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Abstract

The last five years have seen a rise of implementation-

level distributed system model checkers (dmck) for ver-

ifying the reliability of real distributed systems. Ex-

isting dmcks however rarely exercise multiple failures

due to the state-space explosion problem, and thus do

not address present reliability challenges of cloud sys-

tems in dealing with complex failures. To scale dmck,

we introduce semantic-aware model checking (SAMC),

a white-box principle that takes simple semantic infor-

mation of the target system and incorporates that knowl-

edge into state-space reduction policies. We present four

novel reduction policies: local-message independence

(LMI), crash-message independence (CMI), crash recov-

ery symmetry (CRS), and reboot synchronization sym-

metry (RSS), which collectively alleviate redundant re-

orderings of messages, crashes, and reboots. SAMC is

systematic; it does not use randomness or bug-specific

knowledge. SAMC is simple; users write protocol-

specific rules in few lines of code. SAMC is powerful;

it can find deep bugs one to three orders of magnitude

faster compared to state-of-the-art techniques.

1 Introduction

As more data and computation move from local to cloud

settings, cloud systems1 such as scale-out storage sys-

tems [7, 13, 18, 41], computing frameworks [12, 40],

synchronization services [5, 28], and cluster manage-

ment services [27, 47] have become a dominant back-

bone for many modern applications. Client-side software

is getting thinner and more heavily relies on the capabil-

ity, reliability, and availability of cloud systems. Unfor-

tunately, such large-scale distributed systems remain dif-

ficult to get right. Guaranteeing reliability has proven to

be challenging in these systems [23, 25, 51].

Software (implementation-level) model checking is

one powerful method of verifying systems reliability [21,

1These systems are often referred with different names (e.g., cloud

software infrastructure, datacenter operating systems). For simplicity,

we use the term “cloud systems”.

52, 53]. The last five years have seen a rise of software

model checkers targeted for distributed systems [22, 25,

43, 50, 51]; for brevity, we categorize such systems as

dmck (distributed system model checker). Dmck works

by exercising all possible sequences of events (e.g., dif-

ferent reorderings of messages), and hereby pushing the

target system into corner-case situations and unearthing

hard-to-find bugs. To address the state-space explosion

problem, existing dmcks adopt advanced state reduc-

tion techniques such as dynamic partial order reduction

(DPOR), making them mature and highly practical for

checking large-scale systems [25, 51].

Despite these early successes, existing dmcks unfor-

tunately fall short in addressing present reliability chal-

lenges of cloud systems. In particular, large-scale cloud

systems are expected to be highly reliable in dealing with

complex failures, not just one instance, but multiple of

them. However, to the best of our knowledge, no exist-

ing dmcks can exercise multiple failures without explod-

ing the state space. We elaborate this issue later; for now,

we discuss complex failures in cloud environments.

Cloud systems run on large clusters of unreliable com-

modity machines, an environment that produces a grow-

ing number and frequency of failures, including “surpris-

ing” failures [2, 26]. Therefore, it is common to see com-

plex failure-induced bugs such as the one below.

ZooKeeper Bug #335: (1) Nodes A, B, C start with

latest txid #10 and elect B as leader, (2) B crashes,

(3) Leader election re-run; C becomes leader, (4)

Client writes data; A and C commit new txid-value

pair {#11:X}, (5) A crashes before committing tx

#11, (6) C loses quorum, (7) C crashes, (8) A re-

boots and B reboots, (9) A becomes leader, (10)

Client updates data; A and B commit a new txid-

value pair {#11:Y}, (11) C reboots after A’s new tx

commit, (12) C synchronizes with A; C notifies A of

{#11:X}, (13) A replies to C the “diff” starting with

tx 12 (excluding tx {#11:Y}!), (14) Violation: per-

manent data inconsistency as A and B have {#11:Y}
and C has {#11:X}.

The bug above is what we categorize as deep bug. To

unearth deep bugs, dmck must permute a large number

1
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of events, not only network events (messages), but also

crashes and reboots. Although arguably deep bugs occur

with lower probabilities than “regular” bugs, deep bugs

do occur in large-scale deployments and have harmful

consequences (§2.3). We observe that cloud developers

are prompt in fixing deep bugs (in few weeks) as they

seem to believe in Murphy’s law; at scale, anything that

can go wrong will go wrong.

As alluded above, the core problem is that state-of-

the-art dmcks [22, 25, 34, 43, 50, 51] do not incorporate

failure events to their state exploration strategies. They

mainly address scalability issues related to message re-

orderings. Although some dmcks are capable of injecting

failures, usually they only exercise at most one failure.

The reason is simple: exercising crash/reboot events will

exacerbate the state-space explosion problem. In this re-

gard, existing dmcks do not scale and take very long time

to unearth deep bugs. This situation led us to ask: how

should we advance dmck to discover deep bugs quickly

and systematically, and thereby address present reliabil-

ity challenges of cloud systems in dealing with complex

failures?

In this paper, we present semantic-aware model check-

ing (SAMC; pronounced “Sam-C”), a white-box princi-

ple that takes simple semantic information of the target

system and incorporates that knowledge in state-space

reduction policies. In our observation, existing dmcks

treat every target system as a complete black box, and

therefore many times perform message re-orderings and

crash/reboot injections that lead to the same conditions

that have been explored in the past. These redundant ex-

ecutions must be removed significantly to tame the state-

space explosion problem. We find that simple semantic

knowledge can scale dmck greatly.

The main challenge of SAMC is in defining what se-

mantic knowledge can be valuable for reduction poli-

cies and how to extract that information from the tar-

get system. We find that useful semantic knowledge can

come from event processing semantic (i.e., how mes-

sages, crashes, and reboots are processed by the target

system). To help testers extract such information from

the target system, we provide generic event processing

patterns, patterns of how messages, crashes, and reboots

are processed by distributed systems in general.

With this method, we introduce four novel semantic-

aware reduction policies. First, local-message indepen-

dence (LMI) reduces re-orderings of concurrent intra-

node messages. Second, crash-message independence

(CMI) reduces re-orderings of crashes among outstand-

ing messages. Third, crash recovery symmetry (CRS)

skips crashes that lead to symmetrical recovery behav-

iors. Finally, reboot synchronization symmetry (RSS)

skips reboots that lead to symmetrical synchronization

actions. Our reduction policies are generic; they are ap-

plicable to many distributed systems. SAMC users (i.e.,

testers) only need to feed the policies with short protocol-

specific rules that describe event independence and sym-

metry specific to their target systems.

SAMC is purely systematic; it does not incorporate

randomness or bug-specific knowledge. Our policies run

on top of sound model checking foundations such as state

or architectural symmetry [9, 45] and independence-

based dynamic partial order reduction (DPOR) [17, 20].

Although these foundations have been around for a

decade or more, its application to dmck is still limited;

these foundations require testers to define what events

are actually independent or symmetrical. With SAMC,

we can define fine-grained independence and symmetry.

We have built a prototype of SAMC (SAMPRO) from

scratch for a total of 10,886 lines of code. We have

integrated SAMPRO to three widely popular cloud sys-

tems, ZooKeeper [28], Hadoop/Yarn [47], and Cassan-

dra [35] (old and latest stable versions; 10 versions in

total). We have run SAMPRO on 7 different protocols

(leader election, atomic broadcast, cluster management,

speculative execution, read/write, hinted handoff, and

gossiper). The protocol-specific rules are written in only

35 LOC/protocol on average. This shows the simplic-

ity of applying SAMC reduction policies across different

systems and protocols; all the rigorous state exploration

and reduction are automatically done by SAMPRO.

To show the power of SAMC, we perform an exten-

sive evaluation of SAMC’s speed in finding deep bugs.

We take 12 old real-world deep bugs that require mul-

tiple crashes and reboots (some involve as high as 3

crashes and 3 reboots) and show that SAMC can find the

bugs one to three orders of magnitude faster compared

to state-of-the-art techniques such as black-box DPOR,

random+DPOR, and pure random. We show that this

speed saves tens of hours of testing time. More impor-

tantly, some deep bugs cannot be reached by non-SAMC

approaches, even after 2 days; here, SAMC’s speed-up

factor is potentially much higher. We also found 2 new

bugs in the latest version of ZooKeeper and Hadoop.

To the best of our knowledge, our work is the first so-

lution that systematically scales dmck with the inclusion

of failures. We believe none of our policies have been

introduced before. Our prototype is also the first avail-

able dmck for our target systems. Overall, we show that

SAMC can address deep reliability challenges of cloud

systems by helping them discover deep bugs faster.

The rest of the paper is organized as follows. First, we

present a background and an extended motivation (§2).

Next, we present SAMC and our four reduction policies

(§3). Then, we describe SAMPRO and its integration to

cloud systems (§4). Finally, we close with evaluations

(§5), related work (§7), and conclusion (§8).
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2 Background

This section gives a quick background on dmck and re-

lated terms, followed with a detailed overview of the

state of the art. Then, we present cases of deep bugs

and motivate the need for dmck advancements.

2.1 DMCK Framework and Terms

As mentioned before, we define dmck as software model

checker that checks distributed systems directly at the

implementation level. Figure 1 illustrates a dmck inte-

gration to a target distributed system, a simple represen-

tation of existing dmck frameworks [25, 34, 43, 51]. The

dmck inserts an interposition layer in each node of the

target system with the purpose of controlling all impor-

tant events (e.g., network messages, timeouts) and pre-

venting the target system to process the events until the

dmck enables them. A main dmck mechanism is the per-

mutation of events; the goal is to push the target system

into all possible ordering scenarios. For example, the

dmck can enforce abcd ordering in one execution, bcad

in another, and so on.

We now provide an overview of basic dmck terms we

use in this paper and Figure 1. Each node of the tar-

get system has a local state (ls), containing many vari-

ables. An abstract local state (als) is a subset of the lo-

cal state; dmck decides which als is important to check.

The collection of all (and abstract) local states is the

global state (gs) and the abstract global state (ags) re-

spectively. The network state describes all the outstand-

ing messages currently intercepted by dmck (e.g., abd).

To model check a specific protocol, dmck starts a work-

load driver (which restarts the whole system, runs spe-

cific workloads, etc.). Then, dmck generates many (typi-

cally hundreds/thousands) executions; an execution (or a

path) is a specific ordering of events that dmck enables

(e.g., abcd, dbca) from an initial state to a termination

point. A sub-path is a subset of a path/execution. An

event is an action by the target system that is intercepted

by dmck (e.g., a network message) or an action that dmck

can inject (e.g., a crash/reboot). Dmck enables one event

at a time (e.g., enable(c)). To permute events, dmck

runs exploration methods such as brute-force (e.g., depth

first search) or random. As events are permuted, the tar-

get system enters hard-to-reach states. Dmck continu-

ously runs state checks (e.g., safety checks) to verify the

system’s correctness. To reduce the state-space explo-

sion problem, dmck can employ reduction policies (e.g.,

DPOR or symmetry). A policy is systematic if it does not

use randomness or bug-specific knowledge. In this work,

we focus on advancing systematic reduction policies.

Node 1

ls1:{…}

ab c d

enable(c)

Messages: {a,b,d}

GS: {ls1, ls2, …}

Policy: DPOR, Random, …

Checks / assertions

Features (crash, reboot, …)

Dmck ServerNode 2

ls2:{…}

Figure 1: DMCK. The figure illustrates a typical framework

of a distributed system model checker (dmck).

2.2 State-of-the-Art DMCKs

MODIST [51] is arguably one of the most powerful

dmcks that comes with systematic reduction policies.

MODIST has been integrated to real systems due to its ex-

ploration scalability. At the heart of MODIST is dynamic

partial order reduction (DPOR) [17] which exploits the

independence of events to reduce the state explosion. In-

dependent events mean that it does not matter in what

order the system execute the events, as their different or-

derings are considered equivalent.

To illustrate how MODIST adopts DPOR, let’s use the

example in Figure 1, which shows four concurrent out-

standing messages abcd (a and b for N1, c and d for N2).

A brute-force approach will try all possible combinations

(abcd, abdc, acbd, acdb, cabd, and so on), for a total of

4! executions. Fortunately, the notion of event indepen-

dence can be mapped to distributed system properties.

For example, MODIST specifies this reduction policy: a

message to be processed by a given node is independent

of other concurrent messages destined to other nodes

(based on vector clocks). Applying this policy to the ex-

ample in Figure 1 implies that a and b are dependent1 but

they are independent of c and d (and vice versa). Since

only dependent events need to be reordered, this reduc-

tion policy leads to only 4 executions (ab-cd, ab-dc, ba-

cd, ba-dc), giving a 6x speed-up (4!/4).

Although MODIST’s speed-up is significant, we find

that one scalability limitation of its DPOR application is

within its black-box approach; it only exploits general

properties of distributed systems to define message in-

dependence. It does not exploit any semantic informa-

tion from the target system to define more independent

events. We will discuss this issue later (§3.1).

Dynamic interface reduction (DIR) [25] is the next

advancement to MODIST. This work suggests that a

complete dmck must re-order not only messages (global

events) but also thread interleavings (local events). The

reduction intuition behind DIR is that different thread in-

terleavings often lead to the same global events (e.g., a

node sends the same messages regardless of how threads

are interleaved in that node). DIR records local explo-

1In model checking, “dependent” events mean that they must be

re-ordered. “Dependent” does not mean “causally dependent”.
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Figure 2: Deep Bugs. The figure lists deep bugs from our bug study and depicts how many crashes and reboots must happen

to reproduce the bugs. Failure events must happen in a specific order in a long sequence of events. These bugs came from many

protocols including ZooKeeper leader election and atomic broadcast, Hadoop MapReduce speculative execution, job/task trackers,

and resource/application managers, and Cassandra gossiper, anti-entropy, mutation, and hinted handoff. These bugs led to failed

jobs, node unavailability, data loss, inconsistency, and corruption. They were labeled as “major”, “critical”, or “blocker”. 12 of

these bugs happened within the last one year. The median response time (i.e., time to fix) is two weeks. There are few bugs that

involve 4+ reboots and 4+ crashes that we do not show here.

ration and replays future incoming messages without the

need for global exploration. In our work, SAMC fo-

cuses only on global exploration (message and failure

re-orderings). We believe DIR is orthogonal to SAMC,

similar to the way DIR is orthogonal to MODIST.

MODIST and DIR are examples of dmcks that employ

advanced systematic reduction policies. LMC [22] is

similar to DIR; it also decouples local and global explo-

ration. dBug [43] applies DPOR similarly to MODIST.

There are other dmcks such as MACEMC [34] and Crys-

talBall [50] that use basic exploration methods such as

depth first (DFS), weight-based, and random searches.

Other than the aforementioned methods, symme-

try is another foundational reduction policy [16, 45].

Symmetry-based methods exploit the architectural sym-

metry present in the target system. For example, in a ring

of nodes, one can rotate the ring without affecting the be-

havior of the system. Symmetry is powerful, but we find

no existing dmcks that adopt symmetry.

Besides dmcks, there exists sophisticated testing

frameworks for distributed systems (e.g., FATE [23],

PREFAIL [31], SETSUDO [30], OpenStack fault-

injector [32]). This set of work emphasizes the impor-

tance of multiple failures, but their major limitation is

that they are not a dmck. That is, they cannot systemati-

cally control and permute non-deterministic choices such

as message and failure reorderings.

2.3 Deep Bugs

To understand the unique reliability challenges faced by

cloud systems, we performed a study of reliability bugs

of three popular cloud systems: ZooKeeper [28], Hadoop

MapReduce [47], and Cassandra [35]. We scanned

through thousands of issues from their bug repositories.

We then tagged complex reliability bugs that can only be

caught by a dmck (i.e., bugs that can occur only on spe-

cific orderings of events). We found 94 dmck-catchable

bugs.1 Our major finding is that 50% of them are deep

bugs (require complex re-ordering of not only messages

but also crashes and reboots).

Figure 2 lists the deep bugs found from our bug study.

Many of them were induced by multiple crashes and re-

boots. Worse, to reproduce the bugs, crash and reboot

events must happen in a specific order within a long se-

quence of events (e.g., the example bug in §1). Deep bugs

lead to harmful consequences (e.g., failed jobs, node

unavailability, data loss, inconsistency, corruption), but

they are hard to find. We observe that since there is no

dmck that helps in this regard, deep bugs are typically

found in deployment (via logs) or manually, then they

get fixed in few weeks, but afterwards as code changes

continuously, new deep bugs tend to surface again.

2.4 Does State of the-Art Help?

We now combine our observations in the two previous

sections and describe why state-of-the-art dmcks do not

address present reliability challenges of cloud systems.

First, existing systematic reduction policies often can-

not find bugs quickly. Experiences from previous

dmck developments suggest that significant savings from

sound reduction policies do not always imply high bug-

finding effectiveness [25, 51]. To cover deep states and

find bugs, many dmcks revert to non-systematic meth-

ods such as randomness or manual checkpoints. For ex-

ample, MODIST combines DPOR with random walk to

“jump” faster to a different area of the state space (§4.5

of [51]). DIR developers find new bugs by manually set-

ting “interesting” checkpoints so that future state explo-

rations happen from the checkpoints (§5.3 of [25]). In

our work, although we use different target systems, we

are able to reproduce the same experiences above (§5.1).

1Since this is a manual effort, we might miss some bugs. We also do

not report “simple” bugs (e.g., error-code handling) that can be caught

by unit tests.
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Figure 3: SAMC Architecture.

Second, existing dmcks do not scale with the inclusion

of failure events. Given the first problem above, exercis-

ing multiple failures will just exacerbate the state-space

explosion problem. Some frameworks that can explore

multiple failures such as MACEMC [34] only do so in a

random way; however, in our experience (§5.1), random-

ness many times cannot find deep bugs quickly. MODIST

also enabled only one failure. In reality, multiple failures

is a big reliability threat, and thus must be exercised.

We conclude that finding systematic (no ran-

dom/checkpoint) policies that can find deep bugs is still

an open dmck research problem. We believe without se-

mantic knowledge of the target system, dmck hits a scal-

ability wall (as also hinted by DIR authors; §8 of [25]).

In addition, as crashes and reboots need to be exercised,

we believe recovery semantics must be incorporated into

reduction policies. All of these observations led us to

SAMC, which we describe next.

3 SAMC

Semantic-aware model checking (SAMC) is a white-box

model checking approach that takes semantic knowledge

of how events (e.g., messages, crashes, and reboots) are

processed by the target system and incorporates that in-

formation in reduction policies. To show the intuition be-

hind SAMC, we first give an example of a simple leader

election protocol. Then, we present SAMC architecture

and our four reduction policies.

3.1 An Example

In a simple leader election protocol, every node broad-

casts its vote to reach a quorum and elect a leader.

Each node begins by voting for itself (e.g., N2 broadcasts

vote=2). Each node receives vote broadcasts from other

peers and processes every vote with this simplified code

segment below. As depicted in the code segment below,

if an incoming vote is less than the node’s current vote,

it is simply discarded. If it is larger, the node changes its

vote and broadcasts the new vote.

if (msg.vote < myVote) {discard;}
else {myVote = msg.vote; broadcast(myVote);}

Let’s assume N4 with vote=4 is receiving three concur-

rent messages with votes 1, 2, and 3 from its peers. Here,

a dmck with a black-box DPOR approach must perform

6 (3!) orderings (123, 132, and so on). This is because a

black-box DPOR does not know the message processing

semantic (i.e., how messages will be processed by the re-

ceiving node). Thus, a black-box DPOR must treat all

of them as dependent (§2.2); they must be re-ordered for

soundness. However, by knowing the processing logic

above, a dmck can soundly conclude that all orderings

will lead to the same state; all messages will be dis-

carded by N4 and its local state will not change. Thus,

a semantic-aware dmck can reduce the 6 redundant exe-

cutions to just 1 execution.

The example above shows a scalability limitation of

a black-box dmck. Fortunately, simple semantic knowl-

edge has a great potential in removing redundant execu-

tions. Furthermore, semantic knowledge can be incorpo-

rated on top of sound model checking foundations such

as DPOR and symmetry, as we describe next.

3.2 Architecture

Figure 3 depicts the three levels of SAMC: sound ex-

ploration mechanisms, reduction policies, and protocol-

specific rules. SAMC is built on top of sound model

checking foundations such as DPOR [17, 20] and

symmetry [9, 45]. We name these foundations as

mechanisms because a dmck must specify accordingly

what events are dependent/independentand symmetrical,

which in SAMC will be done by the reduction policies

and protocol-specific rules.

Our main contribution lies within our four novel

semantic-aware reduction policies: local-message inde-

pendence (LMI), crash-message independence (CMI),

crash recovery symmetry (CRS), and reboot synchro-

nization symmetry (RSS). To the best of our knowl-

edge, none of these approaches have been introduced in

the literature. At the heart of these policies are generic

event processing patterns (i.e., patterns of how messages,

crashes, and reboots are processed by distributed sys-

tems). Our policies and patterns are simple and pow-

erful; they can be applied to many different distributed

systems. Testers can extract the patterns from their tar-

get protocols (e.g., leader election, atomic broadcast) and

write protocol-specific rules in few lines of code.

In the next section, we first present our four reduction

policies along with the processing patterns. Later, we

will discuss ways to extract the patterns from target sys-

tems (§3.4) and then show the protocol-specific rules for

our target systems (§4.2).
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3.3 Semantic-Aware Reduction Policies

We now present four semantic-aware reduction poli-

cies that enable us to define fine-grained event depen-

dency/independency and symmetry beyond what black-

box approaches can do.

3.3.1 Local-Message Independence (LMI)

We define local messages as messages that are concur-

rently in flight to a given node (i.e., intra-node messages).

As shown in Figure 4a, a black-box DPOR treats the

message processing semantic inside the node as a black

box, and thus must declare the incoming messages as

dependent, leading to 4! permutation of abcd. On the

other hand, with white-box knowledge, local-message

independence (LMI) can define independency relation-

ship among local messages. For example, illustratively

in Figure 4b, given the node’s local state (ls) and the pro-

cessing semantic (embedded in the if statement), LMI is

able to define that a and b are dependent, c and d are de-

pendent, but the two groups are independent, which then

leads to only 4 re-orderings. This reduction illustration

is similar to the one in Section 2.2, but this time LMI

enables DPOR application on local messages.

LMI can be easily added to a dmck. A dmck server

typically has a complete view of the local states (§2.1).

What is needed is the message processing semantic: how

will a node (N) process an incoming message (m) given

the node’s current local state (ls)? The answer lies in

these four simple message processing patterns (discard,

increment, constant, and modify):

Discard: Increment:

if (pd(m,ls)) if (pi(m,ls))

(noop); ls++;

Constant: Modify:

if (pc(m,ls)) if (pm(m,ls))

ls = Const; ls = modify(m,ls);

In practice, ls and m contain many fields. For simplic-

ity, we treat them as integers. The functions with prefix

p are boolean read-only functions (predicates) that com-

pare an incoming message (m) with respect to the local

state (ls); for example, pd can return true if m<s. The first

pattern is a discard pattern where the message is simply

discarded if pd is true. This pattern is prevalent in dis-

tributed systems with votes/versions; old votes/versions

tend to be discarded (e.g., our example in §3.1). The in-

crement pattern performs an increment-by-one update if

pi is true, which is also quite common in many protocols

(e.g., counting commit acknowledgements). The con-

stant pattern changes the local state to a constant when-

ever pc is true. Finally, the modify pattern changes the

local state whenever pm is true.

Xa b c d

Black
box

ls:{..};
if(){..}

all dependent

a b c d

dep. dep.
(a)

L

F1

F2

F3

a,b
c,d

(b) (c)

Figure 4: LMI and CMI. The figures illustrate (a) a black-

box approach, (b) local-message independence with white-box

knowledge, and (c) crash-message independence.

Based on these patterns, we can apply LMI in the fol-

lowing ways. (1) m1 is independent of m2 if pd is true

on any of m1 and m2. That is, if m1 (or m2) will be dis-

carded, then it does not need to be re-ordered with other

messages. (2) m1 is independent of m2 if pi (or pc) is

true on both m1 and m2. That is, the re-orderings do not

matter because the local state is monotonically increas-

ing by one (or changed to the same constant). (3) m1 and

m2 are dependent if pm is true on m1 and pd is not true on

m2. That is, since both messages modify the local state in

unique ways, then the re-orderings can be “interesting”

and hence should be exercised. All these rules are contin-

uously evaluated before every event is enabled. If mul-

tiple cases are true, dependency has higher precedence

than independency.

Overall, LMI allows dmck to smartly skip redundant

re-orderings by leveraging simple patterns. The job of

the tester is to find the message processing patterns from

a target protocol and write protocol-specific rules (i.e.,

filling in the content of the four LMI predicate functions

(pd, pi, pc, and pm) specific to the target protocol). As an

example, for our simple leader election protocol (§3.1),

pd can be as simple as: return m.vote < ls.myVote.

3.3.2 Crash-Message Independence (CMI)

Figure 4c illustrates the motivation behind our next pol-

icy. The figure resembles an atomic broadcast protocol

where a leader (L) sends commit messages to the follow-

ers (Fs). Let’s assume commit messages ab to F1 and cd

to F2 are still in flight (i.e., currently outstanding in the

dmck; not shown). In addition, the dmck would like to

crash F3, which we label as a crash event X. The question

we raise is: how should X be re-ordered with respect to

other outstanding messages (a, b, c, and d)?

As we mentioned before, we find no single dmck that

incorporates crash semantics into reduction policies. As

an implication, in our example, the dmck must reorder

X with respect to other outstanding messages, generat-

ing executions Xabcd, aXbcd, abXcd, and so on. Worse,

when abcd are reordered, X will be reordered again. We

find this as one major fundamental problem why existing

dmcks do not scale with the inclusion of failures.
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To solve this, we introduce crash-message indepen-

dence (CMI) which defines independency relationship

between a to-be-injected crash and outstanding mes-

sages. The key lies in these two crash reaction patterns

(global vs. local impact) running on the surviving nodes

(e.g., the leader node in Figure 4c).

Global impact: Local impact:

if (pg(X,ls)) if (pl(X,ls))

modify(ls); modify(ls);

sendMsg();

The functions with prefix p are predicate functions

that compare the crash event X with respect to the sur-

viving node’s local state (e.g., the leader’s local state).

The pg predicate in the global-impact pattern defines that

the crash X during the local state ls will lead to a local

state change and new outgoing messages (e.g., to other

surviving nodes). Here, no reduction can be done be-

cause the new crash-induced outgoing messages must be

re-ordered with the current outstanding messages. On

the other hand, reduction opportunities exist within the

local-impact pattern, wherein the pl predicate specifies

that the crash will just lead to a local state change but

not new messages, which implies that the crash does not

need to be re-ordered.

Based on the two crash impact patterns, we apply CMI

in the following ways. Given a local state ls at node N, a

peer failure X, and outstanding messages (m1...mn) from N

to other surviving peers, CMI performs: (1) If pl is true,

then X and m1...mn are independent. (2) If pg is true, then

X and m1...mn are dependent. In Figure 4c for example, if

pl is true in node L, then X does not impact outstanding

messages to F1 and F2, and thus X is independent to abcd;

exercising Xabcd is sufficient.

An example of CMI application is a quorum-based

write protocol. If a follower crash occurs and quorum

is still established, the leader will just decrease the num-

ber of followers (local state change only). Here, for

the protocol-specific rules, the tester can specify pl with

#follower >= majority and pg with the reverse. Over-

all, CMI helps dmck scale with the inclusion of fail-

ures, specifically by skipping redundant re-orderings of

crashes with respect to outstanding messages.

3.3.3 Crash Recovery Symmetry (CRS)

Before we discuss our next reduction policy, we em-

phasize again the difference between message event and

crash/reboot event. Message events are generated by

the target system, and thus dmck can only reduce the

number of re-orderings (but it cannot reduce the events).

Contrary, crash events are generated by dmck, and thus

there exists opportunities to reduce the number of in-

jected crashes. For example, in Figure 4c, in addition

to crashing F3, the dmck can also crash F1 and F2 in dif-

ferent executions, but that might not be necessary.

To omit redundant crashes, we develop crash recov-

ery symmetry (CRS). The intuition is that some crashes

often lead to symmetrical recovery behaviors. For exam-

ple, let’s assume a 4-node system with node roles FFFL.

At this state, crashing the first or second or third node

perhaps lead to the same recovery since all of them are

followers, and thereby injecting one follower crash could

be enough. Further on, if the system enters a slightly dif-

ferent state, FFLF, crashing any of the followers might

give the same result as above. However, crashing the

leader in the two cases (N4 in the first case and N3 in the

second) should perhaps be treated differently because the

recovery might involve the dead leader ID. The goal of

CRS is to help dmck with crash decision.

The main question in implementing CRS is: how to in-

corporate crash recovery semantics into dmck? Our solu-

tion is to compute recovery abstract global state (rags),

a simple and concise representation of crash recovery.

CRS builds rags with the following steps:

First, we define that two recovery actions are symmet-

rical if they produce the same messages and change the

same local states in the same way.

Second, we extract recovery logic from the code by

flattening the predicate-recovery pairs (i.e., recovery-

related if blocks). Figure 5 shows a simple example.

Different recovery actions will be triggered based on

which recovery predicate (pr1, pr2, or pr3) is true. Each

predicate depends on the local state and the information

about the crashing node. Our key here is to map each

predicate-recovery pair to this formal pattern:

if (pri(ls, C.ls))

modify(ralsi);

(and/or)

sendMsg(ralsi);

Here, pri is the recovery predicate for the i-th recovery

action, and ralsi is the recovery abstract local state (i.e.,

a subset of all fields of the local state involved in recov-

ery). That is, each recovery predicate defines what recov-

ery abstract local state that matters (i.e., pri→{ralsi}).

For example, in Figure 5, if pr1 is true, then rals1 only

contains the follower variable; if pr3 is true, rals3 con-

tains role and leaderId variables.

Third, before we crash a node, we check which pri

will be true on each surviving node and then obtain the

ralsi. Next, we combine ralsi of all surviving nodes

and sort them into a recovery abstract global state (rags);

sorting rags helps us exploit topological symmetry (e.g.,

individual node IDs often do not matter).

Fourth, given a plan to crash a node, the algorithm

above gives us the rags that represents the correspond-

ing recovery action. We also maintain a history of rags
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broadcast() sendMsgToAll(role, leaderId);

quorumOkay() return (follower > nodes / 2);

// pr1

if (role == L && C.role == F && quorumOkay())

follower--;

// pr2

if (role == L && C.role == F && !quorumOkay())

follower = 0;

role = S;

broadcast();

// pr3

if (role == F && C.role == L)

leaderId = myId;

broadcast();

Figure 5: Crash Recovery in Leader Election. The

figure shows a simplified example of crash recovery in a leader

election protocol. The code runs in every node. C implies the

crashing node; each node typically has a view of the states of

its peers. Three predicate-recovery pairs are shown (pr1, pr2,

and pr3). In the first, if quorum still exists, the leader simply

decrements the follower count. In the second, if quorum breaks,

the leader falls back to searching mode (S). In the third, if the

leader crashes, the node (as a follower) votes for itself and

broadcasts the vote to elect a new leader.

of previous injected crashes. If the rags already exists in

the history, then the crash is skipped because it will lead

to a symmetrical recovery of the past.

To recap with a concrete example, let’s go back to

the case of FFFL where we plan to enable crash(N1).

Based on the code in Figure 5, the rags is {*, ⊘, ⊘,

#follower=3}; * implies the crashing node, ⊘ means

there is no true predicate at the other two follower nodes,

and #follower=3 comes from rals1 of pr1 of N4 (the

leader). CRS will sort this and check the history, and

assuming no hit, then crash(N1) will be enabled. In an-

other execution, SAMC finds that crash(N2) at FFFL will

lead to rags:{⊘, *, ⊘, #follower=3}, which after sort-

ing will hit the history, and hence crash(N2) is skipped.

If the system enters a different state FFLF, no follower

crash will be injected, because the rags will be the same

as above. In terms of leader crash, crashing the leader

in the two cases will be treated differently because in a

leader crash, pr3 is true on followers and pr3 involves

leaderId which is different in the two cases.

In summary, the foundation of CRS is the computa-

tion of recovery abstract global state (rags) from the

crash recovery logic extracted from the target system

via the pri→{ralsi} pattern. We believe this extraction

method is simple because CRS does not need to know

the specifics of crash recovery; CRS just needs to know

what variables are involved in recovery (i.e., the rals) .

3.3.4 Reboot Synchronization Symmetry (RSS)

Reboots are also essential to exercise (§2.3), but if not

done carefully, will introduce more scalability problems.

Reboot reduction policy is needed to help dmck inject

reboots “smartly”. The intuition behind reboot synchro-

nization symmetry (RSS) is similar to that of CRS. When

a node reboots, it typically synchronizes itself with the

peers. However, a reboot will not lead to a new scenario

if the current state of the system is similar to the state

when the node crashed. To implement RSS, we extract

reboot-synchronization predicates and the corresponding

actions. Since the overall approach is similar to CRS, we

omit further details.

In our experience RSS is extremely powerful. For ex-

ample, it allows us to find deep bugs involving multi-

ple reboots in the ZooKeeper atomic broadcast (ZAB)

protocol. RSS works efficiently here because reboots in

ZAB are only interesting if the live nodes have seen new

commits (i.e., the dead node falls behind). In contrast, a

black-box dmck without RSS initiates reboots even when

the live nodes are in similar states as in before the crash,

prolonging the discovery of deep bugs.

3.4 Pattern Extraction

We have presented four general, simple, and powerful

semantic-aware reduction policies along with the generic

event processing patterns. With this, testers can write

protocol-specific rules by extracting the patterns from

their target systems. Given the patterns described in pre-

vious sections, a tester must perform what we call as “ex-

traction” phase. Here, the tester must extract the patterns

from the target system and write protocol-specific rules

specifically by filling in the predicates and abstractions

as defined in previous sections; in Section 4.2, we will

show a real extraction result (i.e., real rules). Currently,

the extraction phase is manual; we leave automated ap-

proaches as a future work (§6). Nevertheless, we believe

manual extraction is bearable for several reasons. First,

today is the era of DevOps [36] where developers are

testers and vice versa; testers know the internals of their

target systems. This is also largely true in cloud system

development. Second, the processing patterns only cover

high-level semantics; testers just fill in the predicates and

abstractions but no more details. In fact, simple seman-

tics are enough to significantly help dmck go faster to

deeper states.

4 Implementation and Integration

In this section, we first describe our SAMC prototype,

SAMPRO, which we built from scratch because existing
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Local-Message Crash-Message Crash Recovery

Independence (LMI) Independence (CMI) Symmetry (CRS) RSS

bool pd : !newVote(m, s);

bool pm : newVote(m, s);

bool newVote(m, s) :

if (m.ep > s.ep)

ret 1;

else if (m.ep == s.ep)

if (m.tx > s.tx)

ret 1;

else if (m.tx == s.tx &&

m.lid > s.lid)

ret 1;

ret 0;

bool pg (s, X) :

if (s.rl == F && X.rl == L)

ret 1;

if (s.rl == L && X.rl == F

&& !quorumAfterX(s)

ret 1;

if (s.rl == S && X.rl == S)

ret 1;

bool pl (s, X) :

if (s.rl == L && X.rl == F

&& quorumAfterX(s))

ret 1;

bool quorumAfterX(s) :

ret ((s.fol-1) >=

s.all/2);

bool pr1(s,C):

if (s.rl == L && C.rl == F

&& quorumAfterX(s))

ret 1;

rals1:{rl,fol,all};

bool pr2(s,C):

if (s.rl == L && C.rl == F

&& !quorumAfterX(s))

ret 1;

rals2: {rl,fol,lid,ep,tx,clk}

bool pr3(s,C):

if (s.rl == F && c.rl == L)

ret 1;

rals3: {rl,fol,lid,ep,tx,clk}

bool pr4:

if (s.rl == S)

ret 1;

rals4: {rl,lid,ep,tx,clk}

(**)

See

caption

Table 1: Protocol-Specific Reduction Rules for ZLE. The code above shows the actual protocol-specific rules for ZLE

protocol. These rules are the inputs to the four reduction policies. The rule for ZLE’s RSS is not shown (it is similar to ZLE’s CRS)

and many variables are abbreviated (ep: epoch, tx: latest transaction ID, lid: leader ID, rl: role, fol: follower count, all: total

node count, clk: logical clock, L: leading, F: following, S: searching, X/C: crashing node). LMI pc and pi predicates are not used

for ZLE, but used for other protocols.

dmcks are either proprietary [51] or only work on re-

stricted high-level languages (e.g., Mace [34]). We will

then describe SAMPRO integration to three widely popu-

lar cloud systems, ZooKeeper [28], Hadoop/Yarn [47],

and Cassandra [35]. Prior to SAMPRO, there was no

available dmck for these systems; they are still tested via

unit tests, and the test code size is bigger than the main

code, but the tests are far from reaching deep bugs.

4.1 SAMPRO

SAMPRO is written in 10,886 lines of code in Java, which

includes all the components mentioned in Section 2.1

and Figure 1. The detailed anatomy of dmck has been

thoroughly explained in literature [22, 25, 34, 43, 51],

and therefore for brevity, we will not discuss many engi-

neering details. We will focus on SAMC-related parts.

We design SAMPRO to be highly portable; we do not

modify the target code base significantly as we leverage a

mature interposition technology, AspectJ, for interposing

network messages and timeouts. Our interposition layer

also sends local state information to the SAMPRO server.

SAMPRO is also equipped with crash and reboot scripts

specific to the target systems. The tester can specify a

budget of the maximum number of crashes and reboots

to inject per execution. SAMPRO employs basic reduc-

tion mechanisms and advanced reduction policies as de-

scribed before. We deploy safety checks at the server

(e.g., no two leaders). If a check is violated, the trace

that led to the bug is reported and can be deterministi-

cally replayed in SAMPRO. Overall, we have built all the

necessary features to show the case of SAMC. Other fea-

tures such as intra-node thread interleavings [25], scale-

out parallelism [44], and virtual clock for network de-

lay [51] can be integrated to SAMPRO as well.

4.2 Integration to Target Systems

In our work, the target systems are ZooKeeper, Hadoop

2.0/Yarn, and Cassandra. ZooKeeper [28] is a distributed

synchronization service acting as a backbone of many

distributed systems such as HBase and High-Availability

HDFS. Hadoop 2.0/Yarn [47] is the current generation

of Hadoop that separates cluster management and pro-

cessing components. Cassandra [35] is a distributed key-

value store derived from Amazon Dynamo [13].

In total, we have model checked 7 protocols:

ZooKeeper leader election (ZLE) and atomic broadcast

(ZAB), Hadoop cluster management (CM) and specu-

lative execution (SE), and Cassandra read/write (RW),

hinted handoff (HH) and gossiper (GS). These protocols

are highly asynchronous and thus susceptible to message

re-orderings and failures.
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Table 1 shows a real sample of protocol-specific rules

that we wrote. Rules are in general very short; we only

wrote 35 lines/protocol on average. This shows the sim-

plicity of SAMC’s integration to a wide variety of dis-

tributed system protocols.

5 Evaluation

We now evaluate SAMC by presenting experimental re-

sults that answer the following questions: (1) How fast is

SAMC in finding deep bugs compared to other state-of-

the-art techniques? (2) Can SAMC find new deep bugs?

(3) How much reduction ratio does SAMC provide?

To answer the first question, we show SAMC’s ef-

fectiveness in finding old bugs. For this, we have in-

tegrated SAMPRO to old versions of our target systems

that carry deep bugs: ZooKeeper v3.1.0, v3.3.2, v3.4.3,

and v3.4.5, Hadoop v2.0.3 and v2.2.0, and Cassandra

v1.0.1 and v1.0.6. To answer the second question, we

have integrated SAMPRO to two recent stable versions:

ZooKeeper v3.4.6 (released March 2014) and Hadoop

v2.4.0 (released April 2014). In total, we have integrated

SAMPRO to 10 versions, showing the high portability of

our prototype. Overall, our extensive evaluation exer-

cised more than 100,000 executions and used approxi-

mately 48 full machine days.

5.1 Speed in Finding Old Bugs

This section evaluates the speed of SAMC vs. state-of-

the-art techniques in finding old deep bugs. In total, we

have reproduced 12 old deep bugs (7 in ZooKeeper, 3

in Hadoop, and 2 in Cassandra). Figure 6 illustrates the

complexity of the deep bugs that we reproduced.

Table 2 shows the result of our comparison. We com-

pare SAMC with basic techniques (DFS and Random)

and advanced state-of-the-art techniques such as black-

box DPOR (“bDP”) and Random+bDP (“rDP”). Black-

box DPOR is the MODIST-style of DPOR (§2.2). We

include Random+DPOR to mimic the way MODIST au-

thors found bugs faster (§2.4). The table shows the num-

ber of executions to hit the bug. As a note, software

model checking with the inclusion of failures takes time

(back-and-forth communications between the target sys-

tem and the dmck server, killing and restarting system

processes multiple times, restarting the whole system

from a clean state, etc.). On average, each execution runs

for 40 seconds and involves a long sequence of 20-120

events including the necessary crashes and reboots to hit

the bug. We do not show the result of running DFS be-

cause it never hits most of the bugs.

Based on the result in Table 2, we make several con-

clusions. First, with SAMC, we prove that smart system-

MapReduce-5505: (1) A job finishes, (2) Application man-

ager (AM) sends a “remove-app” message to Resource

Manager (RM), (3) RM receives the message, (4) AM is

unregistering, (5) RM crashes before completely processes

the message, (6) AM finishes unregistering, (7) RM reboots

and reads the old state file, (8) RM thinks the job has never

started and runs the job again.

Cassandra-3395 (1) Three nodes N1-3 started and formed

a ring, (2) Client writes data, (3) N3 crashes, (4) Client up-

dates the data via N1; N3 misses the update, (5) N3 reboots,

(6) N1 begins the hinted handoff process, (7) Another client

reads the data with strong consistency via N1 as a coordi-

nator, (8) N1 and N2 provide the updated value, but N3

still provides the stale value, (9) The coordinator gets “con-

fused” and returns the stale value to the client!

Figure 6: Complexity of Deep Bugs. Above are two

sample deep bugs in Hadoop and Cassandra. A sample for

ZooKeeper was shown in the introduction (§1). Deep bugs are

complex to reproduce; crash and reboot events must happen

in a specific order within a long sequence of events (there are

more events behind the events we show in the bug descriptions

above). To see the high degree of complexity of other old bugs

that we reproduced, interested readers can click the issue num-

bers (hyperlinks) in Table 2.

atic approaches can reach to deep bugs quickly. We do

not need to revert to randomness or incorporate check-

points. As a note, we are able to reproduce every deep

bug that we picked; we did not skip any of them. (Hunt-

ing more deep bugs is possible, if needed).

Second, SAMC is one to two orders of magnitude

faster compared to state-of-the-art techniques. Our

speed-up is up to 271x (33x on average). But most im-

portantly, there are bugs that other techniques cannot

find even after 5000 executions (around 2 days). Here,

SAMC’s speed-up factor is potentially much higher (la-

beled with “⇑”). Again, in the context of dmck (a process

of hours/days), large speed-ups matter. In many cases,

state-of-the-art policies such as bDP and rDP cannot

reach the bugs even after very long executions. The rea-

sons are the two problems we mentioned earlier (§2.4).

Our micro-analysis (not shown) confirmed our hypothe-

sis that non-SAMC policies frequently make redundant

crash/reboot injections and event re-orderings that any-

way lead to insignificant state changes.

Third, Random is truly “random”. Although

many previous dmcks embrace randomness in finding

bugs [34, 51], when it comes to failure-induced bugs,

we have a different experience. Sometimes Random

is as competitive as SAMC (e.g., ZK-975), but some-

times Random is much slower (e.g., ZK-1419), or worse

Random sometimes did not hit the bug (e.g., ZK-1492,

MR-5505). We find that some bugs require crashes
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#Executions Speed-up of SAMC vs.

Issue# Protocol E C R bDP RND rDP SAMC bDP RND rDP

ZooKeeper-335 ZAB 120 3 3 ↑5000 1057 ↑5000 117 ⇑43 9 ⇑43

ZooKeeper-790 ZLE 21 1 1 14 225 82 7 2 32 12

ZooKeeper-975 ZLE 21 1 1 967 71 163 53 18 1 3

ZooKeeper-1075 ZLE 25 3 2 1081 86 250 16 68 5 16

ZooKeeper-1419 ZLE 25 3 2 924 2514 987 100 9 25 10

ZooKeeper-1492 ZLE 31 1 0 ↑5000 ↑5000 ↑5000 576 ⇑9 ⇑9 ⇑9

ZooKeeper-1653 ZAB 60 1 1 945 3756 3462 11 86 341 315

MapReduce-4748 SE 25 1 0 22 6 6 4 6 2 2

MapReduce-5489 CM 20 2 1 ↑5000 ↑5000 ↑5000 53 ⇑94 ⇑94 ⇑94

MapReduce-5505 CM 40 1 1 1212 ↑5000 1210 40 30 ⇑125 30

Cassandra-3395 RW+HH 25 1 1 2552 191 550 104 25 2 5

Cassandra-3626 GS 15 2 1 ↑5000 ↑5000 ↑5000 96 ⇑52 ⇑52 ⇑52

Table 2: SAMC Speed in Finding Old Bugs. The first column shows old bug numbers in ZooKeeper, Hadoop, and

Cassandra that we reproduced. The bug numbers are clickable (contain hyperlinks). The protocol column lists where the deep bugs

were found; full protocol names are in §4.2. “E”, “C” and “R” represent the number of events, crashes, and reboots necessary

to hit the bug. The numbers in the middle four columns represent the number of executions to hit the bug across different policies.

“bDP”, “RND”, and “rDP” stand for black-box DPOR (in MODIST), random, and random + black-box DPOR respectively. The

SAMC column represents our reduction policies and rules. The last three columns represent the speed-ups of SAMC over the

other three techniques. We stop at 5000 executions (around 2 days) if the bug cannot be found; potentially many more executions

are required to hit the bug (labeled with “↑”). Thus, speed-up numbers marked with “⇑” are potentially much higher. In the

experiments above, the bugs are reproduced using 3-4 nodes. We also have run DFS but do not show the result because in most

cases DFS cannot hit the bugs. For model checking the SE protocol, “1C” means one straggler; we emulate a node slowdown as a

failure event by modifying the progress report of the “slow” node. SE involves 20+ events but most of them are synchronized stages

and cannot be re-ordered, which explains why the SE bug can be found quickly with all policies.

and/or reboots to happen at very specific points, which

is probabilistically hard to reach with randomness. With

SAMC, we show that being systematic and semantic

aware is consistently effective.

5.2 Ability of Finding New Bugs

The previous section was our main focus of evaluation.

In addition to this, we have integrated SAMPRO to recent

stable versions of ZooKeeper (v3.4.6, released March

2014) and Hadoop (v2.4.0, released April 2014). In just

hours of deployment, we found 1 new ZLE bug involving

2 crashes, 2 reboots, and 52 events, and 1 new Hadoop

speculative execution bug involving 2 failures and 32

events. These two new bugs are distributed data race

bugs. The ZLE bug causes the ZooKeeper cluster to cre-

ate two leaders at the same time. The Hadoop bug causes

a speculative attempt on a job that is wrongly moved to

a scheduled state, which then leads to an exception and a

failed job. We can deterministically reproduce the bugs

multiple times and we have reported the bugs to the de-

velopers. Currently, the bugs are still marked as major

and critical, the status is still open, and the resolution is

still unresolved.

We also note that in order to unearth more bugs, a

dmck must have several complete features: workload

generators that cover many protocols, sophisticated per-

turbations (e.g., message re-ordering, fault injections)

and detailed checks of specification violations. Further

discussions can be found in our previous work [23]. Cur-

rently, SAMPRO focuses on speeding up the perturbation

part. By deploying more workload generators and speci-

fication checks in SAMPRO, more deep bugs are likely to

be found. As an illustration, the 94 deep bugs we men-

tioned in Section 2.3 originated from various protocols

and violated a wide range of specifications.

5.3 Reduction Ratio

Table 3 compares the reduction ratio of SAMC over

black-box DPOR (bDP) with different budgets (#crashes

and #reboots). This evaluation is slightly different than

the bug-finding speed evaluation in Section 5.1. Here,

we measure how many executions in bDP are considered

redundant based on our reduction policies and protocol-

specific rules. Specifically, we run bDP for 3000 exe-

cutions and run SAMC policies on the side to mark the

redundant executions. The reduction ratio is then 3000

divided by the number of non-redundant executions. Ta-

ble 3 shows that SAMC provides between 37x-166x ex-

ecution reduction ratio in model checking ZLE and ZAB

protocols across different crash/reboot budgets.

Table 3b shows that with each policy the execution re-

duction ratio increases when the number of crashes and



410 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

Execution Reduction Ratio in

C R ZLE ZAB

1 1 37 93

2 2 63 107

3 3 103 166

Execution Reduction Ratio in ZLE with

C R All LMI CMI CRS RSS

1 1 37 18 5 4 3

2 2 63 35 6 5 5

3 3 103 37 9 9 14

Table 3: SAMC Reduction Ratio. The first table shows

the execution reduction ratio of SAMC over black-box DPOR

(bDP) in checking ZLE and ZAB under different crash/reboot

budgets. “C” and “R” are the number of crashes and reboots.

The second table shows the execution reduction ratio in ZLE

with individiual policies over black-box DPOR (bDP).

reboots increases. With more crashes and reboots, the

ZLE protocol generates more messages and most of them

are independent, and thus the LMI policy has more op-

portunities to remove redundant message re-orderings.

Similary, the crash and reboot symmetry policies give

better benefits with more crashes and reboots. The table

also shows that LMI provides the most reduction. This

is because the number of message events is higher than

crash and reboot events (as also depicted in Table 2).

We now discuss our reduction ratio with that of

DIR [25]. As discussed earlier (§2.2), DIR records local

exploration (thread interleavings) and replays future in-

coming messages whenever possible, reducing the work

of global exploration. If the target system does not have

lots of thread interleavings, DIR’s reduction ratio is es-

timated to be between 101 to 103 (§5 of [25]). As we

described earlier (§2.2), DIR is orthogonal to SAMC.

Thus, the reduction ratios of SAMC and DIR are com-

plementary; when both methods are combined, there is

a potential for a higher reduction ratio. The DIR authors

also hinted that domain knowledge can guide dmcks (and

also help their work) to both scale and hit deep bugs (§8

of [25]). SAMC has successfully addressed such need.

Finally, we note that in evaluating SAMC, we use exe-

cution reduction ratio as a primary metric. Another clas-

sical metric to evaluate a model checker is state coverage

(e.g., a dmck that covers more states can be considered a

more powerful dmck). However, in our observation state

coverage is not a proper metric for evaluating optimiza-

tion heuristics such as SAMC policies. For example, if

there are three nodes ABC that have the same role (e.g.,

follower), a naive black-box dmck will crash each node

and covers three distinct states: *BC, A*C and AB*.

However, with a semantic-aware approach (e.g., symme-

try), we know that covering one of the states is sufficient.

Thus, less state coverage does not necessarily imply a

less powerful dmck.

6 Discussion

In this section, we discuss SAMC’s simplicity, general-

ity and soundness. We would like to emphasize that the

main goal of this paper is to show the power of SAMC in

finding deep bugs both quickly and systematically, and

thus we intentionally leave some subtasks (e.g., auto-

mated extraction, soundness proofs) for future work.

6.1 Simplicity

In previous sections, we mentioned that policies can be

written in few lines of code. Besides LOC, simplicity

can be measured by how much time is required to un-

derstand a protocol implementation, extract the patterns

and write the policies. This time metric is unfortunately

hard to quantify. In our experience, the bulk of our time

was spent in developing SAMPRO from scratch and in-

tegrating policies to dmck mechanisms (§2.1). However,

the process of understanding protocols and crafting poli-

cies requires a small effort (e.g., few days per protocol

to the point where we feel the policies are robust). We

believe that the actual developers will be able to perform

this process much faster than we did as they already have

deeper understandings of their code.

6.2 Generality

Our policies contain patterns that are common in dis-

tributed systems. One natural question to ask is: how

much semantic knowledge should we expose to dmck?

The ideal case is to expose as much information as pos-

sible as long as it is sound. Since proving soundness and

extracting patterns automatically are our future work, in

this paper we only propose exposing high-level process-

ing semantics. With advanced program analysis tools

that can analyze deep program logic, we believe more

semantic knowledge can be exposed to dmck in a sound

manner. For example, LMI can be extended to include

commutative modifications. This is possible if the pro-

gram analysis can verify that the individual modification

does not lead to other state changes. This will perhaps

be the point where symbolic execution and dmck blend

in the future (§7).

Nevertheless, we find that high-level semantics are

powerful enough. Beyond the three cloud systems we

target in this paper, we have been integrating SAMC to

MaceMC [34]. MACEMC already employs random ex-

ploration policies to model check Mace-based distributed

systems such as Mace-based Chord and Pastry. To in-

tegrate SAMC, we first must re-implement DPOR in
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MaceMC (existing DPOR implementation in MaceMC

is proprietary [25]). Then, we have written 18 lines of

LMI protocol-specific rules for Chord and attain two or-

ders of magnitude of reduction in execution. This shows

the generality of SAMC to many distributed systems.

6.3 Soundness

SAMC policies only skip re-orderings and crash/reboot

events that are redundant by definition, however cur-

rently our version of SAMC is not sound; the unsound

phase is the manual extraction process. For example,

if the tester writes a wrong predicate definition (e.g.,

pd) that is inconsistent with what the target system de-

fines, then soundness (and correctness) is broken. Ad-

vanced program analysis tools can be developed to auto-

mate and verify this extraction process and make SAMC

sound. Currently, the fact that protocol-specific rules

tend to be short might also help in reducing human er-

rors. Our prototype, SAMPRO, is no different than other

testing/verification tools; full correctness requires that

such tools to be free of bugs and complete in checking

all specifications, which can be hard to achieve. Never-

theless, we want to bring up again the discussion in Sec-

tion 2.4 that dmck’s scalability and ability to find deep

bugs in complex distributed systems are sometimes more

important than soundness. We leave soundness proofs

for future work, but we view this as a small limitation,

mainly because we have successfully shown the power

of SAMC.

7 Related Work

We now briefly discuss more related work on dmck and

other approaches to systems verification and testing.

Formal model checking foundations such as partial or-

der reduction [17, 20], symmetry [9, 45], and abstrac-

tion [10], were established more than a decade ago. Here,

classical model checkers require system models and

mainly focus on state-space reduction. Implementation-

level model checkers on the other hand are expected to

find real bugs in addition to being efficient.

Symbolic execution is another powerful formal

method to verify systems correctness. Symbolic exe-

cution also faces an explosion problem, specifically the

path explosion problem. A huge body of work has

successfully addressed the problem and made symbolic

execution scale to large (non-distributed) software sys-

tems [3, 6, 8, 11, 55]. Symbolic execution and model

checking can formally be combined into a more power-

ful method [4], however this concept has not permeated

the world of distributed systems; it is challenging to track

symbolic values across distributed nodes.

Reliability bugs are often caused by incorrect han-

dling of failures [23, 24]. Fault-injection testing how-

ever is challenging due to the large number of possi-

ble failures to inject. This challenge led to the develop-

ment of efficient fault-injection testing frameworks. For

example, AFEX [1] and LFI [39] automatically priori-

tize “high-impact targets” (e.g., unchecked system calls).

These novel frameworks target non-distributed systems

and thus the techniques are different than ours.

Similarly, recent work highlights the importance

of testing faults in cloud systems (e.g., FATE [23],

SETSUDO [30], PREFAIL [31], and OpenStack fault-

injector [32]). As mentioned before (§2.2), these frame-

works are not a dmck; they cannot re-order concurrent

messages and failures and therefore cannot catch dis-

tributed concurrency bugs systematically.

The threat of multiple failures to systems reliability al-

ready existed since the P2P era; P2P systems are suscep-

tible to “churn”, the continuous process of node joining

and departing [42]. Many dmcks such as MACEMC [34]

and CrystalBall [50] evaluate their approaches on P2P

systems. Interestingly, we find that they mainly re-order

join messages. To our understanding, based on their pub-

lications, they did not inject and control node departures.

CrystalBall authors mentioned about running churns, but

only as part of their workloads, not as events that the

dmck can re-order. This illustrates the non-triviality of

incorporating failures in dmck.

The deep bugs we presented can be considered as con-

currency bugs (in distributed nature). For non-distributed

systems, there has been an abundance of innovations in

detecting, avoiding, and recovering from concurrency

bugs [29, 33, 38, 48]. They mainly target threads. For

dmck, we believe more advancements are needed to un-

earth distributed concurrency bugs that still linger in

cloud systems.

Finally, the journey in increasing cloud dependability

is ongoing; cloud systems face other issues such as bad

error handling code [54], performance failures [14], cor-

ruptions [15], and many others. Exacerbating the prob-

lem, cloud systems are becoming larger and geographi-

cally distributed [37, 46, 56]. We believe cloud systems

will observe more failures and message re-orderings, and

therefore our work and future dmck advancements with

the inclusion of failures will play an important role in

increasing the reliability of future cloud systems.

8 Conclusion

Cloud systems face complex failures and deep bugs still

linger in the cloud. To address present reliability chal-

lenges, dmcks must incorporate complex failures, but ex-

isting dmcks do not scale in this regard. We strongly be-
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lieve that without semantic knowledge dmck hits a scal-

ability wall. In this paper, we show a strong case that

the SAMC principle can elegantly address this scalabil-

ity problem. SAMC is simple and powerful; with simple

semantic knowledge, we show that dmcks can scale sig-

nificantly. We presented four specific reduction policies,

but beyond this, we believe our work triggers the dis-

cussion of two important research questions: what other

semantic knowledge can scale dmck and how to extract

white-box information from the target system? We hope

(and believe) that the SAMC principle can trigger future

research in this space.
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