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Nail: A practical tool for parsing and generating data formats

Julian Bangert and Nickolai Zeldovich
MIT CSAIL

ABSTRACT

Nail is a tool that greatly reduces the programmer effort
for safely parsing and generating data formats defined by
a grammar. Nail introduces several key ideas to achieve
its goal. First, Nail uses a protocol grammar to define not
just the data format, but also the internal object model
of the data. Second, Nail eliminates the notion of se-
mantic actions, used by existing parser generators, which
reduces the expressive power but allows Nail to both parse
data formats and generate them from the internal object
model, by establishing a semantic bijection between the
data format and the object model. Third, Nail introduces
dependent fields and stream transforms to capture proto-
col features such as size and offset fields, checksums, and
compressed data, which are impractical to express in ex-
isting protocol languages. Using Nail, we implement an
authoritative DNS server in C in under 300 lines of code
and grammar, and an unzip program in C in 220 lines
of code and grammar, demonstrating that Nail makes it
easy to parse complex real-world data formats. Perfor-
mance experiments show that a Nail-based DNS server
can outperform the widely used BIND DNS server on an
authoritative workload, demonstrating that systems built
with Nail can achieve good performance.

1 INTRODUCTION

Code that handles untrusted inputs, such as processing
network data or parsing a file, is error-prone and is often
exploited by attackers. For example, the libpng image
decompression library had 24 remotely exploitable vul-
nerabilities from 2007 to 2013 [5], Adobe’s PDF and
Flash viewers have been notoriously plagued by input
processing vulnerabilities, and even the zlib compression
library had input processing vulnerabilities in the past [6].
With a memory-unsafe language like C, mistakes in input
processing code can lead to memory errors like buffer
overflows, and even with a memory-safe language like
Java, inconsistencies between different parsers can lead
to security issues [13].

A promising approach to avoid these problems is to
specify a precise grammar for the input data format, and
to use a parser generator, such as lex and yacc, to syn-
thesize the input processing code. Developers that use a
parser generator do not need to write error-prone input
processing code on their own, and as long as the parser
generator is bug-free, the application will be safe from

input processing vulnerabilities. Grammars can also be
re-used between applications, further reducing effort and
eliminating inconsistencies.

Unfortunately, applying this approach in practice, using
state-of-the-art parser generators, still requires too much
manual programmer effort, and is still error-prone, for
four reasons:

First, parser generators typically parse inputs into an
abstract syntax tree (AST) that corresponds to the gram-
mar. In order to produce a data structure that the rest
of the application code can easily process, application
developers must write explicit semantic actions that up-
date the application’s internal representation of the data
based on each AST node. Writing these semantic actions
requires the programmer to describe the structure of the
input three times—once to describe the grammar, once
to describe the internal data structure, and once again in
the semantic actions that translate the grammar into the
data structure—leading to potential bugs and inconsisten-
cies. Furthermore, in a memory-unsafe language like C,
these semantic actions often involve error-prone manual
memory allocation and pointer manipulation.

Second, applications often need to produce output in
the same format as their input—for example, applica-
tions might both read and write files, or both receive and
send network packets. Most parser generators focus on
just parsing an input, rather than producing an output,
thus requiring the programmer to manually construct out-
puts, which is work-intensive and leads to more code
that could contain errors. Some parser generators, such as
Boost.Spirit [8], allow reusing the grammar for generating
output from the internal representation. However, those
generators require yet another set of semantic actions to
be written, transforming the internal representation back
into an AST.

Third, many data formats contain redundancies, such
as repeating information in multiple structures. Appli-
cations usually do not explicitly check for consistency,
and if different applications use different instances of the
same value, an attacker can craft an input that causes in-
consistencies [38]. Furthermore, security vulnerabilities
can occur when an application assumes two repetitions of
the same data to be consistent, such as allocating a buffer
based on the value of one size field and copying into that
buffer based on the value of another [28].

Finally, real-world data formats, such as PNG or PDF,
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are hard to represent with existing parser generators.
Those parsers cannot directly deal with length or check-
sum fields, so the programmer has to either write poten-
tially unsafe code to deal with such features, or build
contrived grammar constructs, such as introducing one
grammar rule for each possible value of a length field.
Offset fields, which specify the position at which some
data structure is located, usually require the programmer
to manipulate a parser’s internal state to re-position its in-
put. More complicated transformations, such as handling
compressed data, cannot be represented at all.

This paper presents the design and implementation of
Nail, a parser generator that greatly reduces the program-
mer effort required to use grammars. Nail addresses the
above challenges with several key ideas, as follows.

First, Nail grammars define both a format’s external
representation and an internal object model. This removes
the semantic actions and type declarations that program-
mers have to write with existing parser generators. While
this somewhat reduces the flexibility of the internal model,
it forces the programmer to clearly separate syntactic val-
idation and semantic processing.

Second, this well-defined internal representation allows
Nail to establish a semantic bijection between data for-
mats and their internal object model. As a result, this
enables Nail to not just parse input but also generate out-
put from the internal representation, without requiring the
programmer to write additional code.

Third, Nail introduces two abstractions, dependent
fields and transformations, to elegantly handle problem-
atic structures, such as offset fields or checksums. De-
pendent fields capture fields in a protocol whose value
depends in some way on the value or layout of other parts
of the format; for example, offset or length fields, which
specify the position or length of another data structure,
fall in this category. Transformations allow the program-
mer to escape the generated code to modify the raw data
and interact with dependent fields in a controlled manner.

To evaluate whether Nail’s design is effective at han-
dling real-world data formats, we implemented a proto-
type of Nail for C. Using our prototype, we implemented
grammars for parts of an IP network stack, for DNS pack-
ets, and for ZIP files, each in about a hundred lines of
grammar. On top of these grammars, we were able to
build a DNS server in under 200 lines of C code, and an
unzip utility in about 50 lines of C code, with perfor-
mance comparable to or exceeding existing implementa-
tions. This suggests both that Nail is effective at handling
complex real-world data formats, and that Nail makes
it easy for application developers to parse and generate
external data representations. Performance results show
that the Nail-based DNS server outperforms the widely
used BIND DNS server, demonstrating that Nail-based
parsers and generators can achieve good performance.

The rest of this paper is organized as follows. §2 puts
Nail in the context of related work. §3 motivates the need
for Nail by examining past data format vulnerabilities. §4
describes Nail’s design. §5 discusses our implementation
of Nail. §6 provides evaluation results, and §7 concludes.

2 RELATED WORK

Parsers. Generating parsers and generators from an ex-
ecutable specification is the core concept of interface gen-
erators, such as CORBA [30], XDR [37], and Protocol
Buffers [40]. However, interface generators do not allow
the programmer to specify the byte-level data format; in-
stead, they define their own data encoding that is specific
to a particular interface generator. For instance, XDR-
based protocols are incompatible with Protocol Buffers.
Moreover, this means that interface generators cannot be
used to interact with existing protocols that were not de-
fined using that interface generator in the first place. As
a result, interface generators cannot be used to parse or
generate widely used formats such as DNS or ZIP, which
is a goal for Nail.

Closely related work has been done in the field of data
description languages, for example PacketTypes [24] and
DataScript [1]; a broader overview of data description
languages can be found in Fisher et al [10]. PacketTypes
implements a C-like structure model enhanced with length
fields and constraints, but works only as a parser, and not
as an output generator. DataScript adds output generation
and built-in support for offset fields. A particularly so-
phisticated data description language, PADS [9], which is
targeted more towards offline analysis, even features built-
in support for XML and automatic grammar inference.
However, these systems cannot easily handle complicated
encodings such as compressed data, which are supported
by Nail’s stream transforms. While sophisticated lan-
guages like PADS allow for handling particular variations
of offset fields, compressed data, or even XML entities,
each of these features has to be implemented in the data
description language and all associated tools. Nail’s trans-
formations keep the core language small, while enabling
the wide range of features real-world protocols require.

Recently, the Hammer project [32] introduced a
security-focused parser framework for binary protocols.
Hammer implements grammars as language-integrated
parser combinators, an approach popularized by Parsec
for Haskell [21]. The parser combinator style (to our
knowledge, first described by Burge [4]) is a natural way
of concisely expressing top-down grammars [7] by com-
posing them from one or multiple sub-parsers.1 Hammer
then constructs a tree of function pointers which can be
invoked to parse a given input into an AST.

1For more background on the history of expressing grammars, see
Bryan Ford’s masters thesis [11], which also describes the default pars-
ing algorithm used by Hammer.
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Nail improves upon Hammer in three ways. First, Nail
generates output in addition to parsing input. Second,
Nail does not require the programmer to write poten-
tially insecure semantic actions. Last, Nail’s structural
dependencies and stream transforms allow it to work with
protocols that Hammer cannot handle, such as protocols
with offset fields, length fields, checksums, or compressed
data, although Hammer has special facilities for arrays
immediately preceded by their length.

Parsifal [22] is a parser framework for OCaml that also
supports generating output. Parsifal structures grammars
as an OCaml type that holds an internal model and func-
tions for parsing input and output. However, Parsifal can
produce parsers and generators only for simple, fixed-size
structures. The programmer can then use these when im-
plementing parsers and generators for more complicated
formats, manually handling offsets, checksums, and the
like, risking bugs. Nail handles more complicated con-
structs without the programmer manually writing code to
support them.

We presented an earlier design of Nail at a work-
shop [2]. At that stage, Nail had only limited support
for dependent fields, and did not support stream trans-
forms at all, which are crucial for supporting real-world
formats like DNS and ZIP. The workshop paper also did
not provide a detailed design discussion or evaluation.

Application use of parsers. Generated parsers have
long been used to parse human input, such as program-
ming languages and configuration files. Frequently, such
languages are specified with a formal grammar in an
executable form. Unfortunately, parser frameworks are
seldom used to recognize machine-created input; as we
demonstrate in §6, state-of-the-art parser generators are
not suitable for parsing or generating many real-world
data formats.

A notable exception is the Mongrel web server [36]
which uses a grammar for HTTP written in the Ragel
regular expression language [39]. Mongrel was re-written
from scratch multiple times to achieve better scalability
and design, yet the grammar was reused across all itera-
tions [31]. We hope that Nail’s ideas make it possible to
handle a wider range of protocols using parser generators,
and to build more applications on top of grammar-based
parsers.

3 MOTIVATION

To motivate the need for Nail, this section presents a case
study of vulnerabilities due to ad-hoc input parsing and
output generation. Broadly speaking, parsing vulnerabili-
ties can lead to two kinds of problems—memory corrup-
tion and logic errors—and as we show, both are prevalent
in software and lead to significant security problems.

Widely exploited parsing errors. Three recent high-
profile security vulnerabilities are due to logic errors in
input processing. In all cases, when the vulnerabilities
were fixed, a similar flaw was exposed immediately after-
wards, showing the need for a different approach to input
handling that eliminates those vulnerabilities by design.

The Evasi0n jailbreak for iOS 6 [38] relies on the XNU
kernel and user-mode code-signing verifier interpreting
executable metadata differently, so the code signature
checker sees different bytes at a virtual address than what
the kernel maps into the process. The next version of
iOS added an explicit check for this particular metadata
inconsistency. However, because parsing and processing
of the input data is still mixed, the jailbreakers could set a
flag that re-introduced the inconsistency after the check,
but before signatures are verified [16], which allowed iOS
7 to be jailbroken.

Similarly, vulnerabilities in X.509 parsers for SSL cer-
tificates allowed attackers to get certificates for domains
they do not control. First, Moxie Marlinspike discov-
ered that the X.509 parsers in popular browsers handle
NUL-bytes in certificates incorrectly [23]. After this vul-
nerability was fixed, Dan Kaminsky discovered [20] that
other structures, such as length fields and duplicated data,
were also handled incorrectly.

Similarly, the infamous Android master key bug [13]
completely bypassed Android security by exploiting
parser inconsistencies between the ZIP handler that
checks signatures for privileged applications and the ZIP
implementation that ultimately extracts those files. Thus,
privileged application bundles could be modified to in-
clude malicious code without breaking their signatures.
Google quickly fixed this particular parser inconsistency,
but another vulnerability, based on a different inconsis-
tency between the parsers, was quickly disclosed [14].

Case study: ZIP file handling. To understand the im-
pact of parsing mistakes in real-world software, we con-
ducted a systematic study of vulnerabilities related to
ZIP file parsing. The ZIP format has been associated
with many vulnerabilities, and the PROTOS Genome
project [34] found numerous security vulnerabilities re-
lated to input handling in most implementations of ZIP
and other archive formats. We extend this study by look-
ing at the CVE database.

We found 83 vulnerabilities in the CVE database [25]
that mention the search string “ZIP.” Just 16 of these vul-
nerabilities were related to processing ZIP archives; the
rest were unrelated to ZIP archives or involved applica-
tions insecurely using the contents of untrusted ZIP files.
Figure 1 summarizes the 16 ZIP-related vulnerabilities.

These input-processing vulnerabilities fall into two
broad classes. The first class, which occurred 11 times,2

2We classified the following vulnerabilities as memory corruption
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Classification Example CVE Example description Count

Memory corruption CVE-2013-5660 Buffer overflow 11
Parsing inconsistency CVE-2013-1462 Multiple virus scanners interpret ZIP files incorrectly 4
Semantic misunderstanding CVE-2014-2319 Weak cryptography used even if user selects AES 1

Total of all vulnerabilities related to .zip processing 16

Figure 1: Classification of vulnerabilities in the CVE database from 2010 to May 2014 containing the term “ZIP” and involving the ZIP file format.

is memory safety bugs, such as buffer overflows, which
allow an adversary to corrupt the application’s memory
using specially crafted inputs. These mistakes arise in
lower-level languages that do not provide memory safety
guarantees, such as C, and can be partially mitigated by
a wide range of techniques, for example static analysis,
dynamic instrumentation, and address space layout ran-
domization, that make it more difficult for an adversary
to exploit these bugs. Nail helps developers using lower-
level languages to avoid these bugs in the first place.

The second class, which occurred four times in our
study, is logic errors, where application code misinter-
prets input data. Safe languages and exploit mitigation
technologies do not help against such vulnerabilities. This
can lead to serious security consequences when two sys-
tems disagree on the meaning of a network packet or a
signed message, as shown by the vulnerabilities we de-
scribed before. CVE-2013-0211 shows that logic errors
can be the underlying cause of memory corruption, when
one part of a parser interprets a size field as a signed
integer and another interprets it as an unsigned integer.
CVE-2013-7338 is a logic error that allows an attacker
to craft ZIP files that are incorrectly extracted or result
in application hangs with applications using a Python
ZIP library, because this library does not check that two
fields that contain the size of a file contain the same value.
The Android ZIP file signature verification bug that we
described earlier was also among these 4 vulnerabilities.

These mistakes are highly application-specific, and
are difficult to mitigate using existing techniques, and
these mistakes can occur even in high-level languages
that guarantee memory safety. By allowing developers to
specify their data format just once, Nail avoids logic errors
and inconsistencies in parsing and output generation.

4 DESIGN

Nail’s goals are to reduce programmer effort required to
safely interact with data formats and prevent vulnerabili-
ties like those described in §3. In particular, this means:

• Using a single grammar to define both the exter-
nal format and the internal representation. This
allows the same grammar to be re-used in multiple

attacks based on their description: CVE-2013-5660, -0742, -0138, CVE-
2012-4987, -1163, -1162, CVE-2011-2265, CVE-2010-4535, -1657,
-1336, and -1218.

programs, and helps avoid vulnerabilities like the
Android Master Key bug.

• Parsing inputs into internal representations, as well
as generating outputs from internal representations,
without requiring the programmer to write any se-
mantic actions. This prevents vulnerabilities such as
the iOS XNU bug, where format recognition and se-
mantics are mixed and interact in unexpected ways.

• Eliminating redundancy in internal representations,
such as storing both an explicit length field and an
implicit length of a container data structure, to pro-
vide programmers a consistent, unambiguous view
of the data. This helps avoid bugs such as the one
discovered in the Python ZIP library [28].

• Allow programmers to define grammars for com-
plex real-world data formats through well-defined
extensibility mechanisms. This helps prevent pro-
grammers from falling back on manual parsing when
encountering a complex data format.

4.1 Overview
Internal model. Nail grammars describe both the ex-
ternal format and an internal representation of a protocol.
Nail produces the following from a single, descriptive
grammar:

• Type declarations for the internal model, which the
application should use to represent data items in
memory.

• The parser, a function that the application should
invoke to parse a sequence of bytes into an instance
of the above model.

• The generator, a function that the application should
invoke to create a sequence of bytes from an instance
of the model.

For example, Figure 2 shows a Nail grammar for DNS
packets. For this grammar, Nail produces the type decla-
rations shown in Figure 3, and the parser and generator
functions shown in Figure 4.
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1 dnspacket = {
2 id uint16
3 qr uint1
4 opcode uint4
5 aa uint1
6 tc uint1
7 rd uint1
8 ra uint1
9 uint3 = 0

10 rcode uint4
11 @qc uint16
12 @ac uint16
13 @ns uint16
14 @ar uint16
15 questions n_of @qc question
16 responses n_of @ac answer
17 authority n_of @ns answer
18 additional n_of @ar answer
19 }
20 question = {
21 labels compressed_labels
22 qtype uint16 | 1..16
23 qclass uint16 | [1,255]
24 }
25 answer = {
26 labels compressed_labels
27 rtype uint16 | 1..16
28 class uint16 | [1]
29 ttl uint32
30 @rlength uint16
31 rdata n_of @rlength uint8
32 }
33 compressed_labels = {
34 $decompressed transform dnscompress ($current)
35 labels apply $decompressed labels
36 }
37 label = { @length uint8 | 1..64
38 label n_of @length uint8 }
39 labels = <many label; uint8 = 0>

Figure 2: Nail grammar for DNS packets, used by our prototype DNS
server.

struct dnspacket {
uint16_t id;
uint8_t qr;
/* ... */
struct {
struct question *elem;
size_t count;

} questions;
};

Figure 3: Portions of the C data structures defined by Nail for the DNS
grammar shown in Figure 2.

struct dnspacket *parse_dnspacket(NailArena *arena,
const uint8_t *data,
size_t size);

int gen_dnspacket(NailArena *tmp_arena,
NailStream *out,
struct dnspacket *val);

Figure 4: The API functions generated by Nail for parsing inputs and
generating outputs for the DNS grammar shown in Figure 2.

Semantic bijection. Parsing inputs and generating out-
puts suggests a bijection between external data and its
internal representation. However, a bijection in the tradi-
tional sense often does not make sense for data formats.
Consider a grammar for a text language that tolerates
white space, or a binary protocol that tolerates arbitrarily
long padding. Program semantics should be independent
of the number of padding elements in the input, and Nail
therefore does not expose that information to the program-
mer. We call such discarded fields constants. Similarly,
programs should not necessarily preserve the layout of
objects referred to by their offsets.

Therefore, Nail establishes only a semantic bijection
between the external format and the internal model. That
is, when Nail parses an input into an internal representa-
tion, and then generates output from that representation,
the two byte streams (input and output) will have the
same meaning (i.e., be interpreted equivalently by Nail).
However, the byte streams might not be identical. If
the grammar consists of a simple protocol without off-
set fields, constants, and the like, there is a conventional
bijection between internal models and valid parser inputs.

Hiding redundant information. Nail’s internal model
is designed to hide unneeded and redundant information
from the application. Nail introduces dependent fields,
which contain data that can be computed during genera-
tion and need to be kept as additional state during pars-
ing. Dependent fields are, for example, used to represent
lengths, offsets, and checksums. If dependent fields were
exposed in the internal model, information would be du-
plicated and inconsistent internal data structures could
be produced when data is modified. For example, when
using Nail to handle UDP packets, without dependent
fields, programmers might forget to update checksum
fields when they modify the payload data.

Parser extensions. Real-world protocols contain com-
plicated ways of encoding data. Fully representing these
in an intentionally limited model such as our parser lan-
guage is impractical. Therefore, Nail introduces transfor-
mations, which allow arbitrary code by the programmer
to interact with the parser and generator. Nail parsers
and generators interact with data through an abstract
stream, which allows reading and writing of bits and
re-positioning. Transformations allow the programmer to
write functions in a general-purpose language that con-
sume streams and define new temporary streams, while
also reading or writing the values of dependent fields.

Initial versions of Nail’s design included a special com-
binator for handling offset fields, which consumed a de-
pendent field and applied a parser at the offset specified
therein. However, it proved impossible to foresee all the
ways in which a protocol could encode an offset; for exam-
ple, some protocols such as PDF and ZIP locate structures
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Nail grammar External format Internal data type in C

uint4 4-bit unsigned integer uint8_t

int32 | [1,5..255,512] Signed 32-bit integer x ∈ {1,5..255,512} int32_t

uint8 = 0 8-bit constant with value 0 /* empty */

optional int8 | 16.. 8-bit integer ≥ 16 or nothing int8_t *

many int8 | ![0] A NULL-terminated string struct {

size_t N_count;

int_t *elem;

};

{ Structure with two fields struct {

hours uint8 uint8_t hours;

minutes uint8 uint8_t minutes;

} };

<int8=’"’; p; int8=’"’> A value described by parser p, in quotes The data type of p

choose { Either an 8-bit integer between 1 and 8, struct {

A = uint8 | 1..8 or a 16-bit integer larger than 256 enum {A, B} N_type;

B = uint16 | 256.. union {

} uint8_t a;

uint16_t b;

};

};

@valuelen uint16 A 16-bit length field, followed by struct {

value n_of @valuelen uint8 that many bytes size_t N_count;

uint8_t *elem;

};

$data transform Applies programmer-specified function to /* empty */

deflate($current @method) create new stream (§4.4)

apply $stream p Apply parser p to stream $stream (§4.4) The data type of p

foo = p Define rule foo as parser p typedef /* type of p */ foo;

* p Apply parser p Pointer to the data type of p

Figure 5: Syntax of Nail parser declarations and the formats and data types they describe.

by scanning for a magic number starting at the end of the
file or at a fixed offset. In nested grammars, offsets are
also not necessarily computed from the beginning of a file
or packet. Nail’s transformations allow the programmer
to write arbitrary functions that can handle such structures
and streams, which are a generic abstraction for input and
output data that allow the decoded data to be integrated
with the rest of the generated Nail parser.

4.2 Basics
A Nail parser defines both the structure of some external
format and a data type to represent that format. Parsers
are constructed by combinators over simpler parsers, an
approach popularized by the Parsec framework [21]. We
provide the most common combinators familiar from
other parser combinator libraries, such as Parsec and
Hammer [32] and extend them so they also describe a
data type.

We present both a systematic overview of Nail’s syntax
with short examples in Figure 5, and explain our design in
more detail below, using a grammar for the well-known
DNS protocol as a running example (shown in Figure 2).

Rules. A Nail grammar consists of rules that assign a
parser to a name. Rules are written as assignments, such
as ints = /*parser definition*/, which defines a rule
called ints. As we will describe later in §4.3 and §4.4,
rules can optionally consume parameters. Rules can be
invoked in a Nail grammar anywhere a parser can appear.
Rule invocations act as though the body of the rule had
been substituted in the code. If parameters appear, they
are passed by reference.

Integers and constraints. Nail’s fundamental parsers
represent signed or unsigned integers with arbitrary
lengths up to 64 bits. Note that is possible to define
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parsers for sub-byte lengths, for example, the flag bits in
the DNS message header, in lines 5 through 8.

The grammar can also constrain the values of an integer.
Nail expresses constraints as a set of permissible values or
value ranges. Extending the Nail language and implemen-
tation to support richer constraints languages would be
relatively trivial, however we have found that the current
syntax covers permissible values within existing protocols
correctly and concisely.

Repetition. The many combinator takes a parser and ap-
plies it repeatedly until it fails, returning an array of the
inner parser’s results. In line 39 of the DNS grammar, a
sequence of labels is parsed by parsing as many labels as
possible, that is, until an invalid length field is encoun-
tered. The sepBy combinator additionally takes a constant
parser, which it applies in between parsing two values,
but not before parsing the first value or after parsing the
last. This is useful for parsing an array of items delimited
by a separator.

Structures. Nail provides a structure combinator with
semantic labels instead of the sequence combinator that
other parser combinator libraries use to capture structures
in data formats. The structure combinator consists of a
sequence of fields, typically consisting of a label and a
parser that describes the contents of that field, surrounded
by curly braces. Other field types will be described below.
The syntax of the structure combinator is inspired by
the Go language [15], with field names preceding their
definition.

Constants. In some cases, not all bytes in a structure
actually contain information, such as magic numbers or
reserved fields. Those fields can be represented in Nail
grammars by constant fields in structures. Constant fields
do not correspond to a field in the internal model, but they
are validated during parsing and generated during output.
Constants can either have integer values, such as in line
9 of the DNS grammar, or string values for text-based
protocols, e.g. many uint8 = “Foo”.

In some protocols, there might be many ways to rep-
resent the same constant field and there is no semantic
difference between the different syntactic representations.
Nail therefore allows repeated constants, such as many
(uint8=’ ’), which parses any number of space charac-
ters, or || uint8 = 0x90 || uint16 = 0x1F0F, which
parses two of the many representations for x86 NOP
instructions, which are used as padding between basic
blocks in an executable.

As discussed above, choosing to use these combinators
on constant parsers weakens the bijection between the
format and the data type, as there are multiple byte-strings
that correspond to the same internal representation and
the generator chooses one of these.

Wrap combinator. When implementing real protocols
with Nail, we often found structures that consist of many
constants and only one named field. This pattern is com-
mon in binary protocols which use fixed headers to denote
the type of data structure to be parsed. In order to keep the
internal representation cleaner, we introduced the wrap
combinator, which takes a sequence of parsers containing
exactly one non-constant parser. The external format is
defined as though the wrap combinator were a structure,
but the data model does not introduce a structure with just
one element, making the application-visible representa-
tion (and thus application code) more concise. Line 39 of
the DNS grammar uses the wrap combinator to hide the
terminating NUL-byte of a sequence of labels.

Choices. If multiple structures can appear at a given po-
sition in a format, the programmer lists the options along
with a label for each in the choose combinator. During
parsing, Nail remembers the current input position and
attempts each option in the order they appear in the gram-
mar. If an option fails, the parser backtracks to the initial
position. If no options succeed, the entire combinator
fails. In the data model, choices are represented as tagged
unions. The programmer has to be careful when options
overlap, because if the programmer meant to generate
output for a choice, but the external representation is also
valid for an earlier, higher-priority option, the parser will
interpret it as such. However, real data formats normally
do not have this overlap and we did not encounter it in the
grammars we wrote. An example is provided in Figure 6.

Optional. Nail includes an optional combinator,
which attempts to recognize a value, but succeeds without
consuming input when it cannot recognize that value. Syn-
tactically, optional is equivalent to a choice between the
parser and an empty structure, but in the internal model
it is more concisely represented as a reference that is
null when the parser fails. For example, the grammar for
Ethernet headers uses optional vlan_header to parse
the VLAN header that appears only in Ethernet packets
transmitted to a non-default VLAN.

References. Rules allow for recursive grammars. To
support recursive data types, we introduce the reference
combinator * that does not change the syntax of the exter-
nal format described, but introduces a layer of indirection,
such as a reference or pointer, to the model data type.
The reference combinator does not need to be used when
another combinator, such as optional or many, already
introduces indirection in the data type. An example is
shown in Figure 6.

4.3 Dependent fields
Data formats often contain values that are determined
by other values or the layout of information, such as
checksums, duplicated information, or offset and length

7
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expr = choose {
PAREN = <uint8=’(’; *expr; uint8=’)’>
PRODUCT = sepBy1 uint8=’*’ expr
SUM = sepBy1 uint8=’+’ expr
INTEGER = many1 uint8 | ’0’ .. ’9’

}

Figure 6: Grammar for sums and products of integers.

fields. We represent such values using dependent fields
and handle them transparently during parsing and genera-
tion without exposing them to the internal model.

Dependent fields are defined within a structure like
normal fields, but their name starts with an @ symbol. A
dependent field is in scope and can be referred to by the
definition of all subsequent fields in the same structure.
Dependent fields can be passed to rule invocations as
parameters.

Dependent fields are handled like other fields when
parsing input, but their values are not stored in the in-
ternal data type. Instead the value can be referenced by
subsequent parsers and it discarded when the field goes
out of scope. When generating output, Nail visits a depen-
dent field twice. First, while generating the other fields of
a structure, the generator reserves space for the dependent
field in the output. Once the dependent field goes out of
scope, the generator writes the dependent field’s value to
this space.

Nail provides only one built-in combinator that uses
dependent fields, n_of, which acts like the many combi-
nator, except it represents an exact number, specified in
the dependent field, of repetitions, as opposed to as many
repetitions as possible. For example, DNS labels, which
are encoded as a length followed by a value, are described
in line 38 of the DNS grammar. Other dependencies, such
as offset fields or checksums, are not handled directly by
combinators, but through transformations, as we describe
next.

4.4 Input streams and transformations
Traditional parsers handle input one symbol at a time,
from beginning to end. However, real-world formats
often require non-linear parsing. Offset fields require a
parser to move to a different position in the input, possibly
backwards. Size fields require the parser to stop process-
ing before the end of input has been reached, and perhaps
resume executing a parent parser. Other cases, such as
compressed data, require more complicated processing
on parts of the input before it can be handled.

Nail introduces two concepts to handle these chal-
lenges, streams and transformations. Streams represent a
sequence of bytes that contain some external format. The
parsers and generators that Nail generates always operate
on an implicit stream named $current that they process
front to back, reading input or appending output. Gram-

mars can use the apply combinator to parse or generate
external data on a different stream, inserting the result in
the data model.

Streams are passed as arguments to a rule or defined
within the grammar through transformations. The current
stream is always passed as an implicit parameter.

Transformations are two arbitrary functions called dur-
ing parsing and output generation. The parsing func-
tion takes any number of stream arguments and depen-
dent field values, and produces any number of temporary
streams. This function may reposition and read from the
input streams and read the values of dependent fields,
but not change their contents and values. The generat-
ing function has to be an inverse of the parsing function.
It takes the same number of temporary streams that the
parsing function produces, and writes the same number
of streams and dependent field values that the parsing
function consumes.

Typically, the top level of most grammars is a rule that
takes only a single stream, which may then be broken up
by various transformations and passed to sub-rules, which
eventually parse various linear fragment streams. Upon
parsing, these fragment streams are generated and then
combined by the transforms.

To reduce both programmer effort and the risk of unsafe
operations, Nails provides implementations of transforma-
tions for many common features, such as checksums, size,
and offset fields. Furthermore, Nail provides library func-
tions that can be used to safely operate on streams, such
as splitting and concatenation. Nail implements streams
as iterators, so they can share underlying buffers and can
be efficiently duplicated and split.

Transformations need to be carefully written, because
they can violate Nail’s safety properties and introduce
bugs. However, as we will show in §6.2, Nail transfor-
mations are much shorter than hand-written parsers, and
many formats can be represented with just the transfor-
mations in Nail’s standard library. For example, our Zip
transformations are 78 lines of code, compared to 1600
lines of code for a hand-written parser. Additionally,
Nail provides convenient and safe interfaces for allocat-
ing memory and accessing streams that address the most
common occurrences of buffer overflow vulnerabilities.

Transformations can handle a wide variety of patterns
in data formats, including the following:

Offsets. A built-in transformation for handling off-
set fields, which is invoked as follows: $fragment
transform offset_u32($current, @offset). This
transformation corresponds to two functions for parsing
and generation, as shown in Figure 7. It defines a new
stream $fragment that can be used to parse data at the
offset contained in @offset, by using apply $fragment
some_parser.

8
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int offset_u32_parse(NailArena *tmp,
NailStream *out_str, NailStream *in_current,
const uint32_t *off)

{
/* out_str = suffix of in_current

at offset *off */
}

int offset_u32_generate(NailArena *tmp,
NailStream *in_fragment,
NailStream *out_current, uint32_t *off)

{
/* *off = position of out_current */
/* append in_fragment to out_current */

}

Figure 7: Pseudocode for two functions that implement the offset trans-
form.

Sizes. A similar transformation handles size fields. Just
like the offset transform, it takes two parameters, a stream
and a dependent field, but instead of returning the suffix
of the current stream after an offset, it returns a slice of
the given size from the current stream starting at its cur-
rent position. When generating, it appends the fragment
stream to the current stream and writes the size of the
fragment to the dependent field.

Compressed data. Encoded, compressed, or encrypted
data can be handled transparently by writing a custom
transformation that transforms a coded stream into one
that can be parsed by a Nail grammar and vice versa. This
transformation must be carefully written to not have bugs.

Checksums. Checksums can be verified and computed
in a transformation that takes a stream and a dependent
field. In some cases, a checksum is calculated over a
buffer that contains the checksum itself, with the check-
sum being set to some particular value. Because the func-
tions implementing a transformation are passed a pointer
to any dependent fields, the checksum function can set the
checksum’s initial value before calculating the checksum
over the entire buffer, including the checksum.

A real-world example with many different transforms,
used to support the ZIP file format, is described in §6.1.

5 IMPLEMENTATION

The current prototype of the Nail parser generator sup-
ports the C programming language. The implementation
parses Nail grammars with Nail itself, using a 130-line
Nail grammar feeding into a 2,000-line C++ program that
emits the parser and generator code. Bootstrapping is per-
formed with a subset of the grammar implemented using
conventional grammars. An option for C++ STL data
models is in development. In this section, we will discuss
some particular features of our parser implementation.

A generated Nail parser makes two passes through the
input: the first to validate and recognize the input, and the
second to bind this data to the internal model. Currently
the parser uses a straightforward top-down algorithm,
which can perform poorly on grammars that backtrack
heavily. However, preparations have been made to add
Packrat parsing [12] that achieve linear time even in the
worst case.

Defense-in-depth. Security exploits often rely on raw
inputs being present in memory [3], for example to in-
clude shell-code or crafted stack frames for ROP [29]
attacks in padding fields or the application executing a
controlled sequence of heap allocations and de-allocations
to place specific data at predictable addresses [18, 19]. Be-
cause the rest of the application or even Nail’s generated
code may contain memory corruption bugs, Nail carefully
handles memory allocations as defense-in-depth to make
exploiting such vulnerabilities harder.

When parsing input, Nail uses two separate memory
arenas. These arenas allocate memory from the system
allocator in large, fixed-size blocks. Allocations are han-
dled linearly and all data in the arena is zeroed and freed
at the same time. Nail uses one arena for data used only
during parsing, including dependent fields and temporary
streams; this arena is released before the parser returns.
The other arena is used to allocate the internal data type
returned and is freed by the application once it is done
processing an input.

Furthermore, the internal representation does not in-
clude any references to the input stream, which can there-
fore be zeroed immediately after the parser succeeds, so
an attacker has to write an exploit that works without
referencing data from the raw input.

Finally, Nail performs sophisticated error handling only
in a special debug configuration and will print error mes-
sages about the input only to stderr. Besides complicat-
ing the parser, advanced error handling invites program-
mers to attempt to fix malformed input, such as adding
reasonable defaults for a missing field. Such error-fixing
not only introduces parser inconsistencies, but also might
allow an attacker to sneak inconsistent input past a parser.

6 EVALUATION

In our evaluation of Nail, we answer four questions:

• Can Nail grammars support real-world data formats,
and are Nail’s techniques critical to handling these
formats?

• How much programmer effort is required to build an
application that uses Nail for data input and output?

• Does using Nail for handling input and output im-
prove application security?

9
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Protocol LoC Challenging features

DNS packets 48+64 Label compression,
count fields

ZIP archives 92+78 Checksums, offsets,
variable length trailer,
compression

Ethernet 16+0 —
ARP 10+0 —
IP 25+0 Total length field, options
UDP 7+0 Checksum, length field
ICMP 5+0 Checksum

Figure 8: Protocols, sizes of their Nail grammars, and challenging
aspects of the protocol that cannot be expressed in existing grammar
languages. A + symbol counts lines of Nail grammar code (before the
+) and lines of C code for protocol-specific transforms (after the +).

• Does Nail achieve acceptable performance?

6.1 Data formats
To answer the first question, we used Nail to implement
grammars for seven protocols with a range of challenging
features. Figure 8 summarizes these protocols, the lines
of code for their Nail grammars, and the challenging
features that make the protocols difficult to parse with
state-of-the-art parser generators. We find that despite
the challenging aspects of these protocols, Nail is able
to capture the protocols, by relying on its novel features:
dependent fields, streams, and transforms. In contrast,
state-of-the-art parser generators would be unable to fully
handle 5 out of the 7 data formats. In the rest of this
subsection, we describe the DNS and Zip grammars in
more detail, focusing on how Nail’s features enable us to
support these formats.

DNS. In Section 4, we introduced Nail’s syntax with
a grammar for DNS packets, shown in Figure 2. The
grammar corresponds almost directly to the diagrams
in RFC 1035, which defines DNS [26: §4]. Each DNS
packet consists of a header, a set of question records, and a
set of answer records. Domain names in both queries and
answers are encoded as a sequence of labels, terminated
by a zero byte. Labels are Pascal-style strings, consisting
of a length field followed by that many bytes comprising
the label.

One challenging aspect of DNS packets lies in the
count fields (qc, ac, ns, and ar), which represent the
number of questions or answers in another part of the
packet. Nail’s n_of combinator handles this situation
easily, which would have been difficult to handle for other
parsers.

Another challenging aspect of DNS is label compres-
sion [26: §4.1.4]. Label compression is used to reduce the
size overhead of including each domain name multiple

int dnscompress_parse(NailArena *tmp,
NailStream *out_decomp,
NailStream *in_current);

int dnscompress_generate(NailArena *tmp,
NailStream *in_decomp,
NailStream *out_current);

Figure 9: Signatures of stream transform functions for handling DNS
label compression.

times in a DNS reply (once in the question section, and at
least once in the response section). If a domain name suf-
fix is repeated, instead of repeating that suffix, the DNS
packet may write a two-bit marker sequence followed by
a 14-bit offset into the packet, indicating the position of
where that suffix was previously encoded.

Handling label compression in existing tools, such as
Bison or Hammer, would be awkward at best, because
some ad-hoc trick would have to be used to re-position the
parser’s input stream. Keeping track of the position of all
recognized labels would not be enough, as the offset field
may refer to any byte within the packet, not just the be-
ginning of labels. For this reason, the DNS server used as
the example for Hammer does not support compression.

In contrast, Nail is able to handle label compression,
by using a stream transform; the signatures of the two
transform functions are shown in Figure 9. When pars-
ing a packet, this transform decompresses the DNS label
stream by following the offset pointers. When generating
a packet, this transform receives the current suffix as an in-
put, and scans the packet so far for previous occurrences,
which implements compression.

ZIP files. An especially tricky data format is the ZIP
compressed archive format [33]. ZIP files are normally
parsed end-to-beginning. At the end of each ZIP file is an
end-of-directory header. This header contains a variable-
length comment, so it has to be located by scanning back-
wards from the end of the file until a magic number and
a valid length field is found. Many ZIP implementations
disagree on how to find this header in confusing situ-
ations, such as when the comment contains the magic
number [42].

This end-of-directory header contains the offset and
size of the ZIP directory, which is an array of directory
entry headers, one for every file in the archive. Each entry
stores file metadata, such as file name, compressed and
uncompressed size, and a checksum, in addition to the off-
set of a local file header. The local file header duplicates
most information from the directory entry header. The
compressed file contents follow the header immediately.

Duplicating information made sense when ZIP files
were stored on floppy disks with slow seek times and high
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1 zip_file = {
2 $file, $header transform
3 zip_end_of_directory ($current)
4 contents apply $header
5 end_of_directory ($file)
6 }
7 end_of_directory ($file) = {
8 // ...
9 @directory_size uint32

10 @directory_start uint32
11 $dirstr1 transform
12 offset_u32 ($filestream @directory_start)
13 $directory_stream transform
14 size_u32 ($dirstr1 @directory_size)
15 @comment_length uint16
16 comment n_of @comment_length uint8
17 files apply $directory_stream n_of
18 @total_directory_records dir_entry ($file)
19 }
20 dir_entry ($file) = {
21 // ...
22 @compression_method uint16
23 mtime uint16
24 mdate uint16
25 @crc32 uint32
26 @compressed_size uint32
27 @uncompressed_size uint32
28 @file_name_len uint16
29 @extra_len uint16
30 @comment_len uint16
31 // ...
32 @off uint32
33 filename n_of @file_name_len uint8
34 extra_field n_of @extra_len uint8
35 comment n_of @comment_len uint8
36 $content transform offset_u32 ($file @off)
37 contents apply $content
38 file (@crc32, @compression_method,
39 @compressed_size, @uncompressed_size)
40 }
41 file (@crc32 uint32, @method uint16,
42 @compressed_size uint32,
43 @uncompressed_size uint32) = {
44 uint32 = 0x04034b50
45 version uint16
46 flags file_flags
47 @method_lcl uint16
48 // ...
49 $compressed transform
50 size_u32 ($current @compressed_size)
51 $uncompressed transform
52 zip_compression ($compressed @method)
53 transform crc_32 ($uncompressed @crc32)
54 contents apply $uncompressed many uint8
55 transform u16_depend (@method_lcl @method)
56 // ...
57 }

Figure 10: Nail grammar for ZIP files. Various fields have been cut for
brevity.

fault rates, and memory constraints made it impossible to
keep the ZIP directory in memory or the archive was split
across multiple disks. However, care must be taken that
the metadata is consistent. For example, vulnerabilities
could occur if the length in the central directory is used to
allocate memory and the length in the local directory is
used to extract without checking that they are equal first,
as was the case in the Python ZIP library [28]. Figure 10
shows an abbreviated version of our ZIP file grammar.
The ZIP grammar is a good example of how transfor-
mations capture complicated syntax in a real-world file
format; existing parser languages cannot handle a file
format of this complexity.

The zip_file grammar first splits the entire file stream
into two streams based on the zip_end_of_directory
transform on line 2. The corresponding C function
zip_end_of_directory_parse finds the end-of-directory
header as described above, by scanning the file backwards,
and splits the file into two streams, one containing the
end-of-directory header and one containing the file con-
tents. The end_of_directory rule is then applied to the
header stream in line 4. All offsets in the ZIP file refer
to the beginning of the file, so the stream $file which
contains the file contents without the header is passed as
an argument to all parsers from hereon.

The directory header contains the offset and size of the
ZIP directory (lines 9 and 10). The offset and size trans-
formations extract a stream containing just the directory
from the file contents. This stream is then parsed as an
array of directory entries in line 17. Each directory entry
in turn points to a local file header, which is similarly
extracted and parsed with the file rule.

The file rule starting at line 41, describing a ZIP file
entry, takes dependent field parameters containing file
metadata information from the directory header. How-
ever, this same information is duplicated in the file entry,
so the grammar uses the Nail-supplied u16_depend trans-
form to check whether the two values are equal. Unlike
most other transforms, u16_depend does not consume or
produce strings; it only checks that two dependent fields
are equal when parsing, and assigns the value of the sec-
ond field to the first when generating. This ensures that
the programmer does not have to worry about inconsis-
tencies when handling the internal representation of a ZIP
file.

Immediately following the file entry is the compressed
data. Because most compression algorithms operate on
unbounded streams of data, Nail decompresses data in
two steps. First, it isolates the compressed data from the
rest of the stream by using the size transform, which
operates on the current stream, meaning it will consume
data starting at the current position of the parser in the
input. Second, Nail invokes a custom zip_compression
transform that implements the appropriate compression
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Application LoC w/ Nail LoC w/o Nail

DNS server 295 683 (Hammer parser)
unzip 220 1,600 (Info-Zip)

Figure 11: Comparison of code size for three applications written in
Nail,and a comparable existing implementation without Nail.

and decompression functions based on the specified com-
pression method. These functions are otherwise oblivious
to the layout or metadata of the file.

6.2 Programmer effort
To evaluate how much programmer effort is required
to build an application that uses Nail, we implemented
two applications—a DNS server and an unzip program—
based on the above grammars, and compared code size
with comparable applications that process data manually,
using sloccount [41]. We also compare the code size
of our DNS server to a DNS server written using the
Hammer parsing framework, although it does not fully
support DNS (e.g., it lacks label compression, among
other things). Figure 11 summarizes the results.

DNS. Our DNS server parses a zone file, listens to in-
coming DNS requests, parses them, and generates appro-
priate responses. The DNS server is implemented in 183
lines of C, together with 48 lines of Nail grammar and 64
lines of C code implementing stream transforms for DNS
label compression. In comparison, Hammer [32] ships
with a toy DNS server that responds to any valid DNS
query with a CNAME record to the domain “spargelze.it”.
Their server consists of 683 lines of C, mostly custom
validators, semantic actions, and data structure definitions,
with 52 lines of code defining the grammar with Ham-
mer’s combinators. Their DNS server does not implement
label compression, zone files, etc. From this, we conclude
that Nail leads to much more compact code for dealing
with DNS packet formats.

ZIP. We implemented a ZIP file extractor in 50 lines of
C code, together with 92 lines of Nail grammar and 78
lines of C code implementing two stream transforms (one
for the DEFLATE compression algorithm with the help of
the zlib library, and one for finding the end-of-directory
header).

Because more recent versions of ZIP have added more
features, such as large file support and encryption, the
closest existing tool in functionality is the historic ver-
sion 5.4 of the Info-Zip unzip utility [35] that is shipped
with most Linux distributions. The entire unzip distri-
bution is about 46,000 lines of code, which is mostly
optimized implementations of various compression al-
gorithms and other configuration and portability code.
However, unzip isolates the equivalent of our Nail tool
in the file extract.c, which parses the ZIP metadata and

calls various decompression routines in other files. This
file measures over 1,600 lines of C, which suggests that
Nail is highly effective at reducing manual input parsing
code, even for the complex ZIP file format.

6.3 Security
We use a twofold approach to evaluate the security of
applications implemented with Nail. First, we analyze a
list of CVE’s related to the ZIP file format and argue how
our ZIP tools based on Nail are immune against those
vulnerability classes. Second, we present the results of
fuzz-testing our DNS server.

ZIP analysis. In §3, we presented 15 input handling
vulnerabilities related to ZIP files.

11 of these vulnerabilities involved memory corruption
during input handling. Because Nail’s generated code
checks offsets before reading and does not expose any un-
trusted pointers to the application, it is immune to memory
corruption attacks by design.

Nail also protects against parsing inconsistency vulner-
abilities like the four others we studied. Nail grammars
explicitly encode duplicated information such as the re-
dundant length fields in ZIP that caused a vulnerability in
the Python ZIP library. The other three vulnerabilities ex-
ist because multiple implementations of the same protocol
disagree on some inputs. Hand-written protocol parsers
are not very reusable, as they build application-specific
data structures and are tightly coupled to the rest of the
code. Nail grammars, however, can be re-used between
applications, avoiding protocol misunderstandings.

DNS fuzzing. To provide additional assurance that Nail
parsers are free of memory corruption attacks, we ran the
DNS fuzzer provided with the Metasploit framework [27]
on our DNS server, which sent randomly corrupted DNS
queries to our server for 4 hours, during which it did not
crash or trigger the stack or heap corruption detector.

6.4 Performance
To evaluate whether Nail-based parsers are compatible
with good performance, we compare the performance of
our DNS server to that of ISC BIND 9 release 9.9.5 [17],
a mature and widely used DNS server. We simulate a load
resembling that of an authoritative name server. First,
we generate domain names consisting of one or two la-
bels randomly selected from an English dictionary, and
one label that is one of three popular top-level domains
(com, net, and org). Second, we randomly selected 90%
of these domains and created a zone file that mapped
these domain names to 127.0.0.1. Finally, we used the
queryperf tool provided with BIND to query each do-
main between zero and three times, using a DNS server
running on the local machine. We used a single core of
an Intel i7-3610QM system with 12GB of RAM. The
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Figure 12: A box plot comparing the performance of the Nail-based
DNS server compared to BIND 9.5.5 on 50,000 domains. The boxes
show the interquartile range, with the middle showing the median result.
The dots show outliers.

benchmark tool kept at most 20 queries outstanding at
once, and was configured to repeat the same randomized
sequence of queries for one minute. We repeated each
test seven times with 50,000 domain names, restarting
each daemon in between; we also repeated the tests with
1 million domain names, and found similar results. We
also performed one initial dry run to warm the file system
cache for the zone file.

The results are shown in Figure 12, and demonstrate
that our Nail-based DNS server can achieve higher perfor-
mance and lower latency than BIND. Although BIND is
a more sophisticated DNS server, and implements many
features that are not present in our Nail-based DNS server
and that allow it to be used in more complicated config-
urations, we believe our results demonstrate that Nail’s
parsers are not a barrier to achieving good performance.

7 CONCLUSION

This paper presented the design and implementation of
Nail, a tool for parsing and generating complex data for-
mats based on a precise grammar. Nail helps program-
mers avoid memory corruption and inconsistency vulner-
abilities while reducing effort in parsing and generating
real-world protocols and file formats. Nail achieves this
by reducing the expressive power of the grammar, estab-
lishing a semantic bijection between data formats and
internal representations. Nail captures complex data for-
mats by introducing dependent fields, streams, and trans-
forms. Using these techniques, Nail is able to support
DNS packet and ZIP file formats, and enables applica-
tions to handle these data formats in many fewer lines of
code. Nail and all of the applications and grammars devel-
oped in this paper are released as open-source software,
available at https://github.com/jbangert/nail.
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