
This paper is included in the Proceedings of the
11th USENIX Symposium on

Operating Systems Design and Implementation.
October 6–8, 2014 • Broomfield, CO

978-1-931971-16-4

Open access to the Proceedings of the
11th USENIX Symposium on Operating Systems

Design and Implementation
is sponsored by USENIX.

Pebbles: Fine-Grained Data Management
Abstractions for Modern Operating Systems

Riley Spahn and Jonathan Bell, Columbia University;
Michael Lee, The University of Texas at Austin;

Sravan Bhamidipati, Roxana Geambasu, and Gail Kaiser, Columbia University

https://www.usenix.org/conference/osdi14/technical-sessions/presentation/spahn

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 113

Pebbles: Fine-Grained Data Management Abstractions for
Modern Operating Systems

Riley Spahn, Jonathan Bell, Michael Z. Lee∗, Sravan Bhamidipati,
Roxana Geambasu, and Gail Kaiser

Columbia University, ∗The University of Texas at Austin

Abstract
Support for fine-grained data management has all but

disappeared from modern operating systems such as An-
droid and iOS. Instead, we must rely on each individual
application to manage our data properly – e.g., to delete
our emails, documents, and photos in full upon request;
to not collect more data than required for its function;
and to back up our data to reliable backends. Yet, re-
search studies and media articles constantly remind us of
the poor data management practices applied by our appli-
cations. We have developed Pebbles, a fine-grained data
management system that enables management at a pow-
erful new level of abstraction: application-level data ob-
jects, such as emails, documents, notes, notebooks, bank
accounts, etc. The key contribution is Pebbles’s ability
to discover such high-level objects in arbitrary applica-
tions without requiring any input from or modifications
to these applications. Intuitively, it seems impossible
for an OS-level service to understand object structures
in unmodified applications, however we observe that
the high-level storage abstractions embedded in modern
OSes – relational databases and object-relational map-
pers – bear significant structural information that makes
object recognition possible and accurate.

1 Introduction
Despite recent high-profile failures in applications’

management of our data [2], in the absence of system-
level support for fine-grained data organization, we are
forced to entrust them with our data. When users perform
day-to-day data management activities – deleting indi-
vidual emails, identifying specific data that was viewed,
or sharing pictures – they are forced to rely on applica-
tions to behave properly. Yet, a 2010 study of 30 popu-
lar Android applications showed that 20 leaked sensitive
data, such as contacts or locations [11]. Our own study of
deletion practices within mobile apps, described later in
this paper, revealed that 18 of 50 popular Android appli-
cations left information behind instead of deleting it. No-
tably, we found that until 2011, Android’s default email
application left behind the attachments of deleted emails
while deleting the messages themselves.

Although a plethora of system-level data management
tools exist – including encrypted file systems [14, 16],
deniable file systems [42], auditing file systems [12], or
assured delete systems [28] – these tools operate at a
single level of abstraction: files. Without a one-to-one

mapping between user-relevant objects (for example, in-
dividual email messages in a mail client or documents in
a word processor) and files, such systems provide poor
granularity, preventing end-users from protecting indi-
vidual objects that matter to them.

Consider Android’s default email application: it stores
each email’s contents and to/from/subject fields as sev-
eral rows in a SQLite database (all emails are stored in
the same DB, which is itself stored as a single file), at-
tachments as files, and cached renderings of messages in
different files. Such complex object-to-file mappings are
typical in Android, as our large-scale measurement study
of Android storage patterns shows (§3). Moreover, oth-
ers have observed complex storage layouts in other OSes,
such as OSX, where researchers have concluded that “a
file is not a file” but a complex structure with complex
access patterns [18].

Given the complexity of these object-to-file mappings,
we ask: is it possible for system-level tools to support
management and protection at the granularity of user-
relevant objects? Intuitively, this would require devel-
opers to specify the structure of their applications’ per-
sisted data to the operating system. Nevertheless, we ob-
serve that the high level storage abstractions included and
predominant in today’s operating systems – the SQLite
relational database in Android and the CoreData object-
relational mapper in iOS – bear sufficient structural infor-
mation to recover these user-relevant data objects from
unmodified applications.

We call these objects logical data objects (LDO), ex-
amples of which include an email (including its to, from,
subject, body, attachments and any other related infor-
mation); a mailbox including all emails in it; a bank ac-
count in a personal finance application; etc. We present
Pebbles, a system that exposes LDOs to protection tools,
without introducing any new programming models or in-
terfaces, which can be prone to programmer error, slow
adoption, or incompatibility with legacy applications.

We implemented Pebbles and several new protection
tools based on it on the Android platform. Each of these
tools provides protection at the LDO level, leveraging
Pebbles to greatly simplify their development. Using
Pebbles tools, users can mark objects from their exist-
ing applications to verify their proper deletion, protect
their access from other applications, and back them up to
the clouds they trust.

114 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

In a study of 50 popular Android applications, we
found Pebbles to be highly effective in automatically
identifying LDOs. Across these apps, object recogni-
tion recall was 91% and precision was 97%. In other
words, in 91% of the cases, there was no leakage of data
from user-visible objects to LDOs, and in 97% of the
cases, there was no over-inclusion of extra data beyond
user expectation in LDOs. Pebbles relies on several key
assumptions based on common practices. Many of the
cases in which Pebbles had poor accuracy, it could have
been addressed had the developers followed these com-
mon practices.

Overall, this work makes the following contributions:
1. A study of over 470,000 Android apps, analyzing,

for the first time at scale, the storage abstractions in
common use today (§3). Our results suggest major
differences compared to traditional storage abstrac-
tions, which render file-level data management in-
effective while creating untapped opportunities for
object-level data management.

2. The first design and implementation of a persistent
data object recognition system that requires no
app changes (§4 and §6). Our design taps into
the opportunities observed from our large-scale
Android app study. We make our code available
from https://systems.cs.columbia.
edu/projects/os-abstractions.

3. Four protection tools implemented atop Pebbles,
demonstrating the power and value of application-
level objects to protection tools (§5).

4. An evaluation of LDO construction accuracy with
Pebbles over 50 popular applications from Google
Play, showing it to be effective in practice (§7) and
underscoring its well-defined failure modes (§8).

2 Motivation and Goals
We begin by presenting a set of example scenarios that

highlight the need for fine-grained data management sup-
port within modern OSes.
2.1 Example Scenarios
Scenario 1: Object Deletion: Ann, an investigative
journalist, has received an extremely sensitive email on
her phone with an attachment that identifies her sources.
To protect her sources, Ann does her due diligence by
deleting the email immediately after reading its con-
tents and restarting her phone to clean up any traces left
in memory. Her phone is already configured with an
assured-delete file system [28] that deletes data promptly
upon request. Worried that the application might have
created a copy of her data without her knowledge or con-
trol, she wonders: Is there any remnant of that email left
anywhere on the phone? She is disappointed to realize
that she has zero visibility into the data stored on her
device. Weeks later, she learns that her fears were well-

founded: the email app she is using contains a bug that
leaves attachments intact when an email is deleted.

Scenario 2: Object Access Auditing: Bob, a financial
auditor, uses his phone for all interactions with client
data while on field engagements. Recently, Bob’s device
was stolen. Fearing that his fingerprint unlock might
not withstand motivated attackers [41], Bob asked his
IT admin a natural question: Has any of my clients’
data been exposed? The admin’s answer was mixed.
Although activity on Bob’s phone was tracked by a re-
mote auditing file system [12], the logs show that a file,
/data/data/com.android.email/cache/7dcee8,
was accessed immediately before the phone’s wipe-out.
The file stores the HTML rendering of an email, but no
one knows which email. Bob is left wondering what he
should disclose to clients about the potential exposure of
their data, and to which clients, since neither he nor the
IT staff can map that file to a specific client or email.

Scenario 3: Object Access Restriction: Carla, a lo-
cal politician, uses her phone to take photos for profes-
sional purposes, but she has several personal photos on
it as well. She uses a cloud-based photo editor to en-
hance her promotional photos before posting them. Due
to the coarse-grained permissions model of her Android
device, she must provide this photo editor with access to
all of her photos in order to use it. Carla is concerned that
the photo editor may be secretly collecting all the photos
from her device, including several potentially sensitive
photos that could be politically compromising.

2.2 Goals and Assumptions
The above hypothetical users, along with millions of

real-life users of mobile technology, have a mental model
of application-level objects that is not matched by cur-
rent protection tools. Ann wants to ensure that a par-
ticularly sensitive email is deleted in full, including at-
tachments, to, from, any related caches, and other fields;
Bob wants to know the sender or contents of a compro-
mised email instead of a meaningless file name; Carla
wants to protect a few of her most sensitive photos from
prying applications. Traditional protection tools, such as
file-based encryption, auditing, or secure deletion cannot
fulfill these needs because the mapping between objects
and files is application-specific and complex. The alter-
native, whole-disk encryption [1, 38], does not provide
the flexibility that these users need.

To support such object-level data management needs,
we developed Pebbles, a system that automatically re-
constructs application-level logical data objects (LDOs)
from unmodified applications. Pebbles exposes these
LDOs to any system-wide protection tool that could ben-
efit from understanding application-level objects. An en-
cryption system could use LDOs to support meaningful
fine-grained protection as an extra layer on top of whole-

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 115

disk encryption. An auditing system could use LDOs to
provide meaningful information about an accessed com-
ponent. An object manager could reveal to users which
parts of an object are left after deletion. And a backup
system could let users choose their most sensitive objects
for backup onto a trusted, self-managed server, letting
the rest be backed up into the cloud.
Goals. The Pebbles design was guided by three goals:

G1: Accurate and Precise Object Recognition: Pebbles
objects (LDOs) must closely match application-
level persisted objects. This includes: (a) avoiding
data leaks (if an item belongs to an LDO it must be
included), and (b) avoiding data over-inclusions (if
an item does not belong to an LDO it should not be
included).

G2: Meaningful Granularity: Pebbles must recognize
LDOs that are meaningful to users, such as individ-
ual emails.

G3: No New Application APIs: Pebbles must not require
app developers to use new APIs; it can recommend
developers to follow existing common practices but
must work well even if they do not precisely follow.

Our first goal is accurate and precise object recogni-
tion (G1). We aim to achieve (1) good object recognition
recall by avoiding leaks and (2) good object recognition
precision by avoiding over-inclusions. We acknowledge
that perfect recall or precision cannot be guaranteed in ei-
ther an unsupervised approach or in a supervised API ap-
proach with imperfect developers, since a poorly written
app could convolute data structure in a way that Pebbles
cannot recover. However, we wish to formulate clearly
all potential sources of leakage, to design mechanisms to
address the leakages for most applications (§4.2), and to
remind developers how they could avoid such leakages
by following existing common practices (§8).

Related to G1, our second goal (G2) is to recognize
relevant and meaningful LDOs. For example, in an
email app, Pebbles should be able to recognize individual
emails, not just coarse accounts with many emails. We
note here that Pebbles identifies application-level objects
that are persisted in stable storage, and we assume that
those have a direct mapping onto the objects that users
interact with and wish to protect.

G3 stems from our skepticism that developers will
convert applications to use new security-related APIs or
correctly use such APIs. However, we do expect that
most developers will follow certain common practices
(as evaluated in §3). Pebbles addresses this by leveraging
application-level semantics already available within stor-
age abstractions such as database schemas, XML struc-
tures, and the file system hierarchy. Pebbles also pro-
vides recommendations for developers which are rooted
in already popular development practices (§8).

Traditional Linux OS Modern Android OS
(thinner OS, taller apps) (taller OS, thinner apps)

FS
Standard Libs

Kernel

App

custom
store

App

SQLite

App

My
SQL

FS

Standard Libs

Kernel

App AppPebbles
protection

Traditional
protection

App

Android Framework

SQLite
K-V
Store Files

Fig. 1: OS Storage Abstraction Evolution. Modern OSes pro-
vide higher-level abstractions for data management, yet protec-
tion is often at the traditional file level. Pebbles, our aligns data
protection with modern abstractions.

Threat Models and Assumptions. Pebbles is designed
to support fine-grained data management – such as en-
cryption, auditing, and deletion of individual emails,
photos, or documents – within modern OSes. The spe-
cific threat model for a given protection tool depends on
that tool’s goal; however, Pebbles’s mechanisms should
bolster the guarantees applications can provide. In gen-
eral, we assume that protection tools are trusted system-
wide services. This is similar to assumptions made by
encrypted file systems, assured-delete file systems, and
other current fine-grained data management tools.

We also assume that mobile applications that create or
have access to a particular object, or part thereof, will not
obfuscate their data’s structure or act maliciously against
Pebbles. For example, they will not create their own
data formats and will not willfully interfere with analysis
mechanisms involved in object discovery. An application
that has not yet been given access to data of a particular
object, however, need not be trusted.

The scope of Pebbles is confined to those application-
level objects that are persisted into a device’s stable stor-
age. We explicitly ignore attackers with access to either
RAM or the underlying OS or hardware. If volatile mem-
ory protection is important, we recommend combining
Pebbles with secure memory deallocation [6, 7, 15], OS
buffer cleaning [10], and idle in-RAM data eviction [39]
mechanisms. We also assume that secure disk scrub-
bing [29, 40] is deployed. In addition, while many mod-
ern applications include a cloud component, which stores
or backs up data, Pebbles currently ignores that compo-
nent. In the future, we plan to extend Pebbles LDOs to
transcend the local and cloud environments.

While some may believe that users are incapable of
dealing with fine-grained controls, we believe that there
are many circumstances in which users want and are ca-
pable of handling some level of control, particularly for
their most sensitive data. Evidence that users are capa-
ble of handling, and require, some level of control when
they feel it is important for them to do so is available in
prior studies [5, 20]. Such evidence can also be gauged

116 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

Storage
Abstraction	

# Apps	

(of 98)	
 Example Apps	

No storage	
 5	
 Cardio Trainer	

DB only	
 43	

CWMoney, Amazon, BestBuy,
Browser, Calendar, Contacts,
ColorNotes, EverNote	

FS only	
 3	
 Exchange Rates	

KV only	
 5	
 Google Talk, Biorythms	

DB+FS	
 24	
 OINote, Angry Birds, DropBox,
Gallery	

DB+KV	
 1	
 Twitter	

FS+KV	
 2	
 Adobe Reader, Temple Run	

DB+FS+KV	
 15	
 Email, Antivirus, Amazon Kindle,
Astro File Manager, Box, EBay	

App	
 Object	
 DB/FS Use	

Email	

(DB+FS+KV)	

Email	
 to/from/date in one DB table; contents
in another table; attachments in FS	

Mailbox	
 name/server/account in one DB table;
includes emails; backup in kv	

Account	
 address/meta data in one DB table;
includes mailboxes, emails	

OINote	

(DB+FS)	
 Note	
 title/note/tags/ in one DB table; notes

exported as files in /sdcard FS	

CWMoney	

(DB only)	

Expense	
 name/amount in one DB table	

Category	
 category name in one DB table;
includes expenses	

Account	
 name/balance in one DB table;
includes categories, expenses	

Storage
Library	

# of Apps	

(of 476,375)	

ORMLite	
 6,846	

(1.4%)	

SQLCipher	
 168	

(0.3%)	

DB4o	
 116	

(0.2%)	

H2	
 16	

(0.0%)	

Other 4 libs
combined	

38	

(0.0%)	

(a) Use of SQLite (DB), FS, and key/value (KV) store	
 (b) Third-party
library use	

(c) Example object structures	

Fig. 2: Storage API Usage in 98 Android Applications. (a) Number of apps that use the various storage abstractions in Android.
Most apps use DB, but many also use FS and KV together with DB. (b) Use of eight other storage libraries among 476K free apps
from Google Play. Third-party storage libraries are largely irrelevant. (c) Structure of sample objects in a few popular apps. Object
structure is complex and spans multiple abstractions.

from the immense popularity of data hiding apps, such
as Vault-Hide [25] and KeepSafe Vault [19], which have
garnered over 10 million downloads each and let users
hide data, such as photos, contacts, and SMSes.

3 Study: Android Storage Abstractions
The Pebbles design is motivated and informed by our

high-level observation that storage abstractions within
modern OSes are evolving in major yet unquantified
ways. Fig.1 shows this evolution. Specifically, we hy-
pothesize that the inclusion of high-level storage abstrac-
tions, such as the SQLite database in Android or the
CoreData abstraction in iOS, has created a new “narrow
waist” for storage abstractions that largely hides the tra-
ditional hierarchical file system abstraction. These new
storage abstractions should bear sufficient structure to let
us reverse engineer application-level data objects from
the OS’s vantage point.

In this section, we perform a simple measurement
study to gauge the use of these abstractions and extract
useful insights to inform our design of Pebbles. We
specifically ask the following questions:

Q1 What storage abstractions do Android apps use?
Q2 How do individual apps organize their data?
Q3 How are these abstractions used?

Background. Android provides three storage abstrac-
tions [13] relevant to this paper: 1. SQLite Database:
Stores structured data. 2. XML-based Key/Value Store:
Stores primitive data in key/value pairs (also known as
the SharedPreferences API). 3. Files: Stores unstruc-
tured data on the device’s flash memory.
Methodology. We ran both static and dynamic ex-
periments. Static experiments can be run at large
scale but lack precision, while dynamic experiments

provide precise answers but can only be run at small
scale. For static experiments, we decompiled An-
droid applications and searched their source code for
imports of the storage abstractions’ packages (e.g.,
android.database.sqlite). We ran large-scale,
static experiments on 476,375 apps downloaded through
a February 2013 crawl of Google Play [44], the main
Android app market. For the dynamic experiments (over
98 apps), we installed Android apps on a Nexus S phone,
manually interacted with them, and logged their accesses
to the various APIs. These were some of the most popu-
lar apps, cutting across categories such as email clients,
editors, banking, shopping, social, and gaming.

Results. Q1 Answer: Apps primarily use SQLite, but
use other abstractions as well. Fig. 2(a) classifies apps
according to the Android-embedded storage abstractions
they use during execution. It shows that the usage of
Android-provided abstractions – SQLite (denoted DB)
and the key/value store (denoted KV) – eclipses the tradi-
tional file abstractions (denoted FS). Very few apps rely
on the FS as their only storage abstraction (4/98). Al-
most half of the apps rely solely on SQLite for all of their
storage needs (43/98), while almost all apps that have
some local storage use SQLite (81/92). Even apps that
one would consider to be primarily file-oriented (e.g.,
Astro File Manager, DropBox) use SQLite. A signifi-
cant fraction of the apps (41/98) rely on more than one
abstraction, and a notable fraction (15/98) rely on all
three abstractions. This last result suggests a complex
disk layout, a topic discussed further below. Overall, the
most popular formations are: DB-only (43/98), DB+FS
(23/98), and DB+FS+KV (15/98).

A related question is whether mobile apps use storage
abstractions other than those provided by Android. An-

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 117

gry Birds, for example, stores game data and high scores
in opaque binary files. We also searched the Internet for
recommended Android storage options beyond those in-
cluded in the OS, finding eight third-party libraries. We
searched our 476K-app corpus for use of those libraries,
and present the results in Fig. 2(b). None of these li-
braries are popular: only 2% of the apps use even one
of them. Our dynamic experiments found that none of
these libraries are used and provided no indication of ad-
ditional libraries that we might have overlooked.

Q2 Answer: Data objects span multiple storage ab-
stractions. Fig. 2(c) shows the structures of several
logical data objects, representative of what users think
and care about in various applications. It shows that ob-
jects often have complex structures that involve multi-
ple storage abstractions. For example, Android’s default
email client, an example of the DB+FS+KV formation,
stores various fields of the email object in two DB ta-
bles, attachments in the FS, and account recovery infor-
mation in the KV. Object structure is fairly complex even
for DB-only apps, such as CWMoney, a personal finance
app, where a category includes metadata in one table and
all expenses in another table. It thus spans multiple ta-
bles that are not linked together through explicit foreign
keys. This suggests that protecting each storage abstrac-
tion separately will not work: any data protection ab-
straction at the end-user object level must span multiple
storage abstractions.

Q3 Answer: SQLite is the hub for data management.
Given this complexity, a natural question concerns how
one can even begin to build some meaningful protection
abstraction. Using a modified TaintDroid (a popular data
flow taint tracking system for Android [11]) version, we
tracked the flow of data between storage abstractions,
confirming that at least 70/81 apps that use the DB use
it as a central hub for managing their data. By cen-
tral hub, we mean that data flows mostly from the DB
into the FS/KV (when they are used) or is accessed us-
ing pointers from the DB; an observation that was true
for 27 of the 38 apps that use FS or KV in addition to
the DB. For example, many apps, including Email, use
files to store caches of rendered versions of data stored
in SQLite (such as the body of an email) or blobs of data
that are indexed and managed through SQLite (such as
the contents of pictures, videos, or email attachments).

Thus, SQLite is not just frequently used; it is the
central abstraction in Android that originates or in-
dexes much of the data stored in the other abstractions.
This result is encouraging because, intuitively, relational
databases bear more explicit structure.
Implications for the Pebbles Design. Overall, our re-
sults suggest that while the storage abstraction landscape
is fairly complex in Android, there is sufficient unifor-
mity to warrant constructing of a broadly applicable ob-

Pe
bb

le
s-

A
nd

ro
id

(m

od
ifi

ed
)

Unmodified Application

Li
nu

x
(u

nm
od

ifi
ed

)

Modified Java Runtime (Tracks
data flow with TaintDroid)

Modified
SQLite

Modified
XML store

Modified
FS API

Pebbles Relationship Registration

DB
Fil
es

DB
Fil
es

<>…<><>…<><xml>
<>…<>
</xml>

DB Files XML Files

<>…<><>…<>011
0101010
1010101

Opaque Files

Protection Tool

Pebbles API
Pebbles

Object Manager
LDOs

Fig. 3: The Pebbles Architecture. Consists of a modified An-
droid framework and a device-wide Pebbles Object Manager.
The modified framework identifies relationships between per-
sisted data items, such as rows, XML elements, or files. The
Pebbles Object Manager uses those relationships to construct
an object graph; nodes map to persisted data items and edges
map to relationships.

ject system. Such a system must detect relationships be-
tween objects stored in different abstractions. The re-
sults suggest that SQLite, a relational database that bears
significant inherent structure, is the predominant storage
abstraction in Android. Raw files, which lack such struc-
ture, are just used for overflow storage of bulk data, such
as images, videos, and attachments. Based on these in-
sights, we construct Pebbles, the first system to recog-
nize application-level objects within modern operating
systems without application modifications.

4 The Pebbles Architecture
Pebbles aims to reconstruct application-level LDOs –

emails and mailboxes in an email app, saved high scores
in a game, etc. – from the bits and pieces stored across
the various data storage abstractions without requiring
application modifications.
4.1 Overview

Fig. 3 shows the Pebbles architecture, which consists
of two core components: (1) Pebbles Android, a mod-
ified Android framework that interposes on the various
storage APIs, and (2) the Pebbles Object Manager, a sep-
arate device-wide entity for building object graphs and
interacting with protection tools.

At the most basic level, the Pebbles Android frame-
work understands units of storage (e.g., rows in DB, ele-
ments in XML, and files in FS) which become nodes in
our object graph. The Pebbles Android framework then
retrieves explicit relationships between these nodes and
derives implicit relationships by tracking data flows be-
tween these units. The Pebbles Android framework reg-
isters these relationships with the Pebbles Object Man-
ager using an internal registration API. The Pebbles Ob-
ject Manager then stores these relationships, compiles a
device-wide object graph, derives LDOs from the graph,
and exports the LDOs to protection tools via the Pebbles

118 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

Attachment
file

Account

Mailbox

Message

Body
Attachment

fk

fk

fk

fk

Cache
file

<XML>

SQLite DB

access

data

data

SharedPreference

Fig. 4: Android Email App Object Structure. A simplified
object graph for one account with one mailbox, message, and
attachment. Each node represents an individual file, row, or
XML element, and each edge represents a relationship. While
objects can be spread across the DB, FS, and Shared Prefer-
ences, the DB remains the hub for all data.

API. LDOs are defined as follows: given a node in the
graph (e.g., corresponding to a row in the Email table)
an LDO is the transitive closure of the nodes connected
to it. §7 evaluates Pebbles performance in terms of pre-
cision and recall. In the context of the graph, a failing
of recall is missing nodes which should be included in
a transitive closure (“leakage”); a failing of precision is
including nodes which should not be included in a tran-
sitive closure (“over inclusion”).

To provide a concrete example of the challenges faced
by Pebbles, consider Fig. 4, a simplified view of how data
is stored by the default Android Email application. As
described previously in §3, this app stores its data across
all three storage abstractions: SQLite database, Shared-
Preference and individual files. Although a SharedPref-
erence is used for account recovery, and several files are
used to store an attachment and a cached rendering of it,
the majority of the data is stored in SQLite.

4.2 Building the Object Graph
The object graph is the center of innovation in Peb-

bles: it directly represents Pebbles’s understanding of
the structure of an app’s data and lets it construct LDOs.
Each file, row, and XML element is assigned a 32 bit
device-wide globally-unique ID (GUID) that is stored
with the data item, which are hidden from and unmod-
ifiable by applications. For database rows, the GUID is
stored as an extra column in the row’s table; for XML, it
is stored as an attribute of each element; and for files, it is
stored in an extended attribute. When a row, element, or
file is read, the data coming from it is “tainted” with its
GUID and tracked in memory using a modified version
of the TaintDroid taint tracking system [11].

Pebbles builds the object graph incrementally by
adding new files/rows/XML elements as nodes into the
graph as they are created. It also adds directed edges
(called relationships) between nodes in the graph as they
are discovered. For example, when data tainted with one
GUID is written into a file/row/XML element with an-
other GUID, a relationship is registered. All nodes and
edges of the graph are registered by the modified Android
framework with the Pebbles Object Manager, where they

are persisted in a database. We next describe the mecha-
nisms used to build this graph, formalized in Fig. 5.

Data flow propagation relationships: It is easy to see
a strawman approach to detecting relationships between
objects: when Pebbles detects that data tainted with node
A’s GUID is written into node B, it adds A ↔ B to the
object graph. This approach can capture all data flow
relationships that occur within an application, regardless
of the storage abstraction used. However, without pre-
cise information about the relationship between the two
nodes, Pebbles is forced to assume the “worst case” sce-
nario: that both nodes are part of the same LDO. Left
unchecked, this so called taint explosion could eventu-
ally lead to all of an app’s objects being included in the
same LDO. Such behavior contradicts our primary goal
of accurate and precise object recognition (G1). As we
will see in §7.1, this naı̈ve approach leads to unaccept-
ably low precision (70%).

Utilizing explicit relationship information: Our next
relationship detection mechanism relies on explicit re-
lationships that directly communicate the programmer’s
view of his data structure to improve the precision. In
a relational database, explicit relationships are defined in
the form of foreign keys (FKs), which encode the precise
relationship between two tables, based on primary keys
(PKs). Interestingly, we can also extract a notion of for-
eign keys when relating DB rows to files: in some apps,
the name of the file corresponds to the PK of the row
to which it refers. Foreign keys encode the directional-
ity of relationships, specifying for instance the difference
between a “has-a” relationship and an “is-part-of” rela-
tionship. If node A has an FK to node B, then Pebbles
adds the edge A → B (overriding any pre-existing bi-
directional edge detected from data flow propagation).
In this way, foreign keys are precise but limited in cov-
erage because they require programmers to specify them
explicitly.

Increasing recall: Pebbles relies on one final relation-
ship detection mechanism, access relationships. Access
relationships can be seen as similar to data relationships,
but while data relationships identify relationships as they
are written to storage, access relationships identify rela-
tionships as they are read. Consider the case where an
application has some data in memory that has not been
synced to stable storage (and therefore is not yet tainted
with any node’s GUID). The app uses the data to gener-
ate the index for key-value object A and also writes that
data into database row B. In the absence of explicit rela-
tionship information, we would hope that data propaga-
tion would detect the relation; however, it cannot because
there is no data flow relationship when the data is writ-
ten. We call this situation a parallel write, and resolve
it by detecting data flow relationships when data is read

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 119

Property 4.1. Apps define explicit relationships through
FKs in DBs, XML hierarchies, or FS hierarchies

Property 4.2. The SQLite database is the hub of all per-
sisted data storage and access

Object Graph Construction Algorithm:

1. Data propagation: If data from A is written to B, then
A ↔ B

2. If possible, refine A ↔ B to A → B using Prop 4.1
3. Access propagation: If data from A is used to read B,

then A ↔ B

4. If possible, refine A ↔ B to A → B, again using Prop
4.1

5. Utilize Prop 4.2, eliminating access based data propa-
gation relationships that do not include any DB nodes.

Fig. 5: Object Graph Construction Rules.

in from storage: if data tainted with node A’s GUID is
used to access (read) node B, Pebbles adds A ↔ B to the
object graph. Again, this process is agnostic to the stor-
age abstraction that the data is stored in, and relies only
on data flow within the app. Access relationships can
become an even greater source of imprecision than data
relationships. For example, one could use data from one
row, such as a timestamp, to select all the rows with that
timestamp. Does that imply that all those rows should be
considered as one object? Probably not.

Graph Generation Algorithm: Fig. 5 defines the algo-
rithm used to construct the object graph, based on the
observation that the DB is the hub of all persisted data.
Step (1) leverages data flow propagation to construct a
base graph, while (2) refines that graph by applying ex-
plicit relationship information. Step (3) applies access
based data flow propagation to increase recall, and (4)
again refines that graph with explicit relationship infor-
mation. §7.1 evaluates LDO construction accuracy and
precision in detail.

4.3 LDO Construction and Semantics
After constructing the object graph using the above se-

mantics, Pebbles extracts the LDOs. Within the graph,
an LDO is defined as the set of reachable nodes starting
with a given node (the root of the object). Consider the
email graph (Fig. 4), one can define a number of LDOs:
an Account LDO, rooted in one Account-table row and
containing multiple instances of five other row types, two
files, and one XML entry; an Email LDO, rooted in one
Message-table row and containing another row and one
file, and so on. Although one LDO of each type is de-
fined in the figure, in reality, there would be as many
LDOs as there are instances of that type.

It is possible and correct for a single node to be part of
multiple otherwise separate LDOs, in which case we say
that the LDOs overlap. Consider, for instance, stateful
accumulators (e.g. counts or sums over objects, stored in

Interface Returned Objects

getLDOContent(GUID,

relevantOnly)

LDO rooted at GUID

getParentLDOs(GUID,

relevantOnly)

LDOs that contain GUID

Table 1: The Pebbles API for Accessing LDOs.

other objects), common resources (e.g. cache files that
contain information about multiple objects), or log files.

Pebbles exposes LDOs to protection tools via the Peb-
bles API, which consists of two functions (Table 1).
getLDOContent returns the LDO rooted at the given
GUID and getParentLDOs returns the LDOs contain-
ing the given GUID. Protection tools may specify with
each call if only LDOs that may be relevant to the end-
user should be returned.
4.4 From User-Level Objects to LDOs

Both of these API methods require an “object of in-
terest” as a parameter. Pebbles provides a framework for
protection tools to allow users to directly select an object
of interest (from the user interface), and then use that ob-
ject for future API calls. In this approach, a user enables
a “marking mode” from a device-wide menu item, and
then touches the item that they are interested in. Through
taint tracking, we can determine the internal GUID for
the object that was selected, and return that GUID back
to the protection tool. This feature makes designing user-
centric protection tools very easy: the tool need not con-
cern itself with determining which objects to protect.

The mechanisms described thus far are useful for
building a graph of all of an application’s objects, but
does not yet include a way to identify those objects that
are relevant to users. For instance, in our email appli-
cation there is another table, “sync state,” that stores
how recently an account was synchronized with the
server. Sync state should clearly not be considered its
own LDO, as its existence is essentially hidden from the
end-user – the user will likely consider whatever data is
stored here as, logically, part of the account. Pebbles
leverages its system-wide taint tracking to identify which
nodes in the object graph are directly displayed on the
screen, Pebbles marks those objects (and other LDOs of
the same type) as relevant. If an object is not relevant,
then Pebbles will not allow it to be the root node of an
LDO, instead including it as a member of the nearest par-
ent node displayed on the screen.

5 Pebbles-based Tools
To showcase the value of Pebbles, we built four differ-

ent applications that leverage its object graph.
5.1 Breadcrumbs: Auditing Object Deletion

Motivated by Scenario 1 in §2.1, Breadcrumbs lets
users audit the deletion of their objects – such as emails

120 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

Algorithm 1 Breadcrumbs Pseudocode
function WASFULLYDELETED(LDO l) B →

for all getLDOContent(l) as x do
if x exists still then Add x → B
end if

end for
for all B as x do

Display x and getParentLDOs(x) to the user
end for

end function

or documents – by their applications. It uses Pebbles’s
primitives to track objects as they are being deleted and
identify any breadcrumbs left behind by the application.

Fig. 6: Breadcrumbs.

Users mark objects to au-
dit for deletion (using Peb-
bles’s object marking func-
tionality), and then delete the
object through their unmodi-
fied applications. They then
open the Breadcrumbs appli-
cation, which shows any per-
sisted data related to recently
tracked objects. In this way,
users are not inundated with notifications about deletions
and instead are only being presented with auditing infor-
mation upon request. Fig. 6 shows a screenshot of Bread-
crumbs’s output when the user deletes an email in the
Android email application. It shows the attachment file
left behind and provides meaningful information about
the leakage. A brief predefined interval after the user
deletes a tracked object, Breadcrumbs destroys all rele-
vant auditing information to protect the confidentiality of
the partially deleted object.

Algorithm 1 shows how Breadcrumbs uses Pebbles’s
APIs to obtain all information necessary to identify and
provide meaningful information about data left behind.
Given a selected UI object, Pebbles identifies the GUID
of the LDO represented by that LDO (as described
in the previous section), and then Breadcrumbs calls
getLDOContent to get all of its parts. For any part
that still exists in persistent storage – the attachment file
in this case – it displays meaningful metadata about that
node. For example, instead of just showing the file’s
path, which can be nondescript, Breadcrumbs uses Peb-
bles’s getParentLDOs function to retrieve the parent
node, presumably a row. It displays the row’s table name
(“Attachment” in Fig.6), providing more context for in-
formation left behind. While the specific user interface
we chose for Breadcrumbs can be improved, this ex-
ample underscores the great value protection tools like
Breadcrumbs can draw from understanding application-
level object structures.

Our evaluation of Breadcrumbs on 50 apps (§7.3), re-
veals that incomplete deletions are surprisingly common:

Fig. 7: Alert Screenshots. (L): TaintDroid, (R): PebbleNotify.

18/50 apps leave breadcrumbs or refuse to delete objects
from the local device.

Breadcrumbs could also be a useful tool for devel-
opers. A developer could proactively use Breadcrumbs
to ensure that they are responsibly handling their user’s
data.
5.2 PebbleNotify: Tracking Object Exfiltration

Inspired by TaintDroid’s data exfiltration tool [11], we
built PebbleNotify, a tool that tracks exfiltration at a more
meaningful object level. TaintDroid reveals data exfiltra-
tion at a coarse granularity: it can only tell a user that
some data from some provider was exfiltrated from the
device, but not the specific data that was leaked. For
instance, consider a cloud-based photo editing applica-
tion. A user might expect this application to upload the
photo being edited to a server for processing; however,
he may be interested in checking that no other photos
are exfiltrated. Shown in the left hand side of Fig.7,
TaintDroid would warn the user that data related to some
photo was uploaded, but not which photo or how many
photos. PebbleNotify is a 500 line of code application
built atop Pebbles that interposes on the same taint sinks
as TaintDroid, but provides object-level warnings. §6 de-
scribes in somewhat greater detail the modifications that
we made to TaintDroid to track individual objects with
high precision. Shown in the right hand side of Fig.7,
it leverages application-level data structures exposed by
Pebbles to give users meaningful, fine-grained informa-
tion about their leaked objects.
5.3 PebbleDIFC: Object Level Access Control

As a logical extension to PebbleNotify, consider the
case where rather than monitor the exfiltration of sensi-
tive data, users want to prevent specific apps from having
access to it. For example, in our previous example of a
user using a cloud-based photo editing application, per-
haps the user would rather simply prevent that photo edit-
ing app from having any access whatsoever to sensitive
photos. PebbleDIFC supports this use-case by interpos-
ing on Android content providers, the mechanism used
to share data between apps.

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 121

PebbleDIFC allows users to select individual objects
that are sensitive, and then prevent them from being
shared with other applications (in this case, photos). As
with the rest of our protection tools, PebbleDIFC’s im-
plementation is straightforward. Before returning an ob-
ject from a content provider, PebbleDIFC checks a table
that maps apps to hidden objects, and prevents access to
hidden objects.

5.4 HideIt: Object Level Hiding
Whereas PebbleDIFC allows objects to be perma-

nently hidden from specific apps, HideIt supports a
slightly different use case: allowing objects to be selec-
tively hidden from all apps on the device, and then re-
displayed at some later point, and perhaps hidden again
later on. When objects are hidden (again, using Pebbles’s
marking mode), they are encrypted, and any record of
their existence is filtered, by interposing on storage APIs.
When objects are un-hidden, they are decrypted, and no
longer filtered from API results. HideIt is intended for
use-cases where small amounts of data need to be infre-
quently hidden from prying eyes, for instance, a parent
lending their phone to their child.

5.5 Other Pebbles-based Tools
Although we designed and implemented Pebbles for

Android, we believe that its object recognition mech-
anisms are applicable to other environments where a
database is used as the hub of storage. In particular,
we can imagine applying Pebbles as a software engi-
neering tool to help developers understand either current
or legacy applications where the database is the storage
hub. A developer could use Pebbles to explore undocu-
mented systems that do not make use of modern abstrac-
tions such as object relational mappers that would make
the system easy to understand or to determine whether an
application conforms to best practices and alert the de-
veloper if not. Understanding data structure from below
the application could also enable testing tools and policy
compliance auditing tools for cloud services [36]. We
leave investigation of such applications for future work.

6 Implementation
We implemented Pebbles and each of the four

above protection tools on Android 2.3.4 and TaintDroid
2.3.4. For Pebbles, we modify the SQLite, XML
key/value store (a.k.a. SharedPreferences), and Java
file system API to extract explicit structure, to inter-
cept read/write/delete operations, and to register rela-
tionships. We also make several key changes to the
TaintDroid tracking system, which we release as open
source (https://systems.cs.columbia.edu/
projects/os-abstractions). We next review
our TaintDroid changes, after which we describe some
implementation-level details of object graph creation.

TaintDroid Changes. To support Pebbles, we made
three modifications to TaintDroid: (1) we increase the
number of supported taints from 32 to several million, (2)
we implement multi-tainting to allow objects to have an
arbitrary number of taints simultaneously, and (3) we im-
plement fine-grained tainting. The first two TaintDroid
changes are necessary to track every row, file, and XML
element with a separate taint and are implemented with
a technique recently proposed in the context of another
taint tracking system [26]. We omit the details here for
space reasons.

The third TaintDroid change is motivated by mas-
sive taint explosion that we observed due to TaintDroid’s
coarse-grained tracking. Specifically, TaintDroid stores
a single taint tag per String and Array [11]. Deemed
a performance benefit in the paper, this coarse-grained
tracking is unusable in Pebbles: we observed extremely
imprecise object recognition and application-wide LDOs
due to this poor granularity. As one example, CWMoney,
a personal finance application, has an internal array that
holds selection arguments used in database queries. This
causes all nodes selected by that query to be related, de-
feating any hopes of object precision.

To address this problem, we modify TaintDroid to add
fine-grained tainting of individual Array and String el-
ements. To implement fine-grained tainting we add a
shadow buffer to the Dalvik ArrayObject that contains
the taint of each element in the array. If implemented
naively, the shadow arrays would likely double the mem-
ory required for each array. To minimize the memory
overhead from the shadow arrays we allocate the shadow
array only when a tainted element is inserted into the ar-
ray. This same optimization is implemented in [8]. In-
tuitively, only a small fraction of arrays in an device’s
memory should contain tainted elements (3-5% accord-
ing to our evaluation). §7.2 shows that this lazy shadow
array allocation significantly reduces the memory over-
head of precise fine-grained tainting. We release our
changes open source as a patch for TaintDroid.
Object Graph Implementation. The Pebbles graph
is populated incrementally during application execution
and persisted in a central database on the data partition
so the graph does not need to be regenerated on each re-
boot. Applications interact with the Pebbles API through
the Pebbles Object Manager that runs as part of the cen-
tral system server process. Graph edges are generated
on read and write operations to SQLite, shared prefer-
ences, and the file system. On read and write opera-
tions that generate new edges, requests for edge registra-
tion are placed on a queue within the application’s mem-
ory space. This lets Pebbles perform bulk asynchronous
registrations off of the main application thread improv-
ing application interactivity even during periods of heavy
edge creation. In its current implementation the registra-

122 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

tion queue is not persisted to stable storage so it will be
lost on application crashes or restarts. This is a potential
attack vector that does not fall under the threat model for
non-malicious applications.

7 Evaluation
We evaluate Pebbles over 50 popular applications

downloaded from Google’s Android market on a Nexus
S running our modified version of Android 2.3.4. We
seek answers three key questions:
Q1 How accurate and precise is object identification in

Pebbles?
Q2 What performance overhead does it introduce?
Q3 How useful are Pebbles and the tools running atop?

Application Workloads. We chose 50 test applica-
tions from the top free apps within 10 different Google
Play Store categories, including Books and Reference,
Finance, and Productivity. We looked at the top 30
most popular applications within each category (by num-
ber of installs) and selected those that used stable stor-
age. We also added a few open-source applications
(e.g., OINote). The resulting list included: Email (An-
droid’s default email app), OINote (open-source note
app), Browser (Android’s default), CWMoney (personal
finance app), Bloomberg (stocks app), and PodcastAd-
dict (podcast app). For each application, our workload
involved exercising it in natural ways according to man-
ual scripts. For example, in Wunderlist, a todo list app,
we created multiple lists, added items to each list, and
browsed through its functions.
7.1 Pebbles Precision and Recall (Q1)

We measure the precision and recall of our object
recognition by identifying how closely LDOs match real,
application-level objects as users perceive them. We
manually identified 68 potentially interesting LDO types
across 50 popular applications (e.g., individual emails,
folders, and accounts in the default email app; individ-
ual expenses, expense categories, and accounts in the
CWMoney financial app). We evaluated whether Peb-
bles correctly identifies those objects (no leakage or over-
inclusions). Recall measures the percentage of LDOs
recognized without leakage; precision measures the per-
centage of LDOs recognized without over-inclusion.

To establish ground truth about LDO structure, we first
populated the application with data and took a snapshot
of the phone’s disk, S1, prior to creating the target object.
Then, we created the object and took a second snapshot
of the disk, S2. The ground truth is the diff between S2

and S1 after manually excluding differences that are un-
related to the objects (e.g., timestamps in log files that
differ between the two executions). We then exercised
the application as thoroughly as possible so as to cap-
ture any edges that Pebbles might detect. To measure
accuracy, we compare Pebbles-recognized LDOs to the

Pebbles File Tainting Only

Application LDO Detected Precise Detected Precise

Email
Account Y Y Y N
Mailbox Y Y Y N

Email Y Y Y N
OINote Note Y Y Y N

Browser
History Item Y Y Y N
Bookmark Y Y Y N

CWMoney
Account Y Y Y N
Category Y Y Y N
Expense Y Y Y N

Bloomberg
Stock N Y Y N
Chart Y Y Y N

Podcast
Podcast Y Y Y N
Episode N Y Y N

50 Total 68 Total
62/68
(91%)

66/68
(97%)

68/68
(100%)

0/68
(0%)

Table 2: LDO Precision and Recall. Sample applications and
objects tested for object recognition precision and recall. “Y”
indicates that an LDO was identified without leakage (column
“Detected”) or without over inclusion (column “Precise”). If
an LDO has “Y” in both columns, its recognition is deemed
correct. As expected, Pebbles performs far better than a straw
man approach of treating entire files as a single LDO.

ground truth; if identical, we declare accurate recogni-
tion for that application and object.

Table 2 shows whether Pebbles correctly and precisely
detects these LDOs. For comparison, we also evaluated
the precision and recall of a basic approach, which rep-
resents perhaps the current state of the art: detecting
relationships between files using just taint tracking and
not using additional file structure to refine the granular-
ity of objects. Pebbles correctly identifies 60 of the 68
objects across these 50 apps, without requiring any pro-
gram modifications. Of the eight incorrectly identified
objects, six were not correctly detected and two were not
precise.

In each case that Pebbles failed to properly detect all
components of the object (i.e., where it failed in recall),
the leakage was due to a non-standard database specifi-
cation. For instance, in the case of the app “ColorfulBud-
get”, users can group expenses into categories, but Peb-
bles did not always properly detect the relationship be-
tween an expense and its category. Best practices would
dictate that in such a case, all categories would be listed
in a single table with a primary key (PK), and then each
expense would contain a foreign key (FK) to reference
the category’s PK [4]. Traditionally this PK is an integer,
to significantly increase lookup speed and decrease the
amount of space needed to store any references to it [4].
However, in its current implementation, this app uses the
actual name of the category as a key into the category ta-
ble, without declaring such a dependency. Therefore, if a
new category is created simultaneously with the creation
of a new expense, we will experience a parallel write:

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 123

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500

Sieve
Loop

Logic
String

Float
Method

Overall

C
af

fe
in

eM
ar

k
Sc

or
e Android

TaintDroid

Pebbles

Fig. 8: Java Microbenchmarks. Overheads of the modified
TaintDroid on the Java runtime with CaffeineMark, a standard
Java benchmark. Higher values are better. Overheads on top of
TaintDroid are 28-35%.

there will be no data dependence when the category is
inserted and when the expense is inserted, since the cat-
egory did not yet exist in storage. Moreover, since the
relationship is not declared in the app schema as an FK,
explicit relationship mechanism will not detect it.

While our access-based technique will largely elimi-
nate this problem, there is still a gap when data is written
but never read back. In these scenarios, such relation-
ships could never be detected. Had these apps explicitly
declared their DB relationships (e.g., in the above case
by referencing each category by its PK), Pebbles would
accurately recognized the objects.

As an example of Pebbles failing in precision (i.e., in-
cluding additional objects as part of an LDO), consider
the “Evernote” note taking app. Each time a notebook is
updated, text in a SharedPreferences node is updated to
reflect the newest notebook, creating a data dependency
between the SharedPreference and the notebook. In this
way, each notebook can become related to each other be-
cause Pebbles currently does not break data dependen-
cies when text is updated. The only way that relations
are broken in Pebbles is if an explicit relationship exists
and is removed.

Without requiring any modifications to applications,
Pebbles is able to achieve up to 91% recall or 97% pre-
cision. The straw man approach of utilizing only taint
tracking (without knowledge of file structure) showed
perfect recall (100%), and a complete failure in precision
(0%). In other words, there were no cases of a single log-
ical object stored in a single file. Overall, our results con-
firm that an unsupervised approach to application-level
object recognition from within the OS works well, espe-
cially if schemas are relatively well-defined.
7.2 Performance Evaluation (Q2)

To evaluate Pebbles performance overheads, we ran
two types of benchmarks: (1) microbenchmarks, which
let us stress various components of our system, such
as the computation and SQLite plugins; and (2) mac-
robenchmarks, which let us quantify our system’s perfor-
mance impact on user-visible application latency. Peb-
bles is built atop the taint tracking system TaintDroid

 1

 10

 100

 1000

Insertion Update Query

Q
ue

rie
s /

 S
ec

 (l
og

sc
al

e) Android

TaintDroid

Pebbles (no registration)

Pebbles (with registration)

Fig. 9: SQLite Microbenchmarks. Overheads for various
queries without and with relationship registrations.

[11], with several modifications made to increase taint
precision (as discussed in §6). Therefore, we evaluate
the performance overhead of Pebbles in comparison to
both TaintDroid and to a stock Android device.

Microbenchmarks. Our first experiments evaluate the
overhead of Pebbles with the Java benchmark Caffeine-
Mark 3.0 [27] and are shown in Fig. 8. We ran the
six computational benchmarks and find that Pebbles de-
creases the score by 32% compared to TaintDroid, which
itself decreases the score by 16% compared to Android.
The majority of this overhead comes from modifications
to support more than 32 taints in Pebbles: TaintDroid
combines tags by bitwise OR’ing, but Pebbles supports
232 distinct taint markings, which are maintained in a
lookup table. Pebbles also stores taint tags per individual
array element, whereas TaintDroid stores only one taint
tag per array, creating an additional overhead for Pebbles
array-heavy benchmarks.

Pebbles also incorporates modifications to SQLite to
detect and register relationships between rows with the
Pebbles service. To evaluate the overhead, we compared
the latency of simple, constant-size SELECT, INSERT,
and UPDATE queries on an Pebbles-enabled Android ver-
sus Android. Fig. 9 shows query overheads when the
query involves a relationship registration (59-168%) and
when it does not (158-553%). No-registration queries –
the cheapest to Pebbles – will likely be the common case
for read-mostly workloads. For example, a document
may be read many times, but relationship registration oc-
curs only once. Moreover, batching and asynchronous-
registration optimizations will likely help alleviate the
overheads. The XML-based key/value store exhibits
similar behavior, although we suppress concrete results.

Application-Level Performance. The above workloads
are micro-benchmarks that stress the various components
but do not necessarily relate to user-perceived perfor-
mance impacts. To measure the impact of Pebbles on
user-perceived interactivity, we evaluated the runtimes
for various operations with three popular applications:
Email, Browser and OINote. For Email, we look at app
launch times and email reads; for Browser, we load the
simple IANA homepage and the rich CNN and Google
News pages over a local network; and for OINote we

124 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

App Activity Base TDroid Pebbles Overhead

Email
Launch 196.8 202.1 260.0 63.2 ±1.11
Load Email 211.6 253.6 463.6 252.0 ±1.64

OINote
Launch 182.6 229.4 219.7 37.2 ±1.58
Load Note 59.5 70.2 84.9 25.4 ±0.14

Browser

Launch 96.5 124.0 148.1 51.6 ±1.63
Load (iana) 154.0 209.3 395.3 241.4 ±2.26
Load (CNN) 778.9 862.7 1443.1 664.2 ±17.56
Load (GNews) 951.3 1023.5 1311.2 359.9 ±10.75

Table 3: Application Performance. Operation runtimes and
overheads in milliseconds. 95% confidence interval shown for
overhead. Base is the Android baseline, TDroid is TaintDroid.

read a note. All network access occurred over USB teth-
ering to a host running a caching proxy; timing informa-
tion excludes cache warmup. Table 3 shows the results
in milliseconds. In almost all of the cases, overhead was
less than 250ms. We saw more overhead and variation
when rendering multimedia heavy web pages.
Memory Overheads. The modifications to TaintDroid
to add fine grained tainting adds a memory overhead to
the running system. We measure system wide mem-
ory usage while exercising three applications (Email,
OINote, and Browser) with a similar workload as above.
Without lazy memory allocation of array taint vectors
(see §6), Pebbles’s system-wide memory overheads are
high: 188MB, 70MB, and 119MB, respectively, com-
pared to TaintDroid. With lazy memory allocation,
Pebbles exhibits much lower system-wide overheads:
34MB, 16MB, and 29MB, respectively. Although still
higher than TaintDroid’s own overhead of around 7MB
for these applications, we believe Pebbles overheads are
acceptable given devices’ increased memory trends.
7.3 Case Study Evaluation (Q3)
Breadcrumbs. Using our Breadcrumbs prototype we
evaluated deletion practices of 68 types of LDOs across
50 applications. Of the 50 applications, 18 of them ex-
hibited some type of deletion malpractice.

Table 4 shows sample deletion malpractice. There
were several cases where data from one LDO was writ-
ten into another another and not cleaned up later. There
were also several applications that did not delete items
at the users’ request, instead simply removing them from
the user interface. We observed this in applications that
heavily rely on cloud storage such as Wunderlist, a pop-
ular cloud-backed todo list application.
PebbleNotify. To evaluate PebbleNotify, we compared
its output to that of TaintDroid Notify. When TaintDroid
Notify detects that data tainted with a value from one
of the selected sources is exfiltrated, it notifies the user
with the application that is responsible for the network
connection, the destination, the data source, the times-
tamp, and the first 100 bytes of the packet. This is useful
metadata but it won’t help a user learn specific informa-

Application Object Deletion Leakage

Email Attachments remain after email/account deletion
ExpenseManager Expenses remain after associated category deleted
Evernote Notes/notebooks remain in database after deletion
On Track Measurements remain after deleting category

14 other apps 21 LDO types unsafely deleted

Table 4: Breadcrumbs Findings. Shows samples of unsafe
deletion in various applications.

tion about the data being exfiltrated such as which picture
or specific contact is leaving the device. We found that
PebbleNotify was more informative because it shows a
summary of the data being exfiltrated, and not just the
metadata presented by TaintDroid Notify. PebbleNotify
was particularly useful in the case of image exfiltration
because it displays a thumbnail of the image being sent.

PebbleDIFC. We integrated PebbleDIFC with the An-
droid Media Provider and evaluated it by using it to mark
several photographs on our device as sensitive (i.e., to
prevent them from being shared). We then verified that
those photos were not visible to applications other than
the default Gallery application. We found that for this
use case, PebbleDIFC has perfect accuracy: every photo
that was marked was hidden, and no additional photos
were hidden.

HideIt. We evaluated HideIt against many applications
and largely found it to be effective. In our evaluation, we
interacted with the application, populated it with data,
and then marked a subset of the data as private so the
application no longer had access. Interestingly, in most
cases apps behaved as hoped when individual data ob-
jects were hidden and then again returned. There were
however several cases where apps crashed when they ex-
pected some data to still exist, but was removed. We are
interested in performing further investigations of the ap-
plicability of HideIt.

7.4 Anecdotal User Experience
To gain experience with Pebbles, the primary author

carried it on his Nexus S phone for about a week. He
primarily used the Email, Browser, Gallery, Camera, and
PodcastAddict apps. We report two anecdotal observa-
tions from this experience. First, applications exhibit no-
ticeable overhead during periods of intense I/O, such as
on initial launch or when applications populate or refresh
local stores. During regular operation we observed over-
heads that are anecdotally similar to ones exhibited by
running Android 4.1 (a 2012 OS) on our Nexus S (a 2010
device). Second, to check if object recognition remains
accurate over time, we examined at the end of the week
the structures of a sample of the objects in our applica-
tions (e.g., emails, folders, photos, browser histories, and
podcasts). We saw no evidence that object recognition
degraded over time due to taint explosions or other po-

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 125

tential sources of imprecision for Pebbles. Objects grew
naturally; email folders grew in size to include relevant
new email objects and they remained accurate.
7.5 Summary

Overall, our results show that: Pebbles is quite ac-
curate in constructing LDOs in an unsupervised man-
ner (Q1), performance remains reasonable when doing
so (Q2), and data management tools can benefit from
Pebbles to provide useful, consumer-grade functions to
the users (Q3). In our experience, Pebbles either con-
sistently identifies objects of a particular type (e.g., all
emails, all documents, etc.), or it does not. Whether it
works depends largely upon the application’s own adher-
ence to some common practices (described in the next
section). When Pebbles works for all object types of an
application, Pebbles can provide the desired guarantees
under our threat model. And even when Pebbles is in-
complete, it can still support transparency applications,
improving visibility into data (mis)management of appli-
cations. Our accuracy results show that Pebbles discov-
ers all object types in 42 out of 50 applications correctly
(no over-inclusions/leakages). We leave development of
tools to identify whether an application matches the Peb-
bles assumptions for future work.

8 Discussion
Pebbles leverages the structure inherently present in

the storage abstractions commonly used on Android to
identify LDOs. More formally, Pebbles assumes the us-
age of the following best practices:

R1: Declare database schemas in full: Given that the
database is becoming the central point of all stor-
age in modern OSes, having a well-defined database
schema is important and natural. 42/50 apps we
have evaluated in §7.1 meet such requirements suf-
ficiently for Pebbles to work perfectly for them.

R2: Use the database to index data within other stor-
age systems: A common programming pattern is
to create a parent object (e.g., a message) in the
database, obtain an auto-generated primary key, and
then write any children objects (such as message
body, attachment files) using the PK as a link. 47/50
apps use this pattern. We strongly recommend it to
any programmers who need to store data outside the
DB.

R3: Use standard storage libraries or implement Peb-
bles storage API: To avoid precision lapses, we
recommend that apps use standard storage abstrac-
tions. As §3 shows, most apps already adhere to this
practice: most apps use exclusively OS-embedded
abstractions.

Relative to our evaluation of 50 apps, 39/50 adhere
with all three recommendations, and 50/50 adhere with

at least one of them. Pebbles’ performance could suffer
for apps that do not follow any of these recommenda-
tions. However, we believe that each recommendation is
sufficiently intuitive and rooted in best practices to not
impose undue burden.

9 Related Work
Taint Tracking for Protection and Auditing. Taint
tracking systems (such as [3, 6, 17, 24, 31, 46, 49]) im-
plement a dynamic data flow analysis that has been ap-
plied to many different context such as privacy audit-
ing [6, 11, 48], malware analysis [24], and more [3, 49].
TaintDroid [11] provides taint tracking of unmodified
Android applications through a modified Dalvik VM, a
system that Pebbles builds upon for its object graph con-
struction. To our knowledge, Pebbles is the first system
to use taint tracking to discover data semantics of objects
and provide a higher level abstraction with which to rea-
son about and enforce such security properties.

Several systems utilize taint tracking to provide fine
grained data protection and auditing. In each of these
cases, however, a burden lies on the application devel-
opers to add hooks to identify relevant data structures
to protection tool developers – a burden that could be
lifted by Pebbles. For instance, CleanOS aims to mini-
mize data exposure on a mobile device by automatically
encrypting its “sensitive data objects” (SDOs) when not
under active use [39]. The LDO abstraction is perhaps
to some extent inspired by the SDO; however, SDOs
must be manually specified by application developers,
whereas LDOs are automatically identified and regis-
tered by Pebbles. Pebbles could be used to automatically
identify SDOs, without requiring developer interaction.

Distributed information flow control (DIFC) systems
such as Laminar [31], Asbestos [43], and Resin [46]
let developers associate data with labels, and then allow
either developers or end-users to specify security poli-
cies that apply to different labels. Taint tracking is per-
formed during application execution to ensure that labels
are propagated to derived data. Pebbles could be used to
eliminate the need to statically annotate data with labels
in code, instead automatically applying labels to LDOs
as users request them. PebbleDIFC demonstrates the fea-
sibility and power of such a system.

Related to taint tracking, data provenance [22, 23, 35]
is close in spirit to logical data objects. It tracks the lin-
eage of data (e.g., the user or process that created it). It
has been proposed to identify the original authors of on-
line information, to facilitate reproduction of scientific
experiments [35], detect and avoid faulty data propaga-
tion in clouds [23], and others. It has to our knowledge
never been used as an OS protection abstraction.
Fine-Grained Protection in Operating Systems. Many
systems have been proposed in the past to support fine-

126 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

grained, flexible protection in operating systems. Some
of the earliest OSes, such as Hydra [45] and Multics [32],
provided immense protection flexibility to applications
and users. Over time, OSes removed more and more flex-
ibility, being considered too difficult for programmers.
Our goal is to eliminate the programmer from the loop
by having the OS identifying objects.

More recently, OS security extension systems, such as
SELinux [34] and its Android version, SEAndroid [33],
extend Linux’s access control with flexible policies that
determine which users and processes can access which
resources, such as files, network interfaces, etc. Our
work is complementary to these, being concerned with
external attacks, such as thieves, shoulder surfing, or spy-
ing by a user with whom the device has been willfully
shared. Our abstractions, might, however, apply to SE-
Android to replace its antiquated file abstraction.

Securing and Hiding Data. Many encryption systems
exist, operating largely at one of two levels of abstrac-
tion: block level [1, 21, 42] and file level [14, 16]. A
drawback to such encrypted file systems is that it forces
users to consider data as individual files, while logically
there may be multiple objects that the user is interested
in in a single file. Pebbles allows protection tool devel-
opers to provide a far finer level of control (at the object
level) than these existing systems (at the file level).

Some protection tools are already operating at a higher
level of data abstraction. These applications, such as
Vault-Hide [25] and KeepSafe Vault [19], allow users to
hide specific types of data, including photos, contacts,
and SMSes. However, they only plug into a handful of
supported apps and cannot provide generic protection for
all apps. Pebbles aims to effect a similar level of control,
but without requiring specialized work by protection tool
developers to support specific applications.

Inferring Structure in Semistructured Data. Discov-
ering data relationships is a key aspect of our work.
Other have worked on inferring data relationships in vari-
ous context: foreign key relationships in databases to im-
prove querying [30, 47] and file relationships in OSes to
enhance file search [37]. However, Pebbles can also infer
relations among files, as well as other higher-level stor-
age abstractions within modern operating systems. To
perform such broad relationship detection, Pebbles dif-
fers significantly from other relationship detection sys-
tems in that it also leverages taint tracking.

Cozzie et al. developed the Laika system [9] which
uses Bayesian analysis to infer data structures from
memory images. Pebbles differs from Laika in that it
does not attempt to recover programmer defined data
structures but to discover application-level data relation-
ships from stable storage that would be recognizable and
useful to an end user or developer.

10 Conclusions
We have described logical data objects (LDOs), a

new fine-grained protection abstraction for persistent
data designed specifically to enable the development of
protection tools at a new granularity. We described
our implementation of LDOs for Android with Peb-
bles, a system that automatically reverse engineers LDOs
from application-level persisted data resources – such as
emails, documents, or bank accounts. Pebbles leverages
the structural semantics available in modern persistent
storage systems, together with a number of mechanisms
rooted in taint tracking, to construct and maintain an ob-
ject graph that tracks these LDOs without introducing
any new programming models or APIs.

We have evaluated Pebbles and four novel protection
tools that use it, showing it to be accurate, and suffi-
ciently efficient to be used in practice to identify and
manage LDOs. We can envision many other useful ap-
plications of Pebbles, such as data scrubbing or malware
analysis, and hope that LDOs will enable the develop-
ment of these and other granular data protection systems.

11 Acknowledgements
We thank our shepherd, Landon Cox and the anony-

mous reviewers for their valuable feedback, and Em-
mett Witchel for his support and advice. This work
was supported by DARPA Contract FA8650-11-C-
7190; NSF grants CNS-1351089, CCF-1302269, CCF-
1161079, CNS-0905246, and CNS-1228843; NIH U54
CA121852; R01 LM011028-01; and Google and Mi-
crosoft gifts.

References
[1] dm-crypt: Linux kernel device-mapper crypto

target. https://code.google.com/p/
cryptsetup/wiki/DMCrypt, 2013.

[2] Anand Basu. Facebook Apps Leak User In-
formation. http://www.reuters.com/
article/2010/10/18/us-facebook-
idUSTRE69H0QS20101018, 2010.

[3] Mona Attariyan and Jason Flinn. Automating con-
figuration troubleshooting with dynamic informa-
tion flow analysis. In Proceedings of the Net-
work and Distributed System Security Symposium
(NDSS), 2010.

[4] Michael Brackett. Data Resource Design: Reality
Beyond Illusion. IT Pro. Technics Publications Llc,
2012.

[5] Monica Chew. Writing for the 98%, blog
post. http://monica-at-mozilla.
blogspot.com/2013/02/writing-for-
98.html, 2013.

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 127

[6] Jim Chow, Ben Pfaff, Tal Garfinkel, Kevin Christo-
pher, and Mendel Rosenblum. Understanding data
lifetime via whole system simulation. In Pro-
ceedings of the USENIX Security Symposium (Sec),
2004.

[7] Jim Chow, Ben Pfaff, Tal Garfinkel, and Mendel
Rosenblum. Shredding your garbage: Reducing
data lifetime through secure deallocation. In Pro-
ceedings of the USENIX Security Symposium (Sec),
2005.

[8] Landon P. Cox, Peter Gilbert, Geoffrey Lawler,
Valentin Pistol, Ali Razeen, Bi Wu, and Sai
Cheemalapati. Spandex: Secure password tracking
for android. In Proceedings of the USENIX Security
Symposium (Sec), 2014.

[9] Anthony Cozzie, Frank Stratton, Hui Xue, and
Samuel T. King. Digging for data structures. In
Proceedings of the USENIX Symposium on Oper-
ating Systems Design and Implementation (OSDI),
2008.

[10] Alan M. Dunn, Michael Z. Lee, Suman Jana, Sang-
man Kim, Mark Silberstein, Yuanzhong Xu, Vitaly
Shmatikov, and Emmett Witchel. Eternal sunshine
of the spotless machine: Protecting privacy with
ephemeral channels. In Proceedings of the USENIX
Symposium on Operating Systems Design and Im-
plementation (OSDI), 2012.

[11] William Enck, Peter Gilbert, Byung-gon Chun,
Landon P. Cox, Jaeyeon Jung, Patrick McDaniel,
and Anmol N. Sheth. TaintDroid: An information-
flow tracking system for realtime privacy monitor-
ing on smartphones. In Proceedings of the USENIX
Symposium on Operating Systems Design and Im-
plementation (OSDI), 2010.

[12] Roxana Geambasu, John P. John, Steven D. Grib-
ble, Tadayoshi Kohno, and Henry M. Levy. Key-
pad: An auditing file system for theft-prone de-
vices. In Proceedings of the ACM European Con-
ference on Computer Systems (EuroSys), 2011.

[13] Google. Storage options — android devel-
opers. http://developer.android.
com/guide/topics/data/data-
storage.html.

[14] Valient Gough. encfs. www.arg0.net/encfs,
2010.

[15] GRSecurity. Homepage of pax. http://pax.
grsecurity.net/.

[16] Michael Austin Halcrow. eCryptfs: An enterprise-
class encrypted filesystem for linux. In Proceedings
of the Linux Symposium, 2005.

[17] Vivek Haldar, Deepak Chandra, and Michael Franz.
Dynamic taint propagation for java. In Proceedings
of the Annual Computer Security Applications Con-
ference (ACSAC), 2005.

[18] Tyler Harter, Chris Dragga, Michael Vaughn, An-
drea C. Arpaci-Dusseau, and Remzi H. Arpaci-
Dusseau. A file is not a file: Understanding the
I/O behavior of Apple desktop applications. In Pro-
ceedings of the ACM SIGOPS Symposium on Oper-
ating Systems Principles (SOSP), 2011.

[19] KeepSafe. Hide pictures - KeepSafe Vault.
https://play.google.com/store/
apps/details?id=com.kii.safe.

[20] Mary Madden and Aaron Smith. Reputation man-
agement and social media: How people monitor
their identity and search for others online. http:
//www.pewinternet.org/˜/media/
Files/Reports/2010/PIP_Reputation_
Management_with_topline.pdf, 2010.

[21] Microsoft Corporation. Windows 7 Bit-
Locker executive overview. http:
//technet.microsoft.com/en-
us/library/dd548341(WS.10).aspx,
2009.

[22] Kiran-Kumar Muniswamy-Reddy, David A. Hol-
land, Uri Braun, and Margo Seltzer. Provenance-
aware storage systems. In Proceedings of the
USENIX Annual Technical Conference (ATC),
2006.

[23] Kiran-Kumar Muniswamy-Reddy, Peter Macko,
and Margo Seltzer. Provenance for the cloud. In
Proceedings of the USENIX Conference on File and
Storage Technologies (FAST), 2010.

[24] James Newsome and Dawn Song. Dynamic taint
analysis for automatic detection, analysis, and sig-
nature generation of exploits on commodity soft-
ware. In Proceedings of the Network and Dis-
tributed System Security Symposium (NDSS), 2005.

[25] NQ Mobile Security. Vault-Hide SMS, Pics
& Videos. https://play.google.com/
store/apps/details?id=com.netqin.
ps.

[26] Vasilis Pappas, Vasileios P. Kemerlis, Angeliki
Zavou, Michalis Polychronakis, and Angelos D.
Keromytis. CloudFence: Data flow tracking as a

128 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

cloud service. In Proceedings of the Symposium
on Research in Attacks, Intrusions and Defenses,
2013.

[27] Pendragon Software Corporation. Caffeine-
mark 3.0. http://www.benchmarkhq.ru/
cm30/.

[28] Radia Perlman. File system design with assured
delete. In Proceedings of the IEEE International
Security in Storage Workshop (SISW), 2005.

[29] Joel Reardon, Srdjan Capkun, and David Basin.
Data node encrypted file system: Efficient secure
deletion for flash memory. In Proceedings of the
USENIX Security Symposium (Sec), 2012.

[30] Alexandra Rostin, Oliver Albrecht, Jana Bauck-
mann, Felix Naumann, and Ulf Leser. A machine
learning approach to foreign key discovery. In Pro-
ceedings of the International Workshop on the Web
and Databases (WebDB), 2009.

[31] Indrajit Roy, Donald E. Porter, Michael D. Bond,
Kathryn S. McKinley, and Emmett Witchel. Lam-
inar: practical fine-grained decentralized informa-
tion flow control. In Proceedings of the ACM SIG-
PLAN Conference on Programming Language De-
sign and Implementation (PLDI), 2009.

[32] Jerome H. Saltzer. Protection and the control of
information sharing in Multics. Communications
of the ACM (CACM), 1974.

[33] SEAndroid. SEforAndroid. http://
selinuxproject.org/page/SEAndroid.

[34] SELinux. Selinux project wiki. http://
selinuxproject.org/page/Main_Page.

[35] Margo Seltzer. Pass: Provenance-aware stor-
age systems. http://www.eecs.harvard.
edu/syrah/pass/.

[36] Shayak Sen, Saikat Guha, Anupam Datta, Sri-
ram K. Rajamani, Janice Tsai, and Jeannette M.
Wing. Bootstrapping privacy compliance in big
data systems. In Proceedings of the IEEE Sympo-
sium on Security and Privacy (S&P), 2014.

[37] Craig A.N. Soules and Gregory R. Ganger. Con-
nections: using context to enhance file search. In
Proceedings of the ACM SIGOPS Symposium on
Operating Systems Principles (SOSP), 2005.

[38] Symantec Corporation. PGP whole disk encryp-
tion. http://www.symantec.com/whole-
disk-encryption, 2012.

[39] Yang Tang, Phillip Ames, Sravan Bhamidipati,
Ashish Bijlani, Roxana Geambasu, and Nikhil
Sarda. CleanOS: Mobile OS abstractions for man-
aging sensitive data. In Proceedings of the USENIX
Symposium on Operating Systems Design and Im-
plementation (OSDI), 2012.

[40] Yang Tang, Patrick P.C. Lee, John C.S. Lui, and Ra-
dia Perlman. FADE: Secure overlay cloud storage
with file assured deletion. In Proceedings of the In-
ternational ICST Conference on Security and Pri-
vacy in Communication Networks (SecureComm),
2010.

[41] The Chaos Computing Club (CCC). CCC breaks
Apple TouchID. http://www.ccc.de/en/
updates/2013/ccc-breaks-apple-
touchid, 2013.

[42] TrueCrypt Foundation. Truecrypt – free open-
source on-the-fly encryption. http://www.
truecrypt.org/, 2007.

[43] Steve Vandebogart, Petros Efstathopoulos, Ed-
die Kohler, Maxwell Krohn, Cliff Frey, David
Ziegler, Frans Kaashoek, Robert Morris, and David
Mazières. Labels and event processes in the As-
bestos operating system. ACM Transactions on
Computer Systems (TOCS), 2007.

[44] Nicolas Viennot, Edward Garcia, and Jason Nieh.
A measurement study of google play. In Pro-
ceedings of the ACM International Conference on
Measurement and Modeling of Computer Systems,
2014.

[45] William A. Wulf, Ellis S. Cohen, William M. Cor-
win, Anita K. Jones, Roy Levin, C. Pierson, and
Fred J. Pollack. Hydra: The kernel of a multipro-
cessor operating system. Communications of the
ACM (CACM), 1974.

[46] Alexander Yip, Xi Wang, Nickolai Zeldovich, and
M. Frans Kaashoek. Improving application secu-
rity with data flow assertions. In Proceedings of
the ACM SIGOPS Symposium on Operating Sys-
tems Principles (SOSP), 2009.

[47] Meihui Zhang, Marios Hadjieleftheriou, Beng Chin
Ooi, Cecilia M. Procopiuc, and Divesh Srivastava.
On multi-column foreign key discovery. Proceed-
ings of the VLDB Endowment, 2010.

[48] Yuan Zhang, Min Yang, Bingquan Xu, Zhemin
Yang, Guofei Gu, Peng Ning, X. Wang, and Binyu
Zang. Vetting undesirable behaviors in android
apps with permission use analysis. In Proceedings

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 129

of the ACM Conference on Computer and Commu-
nications Security (CCS), 2013.

[49] David (Yu) Zhu, Jaeyeon Jung, Dawn Song, Ta-
dayoshi Kohno, and David Wetherall. TaintEraser:

protecting sensitive data leaks using application-
level taint tracking. ACM SIGOPS Operating Sys-
tems Review, 2011.

