as Canfield et al.). 
It extracts individual-level signal detection measures of phishing 
vulnerability and was demonstrated with an online mTurk sample 
[4]. We validate these measures using the Security Behavior 
Observatory (SBO), a longitudinal field study that provides 
detailed data on a community sample of computer users’ security 
habits over time [9, 10]. 

Signal detection theory (SDT), when applied to phishing 
detection, distinguishes between users’ ability to tell the 
difference between phishing and legitimate emails (sensitivity or 
d’) and bias toward identifying ambiguous emails as phishing or 
legitimate (response bias or c) [24]. SDT is more useful than other 
metrics, such as accuracy, because it accounts for the tradeoffs 
that people make between false negatives (missing phishing 
emails and potentially falling for an attack) and false positives 
(mistaking legitimate emails for phishing by deleting an important 
message or reducing the efficiency of email).  
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Here, we first replicate Experiment 1 from Canfield et al. with 
SBO participants in order to assess the robustness of their original 
(mTurk) results [4]. We then assess the construct validity of those 
performance metrics, in terms of correlations with self-reports on 
the Security Behavior Intentions Scale (SeBIS) [6]. Finally, we 
assess their predictive validity in comparisons with evidence of 
security vulnerabilities on their home computers. 

Canfield et al.'s task uses realistic email messages to elicit users’ 
detection ability and behavior. Their experiments found robust 
results across several experimental manipulations in mTurk 
samples [4]. As described below, the SBO sample is different in 
many ways, raising the question of how similar their performance 
will be. If it proves robust, one can then ask how strongly it is 
related to other computer security performance measures. 
Experimental measures are extracted under conditions where 
participants know that they are being observed, which may affect 
their behavior in various ways, including behaving so as to satisfy 
(or perhaps frustrate) perceived research goals [31, 35]. Here, we 
consider two such tests:  

 Construct validity [5]: how well the SDT measures correlate 
with another theoretically related (and validated) measure, 
the Security Behavior Intentions Scale (SeBIS) [6]; and  

 Predictive validity: how well the SDT measures predict 
actual behavior, tested by whether they improve the fit of 
logistic models for vulnerability to phishing attacks.  

We find some evidence of robustness and construct validity, but 
not for predictive validity. We discuss the ways in which that 
failure reflects on the measures and on the challenges of 
characterizing vulnerability in real-world settings, shaped by 
users’ behavior (regarding security and other matters) and their 
computer environment (e.g. browser, OS).   

2. BACKGROUND AND RELATED WORK 
The probability of users experiencing negative computer security 
outcomes (such as viruses) reflects both their vulnerability and 
their exposure [26]. The former includes their ability to detect and 
avoid threats (e.g. identify phishing emails), as well as their 
engagement in risky behavior (e.g. not updating software). The 
latter reflects their attractiveness as targets. We now review 
research on (a) measuring phishing detection performance and (b) 
determinants of vulnerability and exposure.  

2.1 Measuring Phishing Detection 
Performance 

There are two primary strategies for measuring users' phishing 
detection performance: subjective and objective. Egelman and 
Peer developed a subjective scale of Security Behavior Intentions 
(SeBIS), with four subscales: device securement, password 
generation, proactive awareness, and updating [6]. The proactive 
awareness subscale, which measures attention to URLs, has 
special interest for phishing vulnerability. Low scores on the 
proactive awareness subscale have been related to impulsivity, 
risk-taking, and dependence (i.e. relying on other people), 
consistent with the phishing detection literature [6, 34, 42, 47]. In 
a test of validity, Egelman, Harbach & Peer found that 
performance on the proactive awareness scale was correlated with 
respondents’ ability to detect a phishing website in a laboratory 
environment without priming (without telling them that they were 
being tested on that ability) [7]. The only way to determine 

whether it was a phishing website was to look at the URL. 
Although only 22 of 718 participants correctly identified the 
phishing website, their proactive awareness scores were 
significantly higher than those of the rest of the sample [7]. 

Objective measures assess users’ actual ability to identify 
phishing emails, rather than relying on self-reports of how well 
they do. They allow varying experimental conditions, to examine 
the effects of situational factors (e.g. perceived consequences, 
habits, stress) on phishing vulnerability [4, 41]. Canfield et al. 
estimated SDT parameters on an individual level by asking users 
to identify which emails were phishing in a set of 38 in an online 
test [4]. However, such tests are vulnerable to experimenter 
demand effects, where subjects do what they think they should do, 
rather than what they would normally do [27, 38]. 

Although controlled studies are cheaper and easier to implement 
than field tests, it is important to validate such measures against 
real world behavior. Ideally, one would send emails (both 
legitimate and phishing) to participants to determine how well 
their performance in the artificial test environment reflects their 
normal behavior. However, this is not always possible. It can be 
challenging to do high-fidelity field tests (i.e. without providing 
feedback on performance) without putting users at risk or 
incurring high costs. (Examples include Jakobsson et al. [19] and 
Kumaraguru et al. [20]). 

As an alternative to field tests, Sotirakopoulos et al. propose 
examining logs of user behavior [38]. The SBO is an ongoing data 
collection effort that collects such logs. Its wealth of data provides 
multiple ways to assess vulnerability and to account for other 
factors that might influence users’ experiences of negative 
computer security outcomes. Demand effects are expected to be 
minimal given that the study software is sufficiently unobtrusive 
that participants often report having forgotten that they were 
participating in the study. In a similar observational study, few 
participants reported altering their behavior in an exit survey [21]. 

2.2 Determinants of Vulnerability and 
Exposure  
Unsophisticated or careless users may escape harm if they seldom 
use their computers or avoid dangerous situations. Conversely, 
knowledgeable users may ward off most attacks, yet still succumb 
if they use their computers heavily or are valuable targets, subject 
to particularly effective attacks (such as spear phishing).  

Research suggests that user knowledge alone cannot compensate 
for the increased odds of exposure to negative computer security 
outcomes that come with increased use. Although research on 
phishing susceptibility has found that individuals with higher 
computer literacy are less susceptible to individual phishing 
attacks [36, 47], more computer-literate users tend to use their 
computers more frequently [2], increasing their chances of 
exposure to attacks and negative outcomes [22]. SBO research 
suggests that users’ engagement with security issues, as expressed 
in interviews, is not a good predictor of their security outcomes 
[10]. Lalonde-Levesque et al. also found that more technically-
savvy users are more likely to be exposed to malware threats [21]. 
Therefore, it is critical to control for exposure when assessing the 
relationship between phishing detection performance and negative 
computer security outcomes. 

Users may also experience more negative computer security 
outcomes because they engage in risky behavior, such as 

272    Thirteenth Symposium on Usable Privacy and Security USENIX Association



frequently clicking on links in emails or not updating their anti-
virus software. In a survey of Dutch citizens, Leukfeldt found that 
while the OS type was related to malware, updated anti-virus was 
not [22]. While anti-virus software protection against social 
engineering and zero-day exploits is limited, one would expect 
protection against spam-type attacks using known malicious 
software. Our analysis assesses the relevance of this variable. 

3. METHOD 

3.1 Decisions in Phishing Scenarios (SDT) 
Canfield et al. [4] used a scenario-based approach [20, 34], in 
which participants reviewed emails of a fictitious persona, Kelly 
Harmon. Before beginning that task, participants reviewed the 
PhishGuru comic strip [29] to ensure that they had some 
knowledge of phishing and understood their task. They then saw 
one of two notifications of base rate: “Approximately half of the 
emails are phishing emails” or “Phishing emails are included.” 
Attention was a binary (0,1) measure, where 1 described 
participants who correctly answered 3 questions: “Where does 
Kelly Harmon work?”, “What is a phishing email?”, and an email 
that said, “If you are reading this, please answer that this is a 
phishing email.” 

Participants evaluated 38 email messages, half of which were 
phishing (adapted from public archives), in a random order. The 
base rate of phishing emails (50%) was much higher than in 
everyday settings (<1%) [39] in order to collect enough judgments 
without overburdening participants. We used the same stimuli as 
Canfield et al. [4] (available online at https://osf.io/7bx3n/). They 
ranged in difficulty from obvious phishing messages with typos to 
more sophisticated spear phishing attacks. For each email, 
participants answered the following questions:  
1. detection: “Is this a phishing email?” (Yes/No);  
2. behavior: “What would you do if you received this email?”, 

with multiple-choice options including “click link/open 
attachment,” “check sender,” “check link,” “reply,” “ignore 
or archive it,” “delete it,” “report as spam,” and “other” 
(following [36]);  

3. confidence: “How confident are you in your answer?” (50-
100%); and  

4. perceived consequences: “If this was a phishing email and 
you fell for it, how bad would the consequences be?” (Likert 
scale: 1 = not bad at all to 5 = very bad).  

We limited the replication to Experiment 1 in Canfield et al., 
which asked all participants to perform both the detection and 
behavior tasks. In Experiment 2, participants were randomly 
assigned to perform either the detection or behavior task. Canfield 
et al. found no significant differences in the SDT performance 
metrics between Experiment 1 and Experiment 2. Given the 
limited sample of SBO participants, having all participants 
perform both the detection and the behavior tasks maximized the 
precision of our parameter estimates. We also measured the time 
spent on the phishing information comic and median time spent 
on each email. Finally, we collected demographic information on 
gender, age, and education. 

We evaluated individual performance using signal detection 
theory (SDT), a mathematical method for characterizing users’ 
ability to distinguish phishing and legitimate emails (d’) and their 
bias toward perceiving emails as phishing or legitimate (c). The 
SDT measures capture the trade-off between hit rates (H, correctly 
identifying emails as phishing) and false-alarm rates (FA, 

incorrectly identifying legitimate emails as phishing) using an 
inverse normal transformation to convert the probability to a Z-
score: 

d’ = z(H) – z(FA) 
c = -0.5(z(H) + z(FA)) 

As described by Canfield et al. [4], we estimated SDT parameters 
for the detection (D, question (1) above) and behavior (B, question 
(2) above) tasks separately. Thus, we calculated four phishing 
vulnerability parameters, summarized in Table 1. 

Table 1. Phishing vulnerability parameters calculated using 
signal detection theory (SDT) for replication and validation of 
Canfield et al. [4]. 

Parameter Definition 
Detection Sensitivity 

(d’D) 
Ability to distinguish between 
phishing and legitimate emails. 

Behavior Sensitivity 
(d’B) 

Ability to distinguish between when 
to click on links and when not to. 

Detection Response Bias 
(cD) 

Bias toward identifying an email as 
phishing (negative c) or legitimate 
(positive c). 

Behavior Response Bias 
(cB) 

Bias toward clicking on links 
(positive c) or not (negative c). 

3.2 Security Behavior Intentions Scale 
(SeBIS) 

As part of their SBO tasks, 84 participants completed the Security 
Behavior Intentions Scale (SeBIS) [6]. The SeBIS has 16 
statements describing behaviors divided into four subscales: 
device securement, password generation, proactive awareness, 
and updating. Respondents rate on a Likert scale whether they 
never (1) to always (5) perform the stated behavior. Conceptually, 
the signal detection measures should be most closely related to the 
proactive awareness subscale, which includes five statements 
related to evaluating links, such as “When browsing websites, I 
mouseover links to see where they go, before clicking on them” 
and “I know what website I’m visiting based on its look and feel, 
rather than by looking at the URL bar” (reverse coded). 

3.3 Home Computer Security Outcomes 
(SBO)  

The Security Behavior Observatory (SBO) is an ongoing 
longitudinal study, gathering field data about home users’ 
computer security habits. SBO participants agree to install the 
project software on their personal computers to gather data on 
their Internet browsing, installed applications, processes, network 
connections, system events, and more. This software then securely 
transmits the data to the researchers. 

From these data, we measured three types of negative computer 
security outcomes: (a) visits to malicious URLs, (b) installed 
malware, and (c) presence of malicious files. Malicious URLs 
were identified using the Google Safe Browsing API [14] with 
participants’ web browsing (i.e. Internet Explorer, Chrome, and 
Firefox) and network packet data. Due to technical limitations 
with browser extensions, we were unable to collect data from 
other popular browsers, such as Microsoft Edge. However, those 
data were observed in the network packet data, which include all 
HTTP traffic for each webpage, making it a much richer source 
than the browser data, which only record webpage URLs. The 
average webpage has approximately 100 HTTP requests for the 
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HTML, CSS, images, ads, multimedia, JavaScript, Flash and other 
files that form a single webpage [17].  

We identified malware with ShouldIRemoveIt.com, which is 
designed to help users remove unwanted applications from their 
computer. We identified malicious files with VirusTotal.com, a 
subsidiary of Google that aggregates anti-virus scanners. For 
flagging software or files as malicious, we used a threshold of at 
least 2 scanners for ShouldIRemoveIt.com and at least 2% of 
scanners for VirusTotal.com. Using greater scanner agreement did 
not significantly change the results. Malicious files were 
identified across the entire computer, while malware was limited 
to installed applications. We assessed each outcome as a binary 
variable (where 1 indicates that the outcome was observed at least 
once and 0 indicates that the outcome was not observed), rather 
than a continuous one (i.e. number of negative outcomes) due to 
the high number of participants who had no negative outcomes 
(i.e. had never visited a malicious website or had no malware) and 
the potential unreliability of count data [23]. Participants varied in 
how much they used their computers, which as described above is 
related to the observation of negative outcomes. 

We constructed logistic regression models for each outcome 
following the logistic model construction strategy outlined by 
Hosmer et al. [16] for identifying potential predictors, defined as 
those with statistically significant univariate correlations with the 
outcomes. These potential predictors are described in the next two 
subsections. To avoid bias and maintain transparency, we 
preregistered the logistic regression models at the Open Science 
Framework (https://osf.io/jkhbv/) before combining the SBO and 
SDT experiment data [25, 28]. The analysis reported here differs 
from the proposed analysis in the preregistration due to our 
acquiring more SBO data. We also improved the analysis by: (a) 
eliminating repetitive measures (e.g. counts of social media 
domains), (b) implementing an automated process for identifying 
malware, rather than relying on manually coded items, and (c) 
adding malicious files as an outcome variable.  

3.3.1 Browsing exposure and risky behavior 
We identified 3 variables to describe browsing exposure. Each 
was calculated separately for the browser and network packet 
data. They were (a) total URLs/day, (b) unique URLs/day, and (c) 
domains/day. Each daily count was only for days that data were 
received from the participant’s machine.  

We measured risky behavior in terms of counts of clicked email 
links/day. We expected users who clicked on more links in emails 
to be more likely to visit malicious URLs. We assessed this 
activity in 2 ways: (a) URL tracking, for URLs that include “mail” 
or “email” after =, &, or ? (excluding email domains), and (b) 
source data, where the source URL was an email domain and the 
destination was not. The source data did not describe whether 
links were clicked from an email software client, such as 
Microsoft Office Outlook. For the network packet data, we could 
only use the URL tracking method (a), because source data were 
unavailable.  

3.3.2 Software exposure and risky behavior 
We measured software exposure as a count of total software, 
excluding updates, installers, and language packages.  

We sought to measure risky behavior with three variables: 
delayed software updates, days since Windows update, and third-
party security software (e.g. anti-virus, anti-malware). Delayed 

software updates on SBO participants’ computers is a count, 
ranging from 0 to 6, of the number of outdated popular software 
including Adobe Flash, Adobe Reader, Java, Internet Explorer, 
Chrome, and Firefox. A program was considered outdated if the 
participant’s computer had not updated to the latest version a 
week after it was released. Days since Windows update is the 
number of days since a Windows update was most recently 
installed. Thus, a low number suggests that the user has updated 
their Windows OS more recently. This measure does not capture 
why users waited to install updates (e.g. whether they actively 
delayed updates or did not see prompts). 

For third-party security software, we assigned a binary variable 
where 1 indicated that it was installed and error-free (see below) 
and 0 indicated errors or no software. Security software was 
considered error-free if it was in use for over 7 days, updating 
without errors, and scanning. In some cases, it was impossible to 
know if a security program met all these criteria because either it 
did not log the data or the log was not informative. In those cases, 
we used the available subset of these criteria. Thus, we assumed 
that installed security software was error-free unless there was 
evidence otherwise. We could examine the logs for McAfee, 
Malwarebytes, Webroot, Avast, Norton, Kaspersky, and AVG to 
assess their median days in use: 172 (M = 223, SD = 238). We 
could not assess updating for Avast or scanning for McAfee, 
Avast, and AVG due to missing or uninformative logs. 

3.4 Sample 
SBO participants were recruited from local participant pools and 
are predominantly retirees and college students. For this study, we 
recruited participants from among those who joined the SBO 
between October 2015 and February 2016, asking for volunteers 
to participate in “an online research study about email use.” In 
addition to their regular monthly SBO compensation, each 
received $20 upon completing our phishing detection experiment. 
Those who did not start the experiment were sent a reminder after 
9 days. Those who started, but did not finish, were sent a reminder 
after 9 days and again after another 7 days. SBO participants 
received higher compensation than mTurk participants ($20 vs. 
$5) to encourage a high response rate, given the limited pool of 
SBO participants. This study was approved by the Carnegie 
Mellon University Internal Review Board. 

3.5 Defining Successful Replication 
The replicability of Canfield et al. can be assessed in terms of the 
methods (also referred to as reproducibility) and results [13]. 
Canfield et al. made their original study materials and code 
publicly available1 and this paper follows suit to ensure the 
methods are reproducible (see Appendix). The following analysis 
is focused on assessing whether the results are replicable and 
robust to changes in the study sample.  

There is an ongoing debate regarding how to measure a successful 
replication [1, 8, 11, 29]. For this study, we assess whether the 
replication was successful in four ways:  

1. Comparison of effect sizes 
2. Consistency of the hypothesis test results 
3. Parameter space region ruled out by confidence intervals 
4. Combined analysis 

 
We (1) directly compare the point estimates or effect sizes of the 
SDT parameters for the original and replication study. First we 
qualitatively compare the point estimates, considering a 
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meaningful difference of a 10% change in the hit rate, or 
probability of detecting phishing emails as unsuccessful 
replication. For the SDT parameters, this is a difference of 0.3 for 
d’ and 0.1 for c. We then use a two-sample statistical significance 
test of the null hypothesis that the two studies were drawn from 
populations with the same effect size. The limitation of this first 
approach is that a conclusion that the study replicated based on 
the failure to reject the null hypothesis depends on the statistical 
power of the test, and thus sample size of both studies. Lower 
statistical power would lead to a higher frequency of conclusions 
that the study replicated even in the face of large differences, and 
high statistical power would lead to conclusions that the study did 
not replicate even if the differences in effect sizes were trivial.  

Our second test (2) assesses the consistency of the regression 
coefficients in the replication study with the null hypothesis that 
the regression coefficient is exactly zero. The p-value on the t-test 
of each regression coefficient provides this measure of 
consistency [45]. If the p-value is below the .05 alpha level, we 
conclude that the regression coefficient from the replication study 
is inconsistent with zero, and that the study successfully 
replicated. The limitation of this second approach is the opposite 
of the first, where lower statistical power would lead to fewer 
conclusions that the study successfully replicated even if the 
regression coefficient was large, and high statistical power would 
lead to more conclusions that the study successfully replicated 
even if the regression coefficient was small. 

Third, we assess (3) the region of the parameter space ruled out by 
confidence intervals. In the original and replication studies, we 
construct 95% confidence intervals. Each interval either does or 
does not cover the population parameter, and if we conclude that 
it does include the population parameter, then we will be wrong 
5% of the time (i.e. the population parameter falls outside the 
interval). Therefore, a successful replication would find similar 
conclusions about the population parameter (i.e. that the region of 
the parameter space outside the interval in the two studies is 
“similar”). We operationalize this similarity as having a non-
empty union of the two intervals, or that the intervals overlap. In 
other words, we judge that a study replicated the first if the two 
studies do not rule out all of the parameter space. This approach 
has the same limitations as the first, of always concluding 
successful replication with a low sample size, and never 
concluding successful replication with a large sample size. 

Fourth, we assess (4) a combined regression analysis. We 
assessed whether the replication was successful by combining the 
two studies into a single linear regression analysis. A successful 
replication is then drawing the same conclusion using the 
combined data as the original data. This analysis improves the 
power of the statistical tests due to the increased sample size 
achieved by combining the two samples. 

When considered together, these tests provide insight into whether 
the replication was successful. One of the primary challenges in 
assessing whether a replication is successful is accounting for 
Type II error (i.e. incorrectly accepting the null hypothesis). In the 
context of replication, this is the probability of incorrectly finding 
that the replication is successful, when in truth it is not.  In this 
study, the sample size of the replication is constrained by the 
existing SBO participant pool, which limited our ability to 
perform a higher-powered test and increases the chance of Type II 
errors. To account for this, we interpret a failure to reject the null 
hypothesis (i.e. finding that there is no difference in effect size or 

hypothesis test result) as a lack of evidence of a difference, rather 
than evidence that there is no difference.  Similarly, confidence 
intervals tend to be larger when the sample size and statistical 
power are lower, increasing the likelihood that our replication 
meets our definition of success. Therefore, it is critical to not 
over-interpret these results. Rather, this is a first attempt to use 
data logs for validation. As more data is collected, the strength of 
replication studies using this approach will improve.  

3.6 Analysis 
In the analysis that follows, we first reproduce the phishing 
detection experiment by Canfield et al. [4] to assess whether SBO 
participants perform differently than Amazon Mechanical Turk 
[32] participants (mTurk). We assess differences between the 
samples using t-tests (t), Chi-squared tests (χ2), and 2-sided Mann-
Whitney-Wilcoxon (W) tests where appropriate. Given the large 
number of statistical tests across disparate analyses, we generally 
use � = .01 as a threshold for interpretation, rather than applying 
separate corrections to groups of tests. We replicate the estimation 
of the SDT parameters and the linear regression analysis to 
determine any differences in which factors predict performance. 
In the regression analysis, with 11 independent tests and � =.05, 
we would expect to find at least one false positive (55% chance). 
Using � =.01 reduces this chance to 11%. However, using � =.01 
is conservative for Type I errors, but not Type II errors.  
Therefore, we interpret significance using � =.05 for the 
replication (where Type II error matters most) and � =.01 for the 
remaining analysis (where Type I error matters most). 

Second, we assess the experimental measures’ construct validity 
with the Pearson correlation between the SDT parameters and a 
validated measure of security intentions, the Security Behavior 
Intentions Scale (SeBIS) [6].  

Third, we assess predictive validity by whether the SDT 
parameters improve the fit of logistic models for predicting 
observations of negative computer security outcomes for SBO 
participants (i.e. observations of malicious URLs, files, and 
software). For each outcome, we construct a logistic regression 
model comprised of the SDT parameters and other predictors of 
exposure and risky behavior. This serves to test two hypotheses. 
We expect users who are more susceptible to phishing on the 
experimental measure to experience more negative computer 
security outcomes in real life. Thus, our first hypothesis is: 

H1: Users who are more susceptible to phishing in the SDT 
experiment (i.e. are less able to detect and avoid threats) are 
more likely to visit malicious URLs and have malware and 
malicious files on their computer. 

We test H1 using a likelihood ratio test, which compares goodness 
of fit for nested logistic regression models with and without the 
SDT parameters. The likelihood ratio test is the most efficient test 
of the null hypothesis that the SDT measures do not increase the 
likelihood of the data given the SDT measures [15, 16]. The 
second hypothesis we test is: 

H2: Users who use their computers more (i.e. have greater 
exposure) or engage in more risky behavior are more likely to 
visit malicious URLs as well as have malware and malicious 
files on their computer. 

We test H2 in the construction of the logistic regression models, 
following the procedure recommended by Hosmer et al. [16]. 
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4. RESULTS 

4.1 Sample 
We recruited 132 SBO participants to participate in the phishing 
detection experiment. Of those, 121 started the survey and 98 
finished (= 74% response rate). We excluded 5 participants who 
sent the SBO less than 7 days of data. The final sample (see SBO 
Sample in Table 2) represents 44% (= 93/213) of all the SBO 
participants at that time (All SBO in Table 2). As shown in Table 
2, the SBO sample was older, t(121) = 4.52, p < .001, Cohen’s d = 
0.69, and had a higher proportion of college-educated individuals, 
��(1) = 6.83, p = .009, � = 0.17, than did the mTurk sample in 
Canfield et al. [4].1 There was no difference in gender, ��(1) = 
0.05, p = .823, � = 0.01. Within the SBO sample, older 
participants tended to be better educated, in part because some of 
the younger participants were in college (thus had not finished 
their educations), r(92) = 0.37, p < .001. Our SBO sample 
resembled the wider SBO population on these variables (Table 2). 

Table 2. Comparison of mTurk and SBO demographics. The 
mTurk sample is from Canfield et al. [4]. 

Variable mTurk SBO Sample All SBO 
Female 58% 60% 61% 

Bachelors+ 45% 63% 58% 
Age 32 [19, 59] 41 [19, 81] 46 [19, 87] 
N 152 93 213 

4.2 Comparison of Experimental Results 
(Replication) 
There was little difference between how much attention the SBO 
and mTurk participants paid to instructions. Of the 93 SBO 
participants, 16 failed at least 1 of the 3 attention checks. Users 
who failed the attention checks were not excluded from the 
sample, but attention was included as a variable in the regression 
analysis in order to increase statistical power [30]. There were no 
significant differences in performance on the attention checks, 
17% failed for SBO vs. 10% failed for mTurk, ��(1) = 2.18, p = 
.14, � = 0.09. The median time spent on the introductory phishing 
information was slightly higher for the mTurk participants, SBO = 
0.74 minutes (M = 1.16, SD = 1.79) vs. mTurk = 0.95 minutes (M 
= 3.17, SD = 11.51), W = 5018, Z = 2.25, p = .02, r = 0.14. 

However, SBO participants, particularly the older ones, spent 
more time on the individual email stimuli. The median time to 
complete the experiment was 47 minutes, including breaks (M = 
59 min, SD = 49 min). This estimate excludes seven outliers, 
participants who appeared to stop working and leave the 
experiment open on their browser for 19 hours to almost 2 weeks. 
SBO participants spent more time per email, SBO = 0.94 minutes 
(M = 1.13, SD = 0.72) vs. mTurk = 0.48 minutes (M = 0.53, SD = 
0.24), W = 11850, Z = 8.88, p < .001, r = 0.57 in a Mann-
Whitney-Wilcoxon test. Within the SBO sample, older 
participants spent more time per email, r(92) = 0.46, p < .001. 

First, we assess whether the results of the SDT parameter 
estimation replicate. Since these are point estimates, there are no 
hypothesis tests to replicate. There was no evidence of significant 
differences between the mTurk and SBO samples on any SDT 
parameters, for either the detection or the behavior task, p > .05. 
However, the point estimates differ by 0.12 for detection c, which 

exceeds our meaningful difference threshold. When comparing 
the confidence intervals, the replicated point estimate is within the 
original study’s confidence interval for d’ and behavior c. For 
detection c, the replicated point estimate is outside of the original 
confidence interval, but the confidence intervals still overlap. In 
general, there is no evidence that the SDT estimates differ 
between the studies, although the evidence is weakest for 
detection c. Table 3 shows the mean statistics for the SDT 
parameters and accuracy (for comparison). Figure 1 shows the 
distribution of d’ and c for each task and sample.  There was no 
evidence of learning over the course of the experiment, as d’ and c 
were equal when calculated separately for the first and second half 
of the emails. This suggests that the performance parameters 
estimated in Canfield et al. [4] are not unique to mTurk and can be 
generalized to the SBO population, which was an older, 
potentially less tech-savvy group. 

We also replicated the regression analysis from Canfield et al. [4] 
to determine whether there were any differences in the factors that 
predicted phishing vulnerability for the two samples. Tables 4 and 
5 show the results for both samples to compare the results of the 
hypothesis tests. Figure 2 compares the 95% confidence intervals. 
In general, the SBO sample’s coefficients had larger confidence 
intervals, due to the lower sample size, but overlap the mTurk 
coefficients, suggesting no statistically significant differences. 
The results were largely the same, except for the following three 
differences.  

First, unlike Canfield et al.’s mTurk sample, confidence was not a 
significant predictor of response bias (c) for the SBO sample. We 
found no systematic differences in mean confidence between the 
two samples, M = 0.86 (SD = 0.08) for SBO and mTurk, t(181) = 
0.04, p = .97, Cohen’s d = 0.01. Second, age and education are 
predictors of c in the SBO sample, but were not in the mTurk 
sample, perhaps due to the higher variance of age and education in 
the SBO sample. Older participants seemed biased toward 
identifying emails as phishing (i.e. lower detection c). College-
educated participants seemed biased toward identifying emails as 
legitimate (higher detection c). Third, attention and median time 
per email were not significant predictors for the SBO sample, 
perhaps due to reduced variance, as SBO participants were more 
likely to fail the attention checks and spent more time per email.  

As also reported in Tables 4 and 5, the combined analysis is 
largely consistent with the original Canfield et al. experiment for 
sensitivity, but there are differences for response bias. Higher 
attention and higher average confidence predict higher detection 
sensitivity, consistent with the original Canfield et al. (p < .01). 
None of the predictors are significant for behavior sensitivity, 
consistent with the original Canfield et al. (p < .01). Higher 
average confidence, lower perceived consequences, and younger 
individuals tended to have a higher detection response bias, which 
differs from the original Canfield et al. study (p < .01). In the 
separate analysis, age is significant for the SBO sample but not 
the mTurk sample and average confidence is significant for the 
mTurk sample but not the SBO sample. Higher average 
confidence and lower perceived consequences are associated with 
a higher behavior response bias, which differs from the original 
Canfield et al. study (p < .01). In the separate analysis, the median 
time spent per email is significant for the mTurk sample and none 
of the predictors are significant for the SBO sample. 
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Table 3. SDT phishing vulnerability parameter estimates for mTurk [4] and SBO samples. 

 Detection Task (Yes/No)  Behavior Task (multiple choice)  
 mTurk 

M (SD) 
[CI] 

SBO 
M (SD) 

[CI] 

 mTurk 
M (SD) 

[CI] 

SBO 
M (SD) 

[CI] 

 Typical  
Range 

Sensitivity (d’) 0.96 (0.64) 
[0.86, 1.06] 

0.96 (0.66) 
[0.83, 1.10] 

t(191) = 0.01,  
p = .99, d = 0 

0.39 (0.50) 
[0.31, 0.47] 

0.42 (0.52) 
[0.32, 0.53] 

t(190) = 0.41,  
p = .69, d = 0.05 

0 to 4 

Response bias (c) 0.32 (0.46) 
[0.24, 0.39] 

0.20 (0.51) 
[0.10, 0.30] 

t(178) = -1.78,  
p = .08, d = 0.24 

-0.54 (0.66) 
[-0.64, -0.43] 

-0.62 (0.57) 
[-0.74, -0.51] 

t(216) = -1.07,  
p = .29, d = 0.14 

-2 to 2 

Accuracy 0.67 (0.11) 
[0.65, 0.69] 

0.67 (0.11) 
[0.65, 0.69] 

t(193) = 0.03,  
p = 0.98, d = 0 

0.56 (0.08) 
[0.55, 0.57] 

0.57 (0.09) 
[0.55, 0.59] 

t(179) = 0.99,  
p = .32, d = 0.13 

0 to 1 

 

 

Figure 1. Plot of d’ vs. c for each task and sample. The parameter estimates are bounded by the dotted lines, which represent 
extreme performance (no false alarms or no misses). There were no significant differences in performance between the mTurk (a, 
b) [4] and SBO (c, d) samples. 
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Figure 2. Comparison of regression coefficients with 95% confidence intervals (CI) for (a) detection d’, (b) detection c, (c) behavior 
d’, and (d) behavior c.  
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Table 4. Comparison of linear regression analysis of detection and behavior sensitivity (d’) for mTurk [4] and community (SBO) 
samples. The asterisks indicate statistical significance, where * is p < .05, ** is p < .01, and *** is p < .001. 

 Detection Sensitivity (d’D) Behavior Sensitivity (d’B) 
 mTurk SBO Combined mTurk SBO Combined 
 B (SE) B (SE) B (SE) B (SE) B (SE) B (SE) 

Intercept -1.32 (0.98) -0.97 (0.92) -0.96 (0.64) -0.09 (0.83) 0.61 (0.77) 0.19 (0.54) 
Sample (SBO = 1)   -0.04 (0.10)   0.15 (0.08) 
Knowledge of base rate 0.02 (0.10) -0.22 (0.14) -0.05 (0.08) 0.10 (0.08) 0.05 (0.12) 0.08 (0.07) 
Task order (detection = 1) 0.04 (0.10) 0.15 (0.14) 0.09 (0.08) -0.05 (0.09) -0.14 (0.12) -0.06 (0.07) 
Attention (pass = 1)  0.49 (0.18)** 0.33 (0.19) 0.40 (0.13)** 0.12 (0.15) 0.07 (0.16) 0.10 (0.11) 
log(Phish info time) 0.05 (0.04) 0.02 (0.07) 0.05 (0.03) -0.03 (0.03) 0.07 (0.06) 0 (0.03) 
Median time/email 0.48 (0.23)* 0.23 (0.11)* 0.21 (0.09)* 0.17 (0.19) -0.13 (0.09) -0.08 (0.08) 
Average confidence 2.23 (0.67)** 3.46 (0.87)*** 2.64 (0.51)*** 1.11 (0.57) 0.71 (0.73) 0.84 (0.43) 
Average perceived consequences 0.08 (0.08) 0 (0.10) 0.07 (0.06) 0.11 (0.06) 0 (0.08) 0.08 (0.05) 
log(Age) -0.22 (0.21) -0.40 (0.19)* -0.33 (0.13)* -0.33 (0.17) -0.16 (0.16) -0.26 (0.11)* 
Gender (male = 1) 0.11 (0.10) -0.09 (0.15) 0.04 (0.08) 0.06 (0.09) 0.15 (0.12) 0.10 (0.07) 
College (college degree = 1) 0.19 (0.10) -0.03 (0.16) 0.11 (0.08) 0.10 (0.09) -0.18 (0.13) 0.02 (0.07) 
N 142 84 227 142 84 227 
Adjusted R2 0.16 0.14 0.15 0.05 0.05 0.05 
F  3.71*** 2.37* 4.63*** 1.68 1.40 2.16* 

 

Table 5. Comparison of linear regression analysis of detection and behavior response bias (c) for mTurk [4] and community 
samples. The asterisks indicate statistical significance, where * is p < .05, ** is p < .01, and *** is p < .001. 

 Detection Response Bias (cD) Behavior Response Bias (cB) 
 mTurk SBO Combined mTurk SBO Combined 
 B (SE) B (SE) B (SE) B (SE) B (SE) B (SE) 

Intercept 0.06 (0.70) 1.31 (0.62)* 0.81 (0.46) 0.10 (0.87) -0.08 (0.81) -0.14 (0.58) 
Sample (SBO=1)   -0.12 (0.07)   0.13 (0.09) 
Knowledge of base rate 0.01 (0.07) 0 (0.10) -0.01 (0.06) 0.13 (0.09) 0.07 (0.13) 0.10 (0.07) 
Task order (detection=1) -0.01 (0.07) 0.18 (0.10) 0.01 (0.06) 0.11 (0.09) 0.12 (0.13) 0.08 (0.07) 
Attention (pass = 1) 0.08 (0.13) 0.07 (0.13) 0.07 (0.09) -0.19 (0.16) -0.13 (0.17) -0.13 (0.12) 
log(Phish info time) 0.01 (0.03) 0.04 (0.05) 0.01 (0.02) 0.01 (0.04) 0 (0.06) 0 (0.03) 
Median time/email 0.10 (0.16) 0.13 (0.08) 0.14 (0.06)* -0.70 (0.20)*** -0.10 (0.10) -0.17 (0.08)* 
Average confidence 1.81 (0.48)*** 0.62 (0.59) 1.30 (0.36)*** 2.38 (0.59)*** 0.93 (0.77) 1.92 (0.47)*** 
Avg perceived consequences -0.24 (0.05)*** -0.24 (0.07)*** -0.26 (0.04)*** -0.42 (0.07)*** -0.20 (0.09)* -0.36 (0.05)*** 
log(Age) -0.17 (0.15) -0.38 (0.13)** -0.27 (0.09)** -0.22 (0.18) -0.18 (0.16) -0.21 (0.12) 
Gender (male=1) -0.13 (0.07) 0.05 (0.10) -0.06 (0.06) -0.14 (0.09) 0.11 (0.13) -0.05 (0.08) 
College (college degree=1) 0.02 (0.07) 0.39 (0.11)*** 0.12 (0.06)* -0.13 (0.09) 0.18 (0.14) -0.02 (0.08) 
N 142 84 227 142 84 227 
Adjusted R2 0.18 0.27 0.21 0.39 0.07 0.25 
F  4.16*** 4.12*** 6.44*** 9.85*** 1.63 7.81*** 

 

4.3 Construct Validity 
We assessed construct validity as the correlation between the SDT 
parameters and the proactive awareness subscale of the SeBIS. 
One of the four SDT parameters, behavior c (i.e. how suspicious a 
link must be before the participant chooses not to click on it), was 
correlated with the SeBIS proactive awareness subscale, r(83) =   
-0.29, p = .008. None of the other SDT parameters had a 
correlation greater than 0.20. Thus, participants who reported 
looking at the URL before clicking on links (in the SeBIS) were 
also more cautious in the experimental task (behavior c). 

4.4 Predictive Validity 
For simplicity’s sake, we only report tests of predictive validity 
for the behavior task, as results for the detection task were similar. 
Below, we report our analyses separately for each of the four SBO 
computer security negative outcomes. 

4.4.1 Malicious URLs in Browser Data 
Browser data were available for 86 of the 93 SBO users. Most 
used Internet Explorer (66/86 = 77%), followed by Chrome (29/86 
= 34%) and Firefox (12/86 = 14%). Some participants used 
multiple browsers, so the percentages do not sum to 100%. In 
total, 9 participants (10%) had visited a malicious URL: 2 Internet 
Explorer users (2/66 = 3%), 4 Chrome users (4/29 = 14%), and 3 
Firefox users (3/12 = 25%).  

Table 6 shows our univariate analyses [16] for the relationship 
between each potential predictor and whether users had visited a 
malicious URL. Among these potential covariates, only 
domains/day was related to whether participants had visited 
malicious URLs. Therefore, it was included in the regression 
model, using a log transformation to normalize the observations.  

Users who visited more domains were more likely to have visited 
a malicious URL. Table 8 shows the regression analysis for the 
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browser data. Log(domains/day) was the only significant 
predictor. As seen in the likelihood ratio test (reported in the last 
row of Table 8), users’ SDT parameter estimates did not improve 
the model fit. This indicates that there was no evidence that ability 
to identify phishing emails in the experiment (as represented by 
the SDT parameters) was related to whether participants had 
visited a malicious URL in the browser data. 

4.4.2 Malicious URLs in Network Packet Data 
We also assessed visits to malicious URLs in the network packet 
data. There was much more network packet data than browser 
data (Table 6), since a single webpage is assembled from many 
network packets [17]. For 31 of 93 SBO users (33%), the network 
packet data indicated that they had visited a malicious URL. 
Univariate analysis [16] found that total URLs/day, unique 
URLs/day, and domains/day were related to having visited a 
malicious URL at least once. We then computed a factor analysis, 
which revealed that these covariates loaded on one factor, alpha = 
0.79. We called this factor browsing intensity and used a log 
transformation to normalize it. We then used that factor score in 
the regression model and likelihood ratio test reported in Table 8. 

The regression analysis shows that users with higher browsing 
intensity were more likely to have visited a malicious URL in the 
network packet data. In addition, there was an effect for gender, 
whereby men were more likely to have visited malicious URLs. 
This finding emerges after normalizing for exposure (in the 
regression analysis) and observing no correlation between gender 
and exposure, r(90) = .06, p = .57. This suggests that men were 
either more likely to visit malicious URLs in their browsing or 
worse at detecting malicious URLs in this sample. More research 
is needed to understand this result. In the likelihood ratio test, 
users’ SDT parameter estimates did not improve the model fit. 
Thus, there was no evidence to suggest that performance on the 
SDT experiment was related to whether participants had visited a 
malicious URL in the network packet data. 

Table 6. Descriptive statistics and factor analysis for the 
browser and network packet sensor predictors. 

Browser  Network Packet 

Median 
M 

(SD) Median 
M 

(SD) Loading 
Days 40 67 

(76) 
70 85 

(63) 
NA 

Total URLs 22 56 
(90) 

1,500 2,600 
(3,600) 

0.73 

Unique URLs 9 23 
(32) 

670 990 
(1,000) 

1 

Domains 
 

5 5.7 
(4.4) 

42 52 
(37) 

0.60 

% of Total Variance 63% 
Cronbach's Alpha 0.80 
 

4.4.3 Malware 
Most users had the Windows 10 operating system (53/92 = 58%), 
followed by Windows 8 (22/92 = 24%), Windows 7 (14/92 = 
15%), and Windows Vista (3/92 = 3%). 43 of the 92 (47%) users 
with installed software data had malware. For each operating 
system, approximately half of the users had malware.  

Table 7 shows descriptive statistics for viable software covariates. 
Univariate analysis [16] revealed that total software and delayed 

software updates were related to malware. However, the factor 
analysis found that these variables were only weakly related. 
When included in the regression model separately, delayed 
software updates were not a significant predictor, so it was 
removed from the model. Total software was normalized using a 
log transformation.  

Users who installed more software were more likely to have 
malware on their machine. As shown in Table 8, this variable 
predicted malware. Again, the SDT parameter estimates did not 
improve the model fit. Thus, there was no evidence that 
performance on the SDT experiment was related to observations 
of malware on a participant’s computer.   

4.4.4 Malicious Files 
Most users (84/93 = 90%) had malicious files on their computer. 
In the regression model, we used the same predictors as in the 
malware model, reported in Table 7.  

The regression analysis (Table 8) shows that users who had 
installed more software were significantly more likely to have 
malicious files on their computer. The SDT parameter estimates 
did not improve the model fit. Thus, there was no evidence that 
performance on the SDT experiment was related to observations 
of malicious files on a participant’s computer. 

Table 7. Descriptive statistics and factor analysis for the 
software predictors. 

 
Median 

M 
(SD) 

Loading 

Total Software 244 342 
(316) 

0.44 

Delayed Software Updates 2 2 
(1) 

0.44 

% of Total Variance 20% 
Cronbach's Alpha 0.33 

5. DISCUSSION 
In this study, we reproduced Experiment 1 from Canfield et al. [4] 
in a community sample (SBO). We assessed replicability in terms 
of the effect sizes, results of the hypothesis tests, confidence 
intervals, and combined analysis. In general, we found similar 
distributions of the SDT performance measures as in the mTurk 
sample, suggesting that there was no evidence of differences in 
performance between the two samples. However, although the 
performance of the two samples replicated (as defined in Section 
3.5), the regression analysis differed slightly, reflecting the 
differences between the samples in terms of age and education. 
This analysis suggests that a higher-powered study with a diverse 
sample is needed to assess demographic effects. However, the 
findings about confidence and perceived consequences are fairly 
consistent, suggesting that they may be useful parameters for 
future behavioral interventions and predictive metrics. 

We found some evidence of construct validity for the 
experimental behavior task, consistent with it measuring what it 
claimed. Participants with a greater response bias on the behavior 
task (cB), or tendency to treat uncertain emails as phishing, had 
higher scores on the SeBIS proactive awareness subscale, which 
elicits self-reports of attention to URLs. This suggests that 
participants were acting on their computer security intentions in 
the SDT experiment. The other SDT parameters were not 
correlated with SeBIS. This suggests that ability (d’) is not related  
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Table 8. Logistic regression models and likelihood ratio test (LRT) for each outcome. The LRT compares the full models shown 
above with the same models excluding the 2 SDT parameters. The asterisks indicate statistical significance, where * is p < .05, ** is 
p < .01, and *** is p < .001. 

 Malicious URLs 
(browser) 

Malicious URLs 
(network packet) 

Malware Malicious  
Files 

(Int) -6.43 (2.14)** -10.53 (2.83)*** -5.93 (1.71)*** -6.65 (3.71) 
Behavior Sensitivity (d'B) -0.06 (0.89) -0.33 (0.55) -0.09 (0.46) -1.59 (1.04) 
Behavior Response Bias (cB) -0.80 (0.74) 0.11 (0.50) -0.06 (0.44) -0.90 (1.22) 
log(Domains/day) 1.93 (0.77)*    
log(Browsing Intensity)  1.39 (0.38)***   
log(Total Software)   0.99 (0.31)** 2.58 (0.87)** 
Age 0.01 (0.03) -0.03 (0.02) 0 (0.01) -0.05 (0.03) 
Male 0.90 (0.81) 1.47 (0.55)** 0.07 (0.48) -0.64 (0.94) 
College -0.89 (0.95) 0.16 (0.61) 0.56 (0.53) -1.29 (1.29) 

LRT ��(2) =1.29, p = 0.5 ��(2) = 0.41, p = 0.8 ��(2) = 0.06, p =1.0 ��(2) = 4.12, p = 0.13 

     
to security intentions. The response bias (c) for the detection 
task measures participants’ tendency to identify emails as 
phishing or legitimate. Although this could have been related to 
security intentions, the behavior task better matched the SeBIS 
scale due to the higher consequences associated with behavior. 

We found no evidence of predictive validity for the SDT 
parameters for any of the four computer security outcomes in the 
SBO data: browser visits to malicious URLs and network packet 
data, malware, and malicious files. Thus, we reject H1. 
However, those four measures were robust enough to be 
predicted by other observation-based measures, as hypothesized 
by H2. SBO participants who used their computers more 
frequently were more likely to have experienced a negative 
computer security outcome. 

We offer four possible reasons why the ability to identify 
suspicious messages in the laboratory task did not predict the 
ability to identify similar suspicious messages in the real world:  

1. the experimental task does not evoke true phishing 
behavior,  

2. the experimental task evokes true behavior in an 
environment different from SBO users’ (i.e. lack of 
ecological validity),  

3. the SBO measures are confounded by other aspects of 
users’ complex real-world experience, or 

4. the SBO data are too noisy to reveal the underlying 
correlations without much larger samples. 

 
Explanation (1), that the experiment does not evoke actual 
behavior, seems unlikely, as the results of the experiment are in 
line with other phishing susceptibility research. For example, 
participants who perceived worse consequences were more 
cautious (negative c) [34, 42, 47]. Moreover, performance on the 
SDT experiment showed expected correlations with other 
variables, such as better performance being associated with 
greater security intentions (in the test of construct validity). 

Explanation (2), lack of ecological validity for the experiment 
environment, seems more plausible. One unrepresentative 
feature of the experimental task is that it has a 50% base rate of 
phishing emails, much higher than that in everyday life [34]. 
That higher rate seems likely to have influenced the SDT 
estimates. In a SDT study of baggage screening, artificially high 
base rates decreased c (i.e. encouraged participants to be more 
biased toward identifying items in baggage as suspicious), but 

had no effect on d’ (i.e. people’s ability to differentiate between 
suspicious and benign items in baggage) [46]. Analogous 
behavior here would have been a greater propensity to treat 
messages as phishing in the experiment than in life. A second 
feature of the experimental task is explicitly asking participants 
to evaluate each email for phishing, thereby priming them to 
detect attacks. Research by Parsons et al. [33] suggests that 
explicitly mentioning phishing artificially increases d’ but has 
no effect on c. Together, these studies suggest that our estimates 
of performance are better than what would be expected in real 
life. However, there is no obvious reason why these differences 
should affect users’ relative performance. Thus, we would 
expect users who are good at detecting phishing to perform 
better on the experiment than users who are bad at detecting 
phishing. As a result, the correlations across measures should be 
preserved. In other words, we would not expect users who are 
bad at detecting phishing in real life to be better at it in an 
experiment, compared to users who are good at detecting 
phishing in real life.  

Explanation (3), that the complexity of real-world environments 
(for SBO participants, among others) complicates the 
relationship between individuals’ general propensities (which 
the SDT metrics attempt to measure) and their actual 
experiences, is also compelling. As seen here, negative 
experiences (in the sense of visiting malicious URLs and having 
malicious files) are strongly related to the amount of exposure 
(as measured by browsing intensity and total software). Perhaps 
individuals’ exposure to threats overwhelms their ability (d’) or 
propensity (c) to avoid them.  Alternatively, the ability to detect 
phishing emails may not translate to users’ ability to avoid 
attack vectors in general. Thus, the effect of avoiding threats 
from phishing is washed out by all the other attacks that lead to 
malware and malicious files on users’ computers. Participants’ 
rate of negative experiences may also be related to their 
systems’ protections and their attractiveness as targets for 
attackers. Systems’ vulnerability is partially determined by users 
(e.g. abilities, knowledge) and partly by others (e.g. browser 
blacklists, security software). Unfortunately, even with the rich 
SBO data set, we lacked the complete picture needed to sort out 
these relationships. The SBO collects data on browser warnings, 
but there were very few observations. Examining browser 
warnings would allow observation of the URLs that users 
attempted to visit, rather than being limited to the successful 
ones that were not blocked by browser blacklists. In addition, as 
described in the Methods section, we were unable to measure 
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detections for all security software. Some of those programs, 
particularly free versions, do not record logs. Others have poor 
documentation. On those that do provide logs, we observed few 
detections. Given that security software use did not predict the 
presence of malware or malicious files and that more malware 
and malicious files were observed than were detected by 
security software, one possible explanation is that many SBO 
users were unable to configure and utilize their security software 
effectively. 

Finally, explanation (4), that the SBO measures are noisy, is to 
be expected for real-world observations. There were cases where 
data were missing (e.g. a sensor malfunctioned or was turned 
off) or ambiguous (e.g. multiple people using the same 
computer). As a partial check on one potential source of noise, 
we repeated the analysis after excluding computers with 
multiple users, but found similar results. If data problems are 
randomly distributed, then a larger sample might reveal 
underlying relationships. If they are correlated with individual or 
system performance, then those interdependencies will need to 
be understood and unraveled. 

Thus, validating predictive measures of phishing vulnerability 
(including SDT and SeBIS) requires a much more nuanced 
picture than we currently have of the relationship between 
individuals’ ability, propensities, and experienced outcomes. 
The predictive validity of any measure could be undermined by 
proper environmental safeguards or if people realize their 
vulnerability and restrict their behavior. Once available, a full 
picture of the SBO data may provide valuable guidance on these 
possibilities.  

5.1 Limitations 
This study had several notable limitations. First, it was limited to 
Windows users. The depth and breadth of SBO data collection 
requires custom software tailored to each OS. Due to resource 
constraints, the SBO is limited to Windows, the most common 
OS [9]. In the original mTurk sample [4], 84% of participants 
used Windows and performed similarly to other OS users. 

Second, although this study evaluates the generalizability of an 
existing method, it leaves some aspects of generalizability open 
to further study. Although the mTurk and SBO samples differed 
in some ways (Table 2), extension to other populations would be 
valuable. One within-sample result bearing further attention is 
the observation that men were more susceptible to phishing.  

Third, both the experimental task and the SBO study whether 
individuals visit a phishing website. That leaves open the 
question of when they share personal information once there. As 
noted, even the simpler outcome of such visits was difficult to 
measure in the SBO. We were limited by the data available in 
the Google Safe Browsing, ShouldIRemoveIt.com, and 
VirusTotal datasets. Thus, we missed attacks absent in these 
databases. In addition, we observed more negative computer 
security outcomes related to software (47% had malware and 
90% had malicious files) than to browsing (10% in browser data 
and 33% in network packet data). This lower rate may reflect 
limits to the lists of malicious URLs, which change over time. 
For example, a legitimate site may be compromised and only 
briefly appear on the Google Safe Browsing blacklist. Finally, 
some SBO data were missing for technical reasons, which 
reduced our ability to observe negative outcomes and correlate 
them with other measures.  

5.2 Recommendations  
Given the novelty of using data logs like those collected by the 
SBO to validate performance tests like those collected in 
Canfield et al., we provide recommendations for future work:  

1. To the extent possible, use behavioral outcomes that are (a) 
as directly related to the outcome of interest as possible and 
(b) rely on human ability without intervening technology. 
For example, measure attempts to visit malicious URLs 
(via browser warning data), rather than actual visits, to 
distinguish human ability from browser blacklist 
effectiveness. When possible, use security software 
detections of malware and malicious files to assess attempts 
to download malicious files. Technical constraints and lack 
of observations limited our ability to use these outcomes. 

2. Triangulate between multiple data sources (e.g. assessing 
both browser and network packet data), with an 
understanding of their respective strengths and weaknesses. 
For example, there are more network packet data, but 
browser data better reflect the URLs that users choose to 
visit. Beyond the analysis presented here, it may be 
possible to crosscheck events such as security software 
scanning with observed active processes on the machine. 

3. Consider the temporal sequence of events, such as how 
periods without security software protection affect the risk 
of acquiring malicious files. 

6. CONCLUSION 
We assessed the validity of the SDT measures proposed by 
Canfield et al. [4] in three ways: (a) replicating their mTurk SDT 
experiment with SBO participants, (b) assessing construct 
validity via correlation with the SeBIS proactive awareness 
subscale, and (c) evaluating predictive validity using negative 
outcomes observed in the SBO data. Our results suggest (a) that 
the findings from Canfield et al. [4] generalize to the SBO 
population and (b) the SDT measures have construct validity, 
given the correlation between participants’ self-reported 
tendency to look at URLs before clicking links (in the SeBIS) 
and their caution in clicking links in the SDT study (behavior c). 
However, we found (c) no evidence of predictive validity, as the 
SDT measures did not predict negative computer security 
outcomes observed in the SBO.  

One of the primary challenges for this analysis was 
differentiating between people’s ability to protect themselves 
(by knowing which URLs to avoid) and technical safeguards 
(such as browser blacklists). Future research, addressing this 
complication, will offer opportunities for laboratory and 
observational measures to complement one another in 
understanding the security ecosystem. 
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APPENDIX 

A. Open Data 
The data and code for this paper are available at 
https://osf.io/6dknx/. 
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