
This paper is included in the Proceedings of the
Twelfth Symposium on Usable Privacy and Security (SOUPS 2016).

June 22–24, 2016 • Denver, CO, USA

ISBN 978-1-931971-31-7

Open access to the Proceedings of the
Twelfth Symposium on Usable Privacy

and Security (SOUPS 2016)
is sponsored by USENIX.

A Week to Remember: The Impact of
Browser Warning Storage Policies

Joel Weinberger and Adrienne Porter Felt, Google

https://www.usenix.org/conference/soups2016/technical-sessions/presentation/weinberger

USENIX Association 2016 Symposium on Usable Privacy and Security 15

A Week to Remember

The Impact of Browser Warning Storage Policies

Joel Weinberger
Google, Inc.

jww@chromium.org

Adrienne Porter Felt
Google, Inc.

felt@chromium.org

ABSTRACT
When someone decides to ignore an HTTPS error warning,
how long should the browser remember that decision? If
they return to the website in five minutes, an hour, a day,
or a week, should the browser show them the warning again
or respect their previous decision? There is no clear industry
consensus, with eight major browsers exhibiting four differ-
ent HTTPS error exception storage policies.

Ideally, a browser would not ask someone about the same
warning over and over again. If a user believes the warning
is a false alarm, repeated warnings undermine the browser’s
trustworthiness without providing a security benefit. How-
ever, some people might change their mind, and we do not
want one security mistake to become permanent.

We evaluated six storage policies with a large-scale, multi-
month field experiment. We found substantial differences
between the policies and that one of the storage policies
achieved more of our goals than the rest. Google Chrome 45
adopted our proposal, and it has proved successful since de-
ployed. Subsequently, we ran Mechanical Turk and Google
Consumer Surveys to learn about user expectations for warn-
ings. Respondents generally lacked knowledge about Chrome’s
new storage policy, but we remain satisfied with our proposal
due to the behavioral benefits we have observed in the field.

1. INTRODUCTION
An HTTPS error warning might be the last defense between
an activist and an active network attacker. As a community,
we need security warnings to be effective: clear, trustworthy,
and convincing. Prior research has focused on warning com-
prehension, design, and performance in the field (e.g., [2, 9,
10, 17, 18, 19]). We look at a new angle: storage policies.

Network attackers and benign misconfigurations both cause
HTTPS errors. Users may perceive warnings as false posi-
tives if they do not believe they are under attack. In such a
situation, Alice can override the warning and proceed to the
website. What happens the next time Alice visits the same
website with the same warning? She won’t see the warning
again until her error exception expires, the length of which
depends on her browser’s storage policy. E.g., Edge saves
exceptions until the browser restarts.

Copyright is held by the author/owner. Permission to make digital or hard
copies of all or part of this work for personal or classroom use is granted
without fee.
Symposium on Usable Privacy and Security (SOUPS) 2016, June 22–24,
2016, Denver, Colorado, USA.

A browser’s exception storage policy has profound usability
and security effects. On one hand, consider a user under
attack who overrides a warning because she incorrectly be-
lieves it to be a false positive. Saving the exception forever
puts that user at risk of a persistent compromise. On the
other hand, consider a user who repeatedly visits a website
with an expired but otherwise valid certificate. Showing the
second person a warning every time they visit the site would
undermine the warning’s trustworthiness without providing
much security benefit. Over time, that user will become
jaded and might override a real warning.

We are unaware of any prior research into the effects of ex-
ception storage policies. As a result, browser engineers have
selected storage policies without knowing the full trade-offs.
In the case of Google Chrome, the original storage policy
was chosen entirely for ease of implementation. Our goal is
to provide user research and a security analysis to inform
browsers’ storage policies in the future.

In this paper, we evaluate various storage policies. Ideally,
an optimal policy should maximize warning adherence and
minimize the potential harm that could come from mistak-
enly overriding a warning. We ran a multi-month field exper-
iment with 1,614,542 Google Chrome warning impressions,
followed by Mechanical Turk and Google Consumer Surveys
(GCS). Based on our findings, we propose a new storage
policy that has been adopted by Google Chrome 45.

Contributions. We make the following contributions:

• To our knowledge, we are the first to study warning
storage policies. We define the problem space by iden-
tifying goals, constraints, existing browser behavior,
and metrics for evaluating storage policies.

• Using a large-scale, multi-month field experiment, we
demonstrate that storage policies substantially affect
warning adherence rates. Depending on the policy,
adherence rates ranged from 56% to 70%.

• We propose a new storage policy, grounded in our ex-
perimental results and a security analysis of available
policies. We implemented and deployed this strategy
as part of Google Chrome 45.

• We ran surveys about storage policies. Respondents
generally did not have strong beliefs or accurate intu-
itions about storage policies, suggesting that changing
a browser’s policy would not negatively surprise users.

16 2016 Symposium on Usable Privacy and Security USENIX Association

• We show that researchers need to account for stor-
age policies when comparing adherence rates across
browsers. We find that Chrome’s adherence rate could
be significantly higher or lower than Firefox’s depend-
ing solely on the selected storage policy.

2. BACKGROUND
We explain the role of HTTPS errors and why the false alarm
effect is a concern for HTTPS warnings.

2.1 Purpose of HTTPS errors
HTTPS ensures that web content is private and unalterable
in transit, even if a man-in-the-middle (MITM) attacker in-
tercepts the connection. In order to do this, the browser
verifies the server’s identity by validating its public-key cer-
tificate chain. Browsers show security warnings if the cer-
tificate chain fails to validate.

Threat model. MITM attackers range in skill level and
intent. An attacker could be a petty thief taking advantage
of an open WiFi hotspot, or it might be a wireless provider
trying (fairly benignly) to modify content for traffic shap-
ing [15]. On the more serious end, governments are known to
utilize MITM attacks for censorship, tracking, or other pur-
poses [7, 12, 13]. The attacker might be persistent, meaning
the target user is continuously subject to attack over a long
period of time. Governments and ISPs are examples of en-
tities that have the technical means for persistent attacks.

False positives. Many HTTPS errors are caused by be-
nign misconfigurations of the client, server, or network [1].
When people encounter these situations, they want to ig-
nore the error. Although the actual attack rate is unknown,
we believe that false positives are much more common than
actual attacks. Unfortunately, false positives and actual at-
tacks seem very similar to non-expert end users.

Warnings. If there is an HTTPS error, the browser will
stop the page load and display an HTTPS error warning (for
examples, see Figure 1). Typically, users are able to override
the warning by clicking on a button, although this may be
disabled if the website serves the HTTP Strict Transport Se-
curity (HSTS) or HTTP Public Key Pinning (HPKP) head-
ers 1. If the error is caused by an actual attack, overriding
the warning allows the attack to proceed.

Storage policy. Once a user has overridden an HTTPS
warning on a website, the browser must persist the user’s
exception for some amount of time. The browser’s storage
policy determines how long the exception is saved for.

1The HSTS header specifies that the host is only loaded
over valid HTTPS. HPKP allows the server to specify a set
of public keys of which at least one is required to be in
the certificate chain on any future loads of the server in the
browser. User agents generally assume that the presence
of these headers imply stronger requirements by the server
about the importance of valid HTTPS, and thus HTTPS
warnings on such sites are generally made non-overridable.

Figure 1: HTTPS error warnings in Safari for iOS
(left) and Chrome for Android (right).

2.2 The false alarm effect
“Each false alarm reduces the credibility of a warning sys-
tem,” cautioned Shlomo Breznitz in 1984 [6]. “The credibil-
ity loss following a false alarm episode has serious ramifica-
tions to behavior in a variety of response channels. Thus,
future similar alerts may receive less attention... they may
reduce their willingness to engage in protective behavior.”
Breznitz was describing the false alarm effect, a theory that
humans heed warnings less after false alarms. The false
alarm effect is long known to decrease attention and ad-
herence to non-computer warnings (e.g., [14, 20]).

Many prior researchers have observed evidence of the false
alarm effect for computer security warnings. Nearly all of
these researchers have urged industry vendors to decrease
their false positive rates to mitigate the effect. Unfortu-
nately, HTTPS errors are still commonly false alarms [1].

In one study of simulated spear phishing, researchers ob-
served a correlation between recognizing a warning and ig-
noring it [8]. For example, one of their participants said the
phishing warning that would have protected him/her“looked
like warnings I see at work which I know to ignore” [8]. In a
similar study of PDF download warnings, “55 of our 120 par-
ticipants mentioned desensitisation to warnings as a reason
for disregarding them” [16]. Bravo-Lillo et al. found, in two
related studies, that participants quickly learned to ignore
spurious security dialogs [5, 4].

The false alarm effect is a psychological process that can
happen quickly. Anderson et al. watched participants view
repeated security dialogs in an fMRI machine [3]. Their par-
ticipants did less visual processing of the dialogs after only
one exposure, with a large drop after thirteen exposures.

Outside of the lab, researchers have seen evidence of the
false alarm effect in Chrome users in the field. Chrome users
clicked through 50% of SSL warnings in 1.7 seconds or less,
which “is consistent with the theory of warning fatigue” [2].

USENIX Association 2016 Symposium on Usable Privacy and Security 17

3. PROPOSAL
We argue that a browser’s exception storage policy should
be chosen with care (rather than for ease of implementation)
because it affects end user security and warning effective-
ness. We propose a new policy based on desired usability
and security properties of HTTPS warnings.

3.1 Goals
Our goals for a storage policy are:

• Reduce the false alarm effect by avoiding unnecessary
warnings. The longer the storage policy, the less likely
it is that a user will see a repeat warning that they
consider a false alarm. In the long run, this should
yield increased attention to actual attacks.

• Reduce the cost of a mistake if someone misidentifies
an actual attack as a false alarm. If a user fails to heed
a warning during an actual attack, we do not want that
user to be permanently compromised. The shorter the
storage policy, the less time that an attacker has to
intercept the client’s connection.

• Avoid unpleasantly surprising users.

A keen reader may notice that the first two goals are diamet-
rically opposed. To reduce the false alarm effect, we should
increase how long exceptions are stored; to reduce the cost
of a mistake, we should decrease how long exceptions are
stored. In Section 4, we perform a study to find a policy
that satisfies both constraints as much as possible, while
acknowledging that neither can be completely satisfied.

3.2 Analysis of existing options
There is no industry consensus for how long HTTPS error
exceptions should be stored, and existing browser exception
storage policies do not meet our goals. We tested browser
storage policies as of February 2016 (Figure 2). With the no-
table exception of Firefox, browser vendors appear to have
selected their storage policies based on ease of implementa-
tion, which sometimes results in the same browser having
inconsistent policies across platforms.

Browser session. The most common storage policy is to
save exceptions until the browser restarts, either by closing
the browser or closing all window instances of the current

Browser OS Storage policy
Chrome 44 Windows Browser session
Safari 9 Mac Browser session
UC Browser 10 Android Browser session
Edge 20 Windows Browser session
Firefox 44 Windows User choice (browser

session or permanent)
Safari 9 iOS Permanent
UC Browser 2 iOS Permanent
UC Mini 10 Android Overriding not allowed

Figure 2: Browser exception storage policies. This
covers Google Chrome, Apple Safari, Microsoft
Edge, and Mozilla Firefox, as well as UC Web’s three
browsers, which are popular in South and East Asia.

profile. A session-based policy yields unpredictable but typi-
cally short storage lengths. Although a browsing session can
last anywhere from five minutes to a month, we know that
the average Chrome browsing session lasts slightly less than
a day. False alarms could therefore still be daily occurrences
for people who need to interact with misconfigured websites.

From a technical perspective, this is the simplest policy to
implement: the user’s decision is saved as an in-memory
map of hostnames to exception state. For Chrome, engineers
chose this policy in large part because it was very easy to
implement and the trade-offs associated with the storage
policy were unknown; we guess the same decision making
process might have been used by other browsers.

Permanently. The next most common storage policy is
to always save exceptions permanently. This policy is also
easy to implement in browsers that store other per-website
preferences permanently in a preferences file. Permanently
storing exceptions reduces the false alarm effect, but the cost
of a mistake is also permanent.2

A choice. Firefox is the only browser to explicitly give
users a choice between two storage policies. By default,
an exception is stored permanently. However, the user has
the option to store the exception only until browser restart.
Firefox users choose the shorter option 21% of the time [2].
Although we like the idea of a choice, browser vendors still
need to decide what the options and default are.

Not applicable. UC Mini for Android doesn’t let users
override HTTPS errors, so there is no need for storage. This
prevents people from accessing misconfigured websites at all.

3.3 Our proposal
In contrast to the above existing options, we propose a new,
time-based storage policy:

• Store exceptions for a fixed amount of time that is not
forever. The amount of time should empirically mini-
mize the cost of a mistake and false alarm frequency.

• Delete stored exceptions when we think users will ex-
pect it, for example when clearing browser history or
closing a private browsing session.

• If a user ever encounters a valid certificate chain for
a website, forget any previously stored exceptions for
that website. This can occur when someone proceeds
through a warning in the presence of a transient at-
tacker and then later reconnects from a safe network.
Forgetting the exception in this situation should re-
duce harm without increasing the false alarm rate.

In Section 4, we test this policy with several different con-
figurations and compare it to other, existing strategies.
2Browsers that provide a “permanent” storage strategy
do generally provide a way to remove an exception once
granted, but the difficulty in undoing this decision depends
on the browser. In Firefox 44, for example, it requires going
to a special “Certificates” menu several levels into Prefer-
ences under “Advanced” settings. Then one must manually
curate a list of server certificates to find the one for which
there an exception was earlier granted, and then the user
must explicitly choose to delete it.

18 2016 Symposium on Usable Privacy and Security USENIX Association

4. FIELD EXPERIMENT
We ran a large-scale field experiment to determine whether
the time-based storage policy has merit and, if so, the ideal
length of time for a time-based storage policy.

4.1 Measurement
We want to know whether there is a length of time that
minimizes both the false alarm effect and cost of a mistake.
We cannot measure either property directly because we do
not know which HTTPS errors are false alarms or mistakes.
However, we can use the warning adherence rate and regret
rate as proxies of our desired properties.

Adherence rate. Chrome already uses telemetry to record
important warning metrics in aggregate, including adher-
ence. Adherence is the rate at which people heed the warn-
ing’s advice to not proceed to the page. We desire high
adherence rates. A low adherence rate is a sign that users
are experiencing warnings that they consider false alarms.

Regret rate. How often do users change their mind about
whether it’s safe to override a warning? If someone repeat-
edly overrides the same warning, then we should stop show-
ing them that warning. On the other hand, consider some-
one who overrides a warning on Tuesday but then adheres
to that warning on Thursday. We view this as an indication
of regret — that the user’s original decision to override the
warning was a mistake. We don’t want to store mistakes for
any longer than necessary. If a long time period has a high
regret rate, it is inferior because it perhaps is preventing
users from changing their minds sooner. We acknowledge
that our regret rate is an imperfect metric because it does
not actually measure users’ feelings. However, it is meaning-
ful when applied as a comparison tool across experimental
conditions because it allows us to see changes in behavior.

Thus, we deem a storage policy as superior if it has a high
adherence rate and low regret rate. A strictly superior strat-
egy would be one that did not change the regret rate at all,
but increased the adherence rate.

4.2 Experiment structure
Groups. We tested six policies: one session-based policy,
three short time periods (one day, three days, one week),
and two long time periods (one month and three months).
In the first round of our experiment, we tested only the
session-based and short time policies. After that round was
successful, we added the long time periods. Our groups and
metrics only apply to overridable HTTPS error warnings.
Errors that cannot be overridden (due to HSTS or HPKP)
are excluded from our experiment.

Assignment. We set the number of Chrome users in each
experimental group to the same small percentage. The ex-
periment was done across all Chrome platforms3. Clients
were randomly assigned into experimental groups, and their
pseudonymous telemetry data was tagged with the group
name. Telemetry data was collected only from Chrome users
who opted in to Chrome user metrics.

Length. Regret rates cannot be measured until exceptions

3Windows, Mac, Linux, ChromeOS, Android, and iOS.

host string : {

fingerprint string
decision_expiration_time uint64
guid string

}

Figure 3: Decision memory structure

begin to expire, which happens at the time determined by
the policy length. So to collect useful data, we let the ex-
periment run for three months on Chrome’s stable release
channel, but discarded the data. This warm-up gave the
longest strategy time for decisions to expire initially so we
could measure changes in user behavior and regret rates. At
this point, we collected warning impressions for 28 days.

4.3 Implementation
We describe how we implemented the storage policies.

4.3.1 Session storage policy
Chrome’s original implementation is an in-memory map from
hostname to a map of certificate and policy decision. The
decision is an enum of 3 possible values: ALLOWED,
DENIED, UNKNOWN. They respectively represent a
certificate error that was allowed by the user, one that was
denied, or one in an unknown state. In practice, the saved
state is either ALLOWED or DENIED.

If a certificate error is encountered, the networking stack
asks the warning manager for the user’s preference. If the
user has already allowed the error for this particular host,
the warning manager tells the networking stack to allow the
connection to continue. Otherwise, a warning is shown. If
the user overrides the warning, the warning manager will
add the decision to the map.

All profiles receive their own map, so decisions do not carry
between profiles. Since this map is in-memory, it is reset
when Chrome completely shuts down. On restart, users will
be re-asked for any decisions they previously granted.

4.3.2 Time-based storage policies
With a time-based storage policy, exceptions need to persist
through browser restarts. This means that exceptions need
to be saved on disk. We used an internal Chrome API named
“Content Settings,” which stores persistent preferences on a
per-profile basis. For example, user preferences about ge-
olocation use and plug-ins are stored in Content Settings.
We consider an error exception for a website to be a type of
website preference.

USENIX Association 2016 Symposium on Usable Privacy and Security 19

Content Settings are stored and retrieved by hostname. We
thus map a given hostname to a set of structures containing
metadata about individual exceptions granted by the user.
Figure 3 shows the Content Setting structure for storing
certificate exceptions. It contains:

• host is the hostname where the exception was made.

• fingerprint is a SHA-256 hash of the certificate and
full certificate chain that contained the error. We save
the hash to individually identify each error.

• decision_expiration_time is the Epoch Time in sec-
onds of when the decision expires. If the certificate in
question is checked again, we check the expiration time
to see whether the previous exception is still valid.

• guid is a globally unique identifier set at browser ses-
sion start. We use this to address a complexity that
arose from sharing code between the time-based poli-
cies and the session-based policy. The Content Set-
tings API doesn’t allow the caller to know whether a
setting was made this session or a previous session.
Since Chrome may not cleanly shutdown (for exam-
ple, if it is force killed or if the machine resets), the
per-session exceptions cannot be reliably cleaned up
when the session is over. It is tempting to clean up the
settings on browser start, but this is problematic for
measuring the regret rates: if the settings are cleaned
up, and then the same certificate is received, there is
no way to know if the user previously made an excep-
tion. The solution is to create a per-session globally
unique identifier (GUID) which is stored with all the
exceptions stored in Content Settings. Then, if the
browser session restarts for any reasons, all of the old
exceptions are still stored, but they will reflect an old
GUID, so it is known that they are “expired” (i.e. they
were created in a previous session).

4.3.3 History
When stored on disk, exceptions contain hostnames and cer-
tificate fingerprints. They are potentially privacy-sensitive
since they reveal information about the user’s browsing habits.
Our implementation therefore needs to take care with how
exceptions are handled.

Profiles are the mechanism for storing settings, state, and
history of the current user. However, Incognito profiles,
also known in other browsers as “Private Browsing,” do not
record state about the user past the current session. In gen-
eral, Chrome does a best effort to not store user history in
permanent storage. Thus, Chrome does not save any Con-
tent Settings for Incognito profiles to disk.

Additionally, there is a general expectation that history-
resetting activities should delete site visiting activities. Since
this is an indirect type of history recording, it is necessary to
make sure certificate exception Content Settings are erased
when history is cleaned up. Chrome internally provides a
BrowsingDataRemover API which is called whenever brows-
ing data or history is cleaned up. The certificate exceptions
Content Settings are cleared whenever this API is invoked.

EXPIRED_AND_PROCEED

EXPIRED_AND_DO_NOT_PROCEED

NOT_EXPIRED_AND_PROCEED

NOT_EXPIRED_AND_DO_NOT_PROCEED

Figure 4: Events when a certificate exception is en-
countered, used to calculate the regret rate.

Figure 5: The button we added to let experiment
participants revoke exceptions.

4.3.4 Analytics
To do the study, we must measure the adherence and regret
rates. The adherence rate is already recorded by Chrome,
so we had to add the regret rate. This is calculated by
recording (a) the decision made when a certificate error is
encountered, and (b) the prior state of that certificate excep-
tion. Figure 4 shows the recorded events. The EXPIRED_*

events indicate that the identical certificate error had been
encountered in the past, while the NOT_EXPIRED_* events
indicate the opposite. The *_PROCEED events indicate an ul-
timate decision to create an exception for the error, while
the *_DO_NOT_PROCEED indicate the opposite. These mea-
surements are all taken in relation to the user’s interaction
with the HTTPS warning page.

4.4 Ethics
Running a security field experiment inherently has risks, as
do all security engineering changes. In this case, the pri-
mary risk was that adherence or regret rates could suffer
in undesirable ways. A secondary risk was that saving a
preference to a local file might have an impact on user ex-
pectations of local privacy. However, all of our experimental
treatments fell within the bounds of other browsers’ behav-
ior (since other major browsers have both very short and
very long storage policies). We believed the small risk was
worth the potential benefit of a new, improved policy.

Still, we were cautious. We took steps to limit any potential
harm that could come from the experiment:

• We monitored key statistics as we ran the experiment.
For example, we monitored the average number of warn-
ing impressions to watch for any sudden large increases,
which could be an indication of accidentally desensi-
tizing users to Chrome’s warnings. We also observed
how often users utilized the “Revoke” button in the
page info bubble to make sure users were not explic-
itly changing their minds often. We could have imme-
diately stopped the experiment via server-side controls
if we had believed it necessary.

• We slowly rolled out the experiment to progressively
larger groups of users, beginning with pre-release ver-

20 2016 Symposium on Usable Privacy and Security USENIX Association

sions of Chrome. Pre-release Chrome users are devel-
opers, power users, and other people willing to trade
inconvenience for cutting edge features. When we pro-
gressed to stable, we slowly ramped up group sizes.

• We started with three short time periods that were
similar to the average Chrome user session: one day,
three days, and one week. Initially, we did not do long
groups in case the regret rates were too high. Once
we saw that regret rate changes were small in the first
three groups, we added the two longer groups.

• Previously, users could force Chrome to revoke an ex-
ception by restarting. We didn’t want to take away
this control, so we added a button to the page info
bubble (Figure 5) to let users revoke an exception. Ad-
ditionally, it resets all socket connections for the cur-
rent browser session to make sure that any exceptions
already granted in the networking layer are reset.

• Our implementation provides an additional local his-
tory entry for websites with exceptions, but it is similar
to regular history. According to our proposal, clearing
history now also deletes error exceptions.

• Incognito mode should not persist anything new to
disk, so exceptions made in Incognito mode are for-
gotten once the last Incognito tab is closed.

We did not debrief study participants. Given the low level
of risk and our cautious experimental rollout, we did not
feel that debriefing was necessary. Furthermore, debriefing
notices are infeasible for small, low-risk field experiments.
We run many in-product experiments in the course of im-
proving and rolling out new security features, so debriefing
notices would be frequent and tiresome. Instead, we prefer
to design our experiments to be low-risk. If we had felt that
the potential for harm was great enough to merit debriefing,
we would have run a lab study instead of a field experiment.

Our experiment was internally reviewed prior to launch in
a process that included security experts, a privacy expert,
and an experimental research expert.

4.5 Limitations
We believe that our data is representative and well-defined.
However, there are limitations and potential sources of bias.

Sample bias. Since our metrics were collected via Chrome’s
user metrics analytics (UMA) opt-in program, our data is
biased towards users who have chosen to have events anony-
mously collected. This could mean, for example, that there
is a bias towards users who are more or less privacy sensitive,
affecting the rate that they adhere to warnings as compared
to the general population. However, a large fraction of the
population opts in, and we examined millions of warning
impressions during the full course of the experiment.

Metrics. We are using adherence and regret rates as prox-
ies for actual human desires and intent. It is impossible for
our large-scale metrics to precisely capture actual human
meaning. For example, imagine that Alice views a warning,
gets distracted by her dog, and then overrides a new impres-
sion of the same warning once she returns to her task. The
initial adherence does not mean the warning worked. In the

Figure 6: Results of different storage policies.

reverse, imagine that Alice overrode a warning on Tuesday
but got distracted when she saw it again on Thursday. She is
not actually expressing regret for her Tuesday action. This
same limitation holds true across all of our conditions, and
we expect the same amount of noise for all conditions.

Continuous measurement. Once we choose a strategy
for deployment, we can keep our metrics in place to contin-
uous measure adherence and regret to look for unexpected
changes. However, we cannot continuously run a full experi-
ment for all groups to know if our initial experimental results
permanently hold. Because real users are affected, we must
choose a system that we think is safest and most usable for
our users. Unfortunately, this means that while we can see if
our initial results remain for our chosen strategy, we cannot
know if they would remain for the other groups.

Over-representation. We do not differentiate between
users who see many warnings and users who see few warn-
ings. Our statistics are averaged across all users within a
treatment group, so users who see many warning impres-
sions will be over-represented when averaging across impres-
sions. Given the scale of our experiment, we do not expect
a confound because different types of users should be evenly
distributed across experimental groups.

4.6 Results
Table 1 shows the impact of different storage policies on
1,614,542 warning impressions. Our experimental data sub-
stantiates two hypotheses:

• Storage policies matter. We see large differences in
adherence and regret rates across policies.

• Storage length correlates with both adherence rates
and regret rates.

We see the biggest difference by comparing the two extremes.
Participants in the three-month group saw an increase in
adherence from 56% to 75%, as compared to the session-
based policy. At the same time, the three-month group’s
regret rate increased from 16% to 26%.

While we were pleased to see the adherence rate increase
with the longer storage policies, we recognize the cost. The
longer Chrome stores exceptions, the more likely the user is
to reverse their decision once the exception expires.

USENIX Association 2016 Symposium on Usable Privacy and Security 21

Session (baseline) One Day Three Days One Week One Month Three Months
Adherence rate 56.35% 62.96% 66.82% 69.88% 74.38% 75.28%
Regret rate 15.98% 15.67% 17.35% 20.59% 25.56% 25.86%
Difference in regret from baseline - -0.31 1.37 4.61 9.58 9.88

Table 1: Results of different exception storage policies. The difference in regret from baseline is simply the
baseline’s regret rate subtracted from the policy’s regret rate.

4.7 Choosing a new policy
Following the experiment, we needed to select a new policy
for Chrome. Figure 6 highlights the most promising candi-
dates. We ultimately chose the one-week policy.

Our main aim is to raise the adherence rate for Chrome’s
HTTPS error warnings. With only this constraint in mind,
we would select the three-month policy. The results show,
as expected, that the longer the policy, the greater the ad-
herence. However, the increase in adherence also brings an
increase in regret rate: the three-month policy yielded a
9.88 point increase in the regret rate (Table 1). We are not
willing to accept such a large increase to the regret rate.

To strike a balance between the two conflicting constraints,
we decided that we would accept up to a 5-point increase
from the baseline’s regret rate. Of the policies that meet
this requirement, the one-week policy has the greatest ad-
herence gains. Both the one-month and three-month policies
have much larger regret rate increases, while the one-day and
three-day policies have lower adherence rate gains.

We do not assert that this is the objectively best choice for a
storage policy. All of the policy choices require a trade-off,
and different companies may weigh adherence and regret
rates differently. For example, someone who is willing to
tolerate a higher regret rate would likely choose the three-
month policy. Going forward, as we monitor Chrome’s met-
rics, we plan to re-evaluate this trade-off.

4.8 Deployment
We launched the one-week policy as part of Google Chrome
45, in September 2015. Post-launch, the policy is working
well for the general population. Looking at 9,318,975 warn-
ing impressions, we see an adherence rate of 71.79% and a
regret rate of 18.20%. To our pleasant surprise, the policy
yielded a slightly higher adherence rate and slightly lower
regret rate for the general population as compared to the
one-week experimental group.

5. USER EXPECTATIONS
One of our initial goals was to avoid unpleasant surprises,
which requires understanding user expectations. Several
months after Chrome adopted our week-long storage pol-
icy in Chrome, we collected user feedback to either confirm
or question our decision. Do users have expectations? Does
our newly adopted proposal meet those expectations?

5.1 Method
We surveyed 1,327 people about Chrome’s exception storage
policy. First, we asked 100 Mechanical Turk workers to tell
us about the storage policy in their own words. Based on
those responses, we designed multiple-choice questions and
gathered 1,227 Google Consumer Survey responses.

5.1.1 Mechanical Turk
Questions. The survey contained three questions, which
intentionally did not mention security:

1. Which Internet browsers do you use at least once a
week?

2. Imagine that you saw this error page while trying to
open a website in Chrome. [Image.] If you clicked
‘Proceed’ on the error page, how long would Chrome
remember your decision for?

3. Have you ever seen this error page before, in Chrome?

A screenshot of the questions is available in Appendix A.1.

Screening. We limited the survey to Mechanical Turk
workers in the US, and we screened for Chrome usage. The
survey was advertised as“Chrome users - Survey about error
pages, takes about 4 minutes,” with the goal of attracting
survey respondents who use Chrome. We ran the survey un-
til we collected 100 responses from people who said they use
Chrome at least weekly according to the first question. We
paid other respondents but discarded their responses. We
did not receive any nonsense or garbage responses.

Coding. One researcher coded the short answer responses.
The researcher did one round of open coding, developed
a codebook, and then applied a fixed codebook to the re-
sponses. Since the responses are short and straightforward,
we did not have a second researcher duplicate the codes.

Payment. We paid respondents $0.80 to complete a survey
that took between one and four minutes. This amount was
chosen to reflect a minimum hourly wage of $12.

5.1.2 Google Consumer Surveys
Questions. We ran two questions as separate surveys, each
accompanied by an image of an HTTPS warning:

• If you clicked ‘Proceed’ on this error page, how long
would Chrome remember that decision for? (Response
options: Once, while I’m using the website; A week;
Until I clear my history; Forever; I don’t know)

• If you clicked ‘Proceed’ on this error page, how long
would you WANT Chrome to remember that decision
for? (Response options: Once, while I’m using the
website; A few hours or days; Until I clear my history;
Forever)

Response options were randomly reversed, with “I don’t
know” pinned as the bottom answer for the first question.
Screenshots of the questions are available in Appendix A.2.

22 2016 Symposium on Usable Privacy and Security USENIX Association

Session 58%
Period of time 19%
Browser cleared 5%
Forever 13%
Don’t know 5%

Table 2: How long would Chrome remember your de-
cision for? Mechanical Turk short answers.

AU US
Once, while I’m using the website 20% 9%
A few hours or days 6% 4%
Until I clear my history 16% 17%
Forever 9% 10%
I don’t know 49% 60%

Table 3: How long would Chrome remember your de-
cision for? GCS multiple choice responses.

Screening. We requested 600 responses for each question,
split evenly between Australian and American respondents.
We received 300 for each category except for the first one
from Australia, where we received 327 responses.

Payment. Respondents were not directly paid. Google
Consumer Surveys on desktop are displayed on websites in
lieu of paywalls. Respondents received free access to website
content after completing the survey.

5.2 Ethics
We did not ask for any personally identifiable or sensitive
information. Participants were compensated for their time
in a way suitable for each survey platform.

5.3 Results
We conclude that respondents do not have strongly held
beliefs about Chrome’s exception storage policy, and prefer-
ences are split between session-based and longer policies.

5.3.1 Beliefs about current behavior
Categories. The short answer responses fell into five cate-
gories, which we used for the multiple choice questions:

• Session. The response specified a period of time that’s
similar to a session-based policy. This includes saving
it once, for a very short period of time, until restarting,
or until closing the window.

• Period of time. The response talked about a period of
time that lasts longer than a typical browsing session
on a website. For example, “a week” or “30 days.”

• Browser cleared. The respondent mentioned “clearing”
something (for example, “until your browsing history
is cleared,” or “until you clear your cache”).

• Forever. A synonym of “forever,” like “always.”

• Don’t know. The respondent couldn’t answer the ques-
tion. For example, “not sure,” or “I don’t know.”

Correctness. Few respondents correctly identified Chrome’s
current storage policy, even though it had been in place for

AU US
Once, while I’m using the website 58% 51%
A few hours or days 12% 13%
Until I clear my history 22% 18%
Forever 8% 18%

Table 4: How long would you want Chrome to re-
member your decision for? GCS responses.

several months. We find that most respondents lack precon-
ceived beliefs about Chrome’s storage policy, although they
can make reasonable guesses when incentivized.

A majority of the Mechanical Turk respondents incorrectly
said the storage policy is session-based (Table 2). Although
incorrect, this is a reasonable guess; Chrome exhibited this
behavior until several months prior to the survey, and other
browsers have session-based storage policies. 95% of the Me-
chanical Turk responses matched feasible potential policies.
We therefore conclude that non-expert browser users are ca-
pable of reasoning about exception storage policies — when
paid to pay attention to a survey.

In reality, browser users are not paid to pay attention to
our question. Warnings interrupt people who are trying to
complete another task. As a result, their attention is split
between the warning and the other task. Consumer Surveys
are similar because they interrupt respondents en route to a
desired website. In this context, people struggled to answer
the question. Approximately half of GCS respondents said
they didn’t know the answer, and the response rate was low
(2.4% in Australia, 6.8% in the United States). This sug-
gests to us that respondents found this question too difficult
to answer quickly, meaning they have no strongly held, pre-
conceived belief about current exception storage policies.

Defining a session. Mechanical Turk respondents had
varying definitions of a “session.” We assigned one or more
secondary codes to the session-related responses, depending
on the type of session the respondent described. Of the 58
session-related responses:

• 26 referred to storing the exception once (“1 time”)

• 14 explicitly used the word “session” (“that session
only”)

• 10 talked about the lifetime of a tab (“till I close the
window”)

• 6 listed very short time periods

• 5 mentioned restarting (“until I restarted the browser”)

All of these responses relate to the lifetime of a browsing
session, but they each have different properties in practice.
For example, tab lifetimes are generally much shorter than
the time between browser restarts.

5.3.2 Policy preferences
We asked GCS respondents to choose their preferred stor-
age policy, and their answers were split (Table 4). Half of
respondents preferred a session-based storage policy, but the
other half expressed a preference for the current time-based

USENIX Association 2016 Symposium on Usable Privacy and Security 23

strategy or longer. This leaves us with no clear consensus,
although favoring the previous session-based policy.

Notably, a fifth of respondents expected clearing their his-
tory to revoke an exception. Chrome’s previous strategy did
not do this, nor do other browsers. We are glad we added it
because it appears to be a common expectation.

6. IMPLICATIONS
We discuss the main lessons learned from our experiment
and surveys, and give suggestions for future work.

6.1 Storage policies matter
Changing a warning’s storage policy has almost as large an
effect on adherence as completely changing the warning’s UI.
In our experiment, we saw a 19 percentage point difference
between different storage policies (56% to 75%), which is
huge! For comparison, Chrome researchers raised adherence
by 25 percentage points with a full text and design over-
haul [10]. Our work demonstrates that exception storage
policies are an important part of warning interaction design,
and we see enormous potential in this line of research.

We hope to motivate further research into storage policies.
Historically, research into warning effectiveness has primar-
ily focused on the warning’s content or effectiveness [10,
17, 19, 18]. Storage policies have received little attention
aside from brief mentions in two of our recent projects [2,
11]. Other warnings’ storage policies might also benefit from
changes, or there might be more clever storage policies that
outperform the ones we tested.

6.2 Our proposed policy works
Our proposed storage policy reduced the number of likely-
unnecessary warnings. Warnings should be meaningful, jus-
tified, and rare. If the browser knows with a good degree
of certainty that a user will not adhere to a warning, and
there is a reasonable chance that the user’s decision is cor-
rect, then the browser should not show the warning. When
we reduced the number of unnecessary warnings, the overall
adherence rate improved significantly with little cost to the
regret rate.

We believe in removing unnecessary warnings because it in-
creases the salience and trustworthiness of the warnings that
remain. Over time, we hope that showing fewer unnecessary
warnings will mitigate the false alarm effect and increase
confidence in HTTPS error warnings.

We encourage other browser vendors to experiment with and
adopt similar policies for storing (and forgetting) certificate
error decisions. We would be interested to learn whether
other browsers find similar benefits and side effects.

6.3 Warning adherence across browsers
Researchers need to account for storage policies when test-
ing browser UI or otherwise comparing adherence rates. It
is tempting to attribute differences in adherence to obvious
differences in UI across browsers or experimental treatments.
However, our findings demonstrate that one must first con-
trol for differences in storage policies.

Consider our efforts to improve Chrome’s HTTPS error warn-
ing. In 2013, we learned that Firefox users were twice as
likely to adhere to warnings as Chrome users (66% vs 30%) [1].
We initially attributed this to the obvious differences in UI

between the browsers and thus began experimenting with
design changes. Was Firefox’s text easier to understand?
Did the background color matter?

We were partly right: the design did matter. However, it
was not the only factor. Chrome’s HTTPS warning adher-
ence rate remained lower than Firefox’s even after a full
redesign [10]. In fact, Chrome’s adherence rate remained
lower even when we tried using Firefox’s exact warning UI
in Chrome [11]. At the time, we hypothesized that this
surprising finding might be due to demographics or storage
policies [2, 11]. Our findings now support the storage policy
hypothesis; Firefox’s longer storage policy should give it a
higher adherence rate. As Table 1 shows, Chrome’s adher-
ence rate could be higher or lower than Firefox’s depending
on our choice of storage policy.

Our findings also have two implications for laboratory stud-
ies. First, the effect of storage policies makes it difficult to
compare adherence rates in the field to rates in a laboratory
setting. A controlled laboratory study will include a fixed
number of repeat warning exposures over a short period of
time, whereas field data might include an unknown number
of repeat warning exposures over a long period of time. This
is not an apples-to-apples comparison. Second, we also rec-
ommend that researchers control for the number of repeat
exposures when comparing experimental treatment groups,
either across experiments or within the same experiment.

6.4 Storage policies are confusing
Our survey respondents were not familiar with Chrome’s
storage policy. Few of the survey respondents correctly
identified Chrome’s current storage policy, and most Google
Consumer Survey respondents couldn’t guess at all.

We find this confusion unsurprising. The eight browsers that
we examined (Section 3.2) have four different storage poli-
cies, and we added a fifth policy. Browsers made by the
same company have different policies across platforms, so
people who use multiple devices will see different behaviors
over time. Furthermore, storage policies are not well docu-
mented. Firefox is the only browser to mention the storage
policy in the warning UI, and the policies are not mentioned
on most browsers’ help pages. Given this, how would people
learn about storage policies?

We do not conclude that browser vendors should immedi-
ately embark on an education campaign. End users are
not responsible for learning all of the technical details of
their browsers. Instead, we think that browsers should act
in the user’s best interest and try to meet user expecta-
tions as much as possible without explicitly teaching people
about storage policies. However, future work could explore
whether people’s behavior changes once they learn about
different storage policies. (For example, people might be
more cautious if they learn that exceptions last forever.) If
that were the case, then comprehension of storage policies
might be important enough to merit UI changes.

7. CONCLUDING SUMMARY
How long should a browser store a user’s decision to override
an HTTPS error warning? There is no clear industry con-
sensus — eight major browsers have four different policies
— and little research exists to guide the choice. We defined
the usability and security requirements of an ideal policy,

24 2016 Symposium on Usable Privacy and Security USENIX Association

and then we proposed a policy that meets our constraints.

We performed a large-scale field experiment to test differ-
ent storage policies. After comparing adherence and regret
rates between experimental groups, we concluded that er-
ror exceptions should be forgotten after one week. A one-
week storage policy raised the adherence rate from 56% to
70% with little cost to the regret rate. Google Chrome 45
adopted our proposal, which brought the overall adherence
rate to 72% as of February 2016.

To learn more about user beliefs and preferences, we ran Me-
chanical Turk and GCS surveys that asked about Chrome’s
storage policy. Most respondents did not know Chrome’s
current storage policy, and preferences were split between
Chrome’s old policy and our proposal. We remain satisfied
with our proposal because respondents did not appear to
have strong enough opinions to negate the clear benefit that
we observed in our field experiment.

We encourage future work into the usability and security of
different error storage policies. Would other browsers benefit
from our policy? Are there changes to our policy that would
improve it? How important is comprehension?

8. ACKNOWLEDGMENTS
We thank Ryan Sleevi and Chris Palmer for their expert
input into the security trade-offs and experimental design.
We also thank SOUPS reviewers for their suggestions.

9. REFERENCES
[1] D. Akhawe, B. Amann, M. Vallentin, and R. Sommer.

Here’s my cert, so trust me, maybe? Understanding
TLS errors on the Web. In World Wide Web
Conference (WWW), 2013.

[2] D. Akhawe and A. P. Felt. Alice in warningland: A
large-scale field study of browser security warning
effectiveness. In Proceedings of Usenix Security, 2013.

[3] B. B. Anderson, C. B. Kirwan, J. L. Jenkins,
D. Eargle, S. Howard, and A. Vance. How polymorphic
warnings reduce habituation in the brain: Insights
from an fMRI study. In Proceedings of CHI, 2015.

[4] C. Bravo-Lillo, L. F. Cranor, S. Komanduri,
S. Schechter, and M. Sleeper. Harder to ignore?
Revisiting pop-up fatigue and approaches to prevent
it. In Proceedings of SOUPS, 2014.

[5] C. Bravo-Lillo, S. Komanduri, L. F. Cranor, R. W.
Reeder, M. Sleeper, J. Downs, and S. Schechter. Your
attention please: Designing security-decision UIs to
make genuine risks harder to ignore. In Proceedings of
SOUPS, 2013.

[6] S. Breznitz and C. Wolf. The psychology of false
alarms. Lawrence Erbaum Associates, NJ, 1984.

[7] P. Eckersley. A Syrian man-in-the-middle attack
against Facebook. https://www.eff.org/deeplinks/
2011/05/syrian-man-middle-against-facebook.
Accessed June 2016.

[8] S. Egelman, L. F. Cranor, and J. Hong. You’ve been
warned: An empirical study of the effectiveness of web
browser phishing warnings. In Proceedings of CHI,
2008.

[9] S. Egelman and S. Schechter. The importance of being
earnest [in security warnings]. In Financial
Cryptography and Data Security, Lecture Notes in

Computer Science. Springer Berlin Heidelberg, 2013.

[10] A. P. Felt, A. Ainslie, R. W. Reeder, S. Consolvo,
S. Thyagaraja, A. Bettes, H. Harris, and J. Grimes.
Improving SSL warnings: Comprehension and
adherence. In Proceedings of CHI, 2015.

[11] A. P. Felt, R. W. Reeder, H. Almuhimedi, and
S. Consolvo. Experimenting at scale with Google
Chrome’s SSL warning. In Proceedings of CHI, 2014.

[12] E. Hjelmvik. Analysis of Chinese MITM on Google.
http:

//www.netresec.com/?page=Blog&month=2014-09&

post=Analysis-of-Chinese-MITM-on-Google.
Accessed June 2016.

[13] E. Hjelmvik. Forensics of Chinese MITM on GitHub.
http:

//www.netresec.com/?page=Blog&month=2013-02&

post=Forensics-of-Chinese-MITM-on-GitHub.
Accessed June 2016.

[14] S. Kim and M. S. Wogalter. Habituation,
dishabituation, and recovery effects in visual warnings.
In Proceedings of Human Factors and Ergonomics
Society Annual Meeting, 2009.

[15] A. Kingsley-Hughes. Gogo in-flight wi-fi serving
spoofed ssl certificates.
http://www.zdnet.com/article/

gogo-in-flight-wi-fi-serving-spoofed-ssl-certificates/,
January 2015.

[16] K. Krol, M. Moroz, and M. A. Sasse. Don’t work.
Can’t work? Why it’s time to rethink security
warnings. In Proceedings of the International Crisis on
Risk and Security of Internet and systems (CRiSIS),
2012.

[17] S. E. Schechter, R. Dhamija, A. Ozment, and
I. Fischer. The emperor’s new security indicators: An
evaluation of website authentication and the effect of
role playing on usability studies. In Proceedings of
IEEE Symposium on Security and Privacy, 2007.

[18] H. K. Sotirakopoulos, A. and K. Beznosov. On the
challenges in usable security lab studies: Lessons
learned from replicating a study on SSL warnings. In
Proceeings of SOUPS, 2011.

[19] J. Sunshine, S. Egelman, H. Almuhimedi, N. Atri, ,
and L. F. Cranor. Crying wolf: An empirical study of
SSL warning effectiveness. In Proceedings of USENIX
Security, 2009.

[20] P. Thorley, E. Hellier, and J. Edworthy. Habituation
effects in visual warnings. Contemporary Ergonomics,
2001.

USENIX Association 2016 Symposium on Usable Privacy and Security 25

APPENDIX
A. SURVEY SCREENSHOTS
A.1 Mechanical Turk

A.2 Google Consumer Survey

