
This paper is included in the Proceedings of the
12th USENIX Symposium on Operating Systems Design

and Implementation (OSDI ’16).
November 2–4, 2016 • Savannah, GA, USA

ISBN 978-1-931971-33-1

Open access to the Proceedings of the
12th USENIX Symposium on Operating Systems

Design and Implementation
is sponsored by USENIX.

Efficient Network Reachability Analysis Using a
Succinct Control Plane Representation

Seyed K. Fayaz and Tushar Sharma, Carnegie Mellon University; Ari Fogel, Intentionet;
Ratul Mahajan, Microsoft Research; Todd Millstein, University of California, Los Angeles;

Vyas Sekar, Carnegie Mellon University; George Varghese, University of California, Los Angeles

https://www.usenix.org/conference/osdi16/technical-sessions/presentation/fayaz

Efficient Network Reachability Analysis using
a Succinct Control Plane Representation

Seyed K. Fayaz Tushar Sharma Ari Fogel∗

Ratul Mahajan† Todd Millstein‡ Vyas Sekar George Varghese‡

CMU ∗Intentionet †Microsoft Research ‡UCLA

Abstract— To guarantee network availability and se-
curity, operators must ensure that their reachability poli-
cies (e.g., A can or cannot talk to B) are correctly im-
plemented. This is a difficult task due to the complexity
of network configuration and the constant churn in a net-
work’s environment, e.g., new route announcements ar-
rive and links fail. Current network reachability analysis
techniques are limited as they can only reason about the
current “incarnation” of the network, cannot analyze all
configuration features, or are too slow to enable explo-
ration of many environments. We build ERA, a tool for
efficient reasoning about network reachability. Instead of
reasoning about individual incarnations of the network,
ERA directly reasons about the network “control plane”
that generates these incarnations. We address key expres-
siveness and scalability challenges by building (i) a suc-
cinct model for the network control plane (i.e., various
routing protocols and their interactions), and (ii) a reper-
toire of techniques for scalable (taking a few seconds for
a network with > 1000 routers) exploration of this model.
We have used ERA to successfully find both known and
new violations of a range of common intended polices.

1 Introduction
Network operators need to ensure the correct behavior of
their networks. Violations of intended reachability poli-
cies (e.g., “Can A talk to B?”) can compromise availabil-
ity, security, and performance of the network. This risk
has inspired the field of network verification, which aims
to enable operators to systematically reason about their
networks [39].

Reasoning about a network is hard, as a real network
is in a perpetual churn: route advertisements arrive, links
fail, and routers need to be taken offline for maintenance.
Nonetheless, an operator needs assurances on the network
behaviors because a policy violation may be latent and
occur only in a certain future incarnation (e.g., a specific
route advertisement from a peering network may cause
disconnection between A and B [6, 11]). Unfortunately,
today operators do not have proper tools for efficient rea-
soning about the network in different environments.

	
	
	
	
	

data	plane	at)me	t	
A	 B	

data	plane	at)me	t+1	
data	plane	at)me	t+2	

…
	

Network	
control	plane	

…
	

Environment	at)me	t	
Routers		

configura)on	files	

Environment	at)me	t+1	
Environment	at)me	t+2	

Figure 1: Reachability behavior of a network (e.g., A
can talk to B) is determined by its data plane, which,
in turn, is the current incarnation of the control plane.

To highlight this challenge, it is useful to consider prior
work on network verification. A network is composed
of a control plane, which configures the behavior of the
data plane, which in turn, is in charge of forwarding ac-
tual packets (see Figure 1). The control plane, therefore,
can be thought of as a program that takes configuration
files and the current network environment (i.e., route ad-
vertisements) and generates a data plane. The data plane
is conceptually a program that takes a packet and its loca-
tion (i.e., a router port) as input and outputs a packet at a
different location. As a result, if we rest our analysis on
the data plane (e.g., Veriflow [29], HSA [28], NOD [36])
and verify its behavior over its inputs (i.e., packets), we
are inherently able to reason about only the current incar-
nation of the control plane (i.e., the current data plane),
and cannot say anything about the network behavior un-
der a different environment.

While there is prior work on bug-finding and verifica-
tion for the control plane, it suffers from critical limita-
tions. Some tools focus on a single routing protocol (e.g.,
BGP for Bagpipe [41] and rcc [18]) or a limited set of
routing protocol features (e.g., ARC [21]). They can thus
not capture the behavior of the entire control plane that of-
ten uses multiple routing protocols and sophisticated fea-
tures [22,31,38]. On the other hand, Batfish [19] analyzes
the entire control plane in the context of a given environ-

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 217

ment, but it does so by simulating the behavior of individ-
ual routing protocols to compute the resulting data plane.
This simulation is expensive (see §9.2), which makes it
prohibitive to iteratively use Batfish to analyze the impact
of many environments.

What is critically missing today is the ability to ef-
ficiently find network reachability bugs across multiple
possible environments. (§3 motivates this need using real-
world examples.) Doing so requires reasoning about net-
work reachability directly at the control plane level, with-
out explicitly computing the data plane that manifests in
each environment. Such reasoning is challenging due to
the complexity of the control plane, which involves vari-
ous routing protocols (e.g., BGP, OSPF, RIP) each with its
own intricacies (e.g., selecting best route to a destination
prefix is different for BGP and OSPF) and cross-protocol
interactions (e.g., route redistribution [32]).

We address these challenges in a tool called ERA (ef-
ficient reachability analysis) by employing several syn-
ergistic ideas. First, we design a unified control plane
model that succinctly captures the key behaviors of vari-
ous routing protocols. In this model, a router is viewed as
a function that accepts a route announcement as input and
produces a set of route announcements for its neighbors.
Second, we use binary decision diagrams (BDDs) [30] to
compactly represent the route announcements that consti-
tute a user-specified environment. Third, we shrink the
BDD representation of route announcements by identify-
ing equivalence classes of announcements that are treated
identically by the given network [42]. Each equivalence
class is given an integer index, and the reachability analy-
sis is transformed to arithmetic operations directly on sets
of these indices. Consequently, we take advantage of vec-
torized instruction sets on commodity CPUs for fast com-
putation of these set operations (§6).

ERA can be used to identify bugs in reachability poli-
cies of the form “A can talk to B” as well as a wide
range of common policies that are expressible in terms
of reachability relationships, such as valley-free routing
and blackhole-freeness (§7). Our implementation of ERA
is available as an open source and extensible toolkit to
which new kinds of analysis can be added (§8).

We evaluate the utility of ERA in a range of real and
synthetic scenarios (§9.1). Across all scenarios, it suc-
cessfully finds both new and known reachability viola-
tions, which were otherwise hard to find using the state
of the art techniques. We also evaluate the scalability of
ERA and find that it can handle a network with over 1,600
routers in 6 seconds. Our evaluations show that our con-
trol plane modeling and exploration techniques yield sig-
nificant speedup.

2 Related Work
There are several strands of related prior work.

Data plane analysis: Verifying the reachability be-
havior of the data plane has been widely studied (e.g.,
Anteater [37], Veriflow [29], HSA [28], NOD [36]). The
result from such verification, however, is valid only for the
specific data plane being analyzed. There has also been
extensive work on testing the data plane (e.g., ATPG [43],
Pingmesh [26]). Data plane verification and testing is fun-
damentally limited, as a network is in a constant churn,
which manifests itself as different data planes. For exam-
ple, a single route advertisement can dramatically change
the network behavior (e.g., see [11]).

Control plane analysis: Moving from the data plane to
the control plane potentially enables more powerful anal-
ysis, as the former is generated by the latter. However,
prior work is limited due to supporting only a single rout-
ing protocol (e.g., BGP in Bagpipe [41] and rcc [18]) or a
limited set of routing protocol features (e.g., ARC [21]).
Batfish [19] can reason about the entire control plane but
its analysis is expensive because it simulates the individ-
ual steps of each routing protocol. In contrast, ERA en-
ables fast exploration using a succinct encoding of control
plane behavior.

Clean-slate control plane design: Metarouting [24],
glue logic [33], and Propane [16] aim to build a correct-
by-design control plane. While worthwhile in the long
term, these efforts cannot reason about existing networks.

To summarize, what is critically missing today is the
ability to efficiently explore the control plane involving
various routing protocols. We illustrate this need below.

3 Motivation: Reachability Bugs
We motivate reasoning about multiple network incarna-
tions using real reachability bugs encountered in a large
cloud provider’s network. These bugs were latent and
manifested only under certain environments.

Maintenance-triggered: Some bugs stem from unex-
pected interactions of different routing protocols and con-
figuration directives. In this example (Figure 2), the in-
teractions are between static routing and BGP. For redun-
dancy, the operator’s goal was to have two paths between
the DCN (datacenter network) and the WAN (wide area
network), one through R1 and the other through R2. One
day, the operator decided to temporarily bring down R2

for maintenance, which she thought was safe because of
the assumed redundancy. However, as soon as R2 was
brought down, the entire DCN was disconnected from the
WAN (and the rest of the Internet).

218 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

kawaguchi

1	

Mgmt.	
Net.	

M

R1	

1.2.3.4

R2	

W	
WAN	 0.0.0.0/0
Datacenter	

DCN	

Figure 2: A bug triggered by maintenance.

Manual investigation revealed that
R1 contained a static default route
ip route 0.0.0.0/0 1.2.3.4 (here 1.2.3.4
is the next-hop of the static route, which is the address
of the management network). Static routes to a prefix
supersede dynamic routes [5, 8]. Thus R1 preferred the
static route over the default BGP route advertised by the
WAN (shown in red). Since static routes are typically not
propagated to neighbors, R1 did not advertise the default
route to the DCN. Thus, the DCN was entirely dependent
on R2 for external connectivity.

The bug inR1’s configuration was that the operator had
forgotten to type keywords to indicate that the static route
belonged to the management network, not data network.
(These keywords were present inR2’s configuration.) The
bug was latent as long as R2 was up, but was triggered
when R2 was brought down.
Announcement-triggered: In Figure 3, DCA had sev-
eral services hosted inside the subprefixes of 10.10.0.0/16.
Instead of announcing the individual subprefixes, R1 was
announcing this aggregate prefix. DCB could reach the
services inside DCA through the WAN. As soon as a new
service with prefix 10.10.1.160/28 was launched inside
DCA, all other services inside the /16 prefix became un-
reachable from DCB .

bug_0500

1	

WAN	
10.10.1.160/28Datacenter	

DCA	 DCB	

R1	 R2	

W	

Figure 3: A bug triggered by a BGP announcement.

Investigation revealed two latent configuration bugs
that combined to create this outage: (1) R1 was not con-
figured to filter 10.10.1.160/28 in its announcements to
the WAN; and (2) R2 was configured with an aggregate
route to 10.10.0.0/16 with DCB as the next hop. The re-
sult of the first bug was that the /28 announcement reached
R2 through the WAN. Then, as a result of the second bug,
the /16 aggregate route was activated at R2. This aggre-
gate route, as a local route to router R2, took precedence
over the /16 being announced through the WAN. When
the aggregate route was activated, R2 started dropping all
traffic to the /16 except for traffic to the /28. These drops
are due to the sinkhole semantics of route aggregation—

Figure 4: A bug triggered by link failure.

the aggregating router drops packets for subprefixes for
which it does not have an active route to prevent routing
loops [34].1 Proper connectivity existed prior to the /28
announcement because the /16 announcement from the
WAN did not activate the aggregate route at R2.

Failure-triggered: In Figure 4, R1 and R2 were config-
ured to announce prefix 10.10.0.0/16 that aggregated the
subprefixes announced by leaf routers (A1,A2,A3). After
link A2—B2 failed, WAN traffic destined to A2’s prefix
(10.10.2.0/24) started getting blackholed (i.e., dropped) at
R1 even though A2 had connectivity via B3 and R2.

This blackhole was created because R1 continued to
make the aggregate announcement after the failure of link
A2–B2, as it was still hearing announcements for the other
two subprefixes corresponding to A1 and A3 (aggregate
routes are announced as long as there is at least one sub-
prefix present). As a result, the WAN sent (some) traffic
for 10.10.2.0/24 toward R1. But R1 dropped those pack-
ets per the sinkhole semantics (see above).

4 ERA Overview
In this section, we present our approach and discuss the
challenges in realizing it. Our target is a (datacenter, en-
terprise, or ISP) network of a realistic size (e.g., a few to
hundreds of routers). As shown in Figure 5, our user is a
network operator responsible for configuring routers. The
operator has a set of intended reachability policies of the
form “Router port A can talk to router port B” (as we will
discuss in §7, several other practical policies are deriva-
tives of “A can talk toB”). ERA allows operators to input
their assumptions on what the network’s environment will
send (e.g., based on relationship with peers/providers).
It then analyzes the network’s behavior under these as-
sumptions and checks whether the behavior satisfies the
intended reachability policies. This process can then be
iterated with other environmental assumptions, in order to
cover a range of possible environments.

1For instance, if W announced the default route to R2, R2 would
forward traffic for 10.10.2.2 to W, which may then forward them to R2
(because R2 announces the aggregate /16 to W), and so on.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 219

router	
configura,ons	

analysis	results	
(success	or	viola0on)	

Operator	
environment	
assump,ons	

control	plane	
model	

model	
explora,on	

ERA	

reachability	
policies	

network	
topology	

Figure 5: High-level vision of ERA.

4.1 Our Approach
Here we give the intuition behind our approach to control
plane analysis.

Relationship between data and control planes: The
data plane takes as input a packet on a router port
and moves the (possibly modified) packet to another
port (on the same or a neighboring router). Thus, we
can think of the data plane as a function of the form
DP : (pkt , port)→ (pkt , port). The data plane itself is
generated by the control plane function given routers’
configuration files, the network topology (i.e., which
router ports are inter-connected), and the current envi-
ronment (which captures the route advertisements sent
to the network by the “outside world”) of the network:
CP : (env ,Topo,Configs)→ DP(.).

Reachability policies via control plane analysis: Since
packets are forwarded by the data plane, it is natural to
think of an intended reachability policy φA→B as a pred-
icate that indicates whether a given packet should be able
to reach from router port A to router port B. We say data
plane DP is policy-compliant if φA→B (pkt ,DP) evalu-
ates to true for all A-to-B packets.

A seemingly natural approach for finding latent bugs is
to produce the data plane associated with a given environ-
ment and then check reachability on that data plane [19].
However, this approach makes it prohibitively expensive
to iteratively check multiple environments (§9.2). This
is because for each possible environment (of which there
are many), to compute the resulting data plane, we need
to account for all low-level message passings and nuances
of routing protocols. Instead, we want to be able to reason
about the network directly at the level of the control plane
and without explicitly computing the data plane.

To this end, our insight is as follows. Rather than pro-
ducing the data plane that results from a given environ-
ment, we can analyze the control plane under that en-
vironment to determine i) the routes that each router in
the network learns via its neighbors (e.g., a BGP adver-
tisement) or its configuration file (e.g., static routes); and
ii) the best route when multiple routes to the same prefix
are learned. We can then use this information to directly

e2e routers ports

1	

R1	1	 2	
3	

R2	4	 5	

R3	6	 7	

X	 Y	R4	9	
8	

10	

Network	 Environment	

route	
adver1sement	

Figure 6: X-to-Y reachability depends on routers con-
figurations and the environment.

check reachability.
An illustrative example: To visualize what it means to
reason about reachability using control plane analysis,
consider the example shown in Figure 6. Here we want
to see what traffic reaches from port X to port Y so that
we can check whether it is policy-compliant. From the
figure we can see that to find the above traffic, we can
try to find the routes that traverse the opposite direction
on each of the two paths. Let T i→j

Router (route) show the
output of the configured router Router on its port j given
the input route on its port i. (Intuitively, route can be
thought of as an abstraction for a route advertisement.
The following section will elaborate on this abstraction.)
If we knew T (.), the answer would be:
T2→1

R1
(T5→4

R2
(T10→8

R4
(env))) ∪ T3→1

R1
(T7→6

R3
(T10→9

R4
(env))).

The argument env here represents the assumptions that
the user makes about the environment.

4.2 Challenges
Control plane-based reachability analysis requires us to
address two key challenges:
• An expressive and tractable control plane model: To

be expressive, this model needs to capture key behav-
iors of diverse protocols (e.g., BGP, OSPF route adver-
tisements). A naive model (e.g., capturing protocol-
specific behaviors verbatim), while expressive, is im-
practical because it will be too complex to explore. On
the other extreme, a very high-level model (e.g., ig-
noring protocol-specific behaviors altogether) may be
tractable to explore, but not expressive (e.g., BGP and
OSPF have different ways of preferring routes).

• Scalable control plane exploration: Once we have a
control plane model, we need the ability to efficiently
explore the model with respect to the environment,
in order to identify violations of intended reachability
policies.
We tackle these challenges in §5 and §6, respectively.

4.3 Scope and Limitations
ERA’s analysis requires the user to provide assumptions
on the environment (or defaults to assuming that the en-
vironment makes all possible route announcements). If
these assumptions are incorrect or overly permissive, then
ERA can produce false positives, identifying purported
errors that in fact will never arise in practice; e.g., a rep-

220 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

utable ISP is not likely to hijack its peer’s traffic. ERA is
designed to have no other source of false positives (i.e., its
control plane model is accurate). Though we have not for-
mally proven this yet, empirically speaking, all the bugs
that ERA has identified were real bugs.

ERA also has several sources of false negatives. First,
ERA will only find bugs under environments specified as
inputs and cannot guarantee the absence of bugs under all
environments (unless exhaustively iterated on all possible
environments). Second, certain classes of errors cannot be
found by ERA by design. Specifically, ERA assumes that
routing will converge and only analyzes this convergent
state, which is key to efficient exploration of the control
plane. Therefore convergence errors as well as reacha-
bility errors in transient states of the network will not be
found (e.g., [23, 25]).

Finally, while ERA supports most of the common con-
figuration directives, our current implementation does not
support certain directives such as regular expressions in
routing filters. Keeping up with configuration directives
is a software engineering challenge due to their large and
growing universe. Such limitations, however, are not fun-
damental to the design of ERA (unlike ARC [21], where
the design itself cannot handle certain routing features).

As we will see in §9, ERA can find a large class of real-
world bugs despite these limitations.

5 Modeling the Control Plane
We now describe our model for the network control plane.
It i) captures all routing protocols using a common ab-
straction; ii) is expressive with respect to routing behav-
iors of individual protocols; and iii) lends itself to scal-
able exploration. At a high level, we identify key behav-
iors of the control plane (e.g., route selection, route aggre-
gation) and compactly encode them using binary decision
diagrams (BDDs) [30].

Since the network control plane is a composition of the
control planes of individual routers, we break down the
problem of modeling the network control plane into mod-
eling (i) the I/O unit of a router’s control plane (§5.1), and
(ii) the processing logic of a router’s control plane (§5.2).

5.1 Route as the Model of Control Plane I/O
A naive way of modeling the I/O unit of the control plane
of a router is to use the actual specification of route ad-
vertisements of different routing protocols, including their
low-level details (e.g., keep-alive messages, sequence
numbers [3,9]). While expressive, such an I/O unit makes
the control plane model too cumbersome. Conversely, if
we completely ignore differences across protocols to sim-
plify our I/O unit model, such a model may not be expres-
sive; e.g., it cannot capture the fact that if a router learns

route data structure

1	

Administra,ve	
distance	(4	bits)	

Protocol	
a7ributes	(87	bits)	

Dst	IP	
(32	bits)	

Dst	mask		
(5	bits)	

Figure 7: route as the model of control plane I/O.
two routes to the same destination prefix from two dif-
ferent routing protocols, the one offered by the protocol
that has a smaller administrative distance (AD) will be se-
lected [5,8]. (We will see an example bug scenario due to
this effect in §9.1.2, Figure 15b.)

To strike a balance between expressiveness and
tractability, we introduce the notion of an abstract route
as a succinct yet expressive I/O unit for the control plane
model. Conceptually, a route mimics a route advertise-
ment. It is a succinct bit-vector conveying key informa-
tion in route advertisements that affects routing decisions
of a router (see Figure 7). While not fundamental to our
design, we have chosen a 128-bit vector to encode a route
to enable fast CPU operations as we will discuss in §6.2.
To accommodate diverse routing protocols, a route unifies
key attributes of various protocols that affect a router’s be-
haviors (i.e., administrative distance and protocol-specific
route attributes).2 To improve scalability, a route abstracts
away the low-level nuances of actual protocols (e.g., seq.
numbers, acknowledgements).

The fields of our route abstraction are:
• Destination IP and mask: Together, they represent the

destination prefix that the route advertises. To make
a route compact, we store the mask in 5 bits (instead
of its naive storage in 32 bits). For completeness, Ap-
pendix A shows the details of how we do this.
• Administrative distance (AD): This is a numerical rep-

resentation of the routing protocol (e.g., BGP, OSPF)
of the route such that ADA < ADB denotes routing
protocol A is preferred to protocol B.
• Protocol attributes: This captures protocol-specific at-

tributes of the routing protocol represented by AD.
For example, if the value of AD corresponds to BGP,
the protocol attributes field encodes the BGP attributes
(i.e., weight, local preference). To enable fast imple-
mentation of route selection in our router model (that
we will discuss in §5.2), we carefully encode the at-
tributes so that preferring a route between two routes
route1 and route2 simply becomes a matter of choos-
ing the smaller of two bit-vectors AD1 .attrs1 and
AD2 .attrs2 when interpreted as unsigned integers (the
symbol . denotes concatenation of the AD and proto-
col attributes fields of a route). For example, since
route selection in BGP involves checking a prioritized
list of BGP attributes (e.g., first checking the weight,
2Since our route model resembles routing messages in distance-

vector protocols, we accommodate link state protocols (e.g., OSPF) by
letting the attributes refer to the routes output by the Dijkstra algorithm.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 221

AND	with	
supported	protocols	

Vin	
Apply	input	filters	

OR	with	routes	
originated	by	router	

OR	with	
redistributed	routes	

Apply	output	filters	
Select	best	route	
per	dst	prefix	

AND	with	NEG.	
of	sta9c	routes	

OR	with		
aggregate	routes	

Vout	

1	 2	 3	

4	5	6	

7	 8	

Figure 8: High-level router model processing boolean
representation of input routes.

then local preference, etc.) [4], for a BGP route, the
highest order bits of the protocol attributes field of the
route encode the complement of the BGP weight at-
tribute, followed by the complement of the local pref-
erence, and so forth. Note that the designated 87 bits
for succinctly capturing protocol attributes have been
sufficient in a range of realistic scenarios we have con-
sidered (§9), but there might be scenarios where more
bits are needed to encode many distinct attributes.

5.2 Control Plane as a Visibility Function
Given the I/O unit of the control plane, next we need to
model the processing logic that a router applies to input
routes. Intuitively the router model is a function that given
a route as its input, computes the corresponding output
route(s). We identify 5 key operations of the router control
plane: (i) Input filtering, which modifies/drops incoming
route advertisements to the router; (ii) Route redistribu-
tion, which is necessary to capture cross-protocol interac-
tions [31,33]; (iii) Route aggregation, which is a common
mechanism to shrink forwarding tables, yet its improper
use can lead to reachability violations [34]; (iv) Route se-
lection, which is in charge of selecting the best route to
a given destination prefix; and (v) Output filtering, which
modifies/drops outgoing route advertisements.

Unfortunately, reasoning about the control plane one
routing announcement at a time is not scalable. In-
stead, we lift our router model to work simultaneously
on a set of route announcements. We refer to our router
model as the visibility function because it captures how
the router control plane processes the routing informa-
tion made visible (i.e., given as input) to it. The input
to the router visibility function, V in, is the set of input
routes sent by its neighbors and configured static routes;
and its output, V out, is the set of corresponding output
routes that are sent downstream by the router. The no-
tation V out

Router = TRouter (V
in
Router) denotes the control

plane visibility function of Router .
For fast exploration, we use BDDs to symbolically en-

code the set of I/O routes in a router model. A BDD is a
compressed representation of a boolean function that en-
ables fast implementation of operations such as conjunc-
tion, disjunction, and negation [30]. Our BDD encoding
enables fast router operations by transforming operations

router as a BDD – step 0 of 3

1	

F	 T	

X1	

(a) RIP.

router as a BDD – step 1 of 3

1	

F	 T	

X3	

X2	

X1	

(b) Static route.

router as a BDD – step 3 of 3

1	F	 T	

X0	

X1	

X3	
X2	

X1	

F	 T	

X0	

(c) Output filter.

Figure 9: Example router model as a BDD. Dashed
and solid lines represent the values 0 and 1 of the cor-
responding binary variable, respectively.

on sets to quick operations on BDDs. For example, tak-
ing the complement of a set simply requires flipping the
true/false leaves of the corresponding BDD.

Figure 8 shows the high-level procedure for processing
a boolean representation of sets of routes. (For complete-
ness, the pseudocode for this is presented in Appendix B.)
The steps to turn V in into V out are as follows:

1. Supported protocols: First, the routing protocols
present in the configuration file are accounted for.

2. Input filtering: Then, the input filters are applied.
3. Originated routes: In addition to the input route, there

are routes that directly stem from the configuration
files, which are conceptually ORed with the input.

4. Route redistribution: A route redistribution command
propagates routing information from a routing protocol
(e.g., BGP) into another protocol (e.g., OSPF).

5. Route aggregation: If the router receives any input
route that is more specific than any configured aggre-
gate route, the aggregate route gets activated.

6. Static routes: A static route is a route locally known to
the router (i.e., not shared with its neighbors). Further,
by default, static routes take precedence over dynamic
routes (e.g., OSPF, BGP, RIP, IS-IS) due to having a
lowerAD value. This behavior is captured by ANDing
the negation of static routes with all other routes.

7. Route selection: Selecting the best of multiple routes to
a destination prefix works as follows: (i) if the routes
belong to different routing protocols, the one with the
lowest AD value is selected, (ii) if the routes belong
to the same routing protocol, the protocol-specific at-
tributes determine the winner.

8. Output filtering: The router applies its output filters.

An illustrative example: We illustrate the procedure of
Figure 8 using a small example. For ease of presentation,
a route here has only 4 bits x3x2x1x0, with two bits x3x2
representing IP prefix, the bit x1 representing AD, and
the bit x0 representing protocol attributes. A bar over a
binary variable denotes its negation. In this example, the
network operator assumes the router accepts all routes as
input, which is captured by setting V in = 1 (i.e., true).

222 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Suppose a router is configured with a static route and
RIP, with AD values of 0 and 1, respectively. Figure 9
shows the BDD representation of the router that has the
following four (simplified) configuration commands:
• RIP, denoting the presence of RIP on the router, is cap-

tured by 1 ∧ x1 = x1, as shown in Figure 9a.
• static 10/2: Since this static route overrides the

RIP routes with the same prefix, the resulting predicate
is (x3 x2)x1=x3 x1 ∨ x2 x1 . This is shown in Figure 9b.

• output filter: if RIP attribute is 0,

make it 1: The effect of the filter is to replace all
occurrences of x1 by x1 x0 . The resulting predicate is
x3 x1 x0 ∨ x2 x1 x0 . This is captured in Figure 9c.
Intuitively, the output V out = x3 x1 x0 ∨ x2 x1 x0 , sim-

plified to V out = (x3 ∨ x2) ∧ x1 x0 , represents the fact
that given every environment as the input, the router out-
puts RIP (noted by x1) with attribute 1 (noted by x0) and
the dest. prefix can be 00, 01, or 11 (noted by x3 ∨ x2).

In the following section, we will discuss how to reason
about the reachability behaviors of the network by explor-
ing the router model we developed in this section.

6 Exploring the Model
Our reachability analysis is based on an exploration of the
control plane model above. We first describe this explo-
ration, and then describe how we leverage our BDD-based
encoding to devise a set of scalable exploration mech-
anisms that use (i) the Karnaugh map, (ii) equivalence
classes, and (iii) vectorized CPU instructions.

6.1 Exploration Method
We present our approach to finding traffic reachable from
portA to portB using a representative example. Consider
the scenario shown in Figure 10. The red path is an A-to-
B path involving routers RA, . . . ,Ri ,Ri+1 , . . . ,RB . For
ease of presentation, in this example, there is only one
path from A to B; the general pseudocode presented in
Appendix C accounts for all A-to-B paths.

To see the effect of the environment, consider router Ri ,
which has three paths to router ports that face the outside
world (namely, outside facing ports of routersR1,R3, and
R5). Unless the operator makes a more specific assump-
tion on an environment input (i.e., what route advertise-
ments the outside world will send to the network), ERA
starts analysis using the boolean value true (represented
by a BDD with only one leaf with the value true), which
represents the fact that every possible route are provided
by the environment. On the other hand, if the operator
is able to make a more scoped assumption about the en-
vironment (e.g., based on expected routes from a neigh-
bor), the starting environment will reflect the assumption.

A to B reachability: steps 1 and 2

1	

Ri	

3	

R3	

R2	

A	

Network	
Environment	

R1	

R4	
R5	

B	RA	 RB	

env1	 env2	

env3	

Ri+1	…	 …	

P	
Rj	

…	

Figure 10: Computing A to B reachability.
Such assumptions can be encoded as a BDD that explic-
itly includes the relevant variables on the assumed prefix,
administrative distance, or attributes values of incoming
routes from the environment.

Computing traffic reachable from A to B involves the
following steps:
1. Applying the effect of the environment: Every router on

a A-to-B path that has a topology path to the environ-
ment, is affected by it. For router Ri in our examples,
it means Ri receives the environment input Ein

i , where

Ein
i = T1(env1) ∨ T2(T3(env2)) ∨ T4(T5(env3))

2. Computing routes reachable from B to A: As we saw
in §4.1, the key to computing traffic prefixes that reach
from A to B using control plane analysis is to compute
what route prefixes are made visible from B back to A.
Let assumedB show the input the operator assumes
about what port B receives from the environment. For
the red path, this is captured by

reachA B =

TA(Ein
A ∨ . . . (Ti+1(E

in
i+1 ∨ . . . TN (Ein

B ∨ assumedB) . . .)))

3. Extracting prefixes reachable from A to B: Since we
are interested in route prefixes reachable from B to A,
we eliminate binary variables in the route fields that
do not correspond to prefix (i.e., AD and protocol at-
tributes) in all boolean terms of reachA B .

4. Accounting for on-path static routes: In addition to the
routes that reach from B to A, which cause traffic to
reach from A to B, there is potentially other traffic that
can reach from A to B due to static routes configured
on on-path routers. This is because while a router does
not advertise its static routes, activated static routes end
up in its forwarding table. We account for such prefixes
and OR them with the answer from step 3.

5. Applying ACL rules affecting A-to-B traffic: While a
router configuration file primarily includes directives
to configure the router control plane, it may include ac-
cess control lists (ACLs) that restrict the actual traffic
that can pass through the data plane of the router. We,
therefore, account for ACLs by taking the result of step
4 and applying the ACLs of the on-path routers.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 223

a4	

a5	 a6	a7	
a1	

a2	

a3	
Y	 Z	

X	

Figure 11: Visualization of predicates X, Y, and Z in
terms of members of equivalence classes a1, . . . , a7.

Once traffic prefixes reachable from A to B are com-
puted, the network is policy-compliant if the prefixes
are equal to φA→B from §4.1. If φ is violated, ERA
applies the Karnaugh map [27] to the DNF representa-
tion of the violating routes to provide the human oper-
ator with fewer distinct items to investigate (§4.1); e.g.,
instead of reporting distinct prefixes 10.20.0.0/17 and
10.20.128.0/17 as violations, ERA summarizes and out-
puts them as 10.20.0.0/16.

The process above finds policy violations in the con-
text of a single set of environmental assumptions. The
user can iterate multiple times with different assumptions
in order to expose more errors. Conceptually, each itera-
tion of ERA over a BDD input analyzes a set of concrete
environments for which the network has an identical be-
havior. The analysis implicitly identifies this set during
exploration, by accumulating constraints from the visibil-
ity function of each router in the network. Thus, the num-
ber of iterations needed for exhaustive exploration using
ERA is far less than those needed with data plane based
analysis tools such as Batfish.

6.2 Scalability Optimizations
To build an interactive tool for network operators, we want
ERA to be able to compute A− to−B reachability in no
more than a few seconds. Even with the tractable control
plane model that we developed in §5, a naive implementa-
tion of the exploration mechanism outlined in §6.1 fails to
satisfy our goal. This is because of the very large range of
possible environments. Here we present three techniques
to scale control plane exploration.

Minimizing collection of routes with the K-map: As
a first step, to minimize the binary representation of the
router I/O, we apply the Karnaugh map (K-map), which
is a common technique in circuit design [27].

Finding equivalence classes: Performing computations
(e.g., conjunction and disjunction) on boolean representa-
tion of a real control plane is cumbersome. For example,
the same or similar destination prefixes may appear on
multiple routers. As such, if we encode prefixes naively,
this may slow down control plane exploration.

Given this observation, before performing reachability
analysis, ERA gets rid of redundant data by finding equiv-
alence classes of routes which are treated identically by

{0,1,4}		 1	 0	 0	 1 1	

{1,3}	 0	 1	 0	 1	 0	
OR	 1	 1	 0	 1	 1	 {0,1,3,4}	∪	

(a) Set union using OR.

1	 0	 0	 1 1	

0	 1	 0	 1	 0	
AND	 0	 0	 0	 1	 0	 {1}		

{0,1,4}		

{1,3}	
∩	

(b) Set intersection using AND.

Figure 12: Fast ∪ and ∩ of two sets of integers.

the network, using which the data can be rebuilt [42].
The advantage of doing so is that now performing dis-
junction and conjunction on boolean terms boils down to
doing union and intersection on sets of integers (known as
atomic predicates [42]). These integers are the indices of
the equivalence classes. We illustrate this technique using
an example. Suppose we need to compute the conjunction
of the boolean termsX , Y , and Z (e.g., representing three
routes). Instead of naively computing the conjunction on
the raw boolean form of these terms, we do the following:
1. Express each term in terms of equivalence classes as

depicted in Figure 11; e.g., X = a2 ∨ a5 ∨ a6 ∨ a7.
2. Represent each term using the indices of members of

equivalence classes, e.g., X is the union of members
2, 5, 6, and 7. (This way, irrespective of how bulky
the raw form of term ai might be, it is represented by
integer value i.)

3. To compute X ∧ Y ∧ Z, intersect the sets of their
corresponding indices: {1, 5, 6, 7} ∩ {1, 4, 5, 7} ∩
{3, 4, 6, 7} = {7}, which indicates the answer to
X ∧ Y ∧ Z is a7.

Implementing fast set operations: As we saw above,
using equivalence classes, reachability analysis involves
computing union and intersection of sets of integers. We
leverage vectorized instructions on recent processors to
perform fast set union and intersection of two sets of in-
tegers (i.e., the indices of the equivalence classes). The
intuition is simple: if a set of integers is represented as a
bit vector where each bit represents the presence/absence
of the corresponding value, then the union (intersection)
of two sets of integers is the bit-wise OR (AND) of the
two bit vectors.

Figure 12 shows this approach using an example. In our
implementation, we use instructions on 256-bit vectors in
our Intel AVX2 implementation [13].

7 Going beyond Reachability
Building on basic A-to-B reachability, ERA can be used
to check a wider range of policies. In §9, we will discuss
scenarios involving these policies.
Valley-free routing: Operators often want to implement
“valley-free” routing [20], which means that traffic from a
neighboring peer or provider must not reach another such
neighbor. This condition is a form of reachability policy
that ERA can easily check.

224 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Equivalence of two routers: Operators often use multi-
ple routers to provide identical connectivity for fault toler-
ance. Checking if they are identically configured (e.g., us-
ing configuration syntax) is hard because the routers may
be from different vendors and many aspects of the con-
figuration (e.g., interface IP addresses) can legitimately
differ across routers of even the same vendor. To check
semantic equivalence of two routers’ policies, we use the
following property of BDDs: if two boolean functions de-
fined over n boolean variables are equivalent (i.e., they
generate the same output for the same input), their Re-
duced Ordered BDDs (ROBDDs) are identical [17]. In
our implementation, we check the equality of the ad-
jacency matrix representations of the BDDs of the two
functions, which takes O(n2). In contrast, a brute force
method will take O(2 n).
Blackhole-freeness: A blackhole is a situation where a
router unintentionally drops traffic. The blackholed traffic
from A to B is the complement of the reachable traffic:
blackholeA B = reachabilityA B . Note that computing
blackholes by ERA having computed reachability takes
O(1), as the negation of a BDD is the same BDD with its
two leaves (corresponding to true and false) flipped.
Waypointing: Operators may want traffic from A to B
to go through an intended sequence of routers (e.g., to
enforce advanced service chaining policies [15,35]). ERA
checks waypointing by explicitly checking whether traffic
reachable from A to B goes through the intended routers.
Loop-freeness: ERA can find permanent forward-
ing loops (e.g., created by static or aggregate routes—
see Figure13c in §9.1) by checking whether the same
router port appears twice in the reachability result.

8 Implementation
Our implementation of ERA [1] supports several config-
uration languages (e.g., Cisco IOS, JunOS, Arista). It
uses Batfish’s configuration parser, which normalizes a
vendor-specific configurations to vendor-agnostic format.
ERA, then, uses this vendor-agnostic format as input.
We implement the control plane model, the K-map, and
atomic predicates in Java. To operate on BDDs, we use
the JDD library [7]. We implement our fast set intersec-
tion and union algorithms in C using Intel AVX2, which
expands traditional integer instructions to 256 bits [13].
A natural question might be how much effort it takes to

add support for various routing protocols to ERA. In our
experience, this effort is minimal. It took two of the au-
thors a few hours to model the common routing protocols
because of two reasons. First, there are fewer than 10
common routing protocols (e.g., BGP, OSPF, RIP, IS-IS).
Second, for each protocol, the key insight for creating the

Ex 2: Back-up link ac0va0on due to route redist.

1	

C	

A	 B	

X	

BGP	

	

1.	We	want	A-X	and	B-X	to	be	the	primary	and	backup	links,	respec@vely.	

ISP	
Customer		
network	

2.	At	!me	t1:	On	A	and	B,	sta@c	routes	are	redistributed	into	BGP,	so	that	the	ISP	
can	adver@se	them	to	the	rest	of	the	 Internet.	B-X	acts	as	a	primary	 link	since	
we	forgot	to	adjust	the	default	AD	values	of	BGP	and	sta@c	routes	on	B.	
	

Example	by	Franck	Le	et	al.,	CoNext’08	

3.	At	!me	t2:	The	admin	fixes	the	problem	by	withdrawing	the	sta@c	route	on	B	
(or	by	overwri@ng	the	default	AD	value	of	sta@c	routes	to	fix	the	problem	is	fixed).	

(a) Violation of way-
pointing [32].

Ex. 3: Blackhole due to route aggrega4on

1	

A	

B	 C	

10.1.2.0/24

10.1.3.0/24

1.  Both	B	and	C	are	configured	to	announce	aggregate	route	10.1.2.0/23	to	A.	

Example	by	Franck	Le	et	al.,	CoNext’11	

2.	One	of	B’s	interfaces	fails,	but	B	conHnues	to	announce	the	aggregate	route.	

3.	A	may	send	packet’s	desHned	to	10.1.2.0/24	to	B,	which	B	will	drop.		
Query:	Is	there	any	negaHve	route	such	that:	

	NOT(route)	∈	TBàneighbor	(route)	

(b) Black-
hole [34].

Ex. 4: Permanent loop due to route aggrega4on

1	

X	

Y	

1.	ISP	adver.ses	the	default	route	to	enterprise	network.		

0.0.0.0/0

Example	by	Franck	Le	et	al.,	CoNext’11	

ISP	

Enterprise	
Network	

3.	Enterprise	network,	however,	adver.ses	the	aggregate	route	128.2.0.0/16	to	ISP.		

10.2.0.0/16

2.	Enterprise	network	has	next	hops	only	for	128.2.1.0/24 and 128.2.2.0/24.		

4.	 ISP	will	 send	 traffic	with	 des.na.on	128.3.0.0/24 to	 enterprise	 network.	 The	
traffic	will	trap	in	a	loop.		

Query:	Is	there	any	nega.ve	route	route	such	that:	
		RIBY	is	a	strict	subset	of	TYàneighbor	(route)	

	

10.2.1.0/24

10.2.2.0/24

(c) Permanent loop [34].

Figure 13: Finding known bugs in synthetic scenarios.

model is to know how the protocol prefers a route over
another in the steady state, which is concisely defined in
protocol specifications.

9 Evaluation
In this section, we evaluate ERA and find that:
• It can help find both known and new reachability vio-

lations (§9.1).
• It can scale to large networks (e.g., it can analyze a

network with over 1,600 routes in 6 seconds), and our
design choices are key to its scalability (§9.2);

9.1 Finding Reachability Bugs with ERA
We show the utility of ERA in finding reachability viola-
tions in scenarios involving known bugs as well as new
bugs across both real and synthetic scenarios. These sce-
narios illustrate violations that are latent and get triggered
only in certain environments (i.e., a certain router adver-
tisement sent to the network by the routers located int
the outside world). Even for scenarios involving only
a small number of routers, existing network verification
techniques lack the ability to find latent bugs (§2), and
trying to extend these tools to enumerate different envi-
ronments poses a serious scalability challenge (e.g., we
will quantify this for Batfish, a recent network verifica-
tion tool, in §9.2). Further, as we will discuss in §9.2,
ERA scales to large networks (e.g., over 1,600 routers).

All experiments below were done under the assumption
that the environment sends all possible route announce-
ments, i.e. the BDD of each environmental input is simply
the predicate true. Though this environmental assump-
tion is not guaranteed to cover all possible environments,
in practice it is effective at rooting out latent bugs due
to its “maximal” nature, as we show below. This points
out an important advantage of ERA over Batfish [19].
While both tools require an environment as input, Bat-
fish’s low-level simulation of routing protocols makes it
prohibitively expensive to run with such a maximal envi-
ronment, so in practice Batfish users must craft specific
environments that are suspected to cause problems.

9.1.1 Finding Known Bugs in Synthetic Scenarios
• Violation of waypointing due to route redistribu-

tion: In this scenario borrowed from [32] and shown

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 225

in Figure 13a, the customer wants to waypoint its traf-
fic through X −A− C and use X − B − C as the
backup path. However, static routes configured on
routers A and B are redistributed into BGP, and the
ISP advertises them into the rest of the Internet. As a
result, B −X acts as a primary link. (One way to pre-
vent this would be for the customer to adjust the default
AD values of BGP and static routes on B.)

• Blackhole due to route aggregation: In this scenario
borrowed from [34] and shown in Figure 13b, both
routers B and C are configured to announce aggregate
route 10.1.2.0/23 to router A. After the marked inter-
face of B fails, B continues to announce the aggre-
gate route, which causes A to send packets destined to
10.1.2.0/24 to B. B will drop this traffic, as the its link
to the 10.1.2.0/24 subnetwork is down.

• Permanent loop due to route aggregation: In this
scenario borrowed from [34] and shown in Figure 13c,
the ISP router X advertises the default route 0.0.0.0/0
to router Y . Even though Y has connectivity to only
10.2.1.0/24 and 10.2.2.0/24, it has been configured to
advertise to the ISP the aggregate route for the entire
10.2.0.0/16 prefix. Now since 10.3.0.0/24 is as sub-
prefix of 10.2.0.0/16, the ISP may send traffic to des-
tination prefix 10.3.0.0/24 to Y . Consequently, since
Y does not know how to reach 10.3.0.0/24, this traffic
will match its default route entry and be bounced back
to the ISP. This traffic, therefore, will trap in a perma-
nent loop between X and Y .
To further evaluate the effectiveness of ERA, we did

a red team-blue team exercise. In each scenario, the red
team introduced misconfigurations that cause a reachabil-
ity violation unbeknownst to the blue team. Then the blue
team uses ERA to check whether the intended policy is
violated. Across all scenarios, the blue team successfully
found the violation. Here is a summary of the scenarios:
• Violation of waypointing: In Figure 14a, the intended

policy is to ensure traffic originating from network E
destined to network C goes through path E − B − C
(so that it is scrubbed by the firewall). However, this
policy is violated because router E receives the pre-
fix of network C from both routers B and D, which
means NetE → NetC traffic may go through path
E −D − C skipping the firewall. The root cause of
the problem was the fact that none of routers C, D, or
E filtered the route advertisement for the 10.1.1.0/24
prefix on the E −D − C path.

• Violation of valley-free routing: In Figure 14b,B and
E are providers for C, which in turn, is a provider
for D. A missing export filter on C caused C to ad-
vertise the prefix for NetE to B. This is a violation

B	

E	C	

D	

BGP	

BGP	

BGP	

BGP	

	WAY	POINTING	

Network	Operator	wants	the	direc=on	to	be	C-B-E	
D	was	misconfigured	and	didn’t	filter	BGP	traffic	to	go	to	
10.1.1.0/24	
It	resulted	in	traffic	going	from	both	direc=ons	

Net	C	 Net	E	FW	
10.1.1.0/24	

(a) Violation of waypointing via B.

C	

B	 E	

D	

Net	D,	Net	E	

Net	D	

Net	E	

Net	B	 Net	E	

Valley	Free	

1.  B,E	are	providers	to	C.	C	is	provider	to	D	
2.  BGP	is	configured	in	all	routers	
3.	D	is	adverAsed	to	E	through	C	
4.	C	is	misconfigured	and	adverAses	E	to	B	instead	of	just	D.		
5.	Violates	valley	free	property		

Net	D	

Net	B	

Net	D	

(b) Not valley-free.

B	

A	 D	

C	

Isola+on	

10.10.10.0/24	

10.10.20.0/24	 10.10.30.0/24	

10.10.40.0/24	
BGP	

BGP	

OSPF	

Redist.	OSPFàBGP	

A,B	are	part	of	a	network	which	uses	only	BGP.	
C,D	are	part	of	a	network	which	uses	only	OSPF.	
D	was	misconfigured	to	redistribute	OSPF	to	BGP	
This	resulted	in	the	C,D	communica+ng	which	violated	isola+on	property	

OSPF	

(c) Violation of isolation between
{A,B} and {C ,D}.

C	

B	

D	

Prefix	list	Errors/Basic	
Reachability	

10.10.0.0/16	

10.20.0.0/16	

10.10.0.0/16	

Goal		-	A	(consumer)	needs	to	reach	P(provider)	
D,B,C	run	BGP	
C	has	a	prefix	list	to	let	through	2	routes	for	bgp	
B	was	misconfigured	to	let	only	1	route	through	for	bgp	
No	one	noLces	because	A	can	sLll	reach	P	through	C-D	
But	if	C	or	C-D	falls	then	we	lose	connecLvity	to	2.2.0.0/16	
due	to	the	bug	

Provider	

A	

10.10.0.0/16	
10.20.0.0/16	

Client	

(d) Misconfigured backup path
D − B −A.

Figure 14: Finding known bugs in synthetic scenarios
using the red-blue teams exercise.

of the valley-free routing property, specifically, due to
customer C providing connectivity between two of its
providers, namely, B and E.
• Violation of intended isolation: In Figure 14c, we

want the traffic from segments {A,B} (running BGP)
and {C ,D} (running OSPF) to remain isolated from
each other. However, this policy is violated due to a
misconfiguration on C whereby OSPF is redistributed
into BGP, that will allow traffic from {A,B} to reach
{C ,D}.
• Misconfigured backup path: In Figure 14d, the client

has two /16 networks connected to A and intends to
maintain two paths to the provider to ensure reachabil-
ity in case of failure on one of them. This policy is vio-
lated because of an incorrect filter configured onB that
drops the advertisement for the 10.20.0.0/16 network.
As a result, if path D − C −A fails, the 10.20.0.0/16
network will be unreachable from the provider.

9.1.2 Finding New Bugs in Synthetic Scenarios

Finding reachability bugs in hybrid networks: Oper-
ators may prefer to opt for a hybrid network, which in-
volves deploying SDN alongside traditional network rout-
ing infrastructure for scalability and fault tolerance [40].
Next we show how ERA can find policy violations arising
in such hybrid deployments.

Fibbing [40] is a recent method to allow an operator
to use an SDN controller to flexibly enforce way-pointing
policies in a network running vanilla OSPF. The key prim-
itive is “fibbing” whereby the SDN controller pretends to
be a neighboring router and makes fake route advertise-
ments with carefully crafted costs. For example, con-
sider the network of Figure 15a, where links are anno-
tated with their OSPF weights. If we run OSPF, both

226 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Fibbing bug due to aggrega.on on R2

1	

R2	

R3	

R4	

R5	

D1	

D2	

S1	

S2	

R1	

5	 5	

2	2	

3	 F 2	
1	

(a) Route aggregation on R2.

Fibbing bug due to bgp bea.ng ospf on R1

1	

R1	

R2	

R3	

R4	

OSPF	

S	

5	 3	

1	2	
D	

R5	

F 1	
1	

OSPF	

BGP	

BGP	BGP	

OSPF	OSPF	

(b) Cross-protocol effects.

Figure 15: New bugs in a synthetic scenario involving
hybrid (i.e., SDN-traditional) networks.

source to destination flows will take the cheaper path
R1 − R2 − R4 − R5 . Now, for load balancing purposes,
the operator wants to make S1 → D1 traffic take the
path R1 − R2 − R3 − R5 without fiddling with OSPF
wights. Fibbing will let her accomplish this by using a
fake router F that claims to be able to reach D1 at a cost
of 2. As a result, nowR2 will start sending traffic destined
to D1 through F , as the new cost 1+2=3 is better than the
cost 2+2=4 of going through R4.

A hybrid network is particularly error-prone due to in-
tricate interactions between SDN and traditional proto-
cols. To show the utility of ERA in reasoning about such
networks, we describe two scenarios:

• Interaction between fibbing and aggregate routes:
In Figure 15a, the goal is to use fibbing to enforce the
waypointing denoted by green and orange paths. We
used ERA to find a violation of this policy. The root
cause was an aggregate route configured on R2 to des-
tination prefix D1 ∪D2 pointing to R4 as its next hop.
As a result, both S1 → D1 and S2 → D2 traversed the
orange path, which violated the policy.

• Cross-protocol effects: In Figure 15b, the goal
is to use fibbing to waypoint traffic to D through
R1 − R2 − R4 . We used ERA to find a violation of
this in a red team-blue team exercise. Each router in the
figure is annotated with the routing protocol(s) it runs.
Router R4 had a static route to D that is redistributed
into BGP and OSPF. As a result, router R1 received
route advertisements for D from both OSPF (from R2

and R3) and BGP (from R5). Now since BGP, by de-
fault, has a lower AD value than OSPF, R1 chose the
advertisement offered by R5! Therefore, fibbing here
fails to enforce the waypointing policy.

Fibbing is proven to be correct [40], but only if the net-
work merely runs OSPF. The takeaway from the above
scenarios is that for hybrid networks to be practical, we
need to account for realistic router configurations (e.g.,
route aggregation byR2 in Figure 15a) and cross-protocol
interactions (e.g., BGP/OSPF in Figure 15b).
Note that finding arbitrary SDN bugs is beyond the scope
of ERA. ERA handles SDN only if its behavior can be
abstracted in our control plane model, in a manner similar

Route leak

1	

C	

R1	

R2	
10.20.0.0/16

S	Client	 Service	

Figure 16: R1 leaks the service prefix.
Simplified	view	of	CMU	Network	

Core1	 Core	2	

ISP1	 ISP2	 ISP3	

Departments	

1	

•  (Assumed)	policy	1:	Core0	and	Core255	are	meant	to	be	
“equivalent”	in	that	if	one	of	them	fails,	the	reachability	across	
netowrk	remains	unchanged.	

•  (Assumed)	policy	2:	POD-I-CYH	and	POD-I-NH	are	meant	to	be	
“equivalent”	in	that	they	implement	the	same	peering	policies	with	
the	ISPs.	

Pod1	 Pod2	

Figure 17: A schematic of the analyzed CampusNet.

to what we do for conventional routing protocols.

9.1.3 Finding Known Bugs in Real Scenarios
Bugs reported in a cloud provider: The motivating sce-
narios we saw in §3 are based on bugs in a production
network that we successfully reproduced using ERA.
Finding BGP route leaks: Roughly speaking, a route
leak scenario involves: (i) a router incorrectly advertis-
ing the destination prefix of a service, and (ii) another
router incorrectly accepting it. The combination of these
results in absorbing traffic destined to the service on the
wrong path, which can cause high-impact disruptions.
Route leak is not a new problem (e.g., see AS 7007 in-
cident [2]), but continues to plague the Internet to date
(e.g., Google [6] and Amazon AWS [11] outages in 2015).
To demonstrate the utility of ERA in proactive finding of
route leak-prone configurations, we use a representative
scenario shown in Figure 16. The intended path from the
client to the service is through R2; however, the client’s
traffic ends up taking the wrong path C → R1 because
(i) R1 incorrectly advertises the service prefix, and (ii) C
prefers the route advertisement made by R1 over the one
made by R2. ERA can proactively find route leaks, as a
route leak is essentially a violation of waypointing. In this
example, the traffic from client to server needs to be ex-
clusively waypointed through R2 . We have synthesized
a few route leak scenarios and used ERA to successfully
find violations.

9.1.4 Finding New Bugs in Real Scenarios
Next we show the utility of ERA in finding new bugs in a
campus (CampusNet) and a large cloud (CloudNet).

Finding new bugs in CampusNet: Figure 17 shows a
simplified topology of the core of a large campus network,
with a global footprint and over 10K users. The two core
routers are in charge of interconnecting the three ISPs and
the departments. There are two intended policies involv-
ing these four routers, both of which are violated:
• Equivalence of core routers: Core2 is meant to be
Core1’s backup. ERA revealed that Core1 has OSPF

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 227

configured on one of its interfaces, which is missing on
Core2. As a result, ifCore1 fails, the departments that
rely on OSPF will be disconnected from the Internet.

• Equivalence of pod routers: Pod1 and Pod2, con-
necting the campus to the Internet, are both connected
to ISP2 with the intention that link Pod1 − ISP2 is
active and Pod2 − ISP2 is its backup. ERA revealed
that the ACLs on Pod1 and Pod2 affecting their re-
spective links with ISP2 are different. Specifically,
Pod2 has more restrictive ACLs than Pod1. This
means if link Pod1 − ISP2 fails, a subset of campus-
to-ISP2 traffic will be mistakenly dropped by Pod2.

Finding new bugs in CloudNet: We used ERA to check
equivalence of same-tier routers (analogous to routers R1

andR2 in Figure 2) on configurations of seven production
datacenters of a large cloud provider. ERA revealed that
seven routers in two datacenters had a total of 19 static
routes responsible for violations of equivalence policies.
The operators later removed all of these violating routes.

9.2 Scalability of ERA

Testbed: We run our scalability evaluation experiments
on a desktop machine (4-core 3.50GHz, 16GB RAM).
Why not existing tools? The closest tool to ERA is Bat-
fish [19], which (1) takes a concrete network environment;
(2) runs a high-fidelity model of the control plane (e.g.,
low-level models of various routing protocols) to generate
the data plane (i.e., routers forwarding tables); and (3) per-
forms data plane reachability analysis. To put this in per-
spective, in an example scenario involving a chain topol-
ogy with two routers, Batfish took about 4 seconds. In
contrast, ERA took 0.17 seconds to analyze the same net-
work (a 23X speedup over Batfish). Further, as mentioned
earlier, Batfish’s performance will degrade as the size of
the environment increases, while ERA’s BDD-based ap-
proach allows it to naturally handle even the “maximal”
environment, represented by the BDD true.

Effect of optimizations: Table 1 shows the effect of our
optimizations from §6.2, namely, the K-map, equivalence
classes (EC), and fast set operations compared to a base-
line involving use of BDDs without these optimizations.
The tables shows the average values from 100 runs, each
involving A-to-B reachability analysis between two ran-
domly selected ports. Stanford [12] and Purdue [10] are
campus networks, OTEGlobe [14] is an ISP, and FatTree
is a synthetic datacenter topology. The takeaway here is
that our optimizations yield a speedup of 2.5× to 17×,
making ERA sufficiently fast to be interactively usable.

To see the effect of the type of policy on the analysis
latency, we measured the analysis latency for all proper-
ties from §7 on the Purdue and OTEGlobe topology, none

Topo. #routers/ave
path len.

Reachability analysis latency (sec)

baseline kmap kmap+EC ERA
Stanford 16/2 5 1.8 0.30 0.29
OTEglb 92/3.3 7.8 3.5 1.97 1.84
FatTree 1,024/5.89 13.8 7.01 6.1 5.4
Purdue 1,646/6.8 15 8 6.5 6

Table 1: Effect of our optimizations.

of which took more than 6.1 seconds. This is expected, as
these policies are derivatives of reachability analysis.

10 Conclusions
Since networks are constantly changing (e.g., new route
advertisements, link failures), operators want the ability
to reason about reachability policies across many possible
changes. In contrast to prior work, which either focuses
on a subset of the network’s control plane or focuses on
one incarnation of the network as represented by a sin-
gle data plane, ERA models the entire control plane and
checks network reachability directly in that model. Our
design addresses key expressiveness and scalability chal-
lenges via a unified protocol-invariant routing abstraction,
a compact binary decision diagram based encoding of
the routers’ control plane, and a scalable application of
boolean operations (e.g., vector arithmetic).

We showed that ERA provides near-real-time analysis
capabilities that can scale to datacenter and enterprise net-
works with hundreds of nodes and uncover a range of la-
tent reachability bugs. While ERA does not automatically
reason about all possible of environments, it helps find la-
tent reachability bugs by allowing the users to specify a
rich set environments using BDDs and quickly analyzing
each such set. For instance, a particularly challenging en-
vironment, of all possible routing announcements from a
neighbor, can be captured simply using BDD true.

In future work, we will identify conditions under which
a single run of ERA is guaranteed to cover all possible en-
vironments and extend ERA to automatically explore all
possible environments. Another natural direction for fu-
ture work is to prioritize bug fixing based on the likelihood
of occurrence and severity of aftermath, and to bring the
human operator into the debugging and repair loop.

Acknowledgments
We thank our shepherd George Porter and the OSDI re-
viewers for their constructive feedback. This work was
supported in part by NSF Awards CNS-1552481 and
CNS-1161595 and by a VMware Graduate Fellowship.

228 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Appendix
The goal of the following appendices is to provide details
of our control plane modeling and exploration approach
that we presented in §5 and §6.

A Computing Destination Prefix
To make our route abstraction compact, we store the desti-
nation mask field in 5 bits (instead naively storing it in 32
bits) as we saw in §5.1. Here we concretely describe how
we do this. Let dstIP and dstMask denote a 32-bit desti-
nation IP address and our 5-bit encoding of the destination
mask. To compute the destination prefix that the destina-
tion IP and mask represent, we first transform the mask
to its customary 32-bit representation (e.g., 255.255.0.0),
and then AND it with the IP address:
dstPrefix ← dstIP&((2 32 − 1) << (32 − dstMask))

where <<denotes the shift left operator.

B Route Visibility Function
For completeness, the pseudocode of Figure 18 shows the
details of the router control plane model from §5.2. The
pseudocode describes how a configured router turns the
boolean representation of its input routes to output routes.
Note that we account for per-port (i.e., router interface)
behaviors because, in general, a router can have distinct
routing behaviors configured on its different ports.)
1. The input to the router is the disjunctive normal form

(DNF) boolean representation of input routes. This
represents the input route(s) the environment of the
router (i.e., its neighbors) sends to it (line 1). The out-
put of the pseudocode is the DNF boolean representa-
tion of the output routes (line 2).

2. First, the routing protocols present in the configuration
file are accounted for (lines 6-7).

3. Then, the input filters are applied to the input route
(Lines 8-12).

4. In addition to the input route, there are route adver-
tisements that directly stem from the configuration
files (e.g., the network bgp configuration command).
These are unioned with the input route in lines 13-14.

5. A route redistribution command propagates routing
information from a routing protocol, denoted by
fromProto (e.g., BGP) into another, denoted by
toProto, (e.g., OSPF). This is captured in lines 15-22.

6. A route aggregation (a.k.a. route summarization) com-
mand works as follows: if the router receives any input
route that is more specific than an aggregate route, the
aggregate route is activated (lines 23-28).3

3In line 21 (line 27) of Figure 18, if there are explicit attributes con-
figured for route redistribution (route aggregation), we use those values
instead of default attributes.

1 � Inputs: (1) Configuration information pertaining to router output port
Routerport including: static routes sr[.], route redistribution rr [.], route
aggregation ra[.], supported routing protocols proto[.], input filters if [.],
output filters of [.]
(2) Input to the router is a boolean function in DNF form:
V in = X in

1 ∨ · · · ∨X in
N

2 � Output: Boolean representation of Routerport in DNF

3 � Route bit vector from Figure 7, denoted by X , is concatenation of 3 fields:
X = Xprefix .Xproto .Xattr

4 � We show the length of an array array by size(array[.])
5 V out = V in � Initializing the output

6 � Applying supported routing protocols
7 V out = V out ∧ {

∨
i Xproto[i]}

8 � Applying input filters
9 for i = 1 to size(if [.])

10 for each disjunctive term of V out, denoted by V out
j

11 if V out
j matches if [i].condition

12 apply action if [i].action

13 � Accounting for routes that Router originates, denoted by V local

14 V out = V out ∨ V local

15 � Applying route redistribution
16 for i = 1 to size(rr [.])
17 for each disjunctive term of V out, denoted by V out

j

18 if V out
j .Xproto == rr [i].fromProto

19 newTerm = V out
j

20 newTerm.Xproto = rr [i].toProto
21 newTerm.Xattr = defaultAttr [proto]
22 V out = V out ∨ newTerm

23 � Applying route aggregation
24 for i = 1 to size(ra[.])
25 newTerm.Xprefix = ra[i].prefix
26 newTerm.Xproto = ra[i].proto
27 newTerm.Xattr = defaultAttr [proto]
28 V out = V out ∨ newTerm

29 � Applying static routes
30 for i = 1 to size(sr [.])
31 for each disjunctive term of V out , denoted by V out

j

32 if AD(V out
j .Xproto) > AD(static)

33 V out
j = V out

j ∧ (sr [i].prefix)

34 � Applying route selection
35 for each prefix prfx present in V out

36 precedence = +∞
37 for each disjunctive term of V out , denoted by V out

j

38 if (V out
j .prefix == prfx)&&(V out

j .AD.attr < precedence)

39 precedence = V out
j .AD.attr � Finding best route

40 for each disjunctive term of V out , denoted by V out
j

41 if (V out
j .prefix == prfx)&&(V out

j .AD.attr > precedence)

42 Eliminate V out
j from V out � Eliminating others

43 V out
j = V out

j ∨ prfx .precedence

44 � Applying output filters
45 for i = 1 to size(of [.])
46 for each disjunctive term of V out, denoted by V out

j

47 if V out
j matches of [i].condition

48 apply action of [i].action

49 return V out

Figure 18: Route control plane visibility function.

7. A static route, if present in the configuration file, is a
route locally known to the router (i.e., not shared with
its neighbors). Further, by default, static routes have a

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 229

1 � Inputs: (1) router-level topology of network
(2) Set of router ports facing environment Env
(3) routers configurations

2 � Output: Prefix(es) of traffic reaching from router port A to router
port B

3 Parse router configurations into boolean functions (using Figure 18)
4 Initialize assumede on port e (by default, true)
5 initialize assumedB on port B (by default, true)

6 � Accounting for effect of environment on routers on an A-to-B
path

7 for each router routeri on an A− to − B path
8 for each environment-facing port e ∈ Env
9 for each path p from port e to routeri

10 � routerj is the jth router on e i,
where 1 ≤ j ≤ M (j)

11 E in
e→i,p = E in

e→i,p ∨ TM(j)(. . . (T1 (assumede)) . . .)

12 E in
e→i = E in

e→i ∨ V in
e→i,p

13 E in
i = E in

i ∨ E in
e→i

14 � Compute per-path reachability
15 Find all paths from B to A in G:

PathB A = {path1
B A, . . . , pathN

B A}
16 � routerji is the jth router on pathi

B A,
where 1 ≤ j ≤ M (j)

17 reachability
pathi

B A
B A =

TM(j)(. . . (T2 (E
in
2 ∨ (T1 (E

in
1 ∨ assumedB))))

18 Eliminate binary variables in reachabilityA B except those
corresponding to Xprefix

19 � Accounting for static routes
20 staticA B =

∨
i
(
∧
k

(StaticPrefix
Routerk

i
))

21 reachabilityA B = reachabilityA B ∨ staticA B

22 � Accounting for on-path ACLs. Routerki is the kth router on
pathi

A B

23 reachability
pathi

B A
B A =

reachability
pathi

B A
B A ∧ (

∨
k

ACLs
Routerk

i
)

24 � Compute all paths reachability

25 reachabilityA B =
∨
i

reachability
pathi

B A
A B

26 return reachabilityA B

Figure 19: Computing A-to-B reachability.

lower AD value than dynamic routing protocols (e.g.,
OSPF, BGP, RIP, IS-IS), which makes them take prece-
dence over these protocols. These behaviors are cap-
tures in lines 29-33.

8. Route selection is in charge of selecting the best route
out of multiple routes to the same destination prefix: (i)
if the routes belong to different routing protocols, the
routing protocol with the lowest AD value is selected,
(ii) if the routes belong to the same routing protocol,
the protocol-specific attributes determine which one is
selected. We have encoded protocol-specific attributes
in such a way that a smaller value denotes a more pre-
ferred route. Route selection is shown in lines 34-43.

9. As lines 44-48 denote, the last operation of the router

is applying the output filters.

C Computing Traffic Reachable
from A to B

We saw the high-level procedure to compute the traffic
reachable from port A to port B in the network in §6.1.
For concreteness, here we present the pseudocode for do-
ing so (Figure 19).
1. First, we account for the effect of the environment on

the routers that are located on a path from A to B
(lines 6-13).

2. The pseudocode then computes the routes that can
reach fromB toA over all paths between the two ports.
For each path, we sequentially use the visibility func-
tions of the on-path routers (lines 16-17). At this point,
we have computed all route advertisement prefixes that
reach from B to A, which is the traffic prefixes that
reach from A to B.

3. Then, since we are interested in route prefixes reach-
able from B to A, we ignore route fields that do not
correspond to prefix (i.e., AD and attributes) in line 18.

4. In addition to these prefixes, there is potentially other
traffic that can reach from A to B to static routes con-
figured on on-path routers. This is because while a
router does not advertise its static routes, proper static
routes end up in its forwarding table. By a proper static
route we mean a static route that points to the next on-
path router as its next hop. We account for static routes
in lines 19-20.

5. Since routers ACL rules restrict what traffic prefixes
will actually be forwarded, we then account for them
in lines 22-23.
Finally, the computed per-path reachability results are

unioned (lines 24-25).

230 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

References
[1] ERA. https://github.com/Network-

verification/ERA.

[2] 7007 Explanation and Apology. http://bit.
ly/1e4djtW.

[3] BGP Message Generation and Transport, and
General Message Format. http://bit.ly/
1VMOI0R.

[4] Border Gateway Protocol Path Selection. http:
//bit.ly/1T1w7IH.

[5] Cisco—What Is Administrative Distance? http:
//bit.ly/1OkgevM.

[6] Finding and Diagnosing BGP Route Leaks.
https://blog.thousandeyes.com/
finding-and-diagnosing-bgp-route-
leaks/.

[7] JDD, a pure Java BDD and Z-BDD library.
https://bitbucket.org/vahidi/jdd/
wiki/Home.

[8] Juniper—Route Preferences. http://juni.pr/
1fQC4LY.

[9] OSPF Message Formats. http://bit.ly/
1TvOwwL.

[10] Purdue campus network configuration files.
https://engineering.purdue.edu/

˜isl/network-config/.

[11] Route Leak Causes Amazon and AWS Out-
age. https://blog.thousandeyes.com/
route-leak-causes-amazon-and-aws-
outage/.

[12] Stanford campus network configuration files.
http://bit.ly/1rvoK5h.

[13] The Intel Intrinsics Guide. http://intel.ly/
24sk3uz.

[14] The Internet Topology Zoo. http://www.
topology-zoo.org/dataset.html.

[15] High Performance Service Chaining for Advanced
Software-Defined Networking (SDN) . http://
intel.ly/1ilX5PG, 2014.

[16] R. Beckett, R. Mahajan, T. Millstein, J. Padhye, and
D. Walker. Don’t mind the gap: Bridging network-
wide objectives and device-level configurations. In
Proc. SIGCOMM, 2016.

[17] R. E. Bryant. Graph-based algorithms for boolean
function manipulation. IEEE Trans. Comput.,
35(8):677–691, 1986.

[18] N. Feamster and H. Balakrishnan. Detecting BGP
configuration faults with static analysis. In Proc.
NSDI, 2005.

[19] A. Fogel, S. Fung, L. Pedrosa, M. Walraed-Sullivan,
R. Govindan, R. Mahajan, and T. Millstein. A gen-
eral approach to network configuration analysis. In
Proc. NSDI, 2015.

[20] L. Gao. On inferring autonomous system relation-
ships in the internet. IEEE/ACM Trans. Netw., 9(6),
Dec. 2001.

[21] A. Gember-Jacobson, R. Viswanathan, A. Akella,
and R. Mahajan. Fast control plane analysis using an
abstract representation. In Proc. SIGCOMM, 2016.

[22] A. Gember-Jacobson, W. Wu, X. Li, A. Akella, and
R. Mahajan. Management plane analytics. In Proc.
IMC, 2015.

[23] T. G. Griffin, F. B. Shepherd, and G. Wilfong.
The stable paths problem and interdomain routing.
IEEE/ACM Trans. Netw., 10(2):232–243, Apr. 2002.

[24] T. G. Griffin and J. L. Sobrinho. Metarouting. In
Proc. SIGCOMM, 2005.

[25] T. G. Griffin and G. Wilfong. An analysis of BGP
convergence properties. In Proc. SIGCOMM, 1999.

[26] C. Guo, L. Yuan, D. Xiang, Y. Dang, R. Huang,
D. Maltz, Z. Liu, V. Wang, B. Pang, H. Chen, Z.-
W. Lin, and V. Kurien. Pingmesh: A large-scale
system for data center network latency measurement
and analysis. In Proc. SIGCOMM, 2016.

[27] F. J. Hill and G. R. Peterson. Introduction to Switch-
ing Theory and Logical Design. 1981.

[28] P. Kazemian, G. Varghese, and N. McKeown.
Header space analysis: static checking for networks.
In Proc. NSDI, 2012.

[29] A. Khurshid, W. Zhou, M. Caesar, and P. B. Godfrey.
Veriflow: verifying network-wide invariants in real
time. In Proc. NSDI, 2013.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 231

[30] D. Knuth. The Art of Computer Programming, Vol-
ume 4A: Combinatorial Algorithms, Part 1. 2011.

[31] F. Le, G. G. Xie, D. Pei, J. Wang, and H. Zhang.
Shedding light on the glue logic of the internet rout-
ing architecture. In Proc. SIGCOMM, 2008.

[32] F. Le, G. G. Xie, and H. Zhang. Instability free
routing: beyond one protocol instance. In Proc.
CoNEXT, 2008.

[33] F. Le, G. G. Xie, and H. Zhang. Theory and new
primitives for safely connecting routing protocol in-
stances. In Proc. SIGCOMM, 2010.

[34] F. Le, G. G. Xie, and H. Zhang. On route aggrega-
tion. In Proc. CoNEXT, 2011.

[35] W. Liu, H. Li, O. Huang, M. Boucadair, N. Ley-
mann, Z. Cao, and J. Hu. Service Function Chaining
(SFC) Use Cases. http://bit.ly/1JTVneh,
2014.

[36] N. P. Lopes, N. Bjørner, P. Godefroid, K. Jayaraman,
and G. Varghese. Checking beliefs in dynamic net-
works. In Proc. NSDI, 2015.

[37] H. Mai, A. Khurshid, R. Agarwal, M. Caesar, P. B.
Godfrey, and S. T. King. Debugging the data plane
with Anteater. In Proc. SIGCOMM, 2011.

[38] D. A. Maltz, G. Xie, J. Zhan, H. Zhang,
G. Hjálmtýsson, and A. Greenberg. Routing design
in operational networks: A look from the inside. In
Proc. SIGCOMM, 2004.

[39] G. Varghese. Technical perspective: Treating net-
works like programs. Commun. ACM, 58(11):112–
112, Oct. 2015.

[40] S. Vissicchio, O. Tilmans, L. Vanbever, and J. Rex-
ford. Central control over distributed routing. In
Proc. SIGCOMM, 2015.

[41] K. Weitz, D. Woos, E. Torlak, M. D. Ernst, A. Kr-
ishnamurthy, and Z. Tatlock. Bagpipe: Verified BGP
configuration checking. In Proc. OOPSLA, 2016.

[42] H. Yang and S. S. Lam. Real-time verification of
network properties using atomic predicates. In IEEE
Transactions on Networking, 2015.

[43] H. Zeng, P. Kazemian, G. Varghese, and N. McK-
eown. Automatic test packet generation. In Proc.
CoNEXT, 2012.

232 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

