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Abstract
Modern web services such as Facebook are made

up of hundreds of systems running in geographically-
distributed data centers. Each system needs to be allo-
cated capacity, configured, and tuned to use data center
resources efficiently. Keeping a model of capacity allo-
cation current is challenging given that user behavior and
software components evolve constantly.

Three insights motivate our work: (1) the live user
traffic accessing a web service provides the most current
target workload possible, (2) we can empirically test the
system to identify its scalability limits, and (3) the user
impact and operational overhead of empirical testing can
be largely eliminated by building automation which ad-
justs live traffic based on feedback.

We build on these insights in Kraken, a new system
that runs load tests by continually shifting live user traf-
fic to one or more data centers. Kraken enables empiri-
cal testing by monitoring user experience (e.g., latency)
and system health (e.g., error rate) in a feedback loop
between traffic shifts. We analyze the behavior of in-
dividual systems and groups of systems to identify re-
source utilization bottlenecks such as capacity, load bal-
ancing, software regressions, performance tuning, and so
on, which can be iteratively fixed and verified in sub-
sequent load tests. Kraken, which manages the traffic
generated by 1.7 billion users, has been in production at
Facebook for three years and has allowed us to improve
our hardware utilization by over 20%.

1 Introduction
Modern web services comprise software systems running
in multiple data centers that cater to a global user base.
At this scale, it is important to use all available data cen-
ter resources as efficiently as possible. Effective resource
utilization is challenging because:
• Evolving workload: The workload of a web ser-

vice is constantly changing as its user base grows
and new products are launched. Further, individual
software systems might be updated several times a
day [35] or even continually [27]. While model-
ing tools [20, 24, 46, 51] can estimate the initial ca-

pacity needs of a system, an evolving workload can
quickly render models obsolete.
• Infrastructure heterogeneity: Constructing data

centers at different points in time leads to a vari-
ety of networking topologies, different generations
of hardware, and other physical constraints in each
location that each affect how systems scale.
• Changing bottlenecks: Each data center runs hun-

dreds of software systems with complex interac-
tions that exhibit resource utilization bottlenecks,
including performance regressions, load imbalance,
and resource exhaustion, at a variety of scales from
single servers to entire data centers. The sheer size
of the system makes it impossible to understand all
the components. In addition, these systems change
over time, leading to different bottlenecks present-
ing themselves. Thus, we need a way to continually
identify and fix bottlenecks to ensure that the sys-
tems scale efficiently.

Our key insight is that the live user traffic accessing a
web service provides the most current workload possible,
with natural phenomena like non-uniform request arrival
rates. As a baseline, the web service must be capable
of executing its workload within a preset latency and er-
ror threshold. Ideally, the web service should be capable
of handling peak load (e.g., during Super Bowl) when
unexpected bottlenecks arise, and still achieve good per-
formance.

We propose Kraken, a new system that allows us to
run live traffic load tests to accurately assess the capac-
ity of a complex system. In building Kraken, we found
that reliably tracking system health is the most important
requirement for live traffic testing. But how do we se-
lect among thousands of candidate metrics? We aim to
provide a good experience to all users by ensuring that
a user served out of a data center undergoing a Kraken
test has a comparable experience to users being served
out of any other data center. We accomplish this goal
with a light-weight and configurable monitoring compo-
nent seeded with two topline metrics, the web server’s
99th percentile response time and HTTP fatal error rate,
as reliable proxies for user experience.
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We leverage Kraken as part of an iterative methodol-
ogy to improve capacity utilization. We begin by run-
ning a load test that directs user traffic at a target cluster
or region. A successful test concludes by hitting the uti-
lization targets without crossing the latency or error rate
thresholds. Tests can fail in two ways:
• We fail to hit the target utilization or exceed a pre-

set threshold. This is the usual outcome following
which we drill into test data to identify bottlenecks.
• Rarely, the load test results in a HTTP error spike or

some similar unexpected failure. When this occurs,
we analyze the test data to understand what mon-
itoring or system understanding we were missing.
In practice, sudden jumps in HTTP errors or other
topline metrics almost never happen; the set of aux-
iliary metrics we add to our monitoring are few in
number and are the result of small incidents rather
than catastrophic failure.

Each test provides a probe into an initially uncharac-
terized system, allowing us to learn new things. An un-
successful test provides data that allows us to either make
the next test safer to run or increase capacity by remov-
ing a bottleneck. As tests are non-disruptive to users, we
can run them regularly to determine both a data center’s
maximal load (e.g., requests per second, which we term
the system’s capacity), and continually identify and fix
bottlenecks to improve system utilization.

Our first year of operating Kraken in production ex-
posed several challenges. The first was that the systems
often exhibited a non-linear response where a small traf-
fic shift directed at a data center could trigger an error
spike. Our follow-up was to check the health of all the
major systems involved in serving user traffic to deter-
mine which ones were affected most during the test. This
dovetailed into our second challenge which was that sys-
tems have complex dependencies so it was often unclear
which system initially failed and then trigged errors in
seemingly unrelated downstream subsystems.

We addressed both of these challenges by encouraging
subsystem developers to identify system-specific coun-
ters for performance (e.g., response quality), error rate,
and latency, that could be monitored during a test. We
focused on these three metrics because they represent the
contracts that clients of a service rely on—we have found
that nearly every production system wishes to maintain
or decrease its latency and error rate while maintaining
or improving performance.

The third challenge was one of culture. Although we
ensure the tests are safe for users, load tests put signifi-
cant stress on many systems. Rather than treat load tests
as painful events for systems to survive, we worked hard
to create a collaborative environment where developers
looked forward to load tests to better understand their
systems. We planned tests ahead of time and commu-

nicated schedules widely to minimize surprise. We en-
couraged engineers to share tips on how to better moni-
tor their systems, handle different failure scenarios, and
build out levers to mitigate production issues. Further,
we used a shared IRC channel to track tests and debug
issues live. Often, we would use tests as an opportunity
for developers to test or validate improvements, which
made them an active part of the testing process. Engag-
ing engineers was critical for success; engaged engineers
improve their systems quickly and support a frequent test
cadence, allowing us to iterate quickly.

Our initial remediations to resolve bottlenecks were
mostly capacity allocations to the failing system. As
our understanding of Facebook’s systems has improved,
our mitigation toolset has also expanded to include con-
figuration and performance tuning, load balancing im-
provements, profiling-guided software changes and oc-
casionally a system redesign. Our monitoring has also
improved and as of October 2016, we have identified
metrics from 23 critical systems that are bellwethers of
non-linear behavior in our infrastructure. We use these
metrics as inputs to control Kraken’s behavior.

Kraken has been in use at Facebook for over three
years and has run thousands of load tests on production
systems using live user traffic. Our contributions:
• Kraken is the first live traffic load testing frame-

work to test systems ranging in size from individual
servers to entire data centers, to our knowledge.
• Kraken has allowed us to iteratively increase the ca-

pacity of Facebook’s infrastructure with an empir-
ical approach that improves the utilization of sys-
tems at every level of the stack.
• Kraken has allowed us to identify and remediate re-

gressions, address load imbalance and resource ex-
haustion across Facebook’s fleet. Our initial tests
stopped at about 70% of theoretical capacity, but
now routinely exceed 90%, providing a 20% in-
crease in request serving capacity.

The Kraken methodology is not applicable to all ser-
vices. These assumptions/caveats underpin our work:
• Assumption: stateless servers. We assume that

stateless servers handle requests without using
sticky sessions for server affinity. Stateless web
servers provide high availability despite system or
network failures by routing requests to any avail-
able machine. Note that stateless servers may still
communicate with services that are stateful (such as
a database) when handling a request.
• Caveat: load must be controllable by re-routing re-

quests. Subsystems that are global in nature may be
insensitive to where load enters the system. Such
systems may include batch processors, message
queues, storage, etc. Kraken is not designed as a
comprehensive capacity assessment tool for every
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Figure 1: When a user sends a request to Facebook, a DNS
resolver points the request at an edge point-of-presence (POP)
close to the user. A L4 and L7 load balancer forward the request
to a particular data center and a web server respectively.

subsystem. These systems often need more special-
ized handling to test their limits.
• Assumption: downstream services respond to shifts

in upstream service load. Consider the case of a
web server querying a database. A database with
saturated disk bandwidth affects the number of re-
quests served by the web server. This observa-
tion extends to other system architectures such as
aggregator–leaf where a stateless aggregation server
collects data from a pool of leaf servers to service a
request.

2 The case for live traffic load tests
Broadly, two common approaches exist for identifying
resource utilization bottlenecks: (1) load modeling (or
simulation) and (2) load testing (or benchmarking).

Load modeling relies on analytical models of data cen-
ter resources to examine the trade-offs between perfor-
mance, reliability, and energy-efficiency [11, 13, 18, 40].
We argue that it is infeasible to accurately model a large
scale web service’s capacity given their evolving work-
load, frequent software release cycles, and complexity
of dependencies [27, 35], Alternatively, load test suites
such as TPC-C [44], YCSB [49] and JouleSort [34] use
system-level benchmarks to measure the load a system
can sustain. Unfortunately, their synthetic workloads
only cover very specific use cases, e.g., TPC-C performs
a certain set of queries on a SQL database with a fixed
set of inputs. An alternate design choice is to use shadow
traffic where an incoming request is logged and replayed
in a test environment. For the web server use case, most
operations have side-effects that propagate deep into the
system. Shadow tests must not trigger these side effects,
as doing so can alter user state. Stubbing out side effects
for shadow testing is not only impractical due to frequent
changes in server logic, but also reduces the fidelity of
the test by not stressing dependencies that would have
otherwise been affected.

In contrast, Kraken uses live traffic to perform load
tests. We prefer live traffic tests because:
• Live user traffic is a fully representative workload

that consists of both read and write requests with a
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Figure 2: This figure provides an overview of the traffic man-
agement components at Facebook. User requests arrive at Edge
POPs (points-of-presence). A series of weights defined at the
edge, cluster, and server levels are used to route user requests
from a POP to a web server in one of Facebook’s data centers.

non-uniform arrival pattern, and traffic bursts.
• Live traffic tests can be run on production systems

without requiring alternate test setups. Further, live
traffic tests can expose bottlenecks that arise due to
complex system dependencies, which are hard to re-
produce in small scale test setups.
• Live traffic load tests on production systems have

the implicit benefit of forcing teams to harden their
systems to handle traffic bursts, overloads, etc., thus
increasing the system’s resilience to faults.

Safety is a key constraint when working with live traf-
fic on a production system. We identify two problematic
situations: (1) internal faults in system operation, such as
violation of performance, reliability, or other constraints;
and (2) external faults that result in capacity reduction
due to, for example, network partitions, or power loss.
Both situations require careful monitoring and fast traf-
fic adjustment to safeguard the production system.

3 Design
Kraken is constructed as a feedback loop that shifts user
traffic to evaluate the capacity of the system under test
and identify resource utilization bottlenecks.

3.1 Traffic shifting

Figure 1 provides an overview of how a user request to
Facebook is served. The user’s request is sent to their
ISP, which contacts a DNS resolver to map the URL
to an IP address. This IP address maps to one of tens
of edge point-of-presence (POP) locations distributed
worldwide. A POP consists of a small number of servers
on the edge of the network typically co-located with a
local internet service provider. The user’s SSL session
is terminated in a POP at a L7 load balancer, which then
forwards the request to one of the data centers.

At Facebook, we group 1–3 data centers in close prox-
imity into a “region”. Within each data center, we group
machines into one or more logical “frontend” clusters of
web servers, “backend” clusters of storage systems, and
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multiple “service” clusters. In this paper, we define a
“service” as a set of sub-systems that provide a partic-
ular product either internally within Facebook’s infras-
tructure or externally to end users. Each cluster has a
few thousand generally heterogeneous machines. Many
services span clusters, but web server deployments are
confined to a single cluster.

As Figure 2 shows, the particular frontend cluster that
a request is routed to depends on two factors: (1) the edge
weight from a POP to a region, and (2) the cluster weight
assigned to each frontend cluster in a region. To under-
stand why we need edge weights, consider a request from
a user in Hamburg that is terminated at a hypothetical
POP in Europe. This POP might prefer forwarding user
requests to the Luleå, Sweden region rather than Forest
City, North Carolina to minimize latency, implying that
the Europen POP could assign a higher edge weight to
Luleå than Forest City. A data center might house multi-
ple frontend clusters with machines from different hard-
ware generations. The capability of a Haswell cluster
will exceed that of a Sandybridge cluster, resulting in dif-
fering cluster weights as well as individual servers being
assigned different server weights.

When a request reaches a frontend cluster, an L7 load
balancer forwards the request to one of many thousands
of web servers. The web server may communicate with
tens or hundreds of services residing in one or more ser-
vice clusters to gather the data required to generate a re-
sponse. Finally, the web server sends the response back
to the POP, which forwards the response to the user.

Because web servers and some services in this archi-
tecture are stateless, any such server can handle any re-
quest bound for it or its peers in the same service. This
implies that edge weights, cluster weights, and server
weights can be programmed to easily and quickly change
their destinations for requests. This allows us to pro-
grammatically shift different amounts of load to a par-
ticular region or cluster. We use live traffic shifting as
the mechanism to manipulate load on different resources.
Shifting live traffic allows us to gauge aggregate system
capacity in a realistic environment.

3.2 Monitoring

The most important requirements in live traffic testing
are reliable metrics that track the health of the system.
At Facebook, we use Gorilla [33], a time series database
that provides a fast way to store and query aggregated
metrics. Our intuition when developing Kraken was that
it could query Gorilla for the metrics of all important sys-
tems and use the results to compute the next traffic shift.

Our intuition proved impractical as Facebook is com-
posed of thousands of systems, each of which export
dozens of counters tracking their input request rate, in-
ternal state, and output. One of the goals of Kraken is to
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Figure 3: Kraken is a framework that allows us to load test
large system units, such as clusters and entire data centers. To
do so, Kraken shifts traffic from POPs to different frontend
clusters while monitoring various health metrics to ensure they
do not exceed allowable levels. The solid red line shows this
control loop. In addition, Kraken can manage traffic in a more
fine-grained manner to load test individual services composed
of sets of servers, shown by the dotted green line.

gauge the true capacity of the system. If we prioritized
all systems equally and tried to ensure that every system
operated within its ideal performance or reliability enve-
lope, our focus would shift to constantly tuning individ-
ual systems rather than the overall user experience. This
would hurt our ability to identify the real bottlenecks to
system capacity, and instead give us the infeasible chal-
lenge of improving hundreds of systems at once.

Our insight was that Kraken running on a data center
is equivalent to an operational issue affecting the site—in
both cases our goal is to provide a good user experience.
We use two metrics, the web servers’ 99th percentile re-
sponse time and HTTP fatal error rate, as proxies for the
user experience, and determined in most cases this was
adequate to avoid bad outcomes. Over time, we have
added other metrics to improve safety such as the me-
dian queuing delay on web servers, the 99th percentile
CPU utilization on cache machines, etc. Each metric
has an explicit threshold demarcating the vitality of the
system’s health. Kraken stops the test when any metric
reaches its limit, before the system becomes unhealthy.

3.3 Putting it all together: Kraken

Kraken employs a feedback loop where the traffic shift-
ing module queries Gorilla for system health before de-
termining the next traffic shift to the system under test.
As Figure 3 shows, Kraken can shift traffic onto one
or more frontend clusters by manipulating the edge and
cluster weights. Notice that the generic nature of Kraken
also allows it to function as a framework that can be ap-
plied to any subset of the overall system.
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3.4 Capacity measurement methodology

Web servers in frontend clusters are the largest compo-
nent of the infrastructure. Hence, a resource bottleneck
such as a performance regression or a load imbalance in
a smaller subsystem that limits the throughput of the web
servers is highly undesirable. We can use Kraken to iden-
tify the peak utilization a single web server can achieve.
A single web server is incapable of saturating the net-
work or any backend services, so obtaining true capacity
is not difficult. This empirical web server capacity multi-
plied by the number of web servers in a frontend cluster
yields us a theoretical frontend cluster capacity.

At Facebook, we have found taking this theoretical
number as truth does not yield good results. As we move
to larger groups of webservers, complex system effects
begin to dominate and our estimates tend to miss the true
capacity, sometimes by a wide margin. Kraken allows us
to continually run load tests on frontend clusters to ob-
tain the empirical frontend cluster capacity and measure
the deviation from the theoretical limit. We set ourselves
the aggressive goal of operating our frontend clusters at
(1) 93% of their theoretical capacity limits and (2) be-
low a target pre-defined latency threshold, while concur-
rently keeping pace with product evolution, user growth
and frequent software release cycles. On a less frequent
basis, this methodology is also applied to larger units of
capacity (regions comprising multiple data centers) with
a similarly aggressive goal of 90%.

3.5 Identifying and fixing bottlenecks

We have learned that running live traffic load tests with-
out compromising on system health is difficult. Succeed-
ing at this approach has required us to invest heavily in
instrumenting our software systems, using and building
new debugging tools, and encouraging engineers to col-
laborate on investigating and resolving issues.

Extensive data collection allows us to debug problems
in situ during a test and iterate quickly. We encourage
systems to leverage Scuba [1], an in-memory database
that supports storing arbitrary values and querying them
in real time. If a system displays a non-linear response
or other unexpected behavior during a test, an engineer
on call for the system can alert us and we can debug
the problem using Scuba data. We use standard tools
like perf as well as custom tracing and visualization
tools [14] in our debugging.

Initially, when we identified bottlenecks we mitigated
them by allocating additional capacity to the failing sys-
tem. In addition to being costly, we started encounter-
ing more difficult problems, such as load imbalance and
network saturation, where adding capacity had diminish-
ing returns. We would sometimes see cases where a sin-
gle shard of a backend system got orders of magnitude
more traffic than its peers, causing system saturation that

adding capacity could not resolve. As we developed ex-
pertise, we arrived at a more sustainable approach that
includes system reconfiguration, creating and deploying
new load balancing algorithms, performance tuning, and,
in rare cases, system redesign. We verify the efficacy of
these solutions in subsequent tests and keep iterating so
we can keep pace with Facebook’s evolving workload.

4 Implementation
We next describe the implementation of Kraken and how
it responds to various faults.

4.1 Traffic shifting module

At Facebook, we run Proxygen, an open source software
L4 and L7 load balancer. Rather than rely on a static
configuration, Proxygen running on L4 load balancers in
a POP reads configuration files from a distributed con-
figuration store [41]. This configuration file lists cus-
tomized edge and cluster weights for each POP as shown
in Figure 2. Proxygen uses these weights to determine
the fraction of user traffic to direct at each frontend clus-
ter. By adjusting cluster weights, we can increase the
relative fraction of traffic a cluster receives compared to
its peers. Using edge weights we can perform the same
adjustment for regions.

Kraken takes as input the target of the test and then
updates the routing file stored in the configuration store
with this change. The configuration store notifies the
Proxygen load balancers in a remote POP of the exis-
tence of the new configuration file. In practice, we’ve
found that it can take up to 60 seconds for Kraken to up-
date weights, the updated configuration to be delivered
to the POP, and for Proxygen to execute the requested
traffic shift. Since the monitoring system, Gorilla, aggre-
gates metrics in 60 second intervals, it takes about 120
seconds end-to-end for Kraken to initiate a traffic shift
and then verify the impact of that change on system load
and health.

4.2 Health monitoring module

The health monitoring system receives as input the sys-
tem being tested. It then queries Gorilla [33] for metrics
that can be compared to their thresholds. Gorilla stores
metrics as tuples consisting of 〈entity, key, value, times-
tamp〉. These tuples are either readily available or ag-
gregated once a minute. Thus, Kraken performs traffic
shifting decisions only after waiting 60 seconds from the
previous shift, but keeps querying the health monitoring
system continuously to quickly react to any changes in
health. Timestamps are only used to provide a monoton-
ically increasing ordering for the data from each server;
clocks do not have to be synchronized.

Table 1 provides some examples of the metrics the
health monitoring module considers when judging the
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Service type Metrics

Web servers CPU utilization, latency, er-
ror rate, fraction of opera-
tional servers

Aggregator–leaf CPU utilization, error rate,
response quality

Proxygen [39] CPU utilization, latency,
connections, retransmit rate,
ethernet utilization, memory
capacity utilization

Memcache [31] Latency, object lease count
TAO [10] CPU utilization, write suc-

cess rate, read latency
Batch processor Queue length, exception rate
Logging [23] Error rate
Search CPU utilization
Service discovery CPU utilization
Message delivery CPU utilization

Table 1: Health metrics for various systems that are af-
fected by web load.

health of various systems. These systems are all signif-
icantly impacted by user traffic and are bellwethers of
non-linear behavior. Note that the metrics in Table 1 are
not intended to be comprehensive. For example, CPU
utilization is the only health metric for several services,
but as these services add more features and establish dif-
ferent constraints on performance and quality over time,
other metrics may also become important in gauging
their health. Observe that we monitor multiple metrics
from lower-level systems like TAO, Memcache, and the
Proxygen load balancers as they have a large fan-out and
are critical to the health of higher-level systems.

We store the health metric definitions in a distributed
configuration management system [41]. Figure 4 shows
the definition for web service health in terms of error
rate. We use five levels of severity when reporting met-
ric health. level ranges define the range of values for
each of these levels. Metric values are sampled over
the amount of time specified by time window. To en-
sure high confidence in our assessment, we also stipulate
that at least sample fraction of the data points reside
above a level range. We use the highest level with at least
sample fraction data points above that level range. If
we do not receive samples, the health metric is marked as
unavailable and the service is considered unhealthy. We
define each of the health metrics in Table 1 in this way.

4.3 Feedback control

At the start of a test, Kraken aggressively increases load
and maintains the step size while the system is healthy.
We have observed a trade-off between the rate of load

web_error_rate = {

entity = ’cluster1.web’,

key = ’error.rate’,

level_ranges = [

{BOLD => (0.0, 0.00035)},

{MODERATE => (0.00035, 0.0004)},

{CAUTIOUS => (0.0004, 0.00045)},

{NOMORE => (0.00045, 0.0005)},

{BACKOF => (0.0005, 0.001)},

],

time_window = ’4m’,

sample_fraction = 0.4

}

Figure 4: The health metric definition for web error rate.

increase and system health. For systems that employ
caching, rapid shifts in load can lead to large cache miss
rates and lower system health than slow increases in load.
In practice, we find that initial load increase increments
of around 15% strike a good balance between load test
speed and system health.

As health metrics approach their thresholds, Kraken
dynamically reduces the magnitude of traffic shifts to
prevent the system from becoming overloaded. For ex-
ample, when any health metric is within 10% of its
threshold value, Kraken will decrease load increments to
1%. This behavior has the benefit of also allowing us to
collect more precise capacity information at high load.

4.4 Handling external conditions

Kraken’s feedback loop makes it responsive to any event
that causes a system being load tested to be unhealthy,
whether or not it was anticipated prior to the test. We
have found that the infrastructure is robust enough for
this mechanism alone to mitigate the majority of unex-
pected failures. For extreme events, we have a small set
of additional remediations as described below:
• Request spike. Facebook experiences request

spikes due to natural phenomena, national holidays,
and social events, for example, we have experi-
enced a 100% load increase in our News Feed sys-
tem in the course of 30 seconds during the Super
Bowl. Our simple mitigation strategy is to config-
ure Kraken to not run a load test during national hol-
idays or planned social and sporting events. In the
event of unexpected spikes, Kraken will abort any
running load tests and also distribute load to all data
centers by explicitly controlling the routing config-
uration file published to POPs.
• Major faults in system operation. Sometimes, a

critical low-level system might get overloaded or
might have a significant reliability bug, such as a
kernel crash, that is triggered during a load test. If
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Figure 5: To measure web server capacity accurately, we con-
tinuously load test 32 web servers.

this occurs, system health is bound to degrade sig-
nificantly. Kraken polls Gorilla for system metrics
every minute. If a fault is detected, Kraken imme-
diately aborts the test and directs POPs to distribute
load back to healthy clusters. We have recovered
numerous times from issues of this sort, each time
in about 2 minutes as it takes Kraken 60 seconds to
detect the fault and then about 60 seconds to deliver
an updated configuration to the POPs.
• External faults such as a network partition and

power loss. As in the case above, Kraken will de-
tect the problem and offload user traffic to other data
centers in 2 minutes. If the cluster or region being
tested does not recover, Kraken will decrease the
load to 0, which will drain the target of all user traf-
fic.

5 Evaluation
Kraken has been in use at Facebook for over three years
and has run thousands of production load tests. As we
mentioned in Section 4.2, we have augmented the set of
metrics that Kraken monitors beyond the initial two, user
perceivable latency and server error rate, to tens of other
metrics that track the health and performance of our crit-
ical systems (cf. Table 1).

Further, we have developed a methodology around
Kraken load tests that allows us to identify and resolve
blockers limiting system utilization. By maintaining the
pace and regularity of large scale load tests, we have
incentivized teams to build instrumentation and tooling
around collecting detailed data on system behavior under
load. When a blocker is identified, Kraken’s large scale
load tests provide a structured mechanism for iteration so
teams can experiment with different ideas for resolving
the bottleneck and also continually improve their system
performance and utilization.

Our evaluation answers the following questions:

100 110 120 130 140 150 160 170 180 190

Requests per Second (RPS)

0

10

20

30

40

50

60

Q
u
e
u
in

g
 L

a
te

n
cy

 p
e
r 

R
e
q
u
e
st

 (
m

s)

Figure 6: This plot displays the variance in the raw data from
32 load tested web servers.

1. Does Kraken allow us to validate capacity measure-
ments at various scales?

2. Does Kraken provide a useful methodology for in-
creasing utilization?

5.1 Does Kraken allow us to validate capacity mea-
surements at various scales?

We evaluate this claim by first examining how Kraken
allows us to measure the capacity of an individual
server despite a continually changing workload, and then
demonstrating how Kraken allows us to measure cluster
and regional capacity.

5.1.1 Measuring an individual web server’s capacity

Apache JMeter [4] and other load testing tools are widely
employed to evaluate the capacity of an individual web
server. While existing systems use a synthetic workload,
Kraken directs live user traffic to measure system capac-
ity for complex and continually changing workloads. In
keeping with existing load testing systems, when mea-
suring the capacity of an individual web server in isola-
tion, Kraken assumes that all backend services and the
network are infinite in size and cannot be saturated.

Each cluster of web servers might run a different gen-
eration of server hardware and experience a different
composition of requests, so we need to run tests on web
servers in each production cluster to obtain the baseline
capacity for that cluster. As in a cluster load test, we use
a preset error rate and latency metric as thresholds for
when the system is operating at peak capacity. However,
as we are testing a less complex system, we can be more
exact. We use queuing latency on the server as our pri-
mary metric to gauge capacity—if the server begins to
queue consistently, it is no longer able to keep up with
the workload we are sending to it, and we have reached
the individual server’s max capacity.

We found that using a single server results in too much
variance in the output capacity number. Through experi-
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Figure 7: Kraken runs a cluster load test by directing increas-
ing amounts of user traffic at a cluster. A load test affects
both the cluster’s CPU utilization and health metrics such as
the HTTP 5xx error rate and response latency.
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(b) Latency breakdown in cluster load test.

Figure 8: (a) Demonstrates the performance gap between the
cluster load test capacity and theoretical capacity. (b) Shows
the latency breakdown that allows us to identify which of the
caching systems or miscellaneous services contribute most to
the performance gap. We observe an increase in time spent
waiting for cache response as the cluster load increases, indi-
cating that cache is the bottleneck.

mentation, we have found 32 servers to be an ideal num-
ber for our workload. Further increases in machine count
do not significantly reduce variance. Figure 5 depicts
a load test run on 32 independent web servers in a 60
minute interval. At the time this test was performed the
servers were able to perform about 175 requests per sec-
ond before the queuing latency threshold was reached.

Figure 6 shows the data points collected in a 30 minute
window during the load test shown in Figure 5. Each
data point plots the requests per second against CPU de-
lay per request in milliseconds for a single web server,
averaged over one minute. Our initial load test was run
with a relaxed threshold for the sake of illustration. Once
queuing begins, increases in allowed queuing result in
quickly diminishing returns on throughput. In practice,
we apply a more conservative limit of 20 ms queuing de-
lay. To get our baseline server capacity, we simply take
the average of the 32 servers. We use pick-2 load balanc-
ing [28] to ensure we evenly utilize servers, so we do not
need to worry about the variance in hardware between
servers. We can then derive the theoretical cluster capac-
ity by multiplying the per-server capacity by the number
of servers in a cluster.

5.1.2 Measuring a cluster’s capacity

Figure 7 shows the execution of a cluster load test with
Kraken. The line labeled cluster util. shows the cur-
rent requests per second coming in to the cluster normal-
ized by the cluster’s theoretical max requests per second.
Kraken initiates the cluster load test at minute 0 and the
test concludes at minute 18. Every 5 minutes, Kraken in-
spects the health of the cluster and makes a decision for
how to shift traffic. As described in Section 4.1, it takes
Kraken about 2 minutes to execute a load shift, which is
evident as cluster utilization changes around minute 7 for
a decision made at minute 5. Notice that as the test pro-
ceeds, the cluster’s health begins to degrade so Kraken
decreases the magnitude of the traffic shifts until a peak
utilization of 75% is hit. Kraken resets the load of the
cluster in two traffic shifts over the course of 10 minutes
(not shown in Figure 7).

Kraken closely monitors the health of the system when
running this load test. The lines labeled p99 latency and
5xx rate in Figure 7 correspond to the two initial health
metrics we monitor: user perceivable latency and server
error rate, respectively. Both of these metrics are normal-
ized to the minimum and maximum values measured dur-
ing the test. The three spikes in latency are a direct result
of Kraken directing new users at this cluster—requests
from the new users cause cache misses and require new
data to be fetched. This test stopped due to the p99 la-
tency, which is initially low but sustains above the thresh-
old level for too long after the third traffic shift.

The final utilization of this cluster was 75% of the the-
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oretical maximal. This is below our target utilization of
93% of the theoretical maximum, and we consider this
load test unsuccessful. We next turn to how we identify
and fix the issues that prevent a cluster from getting close
to its theoretical maximal utilization.

Why did the cluster not hit its theoretical max uti-
lization? Figure 8(a) depicts a different load test that
hit a latency threshold. Here, the cluster performance
(solid line) diverges from the theoretical web server per-
formance (crossed line). To identify the utilization bot-
tleneck, we drill into the data for other subsystems in-
volved in serving a web request: the web server, cache,
and other services. Figure 8(b) breaks down the web
server response time between these three components.
As load increases, the proportion of web server latency
(the unmarked line) decreases while the proportion of
cache latency (the crossed line) increases from around
15% at the point labeled test start to around 40% at the
point labeled test end while service latency (the ◦ line)
remains unaffected, identifying cache as the bottleneck.

5.1.3 Measuring a region’s capacity

Figure 9(a) shows that we can use Kraken to direct user
traffic at multiple clusters simultaneously in a regional
load test to stress systems that span clusters. Kraken re-
acts to variances in system health (for example, 5xx error
rate, shown in Figure 9(b)) by decreasing user traffic to
the tested clusters. Kraken maintains high load at about
90% utilization for about an hour—we intentionally hold
the region under high load for an extended period of time
to allow latent effects to surface. Kraken stops the test at
minute 111 and quickly resets the load to normal levels
in 15 minutes.

5.2 Does Kraken provide a useful methodology for
increasing utilization?

Figure 10 depicts a load test from May 2015 where one
of Kraken’s regional load tests hit 75% utilization before
encountering bottlenecks. Test outcomes of this form
were the norm in 2014 and early 2015 as we were still
developing the Kraken methodology for identifying and
resolving bottlenecks encountered in cluster and regional
load tests. Figure 9 depicts our current status where our
regional load tests almost always hit their target utiliza-
tion of 90% theoretical max resulting in a 20% system
utilization improvement.

In this section, we describe how Kraken allowed us to
surface many bottlenecks that were hidden until the sys-
tems were under load. We identified problems, experi-
mented with remedies, and iterated on our solutions over
successive tests. Further, this process of continually test-
ing and fixing allowed us to develop a library of solutions
and verify health without permitting regressions.
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Figure 9: Kraken measures the capacity of a region by direct-
ing user traffic to all of the frontend clusters in the region si-
multaneously. (a) shows the effects on the data center clusters’
utilization. (b) shows how the 5xx rate of the clusters changed
during this time. Notice that when a cluster’s HTTP fatals (5xx
errors) increase, Kraken reduces the load on the cluster so it
operates within a healthy range.
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Figure 10: In this May 2015 test, Kraken pushes the frontend
clusters in a region to an average of 75.7% utilization of their
theoretical max before hitting pre-set thresholds. This load test
was unsuccessful.
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Figure 11: The spread in CPU utilization as measured by the
difference between the 95th and 10th percentile CPU utiliza-
tion in a cluster in different geographic regions. After using
Kraken to identify a bottleneck in the shared cache resource,
we deployed a technique to alleviate the bottleneck, resulting
in a lower CPU utilization spread.

5.2.1 Hash weights for cache

The cache bottleneck depicted in Figure 8(b) was the first
major issue that Kraken helped identify and resolve.

How did Kraken expose the cache bottleneck? Sev-
eral cluster load tests were blocked by latency increases.
Further inspection revealed that during the load test there
was a disproportionate increase in the fraction of time
spent retrieving data from TAO [10], a write-through
cache that stores heavily accessed data. We engaged
with the TAO engineers and after some instrumentation,
learned that the latency increase was due to just a few
cache machines that had significantly higher than aver-
age load during the test. It took several load tests to
gather sufficient data to diagnose the bottleneck.

What was the cache bottleneck? TAO scales by log-
ically partitioning its data into shards and randomly as-
signing these shards to individual cache servers. When
constructing the response to a request, the web server
might have to issue multiple rounds of data fetches,
which might access hundreds of cache servers. TAO’s
hashing algorithm had been designed 4 years prior to the
test. At that time, the ratio of shards to TAO servers was
larger, and the shards were more uniform in request rate.
Over time these assumptions changed, causing imbal-
ance among the servers. Kraken’s cluster load tests re-
vealed that a small number of cache servers were driven
out of CPU because they stored a significant fraction of
all frequently-accessed data (e.g., popular content); this
adversely affected all web servers that accessed that data.
Instead of assigning shards to cache servers with a uni-
form hash, the solution was to assign each server a tun-
able hash weight based on the frequency of access, giv-
ing us finer control to even out the distribution of shards

Figure 12: A spike in network traffic during a Kraken load
test saturates two top-of-rack network switches. Alleviating
this issue required relocating services running in the racks.

and balance load.
How did we validate the cache bottleneck fix? We

leveraged Kraken to run multiple cluster load tests in
different regions to validate the fix. Figure 11 depicts
the outcome of hash weights—the x-axis shows time in
days and the y-axis is the difference between the 95th and
10th percentile CPU utilization (i.e., the CPU utilization
spread between highly-loaded cache servers and lowly-
loaded cache servers) across the cache servers in clus-
ters spread among three regions. Notice that after hash
weights were rolled out, the spread in CPU utilization
was reduced from an initial 10–15% to less than 5%. In
tests following the fix, we were able to verify that this so-
lution maintained its effectiveness at high load, and that
we were able to apply more load to the clusters being
tested. This solution addressed our short term capacity
bottleneck and also significantly improved the reliability
and scalability of TAO.

5.2.2 Network saturation

Most of Kraken’s load tests in its first year of production
were blocked by issues and bottlenecks in our higher-
level software systems. As these bottlenecks were re-
solved, latent system issues at lower levels of the stack
were revealed. During one test, which failed due to high
latency, the latency effect was attributed to several dis-
connected services rathan than a single service. Further
analysis revealed that the effect was localized to partic-
ular data center racks, which are often composed of ma-
chines from different services.

Figure 12 depicts the bandwidth utilization of two top-
of-rack network switches during a Kraken load test. In
this figure (and in the other case study figures in this
section), we have labeled the phases of a load test: 1©
load test begins, 2© load test starts decreasing load, and
3© load test ends. The nominal switch bandwidth limit

of 10 Gbps, beyond which retransmissions or packet loss
may occur, has been labeled 4© (specific to Figure 12).

Notice that the load test results in rack switches expe-
riencing higher load due to the additional requests and
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Figure 13: Saturated top-of-rack network switches result
in services in the rack experiencing a 3% error rate during a
Kraken load test.

responses being sent to/from servers located in the racks,
with peak bandwidth nearing 12 Gbps. These bandwidth
spikes resulted in response errors, shown in Figure 13.
Notice that around 13:30, nearly 3% of all requests ex-
perience an error.

An investigation revealed that these two racks housed
a large number of machines belonging to a high-volume
storage service that is used to retrieve posts when a user
loads News Feed. During the load test, these machines
received a higher volume of requests than normal due to
the increased user traffic directed at this cluster and their
responses saturated the uplink bandwidth of the top-of-
rack network switch. We mitigated this problem by dis-
tributing this service’s machines evenly across multiple
racks in the data center.

Prior to surfacing this issue, we were aware of network
saturation as a potential issue, but did not anticipate it as
a bottleneck. This demonstrated the ability of Kraken to
identify unexpected bottlenecks in the system. As a re-
sult we built a new network monitoring tool that identi-
fies network utilization bottlenecks during Kraken’s load
tests and alerts service developers.

5.2.3 Poor load balancing

During a Kraken load test, a critical classification service
in the data center under test experienced a 1.75% error
rate in serving its requests (Figure 14). Note that this
error rate is considered too high for the service.

Investigating uncovered the fact that the load was not
evenly distributed among instances of the service as
shown in Figure 15. Note that this load imbalance is
clearly visible at time 11:30 (before the test commences)
but it is only at time 13:30 that it is evident that imbal-
anced load imperils the service, as some fraction of ma-
chines are out of CPU. We can also observe an oscillation
in CPU utilization between 13:30 and 14:15, due to the
process hitting a failure condition because it is unable to
properly handle the excess load. The over-utilization of
a small handful of machines bottlenecks the entire region

Figure 14: A Kraken load test triggers a 1.75% error rate in a
critical classification service.

Figure 15: The multiple bands of CPU utilization clearly re-
veal a load imbalance in the machines running the classifica-
tion service. This imbalance worsens under load and becomes
a bottleneck that prevents us from fully utilizing the data center.

and results in a degraded performance.
In this case, pick-2 load balancing [28] was applied

to even the load between servers. Failing under heavy
load was also a suboptimal behavior we uncovered. For
some services, techniques such as adaptive load shed-
ding [17, 48] can be effective at reducing resource load
while still servicing requests. In the case of this ser-
vice, failures are difficult to tolerate, so a proportional-
integral-derivative controller [37] was implemented to
help continue to serve requests under high load.

5.2.4 Misconfiguration

Figure 16 shows an example of Kraken’s health monitor-
ing. One of the metrics that Kraken monitors is the error
rate of a story ranking and delivery service. Recall that
we have defined thresholds corresponding to how healthy
a metric is: MODERATE (labeled A), CAUTIOUS (labeled
B), NOMORE (labeled C), and BACKOFF (labeled D) (note
that BOLD is not labeled as it corresponds to the range be-
low MODERATE). Kraken uses the indicated thresholds for
this health metric when making load change decisions.

We then worked with the ranking service’s develop-
ers to instrument their system. Figure 17 shows that the
service was experiencing multiple types of errors under
load, with the most severe impact from “connection gat-
ing” where the number of concurrent threads requesting
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Figure 16: A load test triggers error spikes in a misconfigured
service.

data from an external database was limited to a fixed
amount. While the intent of connection gating is to avoid
exacerbating the effects of requesting data from a slow
database instance, the actual gating value configured for
this service was too low for the request rate it was servic-
ing.

This bottleneck was resolved by increasing the number
of concurrent threads allowed to request data from the
database, and then running a follow-up Kraken load test
to verify that no failed responses were returned by the
ranking service, and that we could utilize the region more
effectively as a result.

5.2.5 Insufficient capacity

Well-tuned services without any hardware or software
bottlenecks may still lack sufficient capacity. This issue
arises due to organic increases in service usage that are
sometimes difficult for service developers to predict.

One surprising revelation was a Kraken load test that
exposed a capacity issue in Gorilla [33], the service that
Kraken relies on for monitoring and data collection. Dur-
ing a routine regional load test, Gorilla started experi-
encing increasing queuing, ultimately causing it to drop
some requests as they began timing out. Figure 18 de-
picts the decrease in Enqueued requests and the increase
in Dropped requests. Kraken aborted the load test as its
monitoring component registered incomplete metrics.

We followed up by analyzing Gorilla. It turned out
that the data center had recently acquired a new frontend
cluster. As a result, when Kraken ran a regional load
test, a much larger set of users were directed at the re-
gion and overloaded the existing Gorilla machines. The
link between web traffic and Gorilla traffic is indirect, as
Gorilla is accessed primarily by services rather than the
web servers themselves, so the developers of Gorilla did
not realize additional capacity would be required.

The mitigation was to allocate additional capacity to
Gorilla to keep pace with increased demand. Note that
these capacity allocations do not impact the service’s ef-

Figure 17: Failed responses in a misconfigured service.

ficiency requirements, which are benchmarked by regu-
lar load tests to ensure that performance regressions do
not creep in and decrease throughput under high load.

5.3 Service-level load testing

Regional load tests are effective at finding service-level
issues. However, service regressions and misconfigura-
tions can be identified without requiring large scale tests,
whereas problems like TAO load imbalance (see Sec-
tion 5.2.1) are system effects that only manifest as bot-
tlenecks at scale. Providing service owners a way to test
their systems independently allows us to focus on identi-
fying bottlenecks due to cross-system dependencies dur-
ing regional tests.

Encouraged by Kraken’s utility in characterizing sys-
tem performance, we extended it to support load tests on
individual services. When testing a service, Kraken dy-
namically updates the service’s load balancing configu-
ration to gradually concentrate traffic onto the designated
set of target machines. Kraken monitors service-specific
metrics that track resource usage, latency, and errors and
measures both the service capacity and its behavior under
load. Figure 3 illustrates how Kraken performs a service-
level load test.

The goal of service-level load tests is to enable devel-
opers to quickly identify performance issues in their ser-
vices without needing to wait until the next regional test.
In addition to identifying regressions, resource exhaus-
tion, and other utilization bottlenecks, service-specific
load tests allow developers to evaluate different opti-
mizations in production on a subset of their fleet.

For example, Figure 19 shows a load test performed on
a set of News Feed’s ranking aggregators. Load is mea-
sured in queries per second (QPS). As the test proceeds,
QPS increases and the fraction of idle CPU time de-
creases. Notice that when the fraction of idle CPU time
reaches 25%, the News Feed aggregator dynamically ad-
justs result ranking complexity. This ensures that the
News Feed aggregator can continue to serve all incoming
requests without exhausting CPU resources. This con-
tinues over the range of load labeled QoS control until,

646    12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



Figure 18: Gorilla drops requests due to insufficient capacity.

eventually, the fraction of CPU idle time drops below a
pre-determined threshold and the load test ends.

6 Related Work
Large scale web services such as Amazon, Facebook,
Google, Microsoft, and others serve a global audience
that expect these services to be highly available. To en-
sure high availability in the face of disasters, these ser-
vices often operate out of multiple geo-replicated data
centers [3, 21]. Additionally, these services rely on mod-
eling for capacity planning and resource allocation.

Capacity management based on theoretical system
modeling is a widely studied topic. Some recent works
in this field [20, 24, 46, 51], recognize the challenges
of modeling multi-tier systems with changing workloads
and propose various schemes for dynamic workload-
driven adjustments to the theoretical allocations. There is
an understanding that large scale distributed systems of-
ten times demonstrate emergent behavior, which cannot
be predicted through analysis at any level simpler than
that of the system as a whole [22, 29, 43]. These prior
systems support Kraken’s motivation for load testing to
glean empirical data for dynamic capacity management.

Many prior systems such as Muse [11] and oth-
ers [5, 32, 38, 47] automate resource allocation using in-
strumentation to provide prior history, offline and online
analysis or simple feedback control to observe the sys-
tem under testing, and iteratively apply an optimization
policy until their objective function is satisfied. Doyle et.
al. [18] build on the Muse system and propose a model-
based approach to provisioning resources. Other systems
utilize queuing [24, 30, 40] or energy [13, 19] models
to predict how large systems will behave under load and
how much power they will consume, to aid capacity man-
agement or maximize resource utilization.

Rather than derive analytical models for managing
data centers, several recent systems propose experimen-
tation on production systems [6, 50]. JustRunIt [50] pro-
poses the use of sandboxed deployments that can execute
shadow traffic from a real world deployment to answer
various “what-if” questions. We make the same obser-
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Figure 19: Kraken load testing News Feed. The range labeled
QoS control shows the News Feed aggregators dynamically
adjusting request quality to be able to serve more requests.

vation as JustRunIt but take their idea further as we wish
to evaluate the performance and capacity limits of a non-
virtualized production deployment.

Our strategy is to leverage load testing to evaluate and
manage our systems. There are many open source and
commercial load testing systems including Apache JMe-
ter [4] and its variants such as BlazeMeter [9] as well
as alternate frameworks such as Loader [25] that pro-
vide load testing as a service. We were unable to lever-
age these tools in our work, as they were limited in their
scope. For instance, JMeter does not execute JavaScript
while Loader only simulates connections to a web ser-
vice. Instead, Kraken allows us to load test production
systems with live user traffic.

Tang et. al. [42] leverage load testing to profile NUMA
usage at Google but do not describe how their technique
can be applied to identify higher-level bottlenecks or re-
source misallocation.

Kraken’s analytics share ideas with the deeply devel-
oped field of performance analysis, which has always
been crucial for detecting regressions and discovering
bottlenecks in large scale distributed systems. While
some previous performance analysis systems leverage
fine-grained instrumentation such as Spectroscope [36],
Magpie [7] and Pinpoint [12], others rely on passive an-
alytics, investigating network flows [2], or logging in-
formation [14]. Kraken infers the dominant causal de-
pendencies and bottlenecks by relying on the existing
monitoring mechanisms provided by individual services.
This allows for flexibility in the analysis of large hetero-
geneous systems. Various machine learning and statis-
tics techniques have been developed for improving per-
formance analysis of distributed systems [15, 16, 26];
Kraken’s algorithms are much simpler so that its oper-
ations can be easily reasoned about by a human.

Kraken is not the first large scale test framework that
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works with live user traffic. Netflix’s Chaos Monkey [8,
45] induces failure in some component of an Amazon
Web Services deployment and empirically confirms that
the service is capable of tolerating faults and degrading
gracefully under duress.

7 Experience
Since deploying Kraken to production, we have run over
50 regional load tests and thousands of cluster load tests.
We list some lessons learned below:
• Generating capacity and utilization models with a

continually changing workload is difficult. A com-
peting approach, empirical testing, is a simpler al-
ternative.
• Simplicity is key to Kraken’s success. When load

causes multiple systems to fail in unexpected ways,
we need the stability of simple systems to debug
complex issues.
• Identifying the right metrics that capture a complex

system’s performance, error rate, and latency is dif-
ficult. We have found it useful to identify several
candidate metrics and then observe their behavior
over tens to hundreds of tests to determine which
ones provide the highest signal. However, once we
identify stable metrics, their thresholds are easy to
configure and almost never change once set.
• We find that specialized error handling mechanisms

such as automatic failover and fallback mechanism
can make systems harder to debug and lead to un-
expected costs. These mechanisms have the abil-
ity to hide problems without resolving root causes,
often leading small problems to snowball into big-
ger issues before detection and resolution. We find
that such mitigations need to be well-instrumented
to be effective in the long run, and prefer more di-
rect methods such as graceful degradation.
• Bottleneck resolutions such as allocating capacity

to needy services, changing system configuration
or selecting different load balancing strategies have
been critical for fixing production issues fast. We
turn to heavy-weight resolutions like profiling, per-
formance tuning, and system redesign only if the
benefit justifies the engineering and capacity cost.
• While some systems prefer running on non-standard

hardware or prefer non-uniform deployments in
data centers, we have found that trading off some
amount of efficiency and performance for simplicity
makes systems much easier to operate and debug.

8 Conclusion
Large scale web services are difficult to accurately
model because they are composed of hundreds of rapidly
evolving software systems, are distributed across geo-
replicated data centers, and have constantly changing

workloads. We propose Kraken, a system that leverages
live user traffic to empirically load test every level of the
infrastructure stack to measure capacity. Further, we de-
scribe a methodology for identifying bottlenecks and it-
erating over solutions with successive Kraken load tests
to continually improve infrastructure utilization. Kraken
has been in production for the past three years. In that
time, Kraken has run thousands of load tests and allowed
us to increase Facebook’s capacity to serve users by over
20% using the same hardware.
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