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Abstract
This paper presents Pasture, a secure messaging and

logging library that enables rich mobile experiences
by providing secure offline data access. Without trust-
ing users, applications, operating systems, or hyper-
visors, Pasture leverages commodity trusted hardware
to provide two important safety properties: access-
undeniability (a user cannot deny any offline data ac-
cess obtained by his device without failing an audit) and
verifiable-revocation (a user who generates a verifiable
proof of revocation of unaccessed data can never access
that data in the future).

For practical viability, Pasture moves costly trusted
hardware operations from common data access actions
to uncommon recovery and checkpoint actions. We used
Pasture to augment three applications with secure offline
data access to provide high availability, rich functional-
ity, and improved consistency. Our evaluation suggests
that Pasture overheads are acceptable for these applica-
tions.

1 Introduction
Mobile experiences are enriched by applications that

support offline data access. Decentralized databases [50],
file systems [24], storage systems [31], and email appli-
cations [36] support disconnected operation to provide
better mobility and availability. With the increasing use
of mobile devices—such as laptops, tablets, and smart
phones—it is important that a user has access to data de-
spite being disconnected.

However, support for disconnected operation is at odds
with security when the user is not trusted. A disconnected
untrusted user (assumed to be in full control of the user
device) could perform arbitrary actions on whatever data
was available and subsequently lie about it. This tension
between mobility and security limits the use of discon-
nected operation in many potentially useful scenarios, for
example:
• Offline video rental services: Most web-based video

rental services require users to be online to watch
a streaming video. Some allow users to download
movies and watch them offline but the movies must be
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purchased ahead of time, with no refund possible for
unwatched movies. It would be useful if a user could
rent some movies, download them when online (for ex-
ample, in an airport), selectively watch some of them
offline (on the plane), delete the unwatched movies,
and then get a refund later (when back online after
landing). Similar offline services could be provided for
electronic books.

• Offline logging and revocation: Secure logging of off-
line accesses is required by law in some cases. For ex-
ample, HIPAA [48] mandates that (offline) accesses to
confidential patient information be logged securely to
enable security audits so as to detect and report privacy
violations due to unauthorized accesses. Furthermore,
accidental disclosures [23] to unauthorized entities are
not exempt from civil penalties under HIPAA. Hence,
it is also important to enable verifiable revocation of
(unread) data from an unintended receiver’s device in
order to mitigate liability arising out of accidental dis-
closures.
Support for secure offline data access raises two im-

portant security problems: How do you know that an un-
trusted user is not lying about what data was accessed
while offline? And, if the user claims data has been
deleted, how do you know that he did not secretly keep a
copy for later access?

These problems cannot be solved simply by using en-
cryption because the untrusted user must be able to get
offline access to the decryption keys in order to read the
data. Rather, it is an issue of (1) securely detecting and
logging access to the decryption keys when data is ac-
cessed and (2) securely retracting unused keys to prevent
future access when unaccessed data is deleted. These
problems are hard because the untrusted user is discon-
nected when he makes offline accesses and he is in full
physical control of his device.

Indeed, these problems limit application functionality
and deployability. Consequently, as observed above, cur-
rent online services provide restricted offline functional-
ity that does not allow a refund for downloaded but (al-
legedly) unaccessed movies or books.

Fortunately, recent advances have resulted in wide-
spread availability of commodity trusted hardware in the
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form of Trusted Platform Modules (TPMs) [51] and se-
cure execution mode (SEM) extensions (Intel’s TXT [22]
and AMD’s SVM [1] technology) in many modern day
laptops, tablets, and PCs [17].

Secure offline data access using trusted hardware.
We present Pasture, a secure messaging and logging
library, that leverages commodity trusted hardware to
overcome the above problems by providing following
safety properties:
• Access undeniability: If a user obtains access to data

received from a correct sender, the user cannot lie
about it without failing an audit. (Destruction or loss
of the user device automatically fails an audit.)

• Verifiable revocation: If a user revokes access to unac-
cessed data received from a correct sender and gener-
ates a verifiable proof of revocation, then the user did
not and cannot ever access the data.
Pasture uses a simple yet powerful bound key TPM

primitive to provide its safety properties. This primitive
ensures access undeniability by releasing the data de-
cryption key only after the access operation is logged
in the TPM. It provides verifiable revocation by perma-
nently destroying access to the decryption key and gener-
ating a verifiable proof of revocation if a delete operation
is logged in the TPM instead.

Making secure offline data access practical.
Flicker [34] and Memoir [37] have demonstrated the
use of TPMs and SEM to run trusted application code
on untrusted devices in isolation from the OS and hy-
pervisor. However, using SEM requires disabling inter-
rupts and suspending all but one core, which can result in
poor user responsiveness, resource underutilization, and
higher overhead. Furthermore, these systems are vulner-
able to memory and bus snooping attacks [16, 21]. Pas-
ture avoids these drawbacks by carefully using trusted
hardware operations to ensure practicality without com-
promising on safety.

First, unlike Flicker and Memoir, Pasture does not use
SEM for the common case data access operations, and
thus provides better user interaction and improved con-
currency by enabling interrupts and cores. Perhaps sur-
prisingly, we found that Pasture could maintain its safety
properties even though SEM is limited to the uncommon
operations of recovery and checkpoint.

Second, similar to Memoir, we significantly reduce
overhead and improve durability by limiting NVRAM
and non-volatile monotonic counter update operations
(which are as slow as 500 ms and have limited lifetime
write cycles [37]) to uncommon routines and not using
them during the regular data access operations.

Contributions. We make two key contributions in this
paper. First, we present the design and implementation
of Pasture, providing secure and practical offline data

access using commodity trusted hardware. We wrote a
formal specification [40] of Pasture and its safety proofs
in TLA+, checked the specification with the TLC model
checker [27], and mechanically verified the proofs using
the TLA+ proof system. Our evaluation of a Pasture pro-
totype shows that common case Pasture operations such
as offline data access takes about 470 ms (mainly due to
the TPM decryption overhead) while offline revocation
can be as fast as 20 ms.

Second, we demonstrate the benefits of Pasture by (a)
providing rich offline experiences in video/book rental
services, (b) providing secure logging and revocation in
healthcare applications to better handle offline accesses
to sensitive patient health information, and (c) improving
consistency in decentralized data sharing applications [2,
31, 50] by preventing read-denial attacks.

2 Overview and Approach
The goal of Pasture is to improve mobility, availabil-

ity, and functionality in applications and services by al-
lowing untrusted users to download data when online
and make secure offline accesses to data. In this section,
we state our requirements, review features of commodity
trusted hardware, define our adversary, and present our
approach.

2.1 Requirements
(1) Access undeniability. The access-undeniability

property prevents an untrusted node1 from lying about
offline accesses to data sent by correct nodes. It is be-
yond the scope of this paper to address a more general
problem of detecting or preventing data exchanges be-
tween colluding, malicious nodes. (For example, a mali-
cious user could leak data to another malicious user dur-
ing an unmonitored phone conversation.)

(2) Verifiable revocation. While access undeniability
prevents users from lying about past data accesses, the
verifiable-revocation property allows a user to perma-
nently revoke access to unaccessed data. Furthermore,
the user can supply a proof that its access was indeed
securely revoked. The user will not be able to decrypt
and read the data at a later time even if he keeps a secret
copy of the encrypted data.

(3) Minimal trusted computing base (TCB). To de-
fend against an adversary who has full physical access
to the device when offline, we want to have a small TCB.
Hence, we do not trust the hypervisor, OS, or the appli-
cation to provide Pasture’s safety properties. We do not
want to trust the bus or memory to not leak any informa-
tion as hardware snooping attacks [16,21] are possible in
our setting. However, we have to trust something, since
it is impossible to track a user’s offline actions without
trusting anything on the receiver device.

1We use the terms “node” and “user” interchangeably to refer to an
untrusted entity that takes higher level actions on data.
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(4) Low cost. We want to keep the costs low by using
only commodity hardware components.

2.2 Commodity trusted hardware
Pasture exploits commodity trusted hardware to meet

its requirements. Here we explain some of the key fea-
tures we use and refer readers to the textbook [5] for
details. TPMs [51] are commodity cryptographic co-
processors already shipped in more than 200 million
PCs, tablets and laptops [17]. TPMs are designed to
be tamper-resistant and cannot be compromised with-
out employing sophisticated and costly hardware attacks.
TPMs are currently used for secure disk encryption [4]
and secure boot [8] in commodity OS.

Keys and security. Each TPM has a unique identity and
a certificate from the manufacturer (Infineon for exam-
ple) that binds the identity of the TPM to the public part
of a unique endorsement key (EK). The private part of
EK is securely stored within the TPM and never released
outside. For privacy, TPMs use internally generated At-
testation Identity Keys (AIKs) for attestations and AIKs
are certified by trusted privacy CAs after confirming that
they are generated by valid TPMs with proper EK cer-
tificates. It is cryptographically impossible to spoof hard-
ware TPM attestations and emulate it in software. TPMs
can securely generate and store other keys, make attes-
tations of internal state, sign messages, and decrypt and
encrypt data.

Registers and remote attestation. TPMs have volatile
registers called Platform Configuration Registers (PCRs)
which can be updated only via the TPM Extend opera-
tion, which concatenates a value to the current value, and
then overwrites the PCR with a SHA1 hash of the con-
catenated value. Intuitively, a PCR serves as a chained
SHA1 hash of events in a log. TPMs also support remote
attestation using a TPM Quote operation which returns
the signed contents of one or more PCRs along with a
specified nonce. TPMs (v1.2) typically have 24 PCRs
and we refer interested readers to other sources [5, 51]
for details.

Bound keys. TPMs provide a TPM CreateWrapkey
operation that creates a bound public-private key pair.
The encryption key can be used anywhere but the cor-
responding decryption key is shielded and can be used
only in the TPM when specified PCRs contain specified
values.

Transport sessions. TPMs support a form of attested
execution using TPM transport sessions. Operations
within a transport session are logged and signed so that
a verifier can securely verify that a given TPM executed
a specified sequence of TPM operations with specified
inputs and outputs.

Non-volatile memory and counters. TPMs provide
a limited amount of non-volatile memory (NVRAM)
which can be used to persist state across reboots. A re-

gion of NVRAM can be allocated and protected so that it
can be accessed only when specified PCRs contain spec-
ified values. TPMs also provide non-volatile monotonic
counters which can be updated only by an increment op-
eration (TPM IncrementCounter).

Secure Execution Mode (SEM). AMD and Intel pro-
cessors provide special processor instructions to securely
launch and run trusted code in isolation from DMA de-
vices, the hypervisor and the OS. Roughly speaking, the
processor sets DMA memory protection so that DMA de-
vices cannot access the trusted code, disables interrupts
and other cores to prevent other software from taking
control or accessing the trusted code, resets and extends
a special PCRSEM register with the SHA1 hash of the
trusted code, and then starts executing the trusted code.

The AMD and Intel details are different, but in each
case the reset of PCRSEM produces a value that is not the
same as the initial value produced by a reboot, and hence
the result obtained by extending PCRSEM by the SHA1
hash of the trusted code is cryptographically impossible
to produce in any other way. This PCR value can be spec-
ified to restrict access to secrets (that are encrypted by
bound keys) or NVRAM locations to the trusted code
only.

When the trusted application finishes its execution,
the SEM exit code extends PCRSEM to yield access
privileges, scrubs memory of any secrets it wants to
hide, then reenables DMA, interrupts, and other cores.
Flicker [34] demonstrated how to use SEM to execute
arbitrary trusted code.

2.3 Adversary model
The adversary’s goal is to violate safety. We do not

consider violations of liveness, since the adversary could
always conduct a denial-of-service attack by simply de-
stroying the device. Violating safety means to violate ei-
ther access undeniability or verifiable revocation. The ad-
versary wins if he can obtain access to data from a cor-
rect sender and then subsequently survive an audit while
claiming that access was never obtained. The adversary
also wins if he can produce a valid, verifiable proof of
revocation for data from a correct sender and yet at some
time, either before or after producing the proof, obtain
access to the data.

The adversary can run arbitrary code in the OS, hyper-
visor, or application. The adversary controls power to the
device and consequently can cause reboots at arbitrary
points in time, even when the processor is executing in
secure execution mode. As opposed to Memoir [37], we
assume that the adversary can perform hardware snoop-
ing attacks on the main memory [16] or CPU-memory
bus [21] to deduce the contents of main memory at any
time. We also assume that the adversary can snoop on the
CPU-TPM bus.

However, we assume that the adversary cannot extract
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secrets from or violate the tamper-resistant TPM and
compromise the processor’s SEM functionality. We also
assume that the adversary cannot break cryptographic
secrets or find collisions or preimages of cryptographic
hashes. We assume the correctness of processor’s CPU
and the trusted Pasture code that runs in SEM.

In Pasture, we ensure that a sender’s data is accessed
securely on a receiver node, and it is not our goal to keep
track of who accessed the data or for what purpose. Other
techniques [33, 34, 55] can be used to provide isolation
across various entities on the receiver node based on the
receiver’s trust assumptions. Pasture’s safety guarantees
are for the sender and are independent of the receiver’s
trust assumptions.

Since an audit is possible only when the receiver is
online, the adversary can prevent an audit by disconnect-
ing or destroying the device. We let applications decide
how to deal with long disconnections and device failures.
In the offline video rental scenario, for example, the fact
that a node might have been disconnected for a long time
is irrelevant, because the user has already paid for the
movies and can get refunds only by providing verifiable
proofs of revocation.

To be conservative, an application cannot assume that
data has been destroyed in a device failure or lost dur-
ing a long network disconnection. In such situations it is
impossible to tell comprehensively what data has been
accessed. In spite of this, we guarantee that if there is a
valid, verifiable proof of revocation of data received from
a correct sender, then the adversary can never access that
data.

2.4 Pasture’s approach
We carefully use TPM and SEM operations to provide

secure offline data access to meet Pasture’s requirements.
(1) Summary log state in a PCR. Pasture uses a Plat-

form Configuration Register PCRAPP to capture a cryp-
tographic summary of all decisions to obtain access or re-
voke access to data. Since a PCR can be updated only via
the TPM Extend operation, it is cryptographically im-
possible to produce a specified value in a PCR in any
other way than by a specified sequence of extensions.

(2) Minimal use of SEM and NV operations. By care-
fully mapping the process of obtaining and revoking ac-
cess onto TPM primitives, Pasture avoids using SEM or
NV updates during normal operation and limits their use
to bootup and shutdown.

(3) Prevent rollback and hardware snooping attacks.
Since Pasture state is stored in a volatile PCR, an adver-
sary could launch a rollback attack [37] to attempt to re-
tract past offline actions. The rollback attack would pro-
ceed by rebooting the system, which resets PCRAPP to
its initial value, followed by re-extending PCRAPP to a
valid, but older state. The adversary would truncate the
full (untrusted) log to match the state in PCRAPP.
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Figure 1: Pasture architecture.

Memoir prevents this attack by incorporating a se-
cret into each PCR extension. The adversary cannot per-
form re-extensions without knowing the secret, which
is shielded so that it is accessible only to the Memoir
trusted code running in SEM. This is a reasonable ap-
proach in Memoir, which handles general applications
and runs every operation in SEM. But since we grant the
adversary the power to snoop on hardware busses, this
defense is insufficient for Pasture.

Pasture prevents this attack by exploiting the fact that
SEM is not needed for normal operations. Instead of
making the required contents of PCRAPP impossible for
the adversary to reproduce, Pasture conjoins a require-
ment that PCRSEM contain a value that is cryptograph-
ically impossible to produce except by executing Pas-
ture’s trusted reboot recovery routine and verifying that
PCRAPP has been restored to the latest value.

Pasture uses Memoir’s approach of saving the latest
value of PCRAPP in protected NVRAM on shutdown so
that its correct restoration can be verified on the subse-
quent reboot.

3 Pasture Design
Figure 1 shows the high-level architecture of Pasture.

Each node runs a Pasture instance which is uniquely
identified by a public/private key pair securely generated
and certified (using AIK) by its corresponding TPM. All
proofs and messages generated by a Pasture instance are
signed using the private part. Receivers verify signatures
using the public part. Since the private part of the key is
protected inside the TPM, it is impossible for an adver-
sary to spoof Pasture’s proofs or messages.

Each Pasture instance maintains a tamper-evident
append-only log of decisions ∆1,∆2, . . . about offline
decisions to access or revoke a key. The full log is kept
in the node’s untrusted storage and a cryptographic sum-
mary of the log is maintained inside the TPM on a PCR.
The application running on a Pasture instance uses the
Pasture API to Create and Verify bound encryption keys
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Sender Receiver 

1. send:  “getKey”, hM S 

Message: M; 

5. EM  Encrypt(M, E) 
6. send:  “encMsg”, hM, E, EP, EMS 

hM  h(M) 

log state 

4. VerifyBoundKey(hM, E, EP) 

2. E, EP  CreateBoundKey(hM) 
Encrypt key: E 

3. send:   “encKey”, hM, E, EP R 

Lt 

7a. Access: DMObtainAccess(hM, EM) 

7b. Revoke: RPRevokeAccess() 

Lt+1  Lt || hM 

Lt+1  Lt ||  

Decrypted message: DM 

Proof of revocation: RP 

Offline operations on the receiver 

7.  Verify encMsg and store EM     

Online message exchange protocol 

or 

Proof: EP 

Figure 2: Pasture data transfer protocol, offline opera-
tions, and log state. Shaded regions represent TPM op-
erations. Protocol messages are signed by their corre-
sponding message sender (S or R).

during the data transfer protocol, to Obtain and Revoke
access to the corresponding decryption keys based on
offline decisions, and to respond to an Audit.

Many of the following subsections contain implemen-
tation details. Skipping these details on the first reading
may help the reader.

3.1 Data transfer protocol
Figure 2 shows the secure data transfer protocol used

by a sender to transfer encrypted data to a receiver. When
a sender wants to send data M to a receiver, the sender
gets an (asymmetric) encryption key E generated by the
receiver’s TPM and sends the encrypted data EM. The
receiver then can make offline decision to access the data
M by decrypting EM or revoke access to M by perma-
nently deleting access to the decryption key in its TPM
and generating a proof of revocation.

We describe the protocol with a single sender below
and defer discussion of concurrent data transfers from
multiple senders to §3.6. At the beginning of the proto-
col, the receiver’s log state is Lt. We use the subscript t
to indicate the state before creating entry t+1 in the log.
The subscript t+ 1 indicates the next state.

In step 1, the sender provides the cryptographic hash
hM = h(M) when requesting an encryption key.

In step 2, the receiver generates a key pair bound to a
hypothetical future log state Lt||hM, in which the current
log Lt is extended by a decision to obtain access to the
bound decryption key. The cryptographic hash hM rep-
resents this decision. The TPM only permits decryption
using the bound key when the log has the hypothesized
state. Pasture creates a proof EP that the bound key was
generated by the receiver’s TPM in the proper manner
using a transport session.

In step 3 the proof EP and the encryption key E are
returned to the sender in the “encKey” message.

In step 4, The sender checks the proof to verify that
the receiver acted properly. If the “encKey” message is

Rt  TPM_Read(PCRAPP) 
Rt+1  SHA1(Rt || hM) 

E  TPM_CreateWrapKey({ 
            PCRAPP = Rt+1  && 
            PCRSEM = SemHappy  }) 

append hM to full log 
 TPM_Extend(PCRAPP, hM) 
DM  TPM_Unbind(EM) 

Rt  TPM_Read(PCRAPP) 
append  to full log 
TPM_Extend(PCRAPP, ) 
R’t+1, S’t+1,   TPM_Quote(PCRAPP, PCRSEM) 
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Rt+1 = SHA1(Rt || hM)  &&  ValidBINDKEY(, Rt+1, E) 

CreateBoundKey(hM): 

ObtainAccess(hM, EM): 

RevokeAccess(): 

Recover(): 

Checkpoint(): 

VerifyBoundKey(hM, Rt, Rt+1, E, ): 

Rt, St,   TPM_Quote(PCRAPP, PCRSEM, nonce) 
AP   “Audit”, full log, Rt, St, nonce,   

Audit(nonce): 

Figure 3: Create and verify bound key operations.

malformed or if the proof is not valid then the sender
aborts the protocol and does not interact further with the
faulty receiver. In this way a correct sender can protect
itself against a malicious receiver.

In step 5, the sender encrypts its message using E.
In step 6, the encrypted data EM is sent to the receiver,
along with the original hash hM, the encryption key E,
and the receiver’s proof EP.

In step 7, after receiving “encMsg” and verifying that
it is properly signed by the sender, the receiver checks
that hM, E, and EP match with the corresponding values
it sent in its “encKey” message. Then the receiver stores
the “encMsg” with the encrypted data EM on its local
storage. The receiver can later make an offline decision
to obtain access to the bound decryption key (and thus
obtain access to the sender’s data) or to revoke access.

In case of communication failures, neither the sender
nor the receiver need to block because they can always
discard their current state and restart.

Implementation details. For simplicity, we described
the protocol as if M is the actual data X but we use the
standard practice [35] of allowing the sender to choose a
nonce symmetric key KSym to encrypt X and then en-
crypting M = 〈KSym, h(X)〉 using the asymmetric key
acquired in this protocol. Securely obtaining or revoking
access to M is equivalent to obtaining or revoking ac-
cess to the actual data X . Note that KSym also acts as
a unique and random nonce to prevent a faulty receiver
from inferring M from the hash hM without decrypting
the message even if the receiver has seen data X in prior
exchanges with this or other senders.

Figure 3 shows the implementation of the Create-
BoundKey and VerifyBoundKey operations. Pasture
exploits the TPM primitive TPM CreateWrapKey, which
creates a key pair in which the decryption key is usable
only when specified PCRs contain specified values. Pas-
ture keeps a cryptographic summary of the log in a PCR
called PCRAPP.
CreateBoundKey reads the current summary value

Rt from PCRAPP, computes what the new summary
value Rt+1 would be if hM were appended to the
log, and then invokes TPM CreateWrapKey to create
a key pair with the decryption key usable only when
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Rt  TPM_Read(PCRAPP) 
Rt+1  SHA1(Rt || hM) 

E  TPM_CreateWrapKey({ 
            PCRAPP = Rt+1  && 
            PCRSEM = SemHappy  }) 

append hM to full log 
 TPM_Extend(PCRAPP, hM) 
DM  TPM_Unbind(EM) 

Rt  TPM_Read(PCRAPP) 
append  to full log 
TPM_Extend(PCRAPP, ) 
R’t+1, S’t+1,   TPM_Quote(PCRAPP, PCRSEM) 
RP   “RevokeAccess”, , Rt, R’t+1, S’t+1,   

  
EP   “CreateBoundKey”, hM, Rt, Rt+1, E,   

FOR EACH entry  on full log: TPM_Extend(PCRAPP, ) 
IF nv.current  &&  nv.R = TPM_Read(PCRAPP) 
THEN 
      nv.current  FALSE 
      TPM_Extend(PCRSEM, Happy) 
ELSE 
      TPM_Extend(PCRSEM, Unhappy) 
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Rt+1 = SHA1(Rt || hM)  &&  ValidBINDKEY(, Rt+1, E) 

CreateBoundKey(hM): 

ObtainAccess(hM, EM): 

RevokeAccess(): 

Recover(): 

Checkpoint(): 

VerifyBoundKey(hM, Rt, Rt+1, E, ): 

Rt, St,   TPM_Quote(PCRAPP, PCRSEM, nonce) 
AP   “Audit”, full log, Rt, St, nonce,   

Audit(nonce): Figure 4: Obtain and revoke access operations.

PCRAPP contains Rt+1. (The additional constraint that
PCRSEM contains SemHappy is discussed in §3.4.)
TPM CreateWrapKey is invoked inside a TPM trans-
port session, which provides an attestation α signed by
the TPM that the BINDKEY sequence of TPM operations
were performed with the indicated inputs and outputs.

The sender uses VerifyBoundKey to check the con-
tents of the proof EP. Note that there is no need to ver-
ify that Rt is a correct cryptographic summary of the re-
ceiver’s log. The attestation α proves that E is bound to
Rt+1, which is the correct extension from Rt by hM. It
is cryptographically impossible to find any other value
from which an extension by hM would produce Rt+1.

3.2 Secure offline access and revocation
To obtain access, as shown in step 7a of Figure 2, the

receiver irrevocably extends its log by hM. The TPM
now permits decryption using the bound key, and the de-
crypted message DM can be obtained. A faulty sender
could play a bait-and-switch trick by sending an en-
crypted text for a different data than initially referenced
in its “getKey” message, but the receiver can catch this
by noticing that hM �= h(DM). If the sender is faulty, the
receiver can form a proof of misbehavior by exhibiting
DM and the sender’s signed “encMsg” message, which
includes hM, E, EP, and EM. Any correct verifier first
verifies that the receiver is not faulty by checking that
Encrypt(DM, E) = EM. Then the verifier checks that
hM �= h(DM), which proves that the sender is faulty.
In this way a correct receiver can protect itself against a
malicious sender.

To revoke access, in step 7b, the receiver irrevocably
extends its log by δ, a value different from hM. This
makes it cryptographically impossible ever to attain the
state in which the TPM would permit decryption using
the bound key. In effect, the bound decryption key has
been revoked and the receiver will never be able to de-
crypt EM. Pasture constructs a proof RP of this revoca-
tion, which any correct verifier can verify.

Implementation details. Figure 4 shows the imple-
mentation of the ObtainAccess and RevokeAccess
operations. Step 7a calls ObtainAccess to obtain off-
line data access. ObtainAccess appends hM to the full
log on untrusted storage and extends the cryptographic

Rt  TPM_Read(PCRAPP) 
Rt+1  SHA1(Rt || hM) 

E  TPM_CreateWrapKey({ 
            PCRAPP = Rt+1  && 
            PCRSEM = SemHappy  }) 

append hM to full log 
 TPM_Extend(PCRAPP, hM) 
DM  TPM_Unbind(EM) 

Rt  TPM_Read(PCRAPP) 
append  to full log 
TPM_Extend(PCRAPP, ) 
R’t+1, S’t+1,   TPM_Quote(PCRAPP, PCRSEM) 
RP   “RevokeAccess”, , Rt, R’t+1, S’t+1,   

  
EP   “CreateBoundKey”, hM, Rt, Rt+1, E,   

FOR EACH entry  on full log: TPM_Extend(PCRAPP, ) 
IF nv.current  &&  nv.R = TPM_Read(PCRAPP) 
THEN 
      nv.current  FALSE 
      TPM_Extend(PCRSEM, Happy) 
ELSE 
      TPM_Extend(PCRSEM, Unhappy) 
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Rt  TPM_Read(PCRAPP) 
St  TPM_Read(PCRSEM) 
Ct  TPM_ReadCounter(CTR) 
TPM_Extend(PCRSEM, Unhappy)   

nv.R  Rt  
IF ValidSEAL(, Rt, St, Ct)  &&  St = SemHappy 
      &&  Ct = TPM_ReadCounter(CTR) 
THEN 
      TPM_IncrementCounter(CTR) 
      nv.current  TRUE 
TPM_Extend(PCRSEM, Unhappy) 
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Rt+1 = SHA1(Rt || hM)  &&  ValidBINDKEY(, Rt+1, E) 

CreateBoundKey(hM): 

ObtainAccess(hM, EM): 

RevokeAccess(): 

Recover(): 

Checkpoint(): 

VerifyBoundKey(hM, Rt, Rt+1, E, ): 

Rt, St,   TPM_Quote(PCRAPP, PCRSEM, nonce) 
AP   “Audit”, full log, Rt, St, nonce,   

Audit(nonce): 

Figure 5: Audit operation.

summary maintained in PCRAPP. Since PCRAPP now
contains the required summary value, the TPM permits
use of the decryption key to decrypt the data, which is
performed via the TPM Unbind primitive.

Step 7b calls RevokeAccess to revoke data access.
RevokeAccess appends δ to the log and extends the
cryptographic summary accordingly. Since δ �= hM, this
produces a summary value R′

t+1 �= Rt+1. Since it is
cryptographically impossible to determine any way of
reaching Rt+1 except extending from Rt by hM, this ren-
ders the decryption key permanently inaccessible. Pas-
ture uses TPM Quote to produce an attestation α that
PCRAPP contains R′

t+1. (The simultaneous attestation
that PCRSEM contains S′

t+1 is discussed in §3.4.) The
exhibit of the prior summary value Rt along with R′

t+1

and the attestation α proves that Rt+1 is unreachable.
There are several ways in which the code in Revoke-

Access can be optimized. First, Pasture can skip the
TPM Read operation by tracking updates to PCRAPP

with the CPU. Second, if the proof of revocation is
not needed immediately, Pasture can delay executing the
TPM Quote until some later time, possibly coalescing it
with a subsequent TPM Quote. A multi-step sequence
of extensions from Rt to the current attested value of
PCRAPP, in which the first step differs from the bound
key value Rt+1, is cryptographically just as valid as a
proof of revocation as a single-step sequence. Coalescing
is a good idea, since TPM Quote involves an attestation
and hence is fairly slow as TPM operations go.

3.3 Audit
A verifier can audit a receiver to determine what de-

cisions the receiver has made. The receiver produces a
copy of its full log along with a proof signed by the TPM
that the copy is current and correct. Hence, a faulty re-
ceiver cannot lie about its past offline actions.

Implementation details. Figure 5 shows the imple-
mentation of the Audit operation, which computes the
response AP to an audit request. AP contains a copy of
the entire log along with an attestation α of the cur-
rent summary value Rt contained in PCRAPP. The at-
testation also includes the nonce sent by the auditor to
guarantee freshness. (The simultaneous attestation that
PCRSEM contains St is discussed in §3.4.) Any correct
verifier can check the attestation and check that Rt is the
correct cryptographic summary value for the purported
log contents, and thereby determine exactly what deci-
sions ∆1,∆2, . . . the audited node has made.
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3.4 Dealing with reboots
The main difficulty faced by Pasture is dealing with

reboots. Since decryption keys are bound to the log sum-
mary value contained in PCRAPP, anything that the ad-
versary can do to break Pasture’s guarantees of access
undeniability and verifiable revocation must involve re-
booting the node. Rebooting the node causes the TPM to
reset PCRs to their initial values, which opens the door
to rollback attacks.

Pasture’s solution is inspired by Memoir-Opt [37] and
in §2.4 we outlined the novel aspects of our approach.
Since PCRAPP is volatile, an adversarial reboot will
cause its contents to be lost. So, like Memoir-Opt, Pas-
ture uses a protected module containing a checkpoint
routine that runs in SEM and saves the latest contents of
PCRAPP in a region of TPM NVRAM accessible only
to the protected module. The checkpoint routine is in-
stalled to run during system shutdown and as part of a
UPS or battery interrupt handler [37]. Note that our sys-
tem does not assume correct operation of such mecha-
nisms for safety.

As a node cycles through shutdown, reboot, recovery,
and operation, it is important to keep track of where the
current log summary value is located. During operation,
it lives in PCRAPP. Shutdown moves it from PCRAPP

to Pasture’s protected NVRAM region. Reboot and re-
covery moves it back into PCRAPP. To keep track of
this, Pasture’s protected NVRAM region contains two
fields: R and current. R is used to hold a log summary
value and current is a boolean flag indicating that the
value in R is indeed current.

The checkpoint routine sets current to TRUE after it
has copied PCRAPP into R. On reboot, Pasture recov-
ers by reading the full log ∆1,∆2, . . . and extending
PCRAPP by each entry in turn. Then Pasture uses SEM
to enter its protected module and check that the value
recorded in the NVRAM is indeed current and that it
matches the value contained in PCRAPP. If so, the re-
covery routine sets current to FALSE, indicating that the
current log summary value now lives in PCRAPP.

Observe that failure to run the checkpoint routine be-
fore a reboot will erase PCRAPP but leave current =
FALSE, a state from which recovery is impossible. This
is a violation of liveness, but not of safety.

Implementation details. Figure 6 shows the imple-
mentation of the Recover and Checkpoint operations.
Recover extends PCRAPP with each entry ∆ on the full
log and then enters SEM to check that the saved copy in
NVRAM is current and matches the value in PCRAPP.
If a shutdown happens precisely at the wrong time in the
middle of ObtainAccess or RevokeAccess, it is pos-
sible for the full log to contain one final entry not repre-
sented in the saved log summary value. In this case, that
final decision was not committed and the implementation

Rt  TPM_Read(PCRAPP) 
Rt+1  SHA1(Rt || hM) 

E  TPM_CreateWrapKey({ 
            PCRAPP = Rt+1  && 
            PCRSEM = SemHappy  }) 

append hM to full log 
 TPM_Extend(PCRAPP, hM) 
DM  TPM_Unbind(EM) 

Rt  TPM_Read(PCRAPP) 
append  to full log 
TPM_Extend(PCRAPP, ) 
R’t+1, S’t+1,   TPM_Quote(PCRAPP, PCRSEM) 
RP   “RevokeAccess”, , Rt, R’t+1, S’t+1,   

  
EP   “CreateBoundKey”, hM, Rt, Rt+1, E,   

FOR EACH entry  on full log: TPM_Extend(PCRAPP, ) 
IF nv.current  &&  nv.R = TPM_Read(PCRAPP) 
THEN 
      nv.current  FALSE 
      TPM_Extend(PCRSEM, Happy) 
ELSE 
      TPM_Extend(PCRSEM, Unhappy) 
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Rt  TPM_Read(PCRAPP) 
St  TPM_Read(PCRSEM) 
Ct  TPM_ReadCounter(CTR) 
TPM_Extend(PCRSEM, Unhappy)   

nv.R  Rt  
IF ValidSEAL(, Rt, St, Ct)  &&  St = SemHappy 
      &&  Ct = TPM_ReadCounter(CTR) 
THEN 
      TPM_IncrementCounter(CTR) 
      nv.current  TRUE 
TPM_Extend(PCRSEM, Unhappy) 
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Rt+1 = SHA1(Rt || hM)  &&  ValidBINDKEY(, Rt+1, E) 

CreateBoundKey(hM): 

ObtainAccess(hM, EM): 

RevokeAccess(): 

Recover(): 

Checkpoint(): 

VerifyBoundKey(hM, Rt, Rt+1, E, ): 

Rt, St,   TPM_Quote(PCRAPP, PCRSEM, nonce) 
AP   “Audit”, full log, Rt, St, nonce,   

Audit(nonce): 

Figure 6: Recover and checkpoint operations.

described here will fail to recover. However, it is a sim-
ple matter to add a SEM routine that merely reads nv.R
so that Recover can tell whether or not it should remove
the final entry from the full log. If recovery is successful,
current is set to FALSE, indicating that the current log
summary value now lives in PCRAPP.

However, there is an additional important detail: how
do normal operations know that the current log sum-
mary lives in PCRAPP. These operations do not use
SEM, so they cannot access current. Moreover, check-
ing current is not enough, because they need to know
that PCRAPP was correctly restored on the most recent
reboot. An adversary could mount a rollback attack by
crashing, rebooting and partially re-extending PCRAPP,
which would leave current as FALSE from the prior re-
boot.

Pasture exploits secure execution mode to prevent this
attack. When the CPU enters secure execution mode, the
TPM resets PCRSEM to -1 (different from its reboot re-
set value of 0) and then extends PCRSEM by the cryp-
tographic hash of the protected module. For Pasture’s
protected module, this produces a result SemProtected in
PCRSEM that is cryptographically impossible to produce
in any other way. The constraint that PCRSEM contains
SemProtected is used to control access to Pasture’s pro-
tected TPM NVRAM.The adversary cannot undetectably
modify Pasture’s NVRAM, because TPM DefineSpace
resets the protected NVRAM locations whenever their
access control is changed.

When execution of Pasture’s protected module is fin-
ished, it extends PCRSEM to disable access to the pro-
tected NVRAM. Pasture defines two constants that it
may use for this extension. Happy is used during re-
covery after a reboot if PCRAPP has been correctly re-
stored. Unhappy is used in all other cases. We define
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SemHappy = SHA1(SemProtected||Happy), which is
the value that PCRSEM will contain if the recovery is
correct. Since PCRs are volatile, any adversarial attempt
to reboot the node and reinitialize PCRAPP will also
reinitialize PCRSEM. Pasture maintains the invariant that
whenever PCRSEM = SemHappy, PCRAPP contains
the correct cryptographic summary of the log and deci-
sions to obtain access or revoke access can be made. (Of
course, adversarial entries in the log are permitted, but
they cannot be rolled back.)

Since CreateBoundKey binds the key to require
both PCRAPP = Rt+1 and PCRSEM = SemHappy,
the decryption key will only be useable if PCRAPP

was correctly restored on the most recent reboot.
Since RevokeAccess and Audit include PCRSEM in
their TPM Quote, a verifier can verify that the quoted
PCRAPP could only have been extended from a value
that was correctly restored on the most recent reboot.
Checkpoint uses SEM to save the current value of

PCRAPP in the NVRAM and set current to TRUE.
However, there is a difficulty. Before Checkpoint saves
the current value of PCRAPP, it needs to know that
PCRAPP was correctly restored on the most recent re-
boot; otherwise Checkpoint itself would be vulnera-
ble to a rollback attack. Checkpoint has to perform its
checking and saving activities in SEM, so that the ad-
versary cannot tamper with them. But the way of know-
ing that PCRAPP was correctly restored is to check
PCRSEM = SemHappy, and this information is erased
by entering SEM.

The solution is to get a simultaneous attestation
α of PCRAPP and PCRSEM before entering SEM.
Then, once in SEM, α can be checked, which proves
that PCRAPP contained Rt when PCRSEM contained
SemHappy.

Unfortunately, there is another vulnerability: how do
we know this is the most recent such α, and not some
earlier one from the adversary. In defense, Checkpoint
uses a TPM counter CTR whose value is read into α and
then incremented in SEM once α is accepted as valid and
current. This prevents any earlier α from being accepted.

There is yet a final vulnerability: how do we know that
the adversary did not do anything bad between the time α
was made and SEM was entered. For example, the adver-
sary could make α, then extend PCRAPP to obtain ac-
cess to a decryption key, then crash and reboot, re-extend
PCRAPP back to where it was when α was made, and
then finally enter SEM in Checkpoint. To prevent this,
Checkpoint extends PCRSEM inside α, which erases
SemHappy, which makes PCRAPP useless for any at-
tempt to obtain or revoke access until the next successful
recovery. The above steps are performed in a transport
session in the SEAL subroutine as shown in Figure 6.

3.5 Log truncation
Pasture allows applications to truncate logs in order to

reduce storage, auditing, and recovery overheads. Trun-
cation proceeds in several steps. (1) The subject node re-
quests a trusted auditor to perform an audit and sign a
certificate attesting to the subject node’s current crypto-
graphic log summary. The auditor has to be available at
this time but an application could arrange for any desired
number of trusted auditors. For example, the video ser-
vice provider could act as an auditor for the offline video
application. (2) The certificate is returned to the subject
node, which discards all entries in its full log, creates a
single log entry containing the certificate, and then per-
forms a version of Checkpoint that verifies the certifi-
cate is current and if so saves the cryptographic summary
of the new log in the NVRAM. (3) Then the subject node
reboots to reinitialize PCRAPP.

Observe that truncating the log implicitly revokes ac-
cess to a decryption key whose decision was pending.
However, since in such a case no explicit decision was
made to revoke access, the normal way of obtaining a
proof of revocation is not available. If such proofs are
important to the application, it should make explicit re-
vocation decisions before truncating the log.

3.6 Handling concurrent messages
The basic protocol (§3.1) constrains the receiver to

handle one sender’s message at a time. Here we describe
how to support multiple outstanding messages.

First, it is easy to extend the design to employ multiple
PCRs. Current TPMs support 13 unreserved PCRs that
Pasture can use. The design is modified to track the usage
of these PCRs, allocating a free one in CreateBound-
Key, passing it through the protocol in the “encKey” and
“encMsg” messages, and freeing it after the decision is
made to obtain or revoke access. Logically, a separate
log is used for each PCR. Audit is extended to copy all
the logs and quote all of the PCRs.

Second, in situations where the number of PCRs is in-
sufficient, there is nothing to prevent a receiver from per-
forming steps 2-3 in parallel with any number of senders
using the same PCR, creating keys bound to different val-
ues of the next state. Of course, with the same PCR, only
one sender’s message can be accessed at step 7a. The
other messages effectively are revoked. The receiver can
ask those senders to retry using a new bound key.

Given multiple concurrent “getKey” requests and only
one available PCR, the receiver could form a speculative
decision tree multiple steps into the future. For each mes-
sage, the receiver would generate multiple keys, binding
each key to a different sequence of possible prior deci-
sions. Each sender encrypts its message (actually, just its
message’s symmetric key) with all the keys so that the re-
ceiver can decide offline about access to the messages in
any order it desired. So that the receiver can prove that a
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key was revoked because the receiver failed to follow the
speculated sequence of decisions, each key’s revocation
proof RP would have to show the entire sequence start-
ing from the receiver’s current log state. Of course, the
number of keys per message explode with the number of
pending decisions, so this approach would be viable for
only a very small number of outstanding messages.

3.7 Correctness
Using the TLA+ language and proof system [6,27], we

wrote a formal specification of Pasture and mechanically
verified a proof of correctness [40]. The correctness of
Pasture when there are no reboots is trivial as it follows
from the properties of bound keys and PCRs. Preventing
rollback attacks in the presence of reboots is critical. The
following invariants ensure correctness:
• If PCRSEM = SemHappy then current = FALSE,
PCRAPP contains the current log summary value, and
there exists no acceptable SEAL attestation.

• If current = TRUE then PCRSEM �= SemHappy, the
NVRAM contains the current log summary value, and
there exists no acceptable SEAL attestation.

• There exists at most one acceptable SEAL attestation.
These invariants are maintained by the use of current, the
way PCRSEM is extended, and the reboot counter CTR.

Some comments on our methodology may be illumi-
nating. After formulating a proof sketch to assure our-
selves that Pasture was correct, we wrote a 19-page
TLA+ specification. Several CPU-months spent on a
large many-core server model-checking various config-
urations of this specification found no errors. To increase
our confidence that we would have found errors if there
were any, we then intentionally introduced some bugs
and the resulting safety violations were easily detected.

Armed with confidence in the correctness of the spec-
ification, we then spent about two man-weeks writing a
68-page formal proof. The proof followed the reason-
ing of our original proof sketch, although with excruciat-
ing attention to detail, containing 1505 proof obligations.
The TLA+ proof system checks them in half an hour.

Subsequently, we made a slight optimization to Pas-
ture’s operations, arriving at the version of Pasture de-
scribed in this paper. It took only a few hours to revise the
initial formal specification and proof to account for the
optimization. The hierarchical structure of TLA+ proofs
was a great benefit here, because the proof system high-
lighted precisely those few proof obligations that had to
be revised in order to make the proof go through.

4 Applications
We use Pasture to prototype three applications with

secure offline data access to (a) improve experience in a
video rental service by allowing offline access to down-
loaded movies while enabling refunds for unwatched

movies, (b) provide better security and mobility in a
healthcare setting by allowing secure logging of off-
line accesses as required by HIPAA regulations, and
(c) improve consistency in a decentralized storage sys-
tem [2, 31, 50] by preventing read-denial attacks.

4.1 Video rental and healthcare
For wider deployability, we extended an email client

application with Pasture to provide secure offline data ac-
cess, and used the secure email as a transport and user in-
terface mechanism to implement offline video rental and
healthcare mockup application prototypes on top.

We implemented a generic Pasture add-in for Mi-
crosoft’s Outlook email client [36]. Our video rental and
health care applications are built on top of this secure
email prototype to transfer data opportunistically to re-
ceivers when they are online, allow offline access to data,
and permit remote auditing. The add-in calls the Pasture
API (§3) to interact with the TPM.

The Pasture add-in allows senders to selectively en-
crypt sensitive attachments using the Pasture protocol.
Users can choose messages that need the enhanced secu-
rity properties while not paying overhead for the others.
The add-in internally uses email to exchange Pasture pro-
tocol messages and acquires the encryption key from the
receiver before sending the encrypted message.

On receiving a Pasture encrypted message, the user
is given the option to access the attachment or delete it
without accessing it. The user can use context (for ex-
ample, the movie title, cast and a short description) in-
cluded in the email body to make the decision. We as-
sume that the sender is correct and motivated to include
correct context. This assumption is reasonable for video
rental and healthcare service providers. We also assume
that the emails are signed to prevent spoofing attacks.

The user’s decision to access or delete the attachment
is permanently logged by Pasture. The Pasture add-in
also provides an audit and truncate interface that a trusted
entity can use to audit and truncate user logs

The Pasture-enhanced video rental service works as
follows. When the user surfs the video rental service and
selects movies for offline watching, he receives emails
with encrypted symmetric keys as attachments. The en-
crypted movies are downloaded via https, which avoids
sending the entire movie as an attachment. The user can
watch movies offline by decrypting the attachments to
extract the keys and then decrypting the movies. The
user can revoke any movies not accessed. When the user
comes back online, the video rental service provider au-
dits the Pasture log to determine which movies were re-
voked and refunds the user accordingly.

Regulations [18, 48] in the healthcare industry impose
fines [20] on healthcare providers if they allow unautho-
rized access to sensitive patient health information and
they mandate that all accesses be logged securely. We
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used the Pasture email add-in to provide secure offline
access to medical records, for example, when a nurse
goes for a home visit.

Access undeniability ensures that offline accesses by
the nurse are securely logged. Verifiable revocation al-
lows the nurse to securely delete unaccessed records and
prove it to the hospital. Verifiable revocation also helps
hospitals in assessing and mitigating damages due to ac-
cidental disclosures [13, 23] by allowing them to retract
emails after they are sent to unintended recipients by ask-
ing the receivers to delete the confidential email and send
them back the proof of revocation.

4.2 Decentralized storage systems
Decentralized storage systems (such as Bayou [50]

and Practi [2]) provide high availability by allowing
nodes to perform disconnected update operations on lo-
cal state when they are offline, send updates to other
nodes opportunistically when there is connectivity, and
read received updates from other nodes. Depot [31]
builds upon Practi to provide a storage system that toler-
ates any number of malicious nodes at the cost of weak-
ening the consistency guarantee. One attack Depot can-
not prevent is a read-denial attack, in which a malicious
node denies reading updates from correct nodes before
making its own updates.

We used Pasture to build a decentralized storage sys-
tem that prevents read-denial attacks, and thereby pro-
vides stronger consistency than Depot. Preventing read-
denial is a simple consequence of access undeniability.
In addition, where Depot detects equivocation [7, 28], in
which a malicious node sends conflicting updates, Pas-
ture prevents equivocation by attesting updates using the
Pasture log (the same approach as A2M [7]). Formalizing
our consistency guarantee is an avenue of future work.

5 Evaluation
We implemented Pasture in Windows 7 and evaluated

the system on three different computers: an HP xw4600
3GHz Intel Core2 Duo with a Broadcom TPM, an HP
Z400 2.67GHz Intel Quad Core with an Infineon TPM,
and a Lenovo X300 1.2Ghz Intel Core2 Duo laptop with
an Atmel TPM. We implemented everything except we
were unable to port Flicker [34] and get SEM work on the
HP machines because the HP BIOS disables the SEN-
TER instruction, and we haven’t completely ported Pas-
ture to run on Atmel TPM although we ran some TPM
microbenchmarks on it. Missing functionality of SEM
does not affect our evaluation or conclusions because
SEM is not needed for the common case data access
operations. Furthermore, for the Pasture operations that
would use SEM, as we show later, our measured over-
heads are already significantly greater than the cost of
setting up the SEM environment [34, 37].

System Is
ol

at
io

n
fro

m
m

al
ic

io
us

O
S

C
ra

sh
re

si
lie

nc
e

In
vu

ln
er

ab
le

to
sn

oo
p

at
ta

ck

N
o

di
sa

bl
in

g
of

co
re

s,
in

te
rr

up
ts

pe
ro

pe
ra

tio
n

N
o

N
V

up
da

te
pe

ro
pe

ra
tio

n

P
ro

te
ct

ed
op

er
at

io
ns

Flicker � × × × � general
Memoir � � × × � general
TrInc � � � � × attest

Pasture � � � � �
access
revoke
attest

Table 1: Comparison of trusted hardware based systems.

5.1 Qualitative analysis
Table 1 compares Pasture against some recent sys-

tems that use trusted hardware to protect the execution
of application operations. Flicker [34] and Memoir [37]
use SEM and TPMs to provide protected execution of
trusted modules on untrusted devices. TrInc [28] uses
trusted smart cards to securely attest messages and pre-
vent equivocation attacks in distributed systems. Pas-
ture provides secure offline data access using SEM and
TPMs. (We discuss additional related work in §7.)

All of these systems provide isolation from a mali-
cious OS, hypervisor, or other application code. Flicker
provides a general abstraction but it is vulnerable to
snoop attacks and does not provide crash resilience [37],
and thus fails to ensure state continuity across crashes.
Furthermore, its use of SEM disables cores and inter-
rupts for every operation. Memoir suffers from the same
drawbacks as Flicker except that it is resilient to crashes.
TrInc is crash resilient but provides limited functional-
ity of secure attestation, and it is less durable due to NV
updates on attest operations. Pasture provides offline ac-
cess, revocation, and attestation without needing SEM or
NV writes with each operation while providing crash re-
silience and defending against snoop attacks.

Minimal TCB. Pasture trusts just the Checkpoint
and Recover routines which run during bootup and shut-
down, and it does not trust any software during the com-
mon case data access operations. Pasture achieves this by
exploiting the TPM primitives.

5.2 Pasture microbenchmarks
5.2.1 Computational overhead

Our first experiment measures the computational over-
heads imposed by TPM operations on Infineon, Broad-
com and Atmel TPM chips. Figure 7(a) plots the execu-
tion time of register and NV operations; Figure 7(b) plots
the execution time of TPM cryptographic operations to
create and load a key, sign data, unbind a key, release a
transport session, and quote PCR state; and Figure 7(c)
plots the execution time of Pasture operations that build
upon the TPM operations. We use 1024 bit RSA keys for
our experiments. We make the following observations.

Slow NV updates. Incrementing an NV counter or
writing NVRAM is far slower than reading or extending
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Figure 7: Computational overhead. Error bars represent one standard deviation of uncertainty over 10 samples.

a PCR. This supports our decision to avoid NV updates
during common case operations.

Data exchange protocol. Creating a key in TPMs is
enormously expensive, and it takes about 2.8 s (Atmel
TPM) to 4 s (Broadcom TPM). This overhead accounts
for almost all of Pasture’s CreateBoundKey execution
time. Key creation also has a huge variance. We study the
impact of this overhead on perceived latencies to the end
user in §5.3.1.

Offline operations. The offline operations to obtain
or revoke access have acceptable performance. Revok-
ing access is fast (21 ms) because it just requires a PCR
extension (using the optimization discussed in §3.2 to de-
fer the proof of revocation). Obtaining access, however,
takes much longer (470 ms) as almost all of its time is
spent in TPM Unbind to decrypt and extract the sym-
metric key, which is fairly slow. We cannot hide this la-
tency because the symmetric key is needed to decrypt the
data. While the latency may be acceptable for an offline
video or email application, our throughput is limited by
these overheads. For some applications, batching can be
used to amortize overheads across multiple data items as
shown in §5.3.2.

Note that we hide the TPM overhead of LoadKey
by loading it in the background while the data is being
fetched from the sender and before the data is accessed
offline.

Checkpoint and recover operations. (Note that our
microbenchmarks do not include the 100 ms to 200 ms
overhead required to set up the SEM environment [34].)
Checkpoint takes about 1600 ms to seal and copy
volatile state to the NVRAM, which is reasonable for a
battery-backup shutdown routine. Recover takes about
600 ms to check the correctness of PCRAPP when the
system is booting up. Furthermore, before correctness
is checked, Recover must read Pasture’s log from the
disk and extend PCRAPP to its pre-shutdown state. Each
TPM Extend takes about 20 ms, so the additional over-
head depends on the number of entries, which can be
kept low by periodically truncating the log. If the log is
truncated every 128 entries, at most 3 s would be spent
extending PCRAPP. While the total overhead may seem

high, modern operating systems already take tens to hun-
dreds of seconds to boot up.

Audit. Pasture takes about 400 ms to generate a proof
of revocation or a response to an audit request. Given that
this operation is usually performed in the background, it
does not much affect the user experience.

5.2.2 Network and storage overheads
Pasture incurs network and storage overhead due to (1)

additional messages exchanged for fetching keys and (2)
inclusion of an attested proof of execution in the proto-
col messages and the log. With 1024 bit encryption keys,
Pasture exchanges about 1732 bytes of additional data in
the data transfer protocol, and stores less than 540 bytes
of data on disk for logging each operation.

Pasture’s proofs contain hashes of messages instead
of raw messages. Hence, network and storage overheads
do not increase with data size. Pasture imposes consid-
erable overhead when the message sizes are smaller but
the overhead becomes insignificant for large messages.

5.3 Pasture applications
Pasture uses various optimizations—that hide latency

and batch operations—to reduce overheads. Here we
evaluate the end-to-end performance of the latency-
oriented (offline video and healthcare) and throughput-
oriented (shared folder application) applications.

5.3.1 Secure email transport
Our offline video rental and health care applications

use Pasture-based secure email to allow secure offline ac-
cesses. For evaluating the overheads added by the Pasture
system, we compare our applications with that of the cor-
responding applications that use regular email transport
mechanism to send data (patient health records or the de-
cryption key of the movie) but without secure offline data
access guarantees.

Our Pasture-based applications incur an additional
overhead in establishing encryption keys (one round trip
delay) and generating keys in the receiver’s TPM. As-
suming there will be some read slack time between when
an email is received in a user’s inbox and when the user
reads it, Pasture hides its latency by executing its pro-
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tocol in the background. We evaluated the effectiveness
of this approach via a small scale user study involving 5
users in a corporate setting. We logged the receive time
and read time of the emails received over a period of one
week for these users. To be conservative, we omitted un-
read emails.

Figure 8 shows the cumulative distribution of the read
slack time of all the emails. We also include a separate
line that considers only the emails that are received dur-
ing work hours on a weekday. This removes any bias due
to inactivity after work hours and over the weekend. For
comparison, we measured the latency introduced by Pas-
ture. The average additional latency introduced by Pas-
ture was 24 s, with 4 s spent generating the encryption
key at the receiver and about 20 s of network delay in-
troduced by the processing queues of intermediate mail
servers (the WAN network latencies to the mail servers
was negligible, on the order of 40 ms).

We plot two vertical lines to show what fraction of
emails are affected by the Pasture overhead. The affected
emails are the ones whose recipients would have to wait.
As shown in the figure, about 75% of emails are not af-
fected by the total overhead introduced by Pasture, as
their recipients checked their inbox more than 24 s after
the email arrived. Even in the remaining 25% of emails
which are affected, the Pasture protocol adds a delay of
15 s on average. If the processing and queuing delays at
the mail servers are to be discounted, more than 90%
(and 95% during the work time) of the emails are unaf-
fected, and the rest experience an average delay of only
1 s. We conclude that Pasture can exploit the slack time
of users to effectively hide the additional latency intro-
duced for security. Furthermore, in the video rental ap-
plication, Pasture latencies incurred can also be hidden
while the encrypted movie downloads.

5.3.2 Decentralized storage system
We implemented a shared folder application on top

of the Pasture decentralized storage system. The shared
folder application allows nodes to update files locally

when they are disconnected (similar to other weakly-
connected decentralized storage systems [31,39,50]), at-
test updated files, and share file updates with other peers
opportunistically when they are connected.

Scalable throughput using batching. Given that
nodes are expected to read all the received updates, the
Pasture shared folder application amortizes overheads
by batching and performing secure attestation of up-
dates, message exchange protocol operations, and read
operations on an entire batch of received updates. Pas-
ture scales linearly to about 1000 requests/sec (with a
batch size of 460) because the overheads to attest updates
(430 ms) and read (460 ms) received updates are inde-
pendent of the batch size. This is because Pasture uses
a constant-size hash of the message when performing an
attest or read operation. We conclude that Pasture pro-
vides scalable throughput for applications where nodes
have the opportunity to batch updates. Batching also re-
duces the recovery response time as we amortize the PCR
extensions across multiple updates.

High durability. Pasture does not perform NVRAM
writes or counter increments during common case oper-
ations. Only two NVRAM writes and one counter incre-
ment are required for each reboot cycle. Hence, assum-
ing only one reboot per day, it would take Pasture more
than 130 years to exhaust the 100K lifetime NVRAM and
counter update limit of current TPMs [37]. Conversely,
if a 5 year lifetime is acceptable, Pasture can perform a
reboot cycle on an hourly basis and truncate the log to
reduce audit and recover times.

6 Discussion
Pasture effectively hides and amortizes TPM over-

heads for applications with low concurrency. However,
TPM’s limited resources and high overheads hurt the
scalability of Pasture with increasing concurrent re-
quests. We discuss three key limitations and suggest
improvements through modest enhancements in future
TPMs.

First, Pasture’s concurrency is limited by the number
of available PCRs (13 or fewer) for binding keys. In-
creasing the number of PCRs would improve Pasture’s
ability to bind more keys to PCRs and have more requests
in flight to support applications with high concurrency.

Second, Pasture spends a significant amount of time
in TPM CreateWrapKey to generate keys. This overhead
could be reduced by simply separating key generation
from the operation of key binding. For example, TPMs
could generate keys whenever they are idle (or in paral-
lel with other operations) and store them in an internal
buffer for future use.

Third, TPMs allow storage of only a few keys, and we
have to pay significant overheads to load a key (around
1 s) if it has to be brought from the stable storage ev-
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ery time. Increasing the buffer space to hold more keys
would significantly reduce the overhead for highly con-
current applications.

7 Related work
Pasture builds upon related work in the areas of secure

decentralized systems and trusted hardware.
Custom hardware. Many custom hardware architec-

tures [30, 38, 46, 47, 53] have been proposed to protect
trusted code from untrusted entities. These proposals
have not gained widespread acceptance due to the high
deployment cost and unavailability of custom hardware.

OS and VMM based approaches. A number of
OS [26, 45, 49, 55], microkernel [25, 44] and VMM [11,
56] based approaches improve isolation and security by
significantly reducing the TCB. A recent paper [45] pro-
vides an in depth review of the state of the art in this area.
HiStar [55], Asbestos [52], and Flume [26] provide sys-
temwide data confidentiality and integrity using decen-
tralized information flow control techniques. Nexus [45]
implements NAL logic [42] to provide general trustwor-
thy assurances about the dynamic state of the system.
While these systems provide powerful and general secu-
rity primitives, they are vulnerable to hardware-snooping
physical attacks [16, 21].

Commodity trusted hardware. Flicker [34] spurred
research in secure execution by demonstrating how
TPMs and SEM can be used to run trusted application
code in isolation from the OS or hypervisor. TrustVi-
sor [33] builds upon Flicker to protect sensitive applica-
tion code in a single legacy guest VM. Memoir [37] pre-
vents rollback attacks as described in §2.4. While these
approaches provide strong isolation, they are vulnerable
to hardware snooping attacks and also require frequent
use of SEM, which can result in poor user responsive-
ness, resource underutilization and higher overhead.

Trusted hardware has been used to reduce email
spam [14], in secure databases [32], for reasoning about
network properties [43], for cloaked computation [9] by
malware, and to provide trusted path [57] between a
user’s I/O device and trusted application code with mini-
mal TCB. Recent approaches [3,10] address an orthogo-
nal issue of sharing TPM resources securely across mul-
tiple VMs. It is an avenue for future research to apply
their approach to Pasture to share TPM resources across
multiple receiver applications.

Preventing attacks in decentralized systems. Key-
pad [12] provides a simple online security mechanism
for theft-prone devices by storing decryption keys at a
server that client devices consult on every access attempt.
A2M [7] prevents equivocation attacks [28, 29] by forc-
ing attestation of updates into an append-only log us-
ing trusted hardware. TrInc [28] improves upon A2M by
reducing the TCB to a trusted monotonic counter [41].

PeerReview [15], Nysiad [19], and other log-based repli-
cation systems [29, 31, 54] detect equivocation attacks
without trusted hardware by using witness nodes and
signed message logs. However, these systems do not pre-
vent nor detect offline read-denial attacks.

8 Conclusion
Mobile user experiences are enriched by applications

that support disconnected operations to provide better
mobility, availability, and response time. However, off-
line data access is at odds with security when the user
is not trusted, especially in the case of mobile devices,
which must be assumed to be under the full control of
the user.

Pasture provides secure disconnected access to data,
enabling the untrusted user to obtain or revoke access to
(previously downloaded) data and have his actions se-
curely logged for later auditing. We implement Pasture
using commodity trusted hardware, providing its secu-
rity guarantees with an acceptable overhead using a small
trusted computing base.
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