usenix
.’ THE ADVANCED
COMPUTING SYSTEMS

ASSOCIATION

Eidetic Systems

David Devecsery, Michael Chow, Xianzheng Dou, Jason Flinn,
and Peter M. Chen, University of Michigan

https://www.usenix.org/conference/osdi14/technical-sessions/presentation/devecsery

This paper is included in the Proceedings of the
11th USENIX Symposium on
Operating Systems Design and Implementation.
October 6-8, 2014 - Broomfield, CO
978-1-931971-16-4

Open access to the Proceedings of the
11th USENIX Symposium on Operating Systems
Design and Implementation

is sponsored by USENIX.

Eidetic Systems

David Devecsery, Michael Chow, Xianzheng Dou, Jason Flinn, and Peter M. Chen
University of Michigan

Abstract

The vast majority of state produced by a typical com-
puter is generated, consumed, then lost forever. We ar-
gue that a computer system should instead provide the
ability to recall any past state that existed on the com-
puter, and further, that it should be able to provide the lin-
eage of any byte in a current or past state. We call a sys-
tem with this ability an eidetic computer system. To pre-
serve all prior state efficiently, we observe and leverage
the synergy between deterministic replay and informa-
tion flow. By dividing the system into groups of replaying
processes and tracking dependencies among groups, we
enable the analysis of information flow among groups,
make it possible for one group to regenerate the data
needed by another, and permit the replay of subsets of
processes rather than of the entire system. We use model-
based compression and deduplicated file recording to re-
duce the space overhead of deterministic replay. We also
develop a variety of linkage functions to analyze the lin-
eage of state, and we apply these functions via retrospec-
tive binary analysis. In this paper we present Arnold, the
first practical eidetic computing platform. Preliminary
data from several weeks of continuous use on our work-
stations shows that Arnold’s storage requirements for 4
or more years of usage can be satisfied by adding a 4 TB
hard drive to the system.! Further, the performance over-
head on almost all workloads we measured was under
8%. We show that Arnold can reconstruct prior state and
answer lineage queries, including backward queries (on
what did this item depend?) and forward queries (what
other state did this item affect?).

1 Introduction

The vast majority of state produced by a typical computer
is generated, consumed, then lost forever. Lost state in-
cludes process address spaces, deleted files, interprocess

ICurrently, a 4 TB drive can be purchased for approximately $150.

communication, and input received from the network.
With lost state comes lost value: users cannot recover de-
tailed information about past computations that would be
useful for auditing, forensics, debugging, error tracking,
and many other purposes.

Prior approaches try to retain some of this informa-
tion via a variety of techniques, such as file backup,
packet logging, and process checkpointing, but these ap-
proaches preserve only the subset of information that
someone anticipates may be useful. A more comprehen-
sive approach is needed: one that preserves the values
and lineage of all state that has ever existed on the sys-
tem. We call such a system an eidetic computer system.

An eidetic computer system can recall any past state
that existed on that computer, including all versions of all
files, the memory and register state of processes, inter-
process communication, and network input. Further, an
eidetic computer system can explain the lineage of each
byte of current and past state.

Lineage describes how state was derived. With such
information, the user of an eidetic system can often in-
fer why the data was derived. For instance, a colleague
might point out to a user that a citation in a paper draft
is incorrect. Using an eidetic system, the user could trace
back from the binary document through all the steps used
to create that document and recreate the browser screen
displaying the Web page from which the data was de-
rived. On seeing that Web page, the user would realize
that he cited the wrong paper from a conference session.
The user could then trace forward from that mistake and
reveal all current documents and data that reflect the mis-
take, as well as any external output (e.g., e-mail) contain-
ing mistaken information.

Or consider an example in which someone runs a
malicious application on a shared computer. The ma-
licious program exploits a privilege escalation vulnera-
bility, gives itself privileged access, and installs a back-
door for future access. An eidetic system could trace for-
ward from the malicious program, trace through the priv-

USENIX Association

11th USENIX Symposium on Operating Systems Design and Implementation (OSDI "14) 525

ilege escalation vulnerability, and determine that the ma-
licious software installed a backdoor. The system could
then trace any future executions of the vulnerable pro-
gram and determine if the backdoor was ever used, and
exactly what was done by the attacker during the vulner-
able window. In these and similar examples, recall and
lineage are tightly coupled; they are useful in isolation
but much more powerful when combined.

In this paper, we describe an eidetic system called
Arnold that provides the above properties for personal
computers and workstations with reasonable storage re-
quirements and runtime overheads. The key technologies
that enable Arnold to provide the properties of an ei-
detic system efficiently are deterministic record and re-
play [10], model-based compression, deduplicated file
recording, operating system tracking of information flow
between processes [23], and retrospective binary analy-
sis of information flow within processes [11, 35].

Arnold uses deterministic record and replay to effi-
ciently reproduce past computations. Reproducing past
computations enables Arnold to recall any state and to
track the lineage of that state within a replaying en-
tity. Arnold uses numerous optimizations to reduce the
amount of data that must be recorded. As a result, the log
data required for years of operation of a personal com-
puter or workstation can fit on a commodity hard drive.

To avoid the need to replay the entire system to re-
cover any state, Arnold divides the system into units,
called replay groups, that can be replayed indepen-
dently. To track information flow between replay groups,
Arnold records dependency information for each com-
munication between replay groups, forming a depen-
dency graph. In addition to enabling information flow to
be tracked across groups, the dependency graph also al-
lows Arnold to treat as a cache the log of data sent be-
tween groups. To conserve space, Arnold can discard this
data and regenerate it later by replaying the group that
produced it, a technique we call cooperative replay.

To analyze lineage within a replay group, Arnold
uses retrospective binary analysis, in which it determin-
istically reexecutes the processes within the group and
tracks the relationships between inputs and outputs. Dif-
ferent linkage functions may be used to define depen-
dencies according to how the lineage analysis will be
used. Arnold defers the choice of linkage function to the
time of the query. This preserves flexibility and enables
it to answer lineage queries that were not anticipated dur-
ing the original execution. It also moves the overhead of
analysis from original execution to the time of query.

Putting these pieces together, Arnold can answer both
backward queries (where did this particular state come
from?) and forward queries (what outputs and current
state are derived from this prior state?). It does so by
following the dependency graph, reexecuting the process

groups to learn how their inputs map to their outputs, and
querying the graph to learn how group outputs map to the
inputs of other groups.

Underlying Arnold’s design is the observation that de-
terministic replay and information flow are synergistic.
Recording information flow among processes saves stor-
age space by eliminating the need to record the data sent
between processes. Deterministic replay makes it possi-
ble to reproduce any transient state of a prior process ex-
ecution. This makes it possible to perform information
flow queries over that state that were not imagined at the
time the process executed. It also provides the ability to
defer the work of tracking information flow within pro-
cesses until the results are needed.

We have run Arnold continuously on our workstations
for several weeks. Our results show that its storage re-
quirements for 4 or more years of operation could be sat-
isfied by adding a $150 4 TB hard drive. On almost all
benchmarks we ran, Arnold’s performance overhead is
less than 8%. We also report on several case studies in
which we use Arnold to reproduce past state and trace
lineage over many applications and workflows.

2 Related work

Arnold draws upon prior research from many areas.
Many systems have sought to save some prior state in a
system. For example, versioning file systems [39, 44, 49]
store regular snapshots of file state; process checkpoint-
ing systems [40] store snapshots of running processes;
and systems like DejaView snapshot both processes and
files [24]. These systems store only a subset of the state
in a system, and they take checkpoints only at coarse-
grained points in time to reduce storage usage. Check-
points are insufficient to reproduce computation or to
track intra-process lineage. In contrast, Arnold can repro-
duce all state and computation in a system at the granu-
larity of individual instructions.

Arnold uses deterministic record and replay to repro-
duce all state and computation in a system. Deterministic
replay for uniprocessors is a mature technology, and im-
plementations exist in both software [54, 10, 14, 17, 36,
43, 46] and hardware [6, 34, 53, 21, 30, 33, 51]. Mak-
ing deterministic replay efficient on multi-processors is
an ongoing research challenge [15, 25, 50, 3, 38, 52, 55,
12, 26], as is making execution on multiprocessors deter-
ministic [8, 9, 13, 28, 37]. We deterministically replay a
multiprocessor system by recording synchronization op-
erations and instrumenting races, but this is not a focus
of this research. Instead, we focus on applying determin-
istic record and replay to build an eidetic system and on
reducing the storage overhead for long-term use through
techniques such as model-based compression.

Checkpointing and rollback-recovery have often been

526 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI "14)

USENIX Association

used to restore past state [16]. However, the focus of most
prior work has been to tolerate failures by reproducing
the latest correct state, rather than to restore any past state
as in eidetic systems.

Prior research has examined how to track the lin-
eage of data, either within a process [35] or between
processes [23, 22, 18]. Provenance-aware storage sys-
tems [31, 32] annotate file data with causal history to
capture the relationship between processes and files.
Arnold tracks lineage within a process, between pro-
cesses, and between files and processes. Unlike prior sys-
tems, Arnold tracks comprehensive lineage for arbitrary
executables and non-deterministic programs.

Other projects have examined how to index and query
prior system state. DejaView [24] indexes and pro-
vides a query interface for prior information that is dis-
played on the screen or available through the accessibil-
ity APIL. Tralfamadore traces the execution of a system
and provides mechanisms and components to analyze
that trace [27]. Arnold provides the ability to reproduce
all state and track its lineage across arbitrary computa-
tions.

Our technique to regenerate inter-group communica-
tion via replay trades storage for recomputation. Other
projects have made a similar tradeoff in different do-
mains [19, 2, 7, 47]. For example, Nectar [19] trades stor-
age for computation in data-parallel cloud environments
and supports recomputation of storage results from in-
puts and memoization of partial and full computations.
While Nectar is restricted to DryadLINQ applications,
which are both deterministic and functional, Arnold pro-
vides these and other benefits for general-purpose com-
putation.

3 Design goals

The design of Arnold was guided by several goals.
First, we wanted to support the widest possible range
of queries about user-level state and the lineage of that
state. Arnold reproduces and tracks the lineage of state
of all user-level processes at the level of the instruction
set architecture. We wanted to support queries (Section
4.8) about backward lineage (what influenced this data?)
and forward lineage (what did this data influence?) both
within a replay group (Section 4.6) and between replay
groups (Section 4.5). We also wanted to support queries
not anticipated at the time of recording, which we ac-
complish via retrospective binary analysis (Section 4.6).

Second, we wanted to minimize the time and space
overhead of recording, since we intend for Arnold to con-
tinuously record computer usage. We wanted the time
overhead of recording to be low enough to support in-
teractive workloads and the space overhead to be small
enough to record several years of execution of worksta-

tions and personal computers on a commodity hard drive.
We reduce the time overhead of recording through deter-
ministic record and replay (Section 4.1) and retrospec-
tive binary analysis (Section 4.6). We reduce space over-
head through techniques such as model-based compres-
sion (Section 4.2), deduplicated file recording (Section
4.3), and cooperative replay (Section 4.4).

Third, we wanted to reduce the cost of answering
queries by not requiring the reexecution of processes un-
related to the state being queried. We accomplish this by
dividing the system into multiple replay groups, each of
which can be replayed independently. To preserve lin-
eage between replay groups, we track the dependencies
cause by inter-group communication in a dependency
graph (Section 4.5).

4 Design and implementation

4.1 Record and replay

Deterministic record and replay enables two impor-
tant features of Arnold. First, it allows Arnold to effi-
ciently reproduce the complete architectural state (regis-
ter and address space) of user-level processes. Second, it
allows Arnold to defer the work needed to track lineage
from the time of execution to the time of querying [11].

To enable reproduction of all architectural state,
Arnold records and replays execution at the level of pro-
cesses. Our modified Linux kernel records all nondeter-
ministic data that enters a process: the order, return val-
ues, and memory addresses modified by a system call;
the timing and values of received signals; and the results
of querying the system time.

Dealing with multiple threads/processes that write-
share memory requires special care. Record and re-
playing individual threads/processes would shrink the
scope of replay needed to answer a query, but this
would require Arnold to record all nondeterministic
reads of shared memory. Instead, Arnold records all
threads/processes that share memory as a single replay
group, then seeks to replay the interleavings of events
from the replay group deterministically.

To enable deterministic replay of a replay group,
Arnold records all synchronization operations and
atomic hardware instructions (such as atomic_inc, or
atomic_dec_and_test). A modified version of libc
logs the order and memory addresses of synchronization
operations between threads, including low-level atomic
instructions and high-level synchronization operations
such as pthread_lock. Such logging inserts an addi-
tional two atomic instructions for each event logged (to
order the start and end of the operation). In the absence
of data races, this information is sufficient to faithfully
replay the recorded execution of a replay group involv-

USENIX Association

11th USENIX Symposium on Operating Systems Design and Implementation (OSDI '14) 527

ing multiple threads or processes—each replayed thread
will execute the same sequence of instructions and sys-
tem calls, observe the same values read, and produce the
same results as during recording [42].

In the presence of data races, the replayed execution
may diverge from the recorded one. We deal with pro-
grams with data races by identifying the races and adding
additional instrumentation to eliminate them on subse-
quent runs. Veeraraghavan et al. [48] observed a synergy
between deterministic replay and data race detection: if
the only reason that a replayed execution may diverge
from a recorded execution is the presence of a data race,
then the replay system can act as a very efficient data-
race detector. Arnold supports the ability to instrument
and observe the execution of replayed recordings (Sec-
tion 4.6), and we use this to run a standard vector-clock
data race detector [41] when a replay divergence is de-
tected. This is guaranteed to detect at least the first pair of
racing instructions (it may also detect subsequent pairs).
We then either statically instrument the code to record
the outcome of the data race, or dynamically instrument
the binary when it runs to cause the racing pair of in-
structions to trap to the kernel (via an INT 3 instruc-
tion), where we record the order of the racing instruc-
tions. Static instrumentation is preferred since it is more
efficient, but dynamic instrumentation allows us to sup-
port applications for which we do not have source code.

In practice, we have detected few data races that affect
replay in the programs we run on our workstations. It has
been relatively simple for a small team of users to add
the necessary instrumentation to record these instances.
Interestingly, many of the races we found were already
documented, for example by developers who ran Thread-
Sanitizer [45] or similar tools. Since races are very infre-
quent, we suspect that it should usually be possible to
search through all possible interleavings of the racing in-
structions to find an interleaving that is indistinguishable
from the recorded execution [3, 38].

When a process executes the exec system call,
Arnold creates a new replay group (with a unique 64-
bit identifier) consisting solely of that process. Arnold
also saves a small checkpoint for the new group, which
allows replay to begin from the creation of that process.
The checkpoint consists of the arguments and environ-
ment variables passed to exec, other nondeterministic
information used during the system call (e.g., seeds used
to randomize address spaces), and a reference to the file
containing the executable image—the image usually re-
sides in a deduplicated file store described in Section 4.3.

Arnold creates new replay groups on exec rather than
on fork because the initial address space at exec is more
amenable to deduplication than the address space at the
time of fork. It stores a split record that contains the
unique identifier of the new replay group in the log of

the replay group that performed the exec. Infrequently,
two replay groups need to be merged (e.g., because they
establish a write-shared memory segment). In such in-
stances, Arnold merges the processes from one group
into the other and inserts a merge record into their logs.

Arnold replays recorded execution on a per-group ba-
sis. It creates a new process from the group’s checkpoint
and deterministically reexecutes the process by supply-
ing values from the group’s log in lieu of performing any
nondeterministic action. As additional threads and pro-
cesses are created within the replay group, Arnold also
replays those entities. Each process executes until it exits
or the execution reaches a split record. Arnold can re-
play multiple groups concurrently—this allows it to par-
allelize lineage queries that span groups.

4.2 Reducing storage utilization

Arnold uses several optimizations to reduce the size
of its replay logs. The first optimization is model-based
compression. The order and results of many of the sys-
tem calls and synchronization operations that Arnold
logs are highly predictable. For instance, many system
calls usually return zero (success); the write system call
usually returns the number of bytes in the input buffer;
and pthread_cond_lock usually returns a value speci-
fying that the lock has been obtained. Arnold constructs
a model for predictable operations and records only in-
stances in which the returned data differs from the model.
Thus, the log size used for each type of operation is pro-
portional to the number of deviations, which can be much
less than the number of executed operations.

Some operations such as poll exhibit considerable
locality in the data they return (e.g., the set of ready file
descriptors is often the same from call to call within a
short window). For these operations, Arnold caches the
most recent 8 values returned on both record and replay
and replaces the actual values in the log with a small
cache index (when the value hits in the cache) in order
to save space. Arnold also uses model-based compres-
sion to reduce the amount of ordering information in the
log. It predicts that there are no ordering constraints and
no signals delivered between two successive logged op-
erations, and records only when the execution deviates
from the model.

After applying model-based compression, we deter-
mined that the most significant source of log usage on
our systems was messages sent from the X server to ap-
plications. A small fraction of this data comes from user
events (button presses, mouse movements, etc.). Most
data consisted of responses to application requests. Since
such responses included nondeterministic data such as
identifiers and window properties, the responses needed
to be recorded to faithfully replay each application.

We observed, however, that with the exception of ac-

528 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI "14)

USENIX Association

tual user input, the behavior of the X server is mostly
deterministic. Arnold avoids logging most data from the
X server by using the X server to help regenerate data
during replay. We insert a proxy between applications
and the X server that records only a small subset of
the data sent from the X server, such as identifiers and
window properties generated nondeterministically by the
X server. During replay, the application again connects
to an X server via the proxy. The proxy translates the
nondeterministic values, and the replay process gener-
ates GUI state using the live X server, but on a sep-
arate display. The proxy also inserts the recorded user
events at the appropriate point in the stream. In combina-
tion with the proxy translation, the X server produces the
same sequence of responses during the replayed execu-
tion as during recording. With deterministic X recording,
Arnold can make the display of X windows visible dur-
ing replay. As we will describe, this is useful for show-
ing users application displays that correspond to the re-
sults of lineage queries and for allowing users to specify
queries by clicking on recreations of windows displaying
data they observed in the past. By recording only nonde-
terministic response values and user input, the proxy sub-
stantially reduces the amount of information in the logs
of GUI applications.

After applying the above optimizations, we noticed
that time queries constituted a substantial portion of
the remaining log size. To reduce the amount of non-
determinism that needs to be logged, Arnold uses a
semi-deterministic clock. The value returned by a semi-
deterministic clock is guaranteed to be less than the
real-time clock for the system, and within a specified
delta. The default delta is 10ms; it may be overrid-
den by applications that need more accuracy. A replay
group’s semi-deterministic clock is incremented deter-
ministically based on the number and type of logged op-
erations (which is the same during both recording and
replay). When the time is queried, Arnold reads the ac-
tual real-time clock. If the semi-deterministic clock is
greater than or more than delta behind the real-time
clock, Arnold returns the real-time clock value, sets the
semi-deterministic clock equal to the real-time clock, and
records the new value in the log. Thus, the amount of
time query data in the log is proportional to the num-
ber of such resets rather than the total number of time
queries; if Arnold usually predicts the clock value cor-
rectly, the amount of logged time data can be quite small.

Arnold ensures that observed semi-deterministic
clock values are externally consistent. It is for this rea-
son that the semi-deterministic clock must always be less
than the real-time clock. If a recorded process sends a
message to a non-recorded process, the receiver will al-
ways observe that the message arrived after it was sent.
Further, if a recorded process receives data from or sends

data to an entity outside the replay group, the group’s
semi-deterministic clock is set to match the real-time
clock. Thus, the observed clock values are causally con-
sistent both across all processes on the computer system
and with respect to external entities.

Finally, Arnold compresses all log data with gzip.
This is very effective in compressing some input, such as
text. It also helps to compress applications that perform
repetitive operations with similar results.

4.3 Copy-on-RAW file cache

Arnold records the file data read by a process so
that data can be redelivered to the process during re-
play. Recording this data can take a substantial amount
of log space, so Arnold optimizes how the read file data
is stored by deduplicating it. This works particularly well
when a file is read multiple times before being modified.

To deduplicate the read file data, Arnold saves a ver-
sion of a file only on the first read after the file is written.
Subsequent reads log only a reference to the saved ver-
sion, along with the read offset and return code. We refer
to this as copy-on-RAW (read-after-write) recording.

If another process opens the file for writing while a
reading process is running, the reading process reverts
back to recording the read values instead of the reference
to the stored version (several optimizations are possible
here, such as recording the file version on each read in-
stead of open, or reexecuting reads and writes to files
shared among processes in the same replay group.)

Arnold also uses the copy-on-RAW store for file mmap
operations by mapping the stored file version into the
process space on replay. If the mapped region is writable,
Arnold creates a private temporary copy of the file ver-
sion on replay; this allows the replayed process to change
the file contents without affecting other replayed pro-
cesses that reference the same file version.

Note that, with this design, the current version of all
files is stored in the default file system (ext4 on our
Ubuntu workstations). We chose this operation for ef-
ficiency; recording processes (the common usage case)
go through the well-optimized file system and receive
the best performance. Copy-on-RAW population of the
file store can proceed asynchronously and not slow down
the recording process too much unless large amounts of
data being read exert memory pressure. The cost of this
implementation is some double-buffering of current file
data, which we could reduce in the future.

We were initially surprised because the size of
Arnold’s file store grew more slowly than expected on
our workstations. On investigation, we realized this was
due to an important difference between Arnold’s file
store and a versioning file system: Arnold’s file store
does not have to store data that is written but never read.
Since Arnold is an eidetic system, it can, of course, recre-

USENIX Association

11th USENIX Symposium on Operating Systems Design and Implementation (OSDI "14) 529

ate this file data; however, it does so by replaying the pro-
cess(es) that produced the data rather than by retrieving
the data from the file system. In contrast, a versioning
file system needs to store all file versions even if they are
overwritten or deleted without being read.

Since Arnold can reproduce any current or past file
version via replay, it is the logs of nondeterminism that
are Arnold’s truly persistent store [16]. We can thus treat
Arnold’s copy-on-RAW file store as a cache. The copy-
on-RAW file store (and, in fact, all file system data) is
simply a performance optimization that contains check-
points of data that could be produced by replay. This rea-
soning led us to develop cooperative replay.

4.4 Cooperative replay

We normally think of replay groups as independent
entities: we log their nondeterministic inputs during
recording and reinsert these inputs during replay. Coop-
erative replay provides another option, which is to use
one replay group to regenerate the data read by another.
Cooperative replay allows us to treat the log of all in-
terprocess communication (files, pipes, etc.) as a cache,
whose records can be evicted when the cache is full and
recovered when needed during replay.

Arnold uses cooperative replay to regenerate data read
from files. During replay, if the requested data exists in
the file system (because it is the current version of the
file) or in the copy-on-RAW file cache, Arnold reads
the data from one of those locations. If not, Arnold re-
generates the data by replaying the replay group(s) that
produced the data. Arnold stores information about the
source of all file data in each read record—this includes
the identifier of the replay group(s) and the system call(s)
executed by the group(s) that produced the file data (Sec-
tion 4.5). To regenerate the data, Arnold suspends the re-
play group requesting the data, replays the producing re-
play group(s), repopulates any data evicted from the file
cache, and finally resumes the requesting replay group.

Cooperative replay may recurse in a depth-first man-
ner. When replaying replay group A, Arnold may need
to replay another replay group B to regenerate file data
read by replay group A, and this may trigger the replay
of a third replay group C, and so forth. The recursion will
stop when a group can be replayed without depending on
any other replay group.

As data flows forward, it creates a directed acyclic
graph. While no cycles exist between nodes in the graph,
Arnold may encounter a scenario where two replay
groups depend on outputs of each other. In this scenario
Arnold will alternate replaying each group until all de-
pendencies are met.

4.5 Dependency graph

To support cooperative replay and track lineage across
replay groups, Arnold maintains a logical graph of the
data-flow dependencies between groups, which we re-
fer to as the dependency graph. Nodes in the graph are
<replay group id, system call id> tuples, where the sec-
ond part of the tuple uniquely identifies a particular sys-
tem call executed by a process in the replay group. Each
edge in the graph is a bidirectional link between the sys-
tem call that produced data and the set of one or more
system calls that consumed that data. Thus, Arnold can
determine the lineage of data across replay groups by
tracing backward in time through the dependency graph,
and it can determine what downstream values were influ-
enced by particular data by tracing the lineage forward.

We first describe the operation of the dependency
graph for file data. When a recorded process writes to
a file, Arnold records which bytes were modified, along
with the <replay group id, system call id> in a per-file
B-tree indexed by the file offset. The root of each per-file
B-tree is in turn indexed in a B-tree of all files; we refer to
this collection of B-trees as the filemap. Arnold allocates
a separate region on disk for the filemap; it reads pages
on demand into a kernel cache in physical memory and
evicts pages using an LRU algorithm. Pages are flushed
asynchronously using the journal mechanisms of the un-
derlying file system (ext4 in our current implementation).
Thus, the filemap contains the lineage information for all
current file data in the file system.

When a recorded process reads from a file, Arnold
searches through the filemap to find which system call(s)
wrote the bytes being read. It copies the tuples out of
the filemap into the replay log of the reading process.
Thus, the log contains sufficient data to answer backward
lineage queries (how was the data read by this process
produced?). In order to answer forward lineage queries,
Arnold generates an index over the reverse linkages and
stores it in a sqlite database. A daemon process asyn-
chronously generates the index by incrementally scan-
ning recent replay logs (replay is unnecessary because
the data needed to generate the index is in the logs).

Arnold uses a similar process to record the lineage of
other forms of IPC. For pipes and sockets, it keeps meta-
data for bytes written but not yet consumed in the kernel.
For most pipes and sockets, there is a single writing pro-
cess and a single reading process, and bytes are read in
the order they are written. In this common case, Arnold
reduces log size by only logging the identifier of the writ-
ing replay group. On a query, Arnold identifies the sys-
tem call(s) that generated data by scanning the log of the
writing record group. If there is more than one reader or
writer, Arnold tracks the reads and writes on the pipe or
socket in the same manner as for file system data.

Arnold also tracks lineage of the data passed from the

530 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI "14)

USENIX Association

parent process to the child process during exec. This in-
cludes arguments, environment variables, and some mis-
cellaneous data used during the exec system call.

Arnold does not record the lineage of data passed
among processes via shared memory. Instead, Arnold
tracks this lineage at query time by instrumenting the
memory read and write instructions as described in the
next section.

4.6 Intra-process lineage

Arnold uses Pin [29] binary instrumentation to ana-
lyze replayed executions and track the lineage of data
within a replay group. We chose Pin because it is a
flexible and well-documented tool; however, Pin can
be slow, partially because it dynamically, rather than
statically, inserts instrumentation into running binaries.
Arnold avoids overhead during recording by only using
Pin and analyzing intra-process lineage during replay.

While analysis tools such as Pin are typically invis-
ible to the program they instrument, they are not trans-
parent to the operating system: such tools insert new sys-
tem calls, allocate additional memory, catch signals, etc.
Without special care, these extra actions to support anal-
ysis will cause the replayed execution to diverge from
the recorded execution. Arnold uses techniques from X-
ray [4] to compensate for the divergences caused by anal-
ysis; for instance, it prevents Pin from allocating memory
that will conflict with the replayed execution and it iden-
tifies system calls generated by Pin and executes them
live rather than trying to supply nondeterministic values
from the group’s log.

Arnold traces lineage within a group by restoring the
group’s checkpoint and replaying the processes within
the group with Pin dynamic analysis enabled. Pin tools
determine which inputs to the group influenced which
outputs according to a customizable linkage function.

There are many possible ways of defining lineage: one
can say that an input influences an output only if the out-
put is derived from the input via a series of copies, or one
can consider other forms of data flow, or control flow, etc.
The linkage function defines, for each type of proces-
sor instruction, which outputs of the instruction are in-
fluenced by which inputs. Each linkage is implemented
as a Pin tool. Arnold provides several common linkage
functions (and applications may define their own):

e Copy. An input of an instruction influences an out-
put only if the instruction copies the value of the
input to the output location (e.g., via a move in-
struction).

e Data flow. An input of an instruction influences an
output if the instruction uses the input to calculate
the value of the output (e.g., via an add instruction).

o Index. An input influences an output if the input is
used to calculate the output or if the input is used

as an index to load a value used to calculate the
output (e.g., via an array or lookup table index).

e Control flow. This includes, in addition to index
and data flow influence, the influence propagated
via control flow as tracked using the algorithms de-
veloped by ConfAid [5].

The lineage data returned by each linkage function
above is a superset of the preceding linkage functions.
For example, if a group input and output are related via
the data flow linkage, they are also related via the index
and control flow linkages.

A lineage query for a group specifies a set of inputs,
a set of outputs, and a linkage function. Inputs may be
specified as a set of <system call id, byte range> tuples,
where each tuple denotes a unique system call performed
by the recorded group and the subset of input bytes to
track for that call. Alternatively, the input may be speci-
fied as a class of input (e.g., all file data or all GUI events
from the X server), or the query may simply track all in-
puts. Output is specified similarly.

Arnold uses taint tracking to derive intra-group lin-
eage. When it sees a system call matching the input spec-
ification, it taints the requested bytes with unique iden-
tifiers as they are read into the process address space.
As instructions execute, the Pin lineage tool propagates
that taint among memory addresses and registers accord-
ing to the linkage function. When Arnold sees an output
matching the specification, it writes the taint of each out-
put byte to a results file. Of course, each byte may be
influenced by zero to many inputs.

4.7 User-propagated lineage

For interactive workflows, lineage may pass through
the user of the system. For instance, she might view a
Web page in a browser, then type text from that page
into an editor. Arnold tracks such lineage by first identi-
fying inputs and outputs that occurred at approximately
the same time, then using fuzzy string matching to look
for contextual linkages among those inputs and outputs.

Arnold identifies user-generated inputs with a Pin tool
that runs on a replayed execution. The tool identifies
channels corresponding to user input: sockets used to
communicate with the X server (for GUI input), the ter-
minal device (for text input), and network sockets con-
necting to well-known ports associated with user input
(e.g., the sshd port). It generates a temporary file con-
taining the stream of data read from every such chan-
nel read by the replay group. The tool performs channel-
specific parsing: for instance, it decodes the X messages
to read the corresponding key press events, and it inter-
cepts data returned from functions such as SSL_read to
retrieve the unencrypted data from ssh sockets. The chan-
nel input stream file therefore contains textual data that
corresponds to the input.

USENIX Association

11th USENIX Symposium on Operating Systems Design and Implementation (OSDI "14) 531

Arnold follows a similar strategy to generate output
stream files for a replay group. Understanding GUI out-
put turned out to be tricky, however, because most pro-
grams we looked at did not send text to the X server, but
instead sent binary glyphs generated by translating the
output characters into a particular font. Arnold identifies
these glyphs as they are passed to standard X and graphi-
cal library functions. It traces the lineage backward from
these glyphs using one of the above linkages (e.g., the
index linkage). These values are typically influenced by
either or both of (a) textual input to the process being re-
executed, or (b) standard font files. By tracing glyphs to
either location, Arnold recovers the characters associated
with those glyphs. If the lineage is traced to a font file
Arnold must determine the font character from the font
file. This requires Arnold to understand font file formats
(of which there are relatively few). Thus, it translates the
sequence of glyph outputs to the underlying text they de-
pict.

4.8 Query Execution

Arnold queries allow users to recall prior state and
lineage information. There are three types of queries:

e State queries retrieve past transient state, persis-
tent state, inputs, or outputs of the computer sys-
tem.

o Backward lineage queries start at any current or
past state, input, or output and trace the lineage of
the bytes comprising that state backward in time
according to a specified linkage function. A back-
ward query answers the question: How was this
state derived?

e Forward lineage queries start at a past state, in-
put, or output and trace the lineage forward in time
according to a specified linkage function to return
current and past state and outputs derived from that
state. A forward query answers the question: What
did this state influence and how was that influence
propagated?

4.8.1 State queries

Arnold can recover past file versions, transient pro-
cess state, inputs, and output. If a specified file version
does not already exist in its cache, Arnold uses coopera-
tive replay to regenerate the contents of the file. Arnold
reexecutes the specified replay group to regenerate both
transient process state and output. Inputs (with the excep-
tion of file data) are logged, so no reexecution is needed
to retrieve them.

Arnold also provides an interactive state query to al-
low users to inspect GUI output. During replay, X server
output is displayed on the current screen, allowing the
user to observe the display as it was manipulated during
recording. Via a separate console, the user can fast for-

ward to a particular output (i.e., the display is updated at
replay speed without the original think time, I/O delays,
etc.) or pause the replay at a particular point in the execu-
tion. By delaying a specified amount after each X output,
Arnold can also display a slow-motion execution.

4.8.2 Backward lineage queries

A backward query starts from a specified piece of cur-
rent or past state. The first step in processing this query
is to translate the starting state into a set of <replay
group,system call,byte range> tuples, where the system
call is a specific call executed by a process in the replay
group, and the byte offset is a range of bytes returned by
that call. There are many possible types of starting state.
For instance, the starting state may be data in a current
file specified as a <filename,starting offset,length> tu-
ple. Arnold looks up the lineage of these bytes in the cur-
rent filemap, which contains the <replay group,system
call,byte offset> tuple of the system call that produced
each byte.

The starting state may also be process inputs (e.g.,
data read from a socket, pipe, or terminal). The user can
specify a replay group and a specific type of input (e.g.,
network data) or a speci