
This paper is included in the Proceedings of the 
12th USENIX Symposium on Operating Systems Design  

and Implementation (OSDI ’16).
November 2–4, 2016 • Savannah, GA, USA

ISBN 978-1-931971-33-1

Open access to the Proceedings of the 
12th USENIX Symposium on Operating Systems 

Design and Implementation 
is sponsored by USENIX.

Yak: A High-Performance Big-Data-Friendly 
Garbage Collector

Khanh Nguyen, Lu Fang, Guoqing Xu, and Brian Demsky; University of California, Irvine; 
Shan Lu, University of Chicago; Sanazsadat Alamian, University of California, Irvine;  

Onur Mutlu, ETH Zurich

https://www.usenix.org/conference/osdi16/technical-sessions/presentation/nguyen



Yak: A High-Performance Big-Data-Friendly Garbage Collector

Khanh Nguyen† Lu Fang† Guoqing Xu† Brian Demsky†

Shan Lu‡ Sanazsadat Alamian† Onur Mutlu§

University of California, Irvine† University of Chicago‡ ETH Zürich§

Abstract
Most “Big Data” systems are written in managed lan-

guages, such as Java, C#, or Scala. These systems suffer

from severe memory problems due to the massive volume

of objects created to process input data. Allocating and

deallocating a sea of data objects puts a severe strain on

existing garbage collectors (GC), leading to high memory

management overheads and reduced performance.

This paper describes the design and implementation

of Yak, a “Big Data” friendly garbage collector that pro-

vides high throughput and low latency for all JVM-based

languages. Yak divides the managed heap into a control

space (CS) and a data space (DS), based on the obser-

vation that a typical data-intensive system has a clear

distinction between a control path and a data path. Ob-

jects created in the control path are allocated in the CS

and subject to regular tracing GC. The lifetimes of objects

in the data path often align with epochs creating them.

They are thus allocated in the DS and subject to region-

based memory management. Our evaluation with three

large systems shows very positive results.

1 Introduction
It is clear that Big Data analytics has become a key com-

ponent of modern computing. Popular data processing

frameworks such as Hadoop [4], Spark [67], Naiad [48],

or Hyracks [12] are all developed in managed languages,

such as Java, C#, or Scala, primarily because these lan-

guages 1) enable fast development cycles and 2) provide

abundant library suites and community support.

However, managed languages come at a cost [36,

37, 39, 47, 51, 59, 60, 61, 62, 63]: memory manage-

ment in Big Data systems is often prohibitively expen-

sive. For example, garbage collection (GC) can account

for close to 50% of the execution time of these sys-

tems [15, 23, 49, 50], severely damaging system per-

formance. The problem becomes increasingly painful

in latency-sensitive distributed cloud applications where

long GC pause times on one node can make many/all

other nodes wait, potentially delaying the processing of

user requests for an unacceptably long time [43, 44].

Multiple factors contribute to slow GC execution. An

obvious one is the massive volume of objects created by

Big Data systems at run time. Recent techniques propose

to move a large portion of these objects outside the man-

aged heap [28, 50]. Such techniques can significantly

reduce GC overhead, but inevitably substantially increase

the burden on developers by requiring them to manage

the non-garbage-collected memory, which negates much

of the benefit of using managed languages.

A critical reason for slow GC execution is that ob-

ject characteristics in Big Data systems do not match the

heuristics employed by state-of-the-art GC algorithms.

This issue could potentially be alleviated if we can design

a more suitable GC algorithm for Big Data systems. Intel-

ligently adapting the heuristics of GC to object character-

istics of Big Data systems can enable efficient handling of

the large volume of objects in Big Data systems without

relinquishing the benefits of managed languages. This is

a promising yet challenging approach that has not been

explored in the past, and we explore it in this work.

1.1 Challenges and Opportunities
Two Paths, Two Hypotheses The key characteristics

of heap objects in Big Data systems can be summarized

as two paths, two hypotheses.

Evidence [15, 28, 50] shows that a typical data pro-

cessing framework often has a clear logical distinction

between a control path and a data path. As exemplified by

Figure 1, the control path performs cluster management

and scheduling, establishes communication channels be-

tween nodes, and interacts with users to parse queries and

return results. The data path primarily consists of data

manipulation functions that can be connected to form a

data processing pipeline. Examples include data partition-

ers, built-in operations such as Join or Aggregate, and

user-defined data functions such as Map or Reduce.

These two paths follow different heap usage patterns.

On the one hand, the behavior of the control path is similar

to that of conventional programs: it has a complicated

logic, but it does not create many objects. Those created

objects usually follow the generational hypothesis: most

recently allocated objects are also most likely to become

unreachable quickly; most objects have short life spans.

On the other hand, the data path, while simple in code

logic, is the main source of object creation. And, objects

created by it do not follow the generational hypothesis.

Previous work [15] reports that more than 95% of the

objects in Giraph [3] are created in supersteps that rep-

resent graph data with Edge and Vertex objects. The

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation    349



Data Loads
and Feeds

Queries and
Results

Data
Publishing

Cloud

Cluster Controller

Node
Controller ... Node

Controller

Aggregate Join UDF Aggregate Join UDF

Partitioner

Control path Data path

Figure 1: Graphical illustration of control and data paths.

execution of the data path often exhibits strong epochal
behavior — each piece of data manipulation code is re-

peatedly executed. The execution of each epoch starts

with allocating many objects to represent its input data

and then manipulating them. These objects are often held

in large arrays and stay alive throughout the epoch (cf.
§3), which is often not a short period of time.

State-of-the-art GC State-of-the-art garbage collec-

tion algorithms, such as generational GC, collect the heap

based on the generational hypothesis. The GC splits ob-

jects into a young and an old generation. Objects are

initially allocated in the young generation. When a nurs-
ery GC runs, it identifies all young-generation objects that

are reachable from the old generation, promotes them to

the old generation, and then reclaims the entire young

generation. Garbage collection for the old generation oc-

curs infrequently. As long as the generational hypothesis

holds, which is true for many large conventional applica-

tions that make heavy use of short-lived temporary data

structures, generational GCs are efficient: a small number

of objects escape to the old generation, and hence, most

GC runs need to traverse only a small portion of the heap

to identify and copy these escaping objects.

The Hypothesis Mismatch We find that, while the gen-

erational hypothesis holds for the control path of a data-

intensive application, it does not match the epochal be-

havior of the data path, where most objects are created.

This mismatch leads to the fundamental challenge en-

countered by state-of-the-art GCs in data-intensive appli-

cations. Since newly-created objects often do not have

short life spans, most GC runs spend significant time for

identifying and moving young-generation objects into

the old generation, while reclaiming little memory space.

As an example, in GraphChi [41], a disk-based graph

processing system, graph data in the shard defined by a

vertex interval is first loaded into memory in each iter-

ation, followed by the creation of many vertex objects

to represent the data. These objects are long-lived and

frequently visited to perform vertex updates. They cannot

be reclaimed until the next vertex interval is processed.

There can be dozens to hundreds of GC runs in each inter-

val. Unfortunately, these runs end up moving most objects

to the old generation and scanning almost the entire heap,

while reclaiming little memory.

The epochal behavior of the data path also points to

an opportunity not leveraged by existing GC algorithms –

many data-path objects have the same life span and can be

reclaimed together at the end of an epoch. We call this the

epochal hypothesis. This hypothesis has been leveraged

in region-based memory management [1, 8, 14, 25, 26,

28, 29, 30, 32, 40, 49, 50, 58], where objects created in

an epoch are allocated in a memory region and efficiently

deallocated as a whole when the epoch ends.

Unfortunately, existing region-based techniques need

either sophisticated static analyses [1, 8, 14, 25, 26, 28,

29], which cannot scale to large systems, or heavy manual

refactoring [28, 50], to guarantee that objects created in

an epoch are indeed unreachable at the end of the epoch.

Hence, such techniques have not been part of any garbage

collector, to our knowledge.

1.2 Our Solution: The Yak GC
This paper presents Yak,1 a high-throughput, low-latency

GC tailored for managed Big Data systems. While GC

has been extensively studied, existing research centers

around the generational hypothesis, improving various as-

pects of the collection/application performance based on

this hypothesis. Yak, in contrast, tailors the GC algorithm

to the two very different types of object behavior (gener-

ational and epochal) observed in modern data-intensive

workloads. Yak is the first hybrid GC that splits the heap

into a control space (CS) and a data space (DS), which

respectively employ generation-based and region-based

algorithms to automatically manage memory.

Yak requires the developer to mark the beginning and

end points of each epoch in the program. This is a sim-

ple task that even novices can do in minutes, and is al-

ready required by many Big Data infrastructures (e.g., the

setup/cleanup APIs in Hadoop [4]). Objects created

inside each epoch are allocated in the DS, while those

created outside are allocated in the CS. Since the number

of objects to be traced in the CS is very small and only

escaping objects in the DS need tracing, the memory man-

agement cost can be substantially reduced compared to a

state-of-the-art generational GC.

While the idea appears simple, there are many chal-

lenges in developing a practical solution. First, we need

to make the two styles of heap management for CS and

DS smoothly co-exist inside one GC. For example, the

generational collector that manages the CS in normal

1Yak is a wild ox that digests food with multiple stomachs.

350    12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



ways should ignore some outgoing references to avoid

getting in the way of DS management, and also keep track

of incoming references to avoid deallocating CS objects

referenced by DS objects (§5.4).

Second, we need to manage DS regions correctly. That

is, we need to correctly handle the small number of objects

that are allocated inside an epoch but escape to either

other epochs or the control path. Naı̈vely deallocating

the entire region for an epoch when the epoch ends can

cause program failures. This is exactly the challenge

encountered by past region-based memory management

techniques.

Existing Big Data memory-management systems, such

as Facade [50] and Broom [28], require developers to

manually refactor both user and system programs to take

control objects out of the data path, which, in turn, re-

quires a deep understanding of the life spans of all objects
created in the data path. This is a difficult task, which

can take experienced developers weeks of effort or even

longer. It essentially brings back the burden of manual

memory management that managed languages freed de-

velopers from, imposing substantial practical limitations.

Yak offers an automated and systematic solution, re-

quiring zero code refactoring. Yak allocates all objects

created in an epoch in the DS, automatically tracks and

identifies all escaping objects, and then uses a promotion
algorithm to migrate escaping objects during region deal-

location. This handling completely frees the developers

from the stress of understanding object life spans, making

Yak practical enough to be used in real settings (§5).

Third, we need to manage the DS region efficiently.

This includes efficiently tracking escaping objects and

migrating them. Naı̈vely monitoring every heap access to

track escaping objects would lead to prohibitive overhead.

Instead, we require light checking only before a heap

write, but not on any heap read (§5.2). To guarantee mem-

ory correctness (i.e., no live object deallocation), Yak also

employs a lightweight “stop-the-world” treatment when

a region is deallocated, without introducing significant

stalls (§5.3).

1.3 Summary of Results
We implemented Yak inside Oracle’s production JVM,

OpenJDK 8. The JVM-based implementation enables

Yak to work for all JVM-based languages, such as Java,

Python, or Scala, while systems such as Facade [50] and

Broom [28] work only for the specific languages they

are designed for. We have evaluated Yak on three pop-

ular frameworks, i.e., Hyracks [12], Hadoop [4], and

GraphChi [41], with various types of applications and

workloads. Our results show that Yak reduces GC latency

by 1.4 – 44.3× and improves overall application perfor-

mance by 12.5% – 7.2×, compared to the default Parallel

Scavenge production GC in the JVM.

2 Related Work
Garbage Collection Tracing garbage collectors are the

mainstream collectors in modern systems. A tracing GC

performs allocation of new objects, identification of live

objects, and reclamation of free memory. It traces live

objects by following references, starting from a set of

root objects that are directly reachable from live stack

variables and global variables. It computes a transitive
closure of live objects; objects that are unreachable during

tracing are guaranteed to be dead and will be reclaimed.

There are four kinds of canonical tracing collec-

tors: mark-sweep, mark-region, semi-space, and mark-
compact. They all identify live objects the same way as

discussed above. Their allocation and reclamation strate-

gies differ significantly. Mark-sweep collectors allocate

from a free list, mark live objects, and then put reclaimed

memory back on the free list [24, 46]. Since a mark-sweep

collector does not move live objects, it is time- and space-

efficient, but it sacrifices locality for contemporaneously

allocated objects. Mark-region collectors [7, 11, 13] re-

claim contiguous free regions to provide contiguous allo-

cation. Some mark-region collectors such as Immix [11]

can also reduce fragmentation by mixing copying and

marking. Semi-space [5, 6, 10, 17, 22, 34, 56] and mark-

compact [19, 38, 55] collectors both move live objects.

They put contemporaneously-allocated objects next to

each other in a space, providing good locality.

These canonical algorithms serve as building blocks for

more sophisticated algorithms such as the generational

GC (e.g., [56]), which divides the heap into a young and

an old generation. Most GC runs are nursery (minor)
collections that only scan references from the old to the

young generation, move reachable objects into the old

generation, and then free the entire young generation.

When nursery GCs are not effective, a full-heap (major)
collection scans both generations.

At first glance, Yak is similar to generational GC in

that it promotes objects reachable after an epoch and then

frees the entire epoch region. However, the regions in

Yak have completely different and much richer semantics

than the two generations in a generational GC. Conse-

quently, Yak encounters completely different challenges

and uses a design that is different from a generational

GC. Specifically, in Yak, regions are thread-private; they

reflect nested epochs; many regions could exist at any sin-

gle moment. Therefore, to efficiently check which objects

are escaping, we cannot rely on a traditional tracing al-

gorithm; escaping objects may have multiple destination

regions, instead of just the single old generation.

Connectivity-based garbage collection (CBGC) [33] is

a family of algorithms that place objects into partitions by

performing connectivity analyses on the object graph. A

connectivity analysis can be based on types, allocations,

or the partitioning introduced by Harris [31]. Garbage

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation    351



First (G1) [22] is a generational algorithm that divides the

heap into many small regions and gives higher collection

priority to regions with more garbage. While CBGC, G1,

and Yak each uses a notion of region, each has completely

different semantics for the region and hence a different

design. For example, objects inside a G1 region are not
expected to have lifespans that are similar to each other.

Region-based Memory Management Region-based

memory management was first used in the implemen-

tations of functional languages [1, 58] such as Stan-

dard ML [30], and then was extended to Prolog [45],

C [25, 26, 29, 32], Java [18, 54], as well as real-time

Java [8, 14, 40]. Existing region-based techniques rely

heavily on static analyses. Unfortunately, these analy-

ses either examine the whole program to identify region-

allocable objects, which cannot scale to Big Data systems

that all have large codebases, or require developers to

use a brand new programming model, such as region

types [8, 14]. In contrast, Yak is a pure dynamic tech-

nique that easily scales to large systems and requires only

straightforward marking of epochs from users.

Big Data Memory Optimizations A variety of data

computation models and processing systems have been

developed in the past decade [4, 12, 16, 20, 21, 35, 52, 53,

57, 64, 65, 66, 67]. All of these frameworks were devel-

oped in managed languages and can benefit immediately

from Yak, as demonstrated in our evaluation (cf. §6).

Bu et al. studied several data processing systems [15]

and showed that a “bloat-free” design (i.e., no objects

allowed in data processing units), which is unfortunately

impractical in modern Big Data systems, can make the

system orders of magnitude more scalable.

This insight has inspired recent work, like Facade [50],

Broom [28], lifetime-based memory management [42],

as well as Yak. Facade allocates data items into native

memory pages that are deallocated in batch. Broom aims

to replace the GC system by using regions with different

scopes to manipulate objects with similar lifetimes. While

promising, they both require extensive programmer inter-

vention, as they move most objects out of the managed

heap. For example, users must annotate the code and

determine “data classes” and “boundary classes” to use

Facade or explicitly use Broom APIs to allocate objects

in regions. Yak is designed to free developers from the

burden of understanding object lifetimes to use regions,

making region-based memory management part of the

managed runtime.

NumaGiC [27] is a new GC for “Big Data” on NUMA

machines. It considers data location when performing (de-

)allocation. However, as a generational GC, NumaGiC

shares with modern GCs the problems discussed in §1.

Another orthogonal line of research on reducing GC

pauses is building a holistic runtime for distributed Big

Data systems [43, 44]. The runtime collectively manages

the heap on different nodes, coordinating GC pauses to

make them occur at times that are convenient for appli-

cations. Different from these techniques, Yak focuses on

improving per-node memory management efficiency.

3 Motivation
We have conducted several experiments to validate our

epochal hypothesis. Figure 2 depicts the memory foot-

print and its correlation with epochs when PageRank was

executed on GraphChi to process a sample of the twitter-

2010 graph (with 100M edges) on a server machine with

2 Intel(R) Xeon(R) CPU E5-2630 v2 processors running

CentOS 6.6. We used the state-of-the-art Parallel Scav-

enge GC. In GraphChi, we defined an epoch as the pro-

cessing of a sub-interval. While GraphChi uses multiple

threads to perform vertex updates in each sub-interval,

different sub-intervals are processed sequentially.

Figure 2: Memory footprint for GraphChi [41] execution

(GC consumes 73% of run time). Each dot in (a) repre-

sents the memory consumption measured right after a GC;

each bar in (b) shows how much memory is reclaimed by

a GC; dotted vertical lines show the epoch boundaries.

In the GraphChi experiment, GC takes 73% of run

time. Each epoch lasts about 20 seconds, denoted by

dotted lines in Figure 2. We can observe clear correlation

between the end point of each epoch and each significant

memory drop (Figure 2 (a)) as well as each large memory

reclamation (Figure 2 (b)). During each epoch, many GC

runs occur and each reclaims little memory (Figure 2 (b)).

For comparison, we also measured the memory usage

of programs in the DaCapo benchmark suite [9], widely-

used for evaluating JVM techniques. Figure 3 shows the

memory footprint of Eclipse under large workloads pro-

vided by DaCapo. Eclipse is a popular development IDE

and compiler frontend. It is an example of applications

that have complex logic but process small amounts of

data. GC performs well for Eclipse, taking only 2.4%

of total execution time and reclaiming significant mem-

ory in each GC run. We do not observe epochal patterns

in Figure 3. While other DaCapo benchmarks may ex-

hibit some epochal behavior, epochs in these programs

are often not clearly defined and finding them is not easy

352    12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



for application developers who are not familiar with the

system codebase.

Figure 3: Eclipse execution (GC takes 2.4% of time).

Strawman Can we solve the problem by forcing GC

runs to happen only at the end of epochs? This simple

approach would not work due to the multi-threaded nature

of real systems. In systems like GraphChi, each epoch

spawns many threads that collectively consume a huge

amount of memory. Waiting until the end of an epoch to

conduct GC could easily cause out-of-memory crashes.

In systems like Hyracks [12], a distributed dataflow en-

gine, different threads have various processing speeds and

reach epoch ends at different times. Invoking the GC

when one thread finishes an epoch would still make the

GC traverse many live objects created by other threads,

leading to wasted effort. This problem is illustrated in

Figure 4, which shows memory footprint of one slave

node when Hyracks performs word counting over a 14GB

text dataset on an 11-node cluster. Each node was config-

ured to run multiple Map and Reduce workers and have a

12GB heap. There are no epochal patterns in the figure,

exactly because many worker threads execute in parallel

and reach the end of an epoch at different times.

Figure 4: Hyracks WordCount (GC takes 33.6% of time).

4 Design Overview
The overall idea of Yak is to split the heap into a con-

ventional CS and a region-based DS, and use different

mechanisms to manage them.

When to Create & Deallocate DS Regions? A region

is created (deallocated) in the DS whenever an epoch

starts (ends). This region holds all objects created inside

the epoch. An epoch is the execution of a block of data

transformation code. Note that the notion of an epoch

is well-defined in Big Data systems. For example, in

Hyracks [12], the body of a dataflow operator is enclosed

by calls to open and close. Similarly, a user-defined

(Map/Reduce) task in Hadoop [4] is enclosed by calls to

setup and cleanup.

To enable a unified treatment across different Big

Data systems, Yak expects a pair of user annotations,

epoch start and epoch end. These annotations are trans-

lated into two native function calls at run time to inform

the JVM of the start/end of an epoch. Placing these anno-

tations requires negligible manual effort. Even a novice,

without much knowledge about the system, can easily find

and annotate epochs in a few minutes. Yak guarantees ex-

ecution correctness regardless of where epoch annotations

are placed. Of course, the locations of epoch boundaries

do affect performance: if objects in a designated epoch

have very different life spans, many of them need to be

copied when the epoch ends, creating overhead.

In practice, we need to consider a few more issues

about the epoch concept. One is the nested relationships
exhibited by epochs in real systems. A typical exam-

ple is GraphChi [41], where a computational iteration

naturally represents an epoch. Each iteration iteratively

loads and processes all shards, and hence, the loading

and processing of each memory shard (called interval in

GraphChi) forms a sub-epoch inside the computational

iteration. Since a shard is often too large to be loaded en-

tirely into memory, GraphChi further breaks it into several

sub-intervals, each of which forms a sub-sub-epoch.

Yak supports nested regions for performance benefits

– unreachable objects inside an inner epoch can be re-

claimed long before an outer epoch ends, preventing the

memory footprint from aggressively growing. Specifi-

cally, if an epoch start is encountered in the middle of an

already-running epoch, a sub-epoch starts; subsequently

a new region is created, and considered a child of the ex-

isting region. All subsequent object allocations take place

in the child region until an epoch end is seen. We do

not place any restrictions on regions; objects in arbitrary

regions are allowed to mutually reference one another.

The other issue is how to create regions when mul-

tiple threads execute the same piece of data-processing

code concurrently. We could allow those threads to share

one region. However, this would introduce complicated

thread-synchronization problems; and might also delay

memory recycling when multiple threads exit the epoch

at different times, causing memory pressure. Yak creates

one region for each dynamic instance of an epoch. When

two threads execute the same piece of epoch code, they

each get their own regions without having to worry about

synchronization.

Overall, at any moment of execution, multiple epochs

and hence regions could exist. They can be partially

ordered based on their nesting relationships, forming a

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation    353



semilattice structure. As shown in Figure 5, each node

on the semilattice is a region of form 〈ri j, tk〉, where ri j
denotes the j-th execution of epoch ri and tk denotes the

thread executing the epoch. For example, region 〈r21, t1〉
is a child of 〈r11, t1〉, because epoch r2 is nested in epoch

r1 in the program and they are executed by the same thread

t1. Two regions (e.g., 〈r11, t1〉 and 〈r12, t2〉) are concurrent
if their epochs are executed by different threads.

for (…) {
epoch_start();

    while (…) {
epoch_start();

        for (…) {
epoch_start();
…
epoch_end();

        }
epoch_end();

    }
epoch_end();

}

r2 r3r1
<r11,t1>

<r21,t1>

<r33,t1>

<r12,t2>

<r23,t2>

<r37,t2>

… <r1u,tn>
<r2v,tn>

<r3w,tn>

<CS, *>

Figure 5: An example of regions: (a) a simple program

and (b) its region semilattice at some point of execution.

How to Deallocate Regions Correctly and Efficiently?
As discussed in §1, a small number of objects may out-

live their epochs, and have to be identified and carefully

handled during region deallocation. As also discussed in

§1, we do not want to solve this problem by an iterative

manual process of code refactoring and testing, which is

labor-intensive as was done in Facade [50] or Broom [28].

Yak has to automatically accomplish two key tasks: (1)

identifying escaping objects and (2) deciding the reloca-

tion destination for these objects.

For the first task, Yak uses an efficient algorithm to

track cross-region/space references and records all incom-
ing references at run time for each region. Right before

a region is deallocated, Yak uses these references as the

root set to compute a transitive closure of objects that can

escape the region (details in §5.2).

For the second task, for each escaping object O, Yak

tries to relocate O to a live region that will not be deallo-

cated before the last (valid) reference to O. To achieve

this goal, Yak identifies the source regions for each in-

coming cross-region/space reference to O, and joins them

to find their least upperbound on the region semilattice.

For example, in Figure 5, joining 〈r21, t1〉 and 〈r11, t1〉
returns 〈r11, t1〉, while joining any two concurrent regions

returns the CS. Intuitively, if O has references from its

parent and grand-parent regions, O should be moved up

to its grand-parent. If O has two references coming from

regions created by different threads, it has to be moved to

the CS.

Upon deallocation, computing a transitive closure of

escaping objects while other threads are accessing them

may result in an incomplete closure. In addition, mov-

ing objects concurrently with other running threads is

dangerous and may give rise to data races. Yak employs

a lightweight “stop-the-world” treatment to guarantee

memory safety in deallocation. When a thread reaches

an epoch end, Yak pauses all running threads, scans their

stacks, and computes a closure that includes all potential

live objects in the deallocating region. These objects are

moved to their respective target regions before all mutator

threads are resumed.

5 Yak Design and Implementation
We have implemented Yak in Oracle’s production JVM

OpenJDK 8 (build 25.0-b70). In addition to implementing

our own region-based technique, we have modified the

two JIT compilers (C1 and Opto), the interpreter, the

object/heap layout, and the Parallel Scavenge collector (to

manage the CS). Below, we discuss how to split the heap

and create regions (§5.1); how to track inter-region/space

references, how to identify escaping objects, and how to

determine where to move them (§5.2); how to deallocate

regions correctly and efficiently (§5.3); and how to modify

the Parallel Scavenge GC to collect the CS (§5.4).

5.1 Region & Object Allocation
Region Allocation When the JVM is launched, it asks

the OS to reserve a block of virtual addresses based on

the maximum heap size specified by the user (i.e., -Xmx).

Yak divides this address space into the CS and the DS,

with the ratio between them specified by the user via JVM

parameters. Yak initially asks the OS to commit a small

amount of memory, which will grow if the initial space

runs out. Once an epoch start is encountered, Yak creates

a region in the DS. A region contains a list of pages whose

size can be specified by a JVM parameter.

Heap Layout Figure 6 illustrates the heap layout main-

tained by Yak. The CS is the same as the old Java heap

maintained by a generational GC, except for the newly

added remember set. The DS is much bigger, containing

multiple regions, with each region holding a list of pages.

Figure 6: The heap layout in Yak.

The remember set is a bookkeeping data structure main-

tained by Yak for every region and the CS space. It is used

to determine what objects escape a region r and where

to relocate them. The remember set of CS helps identify

live objects in the CS. The remember set of a region/s-

354    12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



pace r is implemented as a hash table that maps an object

O in r to all references to O that come from a different

region/space.

Note that a remember set is one of the many possible

data structures to record such references. For example,

the generational GC uses a card table that groups objects

into fixed-sized buckets and tracks which buckets contain

objects with pointers that point to the young generation.

Yak uses remember sets, because each region has only

a few incoming references; using a card table instead

would require us to scan all objects from the CS and other

regions to find these references.

Allocating Objects in the DS When the execution is

in an epoch, we redirect all allocation requests made

to the Eden space (e.g., young generation) to our new

Region Alloc function. Yak filters out JVM meta-data

objects, such as class loader and class objects, from get-

ting allocated in the region. Using a quick bump pointer
algorithm (which uses a pointer that points to the starting

address of free space and bumps it up upon each alloca-

tion), the region’s manager attempts to allocate the object

on the last page of its page list. If this page does not

have enough space, the manager creates a new page and

appends it to the list. For a large object that cannot fit into

one page, we request a special page that can fit the object.

For performance, large objects are never moved.

5.2 Tracking Inter-region References
Overview As discussed in §4, Yak needs to efficiently

track all inter-region/space references. At a high level,

Yak achieves this in three steps. First, Yak adds a 4-byte

field re into the header space of each object to record

the region information of the object. Upon an object

allocation, its re field is updated to the corresponding

region ID. A special ID is used for the CS.

Second, we modify the write barrier (i.e., a piece of

code executed with each heap write instruction a. f = b)

to detect and record heap-based inter-region/space ref-

erences. Note that, in OpenJDK, a barrier is already

required by a generational GC to track inter-generation

references. We modify the existing write barrier as shown

in Algorithm 1.

Algorithm 1: The write barrier a. f = b.

Input: Expression a.f , Variable b

1 if ADDR(Oa) /∈ SPACE(CS) OR ADDR(Ob) /∈ SPACE(CS)
then

2 if REGION(Oa) �= REGION(Ob) then
3 Record the reference ADDR(Oa) + OFFSET( f )

REGION(Oa)−−−−−−−→ ADDR(Ob) in the remember set rs of

Ob’s region

4 ... // Normal OpenJDK logic (for marking the card table)

Finally, Yak detects and records local-stack-based inter-

region references as well as remote-stack-based refer-

ences when epoch end is triggered. These algorithms are

shown in Lines 1 – 4 and Lines 5 – 10 in Algorithm 2.

Details We describe in detail how Yak can track all inter-

region references, following the three places where the

reference to an escaping object can reside in – the heap,

the local stack, and a remote stack. The semantics of

writes to static fields (i.e., globals) as well as array stores

are similar to that of instance field accesses; we omit the

details of their handling. Copies of large memory regions

(e.g., System.arraycopy) are also tracked in Yak.

(1) In the heap. An object Ob can outlive its region r
if its reference is written into an object Oa allocated in

another (live) region r′. Algorithm 1 shows the write bar-

rier to identify such escaping objects Ob. The algorithm

checks whether the reference is an inter-region/space ref-

erence (Line 2). If it is, the pointee’s region (i.e., RE-

GION(Ob)) needs to update its remember set (Line 3).

Each entry in the remember set is a reference which

has a form a r−→ b where a and b are the addresses of

the pointer and pointee, respectively, and r represents the

region the reference comes from. In most cases (such

as those represented by Algorithm 1), r is the region in

which a resides and it will be used to compute the target

region to which b will be moved. However, if a is a stack

variable, we need to create a placeholder reference with a

special r, determined based on which stack a comes from.

We will shortly discuss such cases in Algorithm 2.

To reduce overhead, we have a check that quickly filters

out references that do not need to be remembered. As

shown in Algorithm 1, if both Oa and Ob are in the same

region, including the CS (Lines 1 – 2), we do not need to

track that reference, and thus, the barrier proceeds to the

normal OpenJDK logic.

(2) On the local stack. An object can escape by being

referenced by a stack variable declared beyond the scope

of the running epoch. Figure 7 (a) shows a simple exam-

ple. The reference of the object allocated on Line 3 is

assigned to the stack variable a. Because a is still alive

after epoch end, it is unsafe to deallocate the object.

Yak identifies this type of escaping objects through

an analysis at each epoch end mark. Specifically, Yak

scans the local stack of the deallocating thread for the

set of live variables at epoch end and checks if an object

in r can be referenced by a live variable (Lines 1 – 4 in

Algorithm 2). For each such escaping object Ovar, Yak

adds a placeholder incoming reference, whose source is

from r’s parent region (say p), into the remember set rs
of r (Line 4). This will cause Ovar to be relocated to p. If

the variable is still live when p is about to be deallocated,

this would be detected by the same algorithm and Ovar
would be further relocated to p’s parent.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation    355



1 a = . . . ;

2 / / epoch start
3 b = new B ( ) ;

4 i f ( /∗ condition ∗ / ) {
5 a = b ;

6 }
7 / / epoch end
8 c = a ;

1 Thread t :

2 / / epoch start
3 a = A. f ;

4 a . g = new O( ) ;

5 / / epoch end
6

7 Thread t′ :

8 / / epoch start
9 p = A. f ;

10 b = p . g ;

11 p . g = c ;

12 / / epoch end
(a) (b)

Figure 7: (a) An object referenced by b escapes its epoch

via the stack variable a; (b) An object O created by thread

t and referenced by a.g escapes to thread t ′ via the load

statement b = p.g.

(3) On the remote stack. A reference to an object O
created by thread t could end up in a stack variable in

thread t ′. For example, in Figure 7 (b), object O created

on Line 4 escapes t through the store at the same line and

is loaded to the stack of another thread t ′ on Line 10. A

naı̈ve way to track these references is to monitor every

read (i.e., a read barrier), such as the load on Line 10 in

Figure 7 (b).

Yak avoids the need for a read barrier, whose large over-

head could affect practicality and performance. Before

proceeding to discuss the solution, let us first examine the

potential problems of missing a read barrier. The purpose

of the read barrier is for us to understand whether a region

object is loaded on a remote stack so that the object will

not be mistakenly reclaimed when its containing region is

deallocated. Without it, a remote thread which references

an object O in region r, may cause two potential issues

when r is deallocated (Figure 8).

D

C
<r11,t1>

3

<CS,*>

<r21,t1>

1

A

 t2's StackB2

4 V D

C
<r11,t1>

3

<CS,*>

<r21,t1>

1

A

 t2's StackB2

4 VE5

Figure 8: Examples showing potential problems with

references on a remote stack: (a) moving object D is

dangerous; and (b) object E, which is also live, is missed

in the transitive closure.

Problem 1: Dangerous object moving. Figure 8 (a)

illustrates this problem. Variable v on the stack of thread

t2 contains a reference to object D in region 〈r21, t1〉 (by

following the chain of references starting at object A in

the CS). When this region is deallocated, D is in the es-

caping transitive closure; its target region, as determined

by the semilattice, is its parent region 〈r11, t1〉. Obviously,

moving D at the deallocation of 〈r21, t1〉 is dangerous, be-

cause we are not aware that v references it and thus cannot

update v with D’s new address after the move.

Problem 2: Dangerous object deallocation. Figure 8

(b) shows this problem. Object E is first referenced by

D in the same region 〈r21, t1〉. Hence, the remote thread

t2 can reach E by following the reference chain starting

at A. Suppose t2 loads E into a stack variable v and then

deletes the reference from D to E. When region 〈r21, t1〉
is deallocated, E cannot be included in the escaping tran-

sitive closure while it is being accessed by a remote stack.

E thus becomes a “dangling” object that would be mistak-

enly treated as a dead object and reclaimed immediately.

Solution Summary Yak’s solution to these problems

is to pause all other threads and scan their stacks when

thread t deallocates a region r. Objects in r that are also on

a remote stack need to be explicitly marked as escaping
roots before the escaping closure computation because

they may be dangling objects (such as E in Figure 8 (b))

that are already disconnected from other objects in the

region. §5.3 provides the detailed algorithms for region

deallocation and thread stack scanning.

5.3 Region Deallocation
Algorithm 2 shows our region deallocation algorithm that

is triggered at each epoch end. This algorithm computes

the closure of escaping objects, moves escaping objects

to their target regions, and then recycles the whole region.

Algorithm 2: Region deallocation.

Input: Region r, Thread t

1 Map〈Var,Object〉 stackObjs← SCANSTACK(t,r)
2 foreach 〈var,Ovar〉 ∈ stackObjs do
3 if REGION(Ovar) = r then
4 Record a placeholder reference ADDR(var)

r.parent−−−−→ ADDR(Ovar) in r’s remember set rs

5 PAUSEOTHERTHREADS()

6 foreach Thread t′ ∈ THREADS() : t ′ �= t do
7 Map〈Var,Object〉remoteObjs← SCANSTACK(t ′, r)

8 foreach 〈var,Ovar〉 ∈ remoteObjs do
9 if REGION(Ovar) = r then

10 Record a placeholder reference ADDR(var)
CS−→ADDR(Ovar) in r’s remember set rs

11 CLOSURECOMPUTATION()

12 RESUMEPAUSEDTHREADS()

13 Put all pages of r back onto the available page list

Finding Escaping Roots There are three kinds of es-

caping roots for a region r. First, pointees of inter-

356    12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



region/space references recorded in the remember set of

r. Second, objects referenced by the local stack of the

deallocating thread t. Third, objects referenced by the

remote stacks of other threads.

Since inter-region/space references have already been

captured by the write barrier (§5.2), here we first identify

objects that escape the epoch via t’s local stack, as shown

in Lines 1 – 4 of Algorithm 2.

Next, Yak identifies objects that escape via remote

stacks. To do this, Yak needs to synchronize threads

(Line 5). When a remote thread t ′ is paused, Yak scans

its stack variables and returns a set of objects that are

referenced by these variables and located in region r.

Each such (remotely referenced) object needs to be ex-

plicitly marked as an escaping root to be moved to the

CS (Line 10) before the transitive closure is computed

(Line 11).

No threads are resumed until t completes its closure

computation and moves all escaping objects in r to their

target regions. Note that it is unsafe to let a remote thread

t ′ proceed even if the stack of t ′ does not reference any

object in r. To illustrate, consider the following scenario.

Suppose object A is in the CS and object B is in region r,

and there is a reference from A to B. Only A but not B is

on the stack of thread t ′ when r is deallocated. Scanning

the stack of t ′ would not find any new escaping root for r.

However, if t ′ is allowed to proceed immediately, t ′ could

load B onto its stack through A and then delete the refer-

ence between A and B. If this occurs before t completes

its closure computation, B would not be included in the

closure although it is still live.

After all escaping objects are relocated, the entire re-

gion is deallocated with all its pages put back onto the

free page list (Line 13).

Closure Computation Algorithm 3 shows the details

of our closure computation from the set of escaping roots

detected above. Since all other threads are paused, closure

computation is done together with object moving. The

closure is computed based on the remember set rs of the

current deallocating region r. We first check the remem-

ber set rs (Line 1): if rs is empty, this region contains

no escaping objects and hence is safe to be reclaimed.

Otherwise, we need to identify all reachable objects and

relocate them.

We start off by computing the target region to which

each escaping root Ob needs to be promoted (Lines 2 –

4). We check each reference addr r′−→ Ob in the remember

set and then join all the regions r′ based on the region

semilattice. The results are saved in a map promote.

We then iterate through all escaping roots in topological

order of their target regions (the loop at Line 5).2 For each

2The order is based on the region semilattice. For example, CS is

ordered before any DS region.

Algorithm 3: Closure computation.
Input: Remember Set rs of Region r

1 if The remember set rs of r is NOT empty then
2 foreach Escaping root Ob ∈ rs do
3 foreach Reference addr r′−→ADDR(Ob) in rs do
4 promote[Ob]← JOIN (r′, promote[Ob])

5 foreach Escaping root Ob in topological order of
promote[Ob] do

6 Region tgt ← promote[Ob]

7 Initialize queue gray with {Ob}
8 while gray is NOT empty do
9 Object O← DEQUEUE(gray)

10 Write tgt into the region field of O
11 Object O∗ ←MOVE(O, tgt)
12 Put a forward reference at ADDR(O)

13 foreach Reference addr x−→ADDR(O) in r’s rs
do

14 Write ADDR(O∗) into addr
15 if x �= tgt then
16 Add reference addr x−→ADDR(O∗)

into the remember set of region tgt

17 foreach Outgoing reference e of O∗ do
18 Object O′ ← TARGET(e)
19 if O′ is a forward reference then
20 Write the new address into O∗

21 Region r′ ← REGION(O′)
22 if r′ = r then
23 ENQUEUE(O′, gray)

24 else if r′ �= tgt then
25 Add reference ADDR(O∗) tgt−→

ADDR(O′) into the remember set of

region r′

26 Clear the remember set rs of r

escaping root Ob, we perform a breadth-first traversal in-

side the current region to identify a closure of transitively
escaping objects reachable from Ob and put all of them

into a queue gray. During this traversal (Lines 8 – 23), we

compute the regions to which each (transitively) escaping

object should be moved and conduct the move. We will

shortly discuss the details.

Identifying Target Regions When a transitively escap-

ing object O′ is reachable from only one escaping root

Ob, we simply use the target region of Ob as the target of

O′. When O′ is reachable from multiple escaping roots,

which may correspond to different target regions, we use

the “highest-ranked” one among them as the target region

of O′.
The topological order of our escaping root traversal is

key to our implementation of the above idea. By com-

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation    357



puting closure for a root with a “higher-ranked” region

earlier, objects reachable from multiple roots need to be

traversed only once – the check at Line 22 filters out those

that already have a region r′ (�= r) assigned in a previous

iteration of the loop because the region to be assigned in

the current iteration is guaranteed to be “lower-ranked”

than r′. When this case happens, the traversal stops further

tracing the outgoing references from O′.
Figure 9 (a) shows a simple heap snapshot when re-

gion 〈r21, t1〉 is about to be deallocated. There are two

references in its remember set, one from region 〈r11, t1〉
and a second from 〈r12, t2〉. The objects C and D are the

escaping roots. Initially, our algorithm determines that

C will be moved to 〈r11, t1〉 and D to the CS (because

it is reachable from a concurrent region 〈r12, t2〉). Since

the CS is higher-ranked than 〈r11, t1〉 in the semilattice,

the transitive closure computation for D occurs before C,

which sets E’s target to the CS. Later, when the transitive

closure for C is computed, E will be ignored (since it has

been visited).

C E

A

D

F

<r11,t1>
1

<r12,t2>

<r21,t1>

2
3 4

5

B

rs<r  ,t > = {1,2}21 1

rs<CS,*> = {}

<cs,*>
E

CA

D

F

<r11,t1>
1

<r12,t2>

<r21,t1>

23

4

B

rs<CS,*> = {2,3}

<cs,*>

rs<r  ,t > = {}21 1

Freed

Figure 9: An example heap snapshot (a) before and (b)

after the deallocation of region 〈r21, t1〉.

Updating Remember Sets and Moving Objects Be-

cause we have pause all threads, object moving is safe

(Line 11). When an object O is moved, we need to update

all (stack and heap) locations that store its references.

There can be three kinds of locations from which it is ref-

erenced: (1) intra-region locations (i.e., referenced from

another object in r); (2) objects from other regions or the

CS; and (3) stack locations. We discuss how each of these

types is handled by Algorithm 3.

(1) Intra-region locations. To handle intra-region ref-

erences, we follow the standard GC treatment by putting

a special forward reference at O’s original location (Line

12). This will notify intra-region incoming references

of the location change – when this old location of O is

reached from another reference, the forward reference

there will be used to update the source of that reference

(Line 20).

(2) Objects from another region. References from these

objects must have been recorded in r’s remember set.

Hence, we find all inter-region/space references of O in

the remember set rs and update the source of each such

reference with the new address O∗ (Line 14). Since O∗
now belongs to a new region tgt, the inter-region/space

references that originally went into region r now go into

region tgt. If the regions contain such a reference are not

tgt, such references need to be explicitly added into the

remember set of tgt (Line 16).

When O’s outgoing edges are examined, moving O to

region tgt may result in new inter-region/space references

(Lines 24 – 25). For example, if the target region r′ of

a pointee object O′ is not tgt (i.e., O′ has been visited

from another escaping root), we need to add a new entry

ADDR(O∗) tgt−→ADDR(O′) into the remember set of r′.
(3) Stack locations. Since stack locations are also

recorded as entries of the remember set, updating them

is performed in the same way as updating heap locations.

For example, when O is moved, Line 14 would update

each reference going to O in the remember set. If O has

(local or remote) stack references, they must be in the

remember set and updated as well.

After the transitive closure computation and object

promotion, the remember set rs of region r is cleared

(Line 26).

Figure 9 (b) shows the heap after region 〈r21, t1〉 is

deallocated. The objects C, D, and E are escaping objects

and will be moved to the target region computed. Since D
and E belong to the CS, we add their incoming references

2 and 3 into the remember set of the CS. Object F does

not escape the region, and hence, is automatically freed.

5.4 Collecting the CS

We implement two modifications to the Parallel Scavenge

GC to collect the CS. First, we make the GC run locally in

the CS. If the GC tracing reaches a reference to a region

object, we simply ignore the reference.

Second, we include references in the CS’ remember set

into the tracing roots, so that corresponding CS objects

would not be mistakenly reclaimed. Before tracing each

such reference, we validate it by comparing the address of

its target CS object with the current content in its source

location. If they are different, this reference has become

invalid and is discarded. Since the Parallel Scavenge GC

moves objects (away from the young generation), Yak

also needs to update references in the remember set of

each region when their source in the CS is moved.

Yak also implements a number of optimizations on the

remember set layout, large object allocation, as well as

region/thread ID lookup. We omit the details of these

optimizations for brevity.

358    12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



6 Evaluation
This section presents an evaluation of Yak on widely-

deployed real-world systems.

6.1 Methodology and Benchmarks
We have evaluated Yak on Hyracks [12], a parallel

dataflow engine powering the Apache AsterixDB [2]

stack, Hadoop [4], a popular distributed MapReduce [21]

implementation, and GraphChi [41], a disk-based graph

processing system. These three frameworks were se-

lected due to their popularity and diverse characteristics.

For example, Hyracks and Hadoop are distributed frame-

works while GraphChi is a single-PC disk-based system.

Hyracks runs one JVM on each node with many threads

to process data while Hadoop runs multiple JVMs on each

node, with each JVM using a small number of threads.

For each framework, we selected a few representative

programs, forming a benchmark set with nine programs

– external sort (ES), word count (WC), and distributed

grep (DG) for Hyracks; in-map combiner (IC), top-word

selector (TS), and distributed word filter (DF) for Hadoop;

connected components (CC), community detection (CD),

and page rank (PR) for GraphChi. Table 1 provides the

descriptions of these programs.

FW P Description
ES Sort a large array of data that cannot fit in main memory

Hyracks WC Count word occurrences in a large document

DG Find matches based on user-defined regular expressions

IC Count word frequencies in a corpus using local aggregation

Hadoop TS Select a number of words with most frequent occurrences

DF Return text with user-defined words filtered out

PR Compute page ranks (SpMV kernel)

GraphChi CC Identify strongly connected components (label propagation)

CD Detect communities (label propagation)

Table 1: Our benchmarks and their descriptions.

Table 2 shows the datasets and heap configurations in

our experiments. For Yak, the heap size is the sum of the

sizes of both CS and DS. Since we fed different datasets to

various frameworks, their memory requirements were also

different. Evidence [11] shows that in general the heap

size needs to be at least twice as large as the minimum

memory size for the GC to perform well. We selected

the heap configurations shown in Table 2 based on this

observation – they are roughly 2× – 3× of the minimum

heap size needed to run the original JVM.

FW Dataset Size Heap Configs
Hyracks Yahoo Webmap 72GB 20GB, 24GB

Hadoop StackOverflow 37GB 2&1GB, 3&2GB

GraphChi Sample twitter-2010 E = 100M 6GB, 8GB

V = 62M

Table 2: Datasets and heap configurations used to run our

programs; for Hadoop, the configurations a&b GB are

the max heap sizes for each map (a) and reduce task (b).

In a small number of cases, the JVM uses hand-crafted

assembly code to allocate objects directly into the heap

without calling any C/C++ function. While we have spent

more than a year on development, we have not yet per-

formed any assembly-based optimizations for Yak. Thus,

this assembly-based allocation in the JVM would allow

some objects in an epoch to bypass Yak’s allocator. To

solve the problem, we had to disable this option and force

all allocation requests to go through the main allocation

entrance in C++. For a fair comparison, we kept the

assembly-level allocation option disabled for all experi-

ments including both Yak and original GC runs. We saw

a small performance degradation (2–6%) after disabling

this option in the JVM.

We ran Hyracks and Hadoop on an 11-node cluster,

each with 2 Xeon(R) CPU E5-2640 v3 processors, 32GB

memory, 1 SSD, running CentOS 6.6. We ran GraphChi

on one node of this cluster, since it is a single-PC system.

For Yak, we let the ratio between the sizes of the CS

and the DS be 1/10. We did not find this ratio to have

much impact on performance as long as the DS is large

enough to contain objects created in each epoch. The

page size in DS is 32KB by default. We performed ex-

periments with different DS-page sizes and report these

results shortly. We focus our comparison between Yak

and Parallel Scavenge (PS) – the Oracle JVM’s default

production GC.

We ran each program for three iterations. The first

iteration warmed up the JIT. The performance difference

between the last two iterations were negligible (e.g., less

than 5%). This section reports the medians. We also

confirmed that no incorrect results were produced by Yak.

6.2 Epoch Specification
We performed our annotation by strictly following exist-
ing framework APIs. For Hyracks, an epoch covers the

lifetime of a (user-defined) dataflow operator (i.e., via

open/close); for Hadoop, it includes the body of a Map

or Reduce task (i.e., via setup/cleanup). For GraphChi,

we let each epoch contain the body of a sub-interval spec-

ified by a beginSubInterval callback, since each sub-

interval holds and processes many vertices and edges as

illustrated in §3. A sub-interval creates many threads to

load sliding shards and execute update functions. The

body of each such thread is specified as a sub-epoch. It

took us about ten minutes to annotate all three programs

on each framework. Note that our optimization for these

frameworks only scratches the surface; vast opportunities

are possible if both user-defined operators and system’s

built-in operators are epoch-annotated.

6.3 Latency and Throughput
Figure 10 depicts the detailed performance comparisons

between Yak and PS. Table 3 summarizes Yak’s perfor-

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation    359



Figure 10: Performance comparisons on various programs; each group compares performance between Parallel

Scavenge (PS) and Yak on a program with two “fat” and two “thin” bars. The left and right fat bars show the running

times of PS and Yak, respectively, which is further broken down into three components: GC (in red), region deallocation

(in orange), application computation (in blue) times. The left and right thin bars show maximum memory consumption

of PS and Yak, collected by periodically running pmap.

FW Overall GC App Mem
Hyracks 0.14 ∼ 0.64 0.02 ∼ 0.11 0.31 ∼ 1.05 0.67 ∼ 1.03

(0.40) (0.05) (0.77) (0.78)

Hadoop 0.73 ∼ 0.89 0.17 ∼ 0.26 1.03 ∼ 1.35 1.07 ∼ 1.67

(0.81) (0.21) (1.13) (1.44)

GraphChi 0.70 ∼ 0.86 0.15 ∼ 0.56 0.91 ∼ 1.13 1.07 ∼ 1.34

(0.77) (0.38) (1.01) (1.21)

Table 3: Summary of Yak performance normalized to

baseline PS in terms of Overall run time, GC time, in-

cluding Yak’s region deallocation time, Application (non-

GC) time, and Memory consumption across all settings

on each framework. The values shown depict Min ∼Max

and (Mean), and are normalized to PS. A lower value

indicates better performance versus PS.

mance improvement by showing Overall run time, as well

as GC and Application time and Memory consumption,

all normalized to those of PS.

For Hyracks, Yak outperforms PS in all evaluated met-

rics. The GC time is collected by identifying the max-

imum GC time across runs on all slave nodes. Data-

parallel tasks in Hyracks are isolated by design and they

do not share any data structures across task instances.

Hence, while Yak’s write barrier incurs overhead, almost

all references captured by the write barrier are intra-region

references and thus they do not trigger the slow path of

the barrier (i.e., updating the remember set). Yak also

improves the (non-GC) application performance — this

is because PS only performs thread-local allocation for

small objects and the allocation of large objects has to be

in the shared heap, protected by locks. In Yak, however,

all objects are allocated in thread-local regions and thus

threads can allocate objects completely in parallel. Lock-

free allocation is the major reason why Yak improves ap-

plication performance because large objects (e.g., arrays

in HashMaps) are frequently allocated in such programs.

For Hadoop and GraphChi, while Yak substantially

reduces the GC time and the overall execution time, it

increases the application time and memory consumption.

Longer application time is expected because (1) memory

reclamation (i.e., region deallocation) shifts from the GC

to the application execution, with Yak, and (2) the write

barrier is triggered to record a large number of references.

For example, Hadoop has a state object (i.e., context) in

the control path that holds objects created in the data path,

generating many inter-space references. In GraphChi,

a number of large data structures are shared among dif-

ferent data-loading threads, leading to many inter-region
references (e.g., reported in Table 4). Recording all these

references makes the barrier overhead stand out.

We envision two approaches that can effectively re-

duce the write barrier cost. First, existing GCs all have

manually crafted/optimized assembly code to implement

the write barrier. As mentioned earlier, we have not yet

investigated assembly-based optimizations for Yak. We

expect the barrier cost to be much lower when these op-

timizations are implemented. Second, adding extra an-

notations that define finer-grained epochs may provide

further performance improvement. For example, if ob-

jects reachable from the state object can be created in the

CS in Hadoop, the number of inter-space references can

be significantly reduced. In this experiment, we did not

perform any program restructuring, but we believe sig-

nificant performance potential is possible with that: it is

up to the developer to decide how much annotation effort

she can afford to expend for how much extra performance

gain she would like to achieve.

Yak greatly shortens the pauses caused by GC. When

Yak is enabled, the maximum (deallocation or GC) pauses

in Hyracks, Hadoop, and GraphChi are, respectively, 1.82,

0.55, and 0.72 second(s), while the longest GC pauses

under PS are 35.74, 1.24, and 9.48 seconds, respectively.

As the heap size increases, there is a small performance

improvement for PS due to fewer GC runs. The heap

360    12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



Figure 11: Memory footprints collected from pmap.

increase has little impact on Yak’s overall performance,

given that the CS is small anyways.

6.4 Memory Usage
We measured memory usage by periodically running

pmap to understand the overall memory consumption of

the Java process (for both the application and GC data).

Figure 11 compares the memory footprints of Yak and

PS under different heap configurations. For Hyracks and

GraphChi, memory footprints are generally stable, while

Hadoop’s memory consumption fluctuates. This is be-

cause Hadoop runs multiple JVMs and different JVM

instances are frequently created and destroyed. Since the

JVM never returns claimed memory back to the OS un-

til it terminates, the memory consumption always grows

for Hyracks and GraphChi. The amount of memory con-

sumed by Hadoop, however, drops frequently due to the

frequent creation and termination of its JVM processes.

Note that the end times of Yak’s memory traces on

Hadoop in Figure 11 are earlier than the execution finish

time reported in Figure 10. This is because Figure 11

shows the memory trace of the node that has the highest
memory consumption; the computation on this node often

finishes before the entire program finishes.

Yak constantly has lower memory consumption than

PS for Hyracks. This is primarily because Yak can recycle

memory immediately when a data processing thread fin-

ishes, while there is often a delay before the GC reclaims

memory. For Hadoop and GraphChi, Yak has slightly

higher memory consumption than PS. The main reason is

that there are many control objects created in the data path

and allocated in regions. Those objects often have shorter

lifespans than their containing regions and, therefore, PS

can reclaim them more efficiently than Yak.

Space Overhead To understand the overhead of the

extra 4-byte field re in each object header, we ran

the GraphChi programs with the unmodified HotSpot

1.8.0 74 and compared peak heap consumption with that

of Yak (by periodically running pmap). We found that the

difference (i.e., the overhead) is relatively small. Across

the three GraphChi benchmarks, this overhead varies from

1.1% to 20.8%, with an average of 12.2%.

6.5 Performance Breakdown
To provide a deeper understanding of Yak’s performance,

Table 4 reports various statistics on Yak’s heap. Yak was

built based on the assumption that in a typical Big Data

system, only a small number of objects escape from the

data path to the control path. This assumption has been

validated by the fact that the ratios between numbers in

#CSR and #TR are generally very small. As a result, each

region has only very few objects (%CSO) that escape to

the CS when the region is deallocated.

Figure 12 (a) depicts execution time and memory per-

formance with Yak, when different page sizes are used.

Execution time under different page sizes does not vary

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation    361



Figure 12: Performance comparisons between (a) different page sizes when Yak ran on GraphChi PR with a 6GB heap;

(b) Yak and PS when datasets of various sizes were sorted by Hyracks ES on a 24GB heap.

Program #CSR #CRR #TR %CSO #R
Hyracks-ES 2051 243 3B 0.0028% 103K

Hyracks-WC 2677 4221 213M 0.0043% 148K

Hyracks-DG 2013 16 2B 0.0034% 101K

Hadoop-IC 60K 0 2B 0% 598

Hadoop-TS 60K 0 2B 0% 598

Hadoop-DF 33K 0 1B 0% 598

GraphChi-CC 53K 25K 653M 0.044% 2699

GraphChi-CD 52K 14M 614M 1.3% 2699

GraphChi-PR 54K 24K 548M 0.060% 2699

Table 4: Statistics on Yak’s heap: numbers of cross-space

references (CSR), cross-region references (CRR), and

total references generated by stores (TR); average per-

centage of objects escaping to the CS (CSO) among all

objects in a region when the region retires; and total num-

ber of regions created during execution (R).

much (e.g., all times are between 149 and 153 seconds),

while the peak memory consumption generally goes up

when page size increases (except for the 256KB case).

The write barrier and region deallocation are the two

major sources of Yak’s application overhead. As shown

in Figure 10, region deallocation time accounts for 2.4%-

13.1% of total execution time across the benchmarks.

Since all of our programs are multi-threaded, it is difficult

to pinpoint the exact contribution of the write barrier to

execution time. To get an idea of the sensitivity to this

barrier’s cost, we manually modified GraphChi’s execu-

tion engine to enforce a barrier between threads that load

sliding shards and execute updates. This has the effect of

serializing the threads and making the program sequen-

tial. For all three programs on GraphChi, we found that

the mutator time (i.e., non-pause time) increased by an

overall of 24.5%. This shows that the write barrier is a

major bottleneck, providing strong motivation for us to

hand optimize it in assembly code in the near future.

Scalability To understand how Yak and PS perform

when datasets of different sizes are processed, we ran

Hyracks ES with four subsets of the Yahoo Webmap with

sizes of 9.4GB, 14GB, 18GB, and 44GB respectively.

Figure 12 (b) shows that Yak consistently outperforms PS

and its performance improvement increases with the size

of the dataset processed.

7 Conclusion

We present Yak, a new hybrid Garbage Collector (GC)

that can efficiently manage memory in data-intensive ap-

plications. Yak treats the data space and control space

differently for GC purposes since objects in modern data-

processing frameworks follow two vastly-different types

of lifetime behavior: data space shows epoch-based ob-

ject lifetime patterns, whereas the much-smaller control

space follows the classic generational lifetime behavior.

Yak manages all data-space objects using epoch-based re-

gions and deallocates each region as a whole at the end of

an epoch, while efficiently tracking the small number of

objects whose lifetimes span region boundaries. Doing so

greatly reduces the overheads of traditional generational

GC. Our experiments on several real-world applications

demonstrate that Yak outperforms the default production

GC in OpenJDK on three widely-used real Big Data sys-

tems, requiring almost zero user effort.

Acknowledgments

We would like to thank the many OSDI reviewers for their

valuable and thorough comments. We are especially grate-

ful to our shepherd Dushyanth Narayanan for his tireless

effort to read many versions of the paper and provide sug-

gestions, helping us improve the paper substantially. We

thank Kathryn S. McKinley for her help with the prepara-

tion of the final version. We also appreciate the feedback

from the MIT PDOS group (especially Tej Chajed for

sending us the feedback).

This work is supported by NSF grants CCF-

0846195, CCF-1217854, CNS-1228995, CCF-1319786,

CNS-1321179, CCF-1409423, CCF-1409829, CCF-

1439091, CCF-1514189, CNS-1514256, IIS-1546543,

CNS-1613023, by ONR grants N00014-16-1-2149 and

N00014-16-1-2913, and by a Sloan Fellowship.

362    12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



References
[1] AIKEN, A., FÄHNDRICH, M., AND LEVIEN,

R. Better static memory management: improving

region-based analysis of higher-order languages. In

PLDI (1995), pp. 174–185.

[2] ALSUBAIEE, S., ALTOWIM, Y., ALTWAIJRY, H.,

BEHM, A., BORKAR, V. R., BU, Y., CAREY,

M. J., CETINDIL, I., CHEELANGI, M., FARAAZ,

K., GABRIELOVA, E., GROVER, R., HEILBRON,

Z., KIM, Y., LI, C., LI, G., OK, J. M., ONOSE,

N., PIRZADEH, P., TSOTRAS, V. J., VERNICA, R.,

WEN, J., AND WESTMANN, T. AsterixDB: A scal-

able, open source BDMS. Proc. VLDB Endow. 7,

14 (2014), 1905–1916.

[3] Giraph: Open-source implementation of Pregel.

http://incubator.apache.org/giraph/.

[4] Hadoop: Open-source implementation of MapRe-

duce. http://hadoop.apache.org.

[5] APPEL, A. W. Simple generational garbage collec-

tion and fast allocation. Softw. Pract. Exper. 19, 2

(1989), 171–183.

[6] BAKER, JR., H. G. List processing in real time

on a serial computer. Commun. ACM 21, 4 (1978),

280–294.

[7] BEA SYSTEMS INC. Using the Jrockit runtime

analyzer. http://edocs.bea.com/wljrockit/
docs142/usingJRA/looking.html, 2007.

[8] BEEBEE, W. S., AND RINARD, M. C. An imple-

mentation of scoped memory for real-time Java. In

EMSOFT (2001), pp. 289–305.

[9] BLACKBURN, S. M., GARNER, R., HOFFMAN,

C., KHAN, A. M., MCKINLEY, K. S., BENTZUR,

R., DIWAN, A., FEINBERG, D., FRAMPTON, D.,

GUYER, S. Z., HIRZEL, M., HOSKING, A., JUMP,

M., LEE, H., MOSS, J. E. B., PHANSALKAR, A.,

STEFANOVIĆ, D., VANDRUNEN, T., VON DINCK-

LAGE, D., AND WIEDERMANN, B. The DaCapo

benchmarks: Java benchmarking development and

analysis. In OOPSLA (2006), pp. 169–190.

[10] BLACKBURN, S. M., JONES, R., MCKINLEY,

K. S., AND MOSS, J. E. B. Beltway: Getting

around garbage collection gridlock. In PLDI (2002),

pp. 153–164.

[11] BLACKBURN, S. M., AND MCKINLEY, K. S. Im-

mix: a mark-region garbage collector with space

efficiency, fast collection, and mutator performance.

In PLDI (2008), pp. 22–32.

[12] BORKAR, V. R., CAREY, M. J., GROVER, R.,

ONOSE, N., AND VERNICA, R. Hyracks: A flexible

and extensible foundation for data-intensive com-

puting. In ICDE (2011), pp. 1151–1162.

[13] BORMAN, S. Sensible sanitation under-

standing the IBM Java garbage collector.

http://www.ibm.com/developerworks/
ibm/library/i-garbage1/, 2002.

[14] BOYAPATI, C., SALCIANU, A., BEEBEE, JR., W.,

AND RINARD, M. Ownership types for safe region-

based memory management in real-time Java. In

PLDI (2003), pp. 324–337.

[15] BU, Y., BORKAR, V., XU, G., AND CAREY, M. J.

A bloat-aware design for big data applications. In

ISMM (2013), pp. 119–130.

[16] CHAIKEN, R., JENKINS, B., LARSON, P.-A.,

RAMSEY, B., SHAKIB, D., WEAVER, S., AND

ZHOU, J. SCOPE: easy and efficient parallel pro-

cessing of massive data sets. Proc. VLDB Endow. 1,

2 (2008), 1265–1276.

[17] CHENEY, C. J. A nonrecursive list compacting

algorithm. Commun. ACM 13, 11 (1970), 677–678.

[18] CHEREM, S., AND RUGINA, R. Region analysis

and transformation for Java programs. In ISMM
(2004), pp. 85–96.

[19] COHEN, J., AND NICOLAU, A. Comparison of

compacting algorithms for garbage collection. ACM
Trans. Program. Lang. Syst. 5, 4 (1983), 532–553.

[20] CONDIE, T., CONWAY, N., ALVARO, P., HELLER-

STEIN, J. M., ELMELEEGY, K., AND SEARS, R.

MapReduce online. In NSDI (2010), pp. 21–21.

[21] DEAN, J., AND GHEMAWAT, S. MapReduce: Sim-

plified data processing on large clusters. In OSDI
(2004), pp. 137–150.

[22] DETLEFS, D., FLOOD, C., HELLER, S., AND

PRINTEZIS, T. Garbage-first garbage collection.

In ISMM (2004), pp. 37–48.

[23] FANG, L., NGUYEN, K., XU, G., DEMSKY, B.,

AND LU, S. Interruptible tasks: Treating mem-

ory pressure as interrupts for highly scalable data-

parallel programs. In SOSP (2015), pp. 394–409.

[24] FENG, Y., AND BERGER, E. D. A locality-

improving dynamic memory allocator. In MSP
(2005), pp. 68–77.

[25] GAY, D., AND AIKEN, A. Memory management

with explicit regions. In PLDI (1998), pp. 313–323.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation    363



[26] GAY, D., AND AIKEN, A. Language support for

regions. In PLDI (2001), pp. 70–80.

[27] GIDRA, L., THOMAS, G., SOPENA, J., SHAPIRO,

M., AND NGUYEN, N. NumaGiC: A garbage col-

lector for big data on big NUMA machines. In

ASPLOS (2015), pp. 661–673.

[28] GOG, I., GICEVA, J., SCHWARZKOPF, M.,

VASWANI, K., VYTINIOTIS, D., RAMALINGAM,

G., COSTA, M., MURRAY, D. G., HAND, S., AND

ISARD, M. Broom: Sweeping out garbage collec-

tion from big data systems. In HotOS (2015).

[29] GROSSMAN, D., MORRISETT, G., JIM, T., HICKS,

M., WANG, Y., AND CHENEY, J. Region-based

memory management in Cyclone. In PLDI (2002),

pp. 282–293.

[30] HALLENBERG, N., ELSMAN, M., AND TOFTE, M.

Combining region inference and garbage collection.

In PLDI (2002), pp. 141–152.

[31] HARRIS, T. Early storage reclamation in a tracing

garbage collector. SIGPLAN Not. 34, 4 (Apr. 1999),

46–53.

[32] HICKS, M., MORRISETT, G., GROSSMAN, D.,

AND JIM, T. Experience with safe manual memory-

management in Cyclone. In ISMM (2004), pp. 73–

84.

[33] HIRZEL, M., DIWAN, A., AND HERTZ, M.

Connectivity-based garbage collection. In OOPSLA
(2003), pp. 359–373.

[34] HUDSON, R. L., AND MOSS, J. E. B. Incremen-

tal collection of mature objects. In IWMM (1992),

pp. 388–403.

[35] ISARD, M., BUDIU, M., YU, Y., BIRRELL, A.,

AND FETTERLY, D. Dryad: distributed data-parallel

programs from sequential building blocks. In Eu-
roSys (2007), pp. 59–72.

[36] JOAO, J. A., MUTLU, O., KIM, H., AGARWAL,

R., AND PATT, Y. N. Improving the performance of

object-oriented languages with dynamic predication

of indirect jumps. In ASPLOS (2008), pp. 80–90.

[37] JOAO, J. A., MUTLU, O., AND PATT, Y. N. Flexi-

ble reference counting-based hardware acceleration

for garbage collection. In ISCA (2009), pp. 418–428.

[38] KERMANY, H., AND PETRANK, E. The Com-

pressor: Concurrent, incremental, and parallel com-

paction. In PLDI (2006), pp. 354–363.

[39] KIM, H., JOAO, J. A., MUTLU, O., LEE, C. J.,

PATT, Y. N., AND COHN, R. VPC prediction: Re-

ducing the cost of indirect branches via hardware-

based dynamic devirtualization. In ISCA (2007),

pp. 424–435.

[40] KOWSHIK, S., DHURJATI, D., AND ADVE, V. En-

suring code safety without runtime checks for real-

time control systems. In CASES (2002), pp. 288–

297.

[41] KYROLA, A., BLELLOCH, G., AND GUESTRIN, C.

GraphChi: Large-Scale Graph Computation on Just

a PC. In OSDI (2012), pp. 31–46.

[42] LU, L., SHI, X., ZHOU, Y., ZHANG, X., JIN, H.,

PEI, C., HE, L., AND GENG, Y. Lifetime-based

memory management for distributed data processing

systems. Proc. VLDB Endow. 9, 12 (2016), 936–

947.

[43] MAAS, M., HARRIS, T., ASANOVIĆ, K., AND KU-

BIATOWICZ, J. Trash Day: Coordinating garbage

collection in distributed systems. In HotOS (2015).

[44] MAAS, M., HARRIS, T., ASANOVIĆ, K., AND

KUBIATOWICZ, J. Taurus: A holistic language run-

time system for coordinating distributed managed-

language applications. In ASPLOS (2016), pp. 457–

471.

[45] MAKHOLM, H. A region-based memory manager

for Prolog. In ISMM (2000), pp. 25–34.

[46] MCCARTHY, J. Recursive functions of symbolic

expressions and their computation by machine, part

i. Commun. ACM 3, 4 (Apr. 1960), 184–195.

[47] MITCHELL, N., AND SEVITSKY, G. The causes

of bloat, the limits of health. In OOPSLA (2007),

pp. 245–260.

[48] MURRAY, D. G., MCSHERRY, F., ISAACS, R.,

ISARD, M., BARHAM, P., AND ABADI, M. Naiad:

A timely dataflow system. In SOSP (2013), pp. 439–

455.

[49] NGUYEN, K., FANG, L., XU, G., AND DEMSKY,

B. Speculative region-based memory management

for big data systems. In PLOS (2015), pp. 27–32.

[50] NGUYEN, K., WANG, K., BU, Y., FANG, L., HU,

J., AND XU, G. FACADE: A compiler and runtime

for (almost) object-bounded big data applications.

In ASPLOS (2015), pp. 675–690.

[51] NGUYEN, K., AND XU, G. Cachetor: detecting

cacheable data to remove bloat. In FSE (2013),

pp. 268–278.

364    12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



[52] OLSTON, C., REED, B., SRIVASTAVA, U., KU-

MAR, R., AND TOMKINS, A. Pig Latin: a not-so-

foreign language for data processing. In SIGMOD
(2008), pp. 1099–1110.

[53] PIKE, R., DORWARD, S., GRIESEMER, R., AND

QUINLAN, S. Interpreting the data: Parallel analysis

with Sawzall. Sci. Program. 13, 4 (2005), 277–298.

[54] QIAN, F., AND HENDREN, L. An adaptive, region-

based allocator for Java. In ISMM (2002), pp. 127–

138.

[55] SACHINDRAN, N., MOSS, J. E. B., AND BERGER,

E. D. Mc2: High-performance garbage collection

for memory-constrained environments. In OOPSLA
(2004), pp. 81–98.

[56] STEFANOVIĆ, D., MCKINLEY, K. S., AND MOSS,

J. E. B. Age-based garbage collection. In OOPSLA
(1999), pp. 370–381.

[57] THUSOO, A., SARMA, J. S., JAIN, N., SHAO, Z.,

CHAKKA, P., ANTHONY, S., LIU, H., WYCKOFF,

P., AND MURTHY, R. Hive: a warehousing solution

over a map-reduce framework. Proc. VLDB Endow.
2, 2 (2009), 1626–1629.

[58] TOFTE, M., AND TALPIN, J.-P. Implementation of

the typed call-by-value lamda-calculus using a stack

of regions. In POPL (1994), pp. 188–201.

[59] XU, G. Finding reusable data structures. In OOP-
SLA (2012), pp. 1017–1034.

[60] XU, G., ARNOLD, M., MITCHELL, N., ROUNTEV,

A., SCHONBERG, E., AND SEVITSKY, G. Finding

low-utility data structures. In PLDI (2010), pp. 174–

186.

[61] XU, G., ARNOLD, M., MITCHELL, N., ROUNTEV,

A., AND SEVITSKY, G. Go with the flow: Profil-

ing copies to find runtime bloat. In PLDI (2009),

pp. 419–430.

[62] XU, G., MITCHELL, N., ARNOLD, M., ROUN-

TEV, A., AND SEVITSKY, G. Software bloat analy-

sis: Finding, removing, and preventing performance

problems in modern large-scale object-oriented ap-

plications. In FoSER (2010), pp. 421–426.

[63] XU, G., AND ROUNTEV, A. Detecting inefficiently-

used containers to avoid bloat. In PLDI (2010),

pp. 160–173.

[64] YANG, H.-C., DASDAN, A., HSIAO, R.-L., AND

PARKER, D. S. Map-reduce-merge: simplified rela-

tional data processing on large clusters. In SIGMOD
(2007), pp. 1029–1040.

[65] YU, Y., GUNDA, P. K., AND ISARD, M. Dis-

tributed aggregation for data-parallel computing:

Interfaces and implementations. In SOSP (2009),

pp. 247–260.

[66] YU, Y., ISARD, M., FETTERLY, D., BUDIU, M.,

ERLINGSSON, U., GUNDA, P. K., AND CURREY,

J. DryadLINQ: a system for general-purpose dis-

tributed data-parallel computing using a high-level

language. In OSDI (2008), pp. 1–14.

[67] ZAHARIA, M., CHOWDHURY, M., FRANKLIN,

M. J., SHENKER, S., AND STOICA, I. Spark: Clus-

ter computing with working sets. HotCloud, p. 10.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation    365




