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Abstract
When systems fail in the field, logged error or warning
messages are frequently the only evidence available for
assessing and diagnosing the underlying cause. Conse-
quently, the efficacy of such logging—how often and how
well error causes can be determined via postmortem log
messages—is a matter of significant practical importance.
However, there is little empirical data about how well ex-
isting logging practices work and how they can yet be im-
proved. We describe a comprehensive study characteriz-
ing the efficacy of logging practices across five large and
widely used software systems. Across 250 randomly sam-
pled reported failures, we first identify that more than half
of the failures could not be diagnosed well using exist-
ing log data. Surprisingly, we find that majority of these
unreported failures are manifested via a common set of
generic error patterns (e.g., system call return errors) that,
if logged, can significantly ease the diagnosis of these un-
reported failure cases. We further mechanize this knowl-
edge in a tool called Errlog , that proactively adds appro-
priate logging statements into source code while adding
only 1.4% performance overhead. A controlled user study
suggests that Errlog can reduce diagnosis time by 60.7%.

1 Introduction
Real systems inevitably experience failure—whether due
to hardware faults, misconfigurations or software bugs.
However, resolving why such a failure has occurred can
be extremely time-consuming, a problem that is further
exacerbated for failures in the field. Indeed, failures in
production systems are the bête noire of debugging; they
simultaneously require immediate resolution and yet pro-
vide the least instrumented and most complex operational
environment for doing so. Even worse, when a system
fails at a customer site, product support engineers may not
be given access to the failed system or its data—a situation
referred to colloquially as “debugging in the dark”.

This paper addresses a simple, yet critical, question:
why is it so difficult to debug production software sys-
tems? We examine 250 randomly sampled user-reported
failures from five software systems (Apache, squid,
PostgreSQL, SVN, and Coreutils) 1 and identify both
the source of the failure and the particular information that
would have been critical for its diagnosis. Surprisingly, we

1The data we used can be found at: http://opera.ucsd.edu/errlog.htm

show that the majority (77%) of these failures manifest
through a small number of concrete error patterns (e.g.,
error return codes, switch statement “fall-throughs”, etc.).
Unfortunately, more than half (57%) of the 250 exam-
ined failures did not log these detectable errors, and their
empirical “time to debug” suffers dramatically as a result
(taking 2.2X longer to resolve on average in our study).

Driven by this result, we further show that it is possible
to fully automate the insertion of such proactive logging
statements parsimoniously, yet capturing the key informa-
tion needed for postmortem debugging. We describe the
design and implementation of our tool, Errlog , and show
that it automatically inserts messages that cover 84% of
the error cases manually logged by programmers across 10
diverse software projects. Further, the error conditions au-
tomatically logged by Errlog capture 79% of failure con-
ditions in the 250 real-world failures we studied. Finally,
using a controlled user study with 20 programmers, we
demonstrate that the error messages inserted by Errlog can
cut failure diagnosis time by 60.7%.

2 Background

While there have been significant advances in post-
mortem debugging technology, the production environ-
ment imposes requirements—low overhead and privacy
sensitivity—that are challenging to overcome in commer-
cial settings.

For example, while in principal, deterministic replay—
widely explored by the research community [3, 11, 29,
31]—allows a precise postmortem reproduction of the ex-
ecution leading to a failure, in practice it faces a range
of deployment hurdles including high overhead (such sys-
tems must log most non-deterministic events), privacy
concerns (by definition, the replay trace should contain
all input) and integration complexity (particularly in dis-
tributed environments with a range of vendors).

By contrast, the other major postmortem debugging ad-
vance, cooperative debugging, has broader commercial
deployment, but is less useful for debugging individual
failures. In this approach, exemplified by systems such
as Windows Error Reporting [15] and the Mozilla Quality
Feedback Agent [23], failure reports are collected (typi-
cally in the form of limited memory dumps due to privacy
concerns) and statistically aggregated across large num-
bers of system installations, providing great utility in triag-
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Figure 1: A real world example from Apache on the absence
of error log message. After diagnosing this failure, the developer
released a patch that only adds an error-logging statement.

Figure 2: A real world example from squid to demonstrate
the challenge of failure diagnosis in the absence of error mes-
sages, one that resulted in a long series of exchanges (45 rounds)
between the user and developers.

ing which failures are most widely experienced (and thus
should be more carefully debugged by the vendor). Un-
fortunately, since memory dumps do not capture dynamic
execution state, they offer limited fidelity for exploring the
root cause of any individual failure. Finally, sites with sen-
sitive customer information can be reticent to share arbi-
trary memory contents with a vendor.

The key role of logging

Consequently, software engineers continue to rely on tra-
ditional system logs (e.g., syslog) as a principal tool for
troubleshooting failures in the field. What makes these
logs so valuable is their ubiquity and commercial accep-
tance. It is an industry-standard practice to request logs
when a customer reports a failure and, since their data typ-
ically focuses narrowly on issues of system health, logs
are generally considered far less sensitive than other data
sources. Moreover, since system logs are typically human-
readable, they can be inspected by a customer to estab-
lish their acceptability. Indeed, large-scale system vendors
such as Network Appliance, EMC, Cisco and Dell report
that such logs are available from the majority of their cus-
tomers and many even allow logs to be transmitted auto-
matically and without review [10].

Even though log messages may not directly pinpoint the
root cause (e.g. hardware errors, misconfigurations, soft-
ware bugs) of a failure, they provide useful clues to narrow
down the diagnosis search space. As this paper will show
later, failures in the field with error messages have much
shorter diagnosis time than those without.

Remembering to log
However, the utility of logging is ultimately predicated on
what gets logged; how well have developers anticipated
the failure modes that occur in practice? As we will show
in this paper, there is significant room for improvement.

Figure 1 shows one real world failure from the Apache
web server. The root cause was a user’s misconfiguration
causing Apache to access an invalid file. While the er-
ror (a failed open in ap pcfg openfile) was explicitly
checked by developers themselves, they neglected to log
the event and thus there was no easy way to discern the
cause postmortem. After many exchanges with the user,
the developer added a new error message to record the er-
ror, finally allowing the problem to be quickly diagnosed.

Figure 2 shows another real world failure example from
the squid web proxy. A user reported that the server ran-
domly exhausted the set of available file descriptors with-
out any error message. In order to discern the root cause,
squid developers worked hard to gather diagnostic infor-
mation (including 45 rounds of back-and-forth discussion
with the user), but the information (e.g., debug messages,
configuration setting, etc.) was not sufficient to resolve the
issue. Finally, after adding a statement to log the checked
error case in which squid was unable to connect to a
DNS server (i.e., status != COMM OK), they were able
to quickly pinpoint the right root cause—the original code
did not correctly cleanup state after such an error.

In both cases, the programs themselves already explic-
itly checked the error cases, but the programmer neglected
to include a statement to log the error event, resulting in a
long and painful diagnosis.

One of the main objectives of this paper is to provide
empirical evidence concerning the value of error logging.
However, while we hope our results will indeed motivate
developers to improve this aspect of their coding, we also
recognize that automated tools can play an important role
in reducing this burden.

Log automation vs log enhancement
Recently, Yuan et. al [37, 36] have studied how developers
modify logging statements over time and proposed meth-
ods and tools to improve the quality of existing log mes-
sages by automatically collecting additional diagnostic in-
formation in each message. Unfortunately, while such ap-
proaches provide clear enhancements to the fidelity pro-
vided by a given log message, they cannot help with the
all too common cases (such as seen above) when there are
no log messages at all.

However, the problem of inserting entirely new log
messages is significantly more challenging than mere log
enhancement. In particular, there are two new challenges
posed by this problem:

• Shooting blind : Prior to a software release, it is hard
to predict what failures will occur in the field, mak-
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Figure 3: Classic Fault-Error-Failure model.

ing it difficult to know in advance where to insert log
messages to best diagnose future failures.

• Overhead concerns: Blindly adding new log mes-
sages can add significant, unacceptable performance
overhead to software’s normal execution.

Fundamentally, any attempt to add new log messages
needs to balance utility and overhead. To reach this goal,
our work is heavily informed by practical experience. Just
as system builders routinely design around the constraints
of technology and cost, so too must they consider the role
of cultural acceptance when engineering a given solution.
Thus, rather than trying to create an entirely new logging
technique that must then vie for industry acceptance, we
focus instead on how to improve the quality and utility of
the system logs that are already being used in practice. For
similar reasons, we also choose to work “bottom-up”—
trying to understand, and then improve, how existing log-
ging practice interacts with found failures—rather than at-
tempting to impose a “top-down” coding practice on soft-
ware developers.

3 Where to Log?
Before we decide where to add log points, it is useful to
understand how a failure happens. In his seminal work
two decades ago, J.C. Laprie decomposed the structural
elements of system failures—fault, error and failure—into
a model that is widely used today [20]. As shown in Fig-
ure 3, a fault is a root cause, which can be a software bug, a
hardware malfunction, or a misconfiguration. A fault can
produce abnormal behaviors referred to as errors. How-
ever, some of these errors will have no user-perceivable
side-effects or may be transparently handled by the sys-
tem. It is only the subset of remaining errors which further
propagate and become visible to users that are referred to
as failures, such as crash, hang, incorrect result, incom-
plete functionality, etc.

To further inform our choice of where to place log state-
ments, we divide errors into two categories:
(i) Detected errors (i.e., exceptions): Some errors are
checked and caught by a program itself. For example, it
is a commonly accepted best practice to check library or
system call return values for possible errors.
(ii) Undetected errors : Many errors, such as incorrect
variable values, may be more challenging to detect mech-
anistically. Developers may not know in advance what
should be a normal value for a variable. Therefore, some
errors will always remain latent and undetected until they
eventually produce a failure.

Appl. LOC #Default log points*
Total Err+Warn

Apache 249K 1160 1102 (95%)
Squid 121K 1132 1052 (92%)
Postgres 825K 6234 6179 (99%)
SVN 288K 1836 1806 (98%)
Coreutils 69K 1086 1080 (99%)

Table 1: Applications used in our study and the number of log
points (i.e. logging statements). *: the number of log points
under the default verbosity mode. “Err+Warn”: number of log
points with warning, error, or fatal verbosities.

Appl. #Failures
population* sampled with logs

Apache 838 65 24 (37%)
Squid 680 50 20 (40%)
Postgres 195 45 24 (53%)
SVN 321 45 25 (56%)
Coreutils 212 45 15 (33%)
Total 2246 250 108 (43%)

Table 2: The number of sampled failures and the subset with
failure-related log messages. A failure is classified as “with logs”
if any log point exists on the execution path between the fault to
the symptom. *: the total number of valid failures that have been
fixed in the recent five years in the Bugzilla.

To dive in one step further, detected errors can be han-
dled in three different ways: (i) Early termination: a pro-
gram can simply exit when encountering an error. (ii) Cor-
rect error handling: a program recovers from an error ap-
propriately, and continues execution. (iii) Incorrect error
handling: a program does not handle the error correctly
and results in an unexpected failure.

These distinctions provide a framework for considering
the best program points for logging. In particular, detected
errors are naturally “log-worthy” points. Obviously, if a
program is about to terminate then there is a clear causal
relation between the error and the eventual failure. More-
over, even when a program attempts to handle an error, its
exception handlers are frequently buggy themselves since
they are rarely well tested [30, 17, 16]. Consequently, log-
ging is appropriate in most cases where a program detects
an error explicitly—as long as such logging does not in-
troduce undue overhead. Moreover, logging such errors
has no runtime overhead in the common (no error) case.

4 Learning from Real World Failures
This section describes our empirical study of how effec-
tive existing logging practices are in diagnosis. To drive
our study, we randomly sampled 250 real world failures
reported in five popular systems, including four servers
(Apache httpd, squid, PostgreSQL, and SVN) and a
utility toolset (GNU Coreutils), as shown in Table 1.

The failure sample sets for each system are shown in
Table 2. These samples were from the corresponding
Bugzilla databases (or mailing lists if Bugzilla was not
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available). The reporting of a distinct failure and its
follow-up discussions between the users and developers
are documented under the same ticket. If a failure is a
duplicate of another, developers will close the ticket by
marking it as a “duplicate”. Once a failure got fixed, de-
velopers will often close the ticket as “fixed” and post
the patch of the fix. We randomly sampled those non-
duplicate, fixed failures that were reported within the re-
cent five years. We carefully studied the reports, discus-
sions, related source code and patches to understand the
root cause and its propagation leading to each failure.

In our study, we focus primarily on the presence of a
failure-related log message, and do not look more deeply
into the content of the messages themselves. Indeed, the
log message first needs to be present before we consider
the quality of its content, and it is also not easy to objec-
tively measure the usefulness of log content. Moreover,
Yuan et. al.’s recent LogEnhancer work shows promise
in automatically enhancing each existing log message by
recording the values of causally-related variables [37].
Threats to Validity: As with all characterization stud-
ies, there is an inherent risk that our findings may be spe-
cific to the programs studied and may not apply to other
software. While we cannot establish representativeness
categorically, we took care to select diverse programs—
written for both server and client environments, in both
concurrent and sequential styles. At the very least these
software are widely used; each ranks first or second in
market share for its product’s category. However, there
are some commonalities to our programs as all are written
in C/C++ and all are open source software. Should log-
ging practice be significantly different in “closed source”
development environments or in software written in other
languages then our results may not apply.

Another potential source of bias is in the selection of
failures. Quantity-wise we are on a firmer ground, as un-
der standard assumptions, the Central Limit Theorem pre-
dicts a 6% margin of error at the 95% confidence level
for our 250 random samples [28]. However, certain fail-
ures might not be reported to Bugzilla. Both Apache and
Postgres have separate mailing lists for security issues;
Configuration errors (including performance tunings) are
usually reported to the user-discussion forums. Therefore
our study might be biased towards software bugs. How-
ever, before a failure is resolved, it can be hard for users to
determine the nature of the cause, therefore our study still
cover many configuration errors and security bugs.

Another concern is that we might miss those very hard
failures that never got fixed. However, as the studied ap-
plications are well maintained, severity is the determining
factor of the likelyhood for a failure to be fixed. High
severity failures, regardless of its diagnosis difficulty, are
likely to be diagnosed and fixed. Therefore the failures
that we miss are likely those not-so-severe ones.

Finally, there is the possibility of observer error in the
qualitative aspects of our study. To minimize such ef-
fects, two inspectors separately investigated every failure
and compared their understandings with each other. Our
failure study took 4 inspectors 4 months of time.

4.1 Failure Characterization
Across each program we extract its embedded log mes-
sages and then analyze how these messages relate to the
failures we identified manually. We decompose these re-
sults through a series of findings for particular aspects of
logging behavior.
• Finding 1: Under the default verbosity mode2, almost
all (97%) logging statements in our examined software are
error and warning messages (including fatal ones). This
result is shown in Table 1. Verbose or bookkeeping mes-
sages are usually not enabled under the default verbosity
mode due to overhead concerns. This supports our expec-
tation that error/warning messages are frequently the only
evidence for diagnosing a system failure in the field.
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Figure 4: Benefit of logging on
diagnosis time (median).

• Finding 2: Log mes-
sages produce a sub-
stantial benefit, reduc-
ing median diagnosis
time between 1.4 and
3 times (on average
2.2X faster), as shown
in Figure 4, supporting
our motivating hypothesis about the importance of appro-
priate logging. This result is computed by measuring each
failure’s “duration” (i.e., the duration from the time the
failure is reported to the time a correct patch is provided).
We then divide the failure set into two groups: (1) those
with failure-related log messages reported and (2) those
without, and compare the median diagnosis time between
the two groups. Obviously, some failures might be eas-
ier to diagnose than the others, but since our sample set
is relatively large we believe our results will reflect any
gross qualitative patterns (note, our results may be biased
if the difficulty of logging is strongly correlated with the
future difficulty of diagnosis, although we are unaware of
any data or anecdotes supporting this hypothesis).
• Finding 3: the majority (57%) of failures do not have
failure-related log messages, leaving support engineers
and developers to search for root causes “in the dark”.
This result is shown in Table 2. Next, we further zoom in
to understand why those cases did not have log messages
and whether it is hard to log them in advance.
• Finding 4: Surprisingly, the programs themselves have
caught early error-manifestations in the majority (61%) of
the cases. The remaining 39% are undetected until the fi-
nal failure point. This is documented in Figure 5, which

2Throughout the entire paper, we assume the default verbosity mode
(i.e., no verbosity), which is the typical setting for production runs.
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Figure 5: Fault manifestation for our sampled failures. (=x+y):
x failures from detected errors and y failures from undetected
errors. “Log: N”: N cases have failure-related log messages.

Appl.
Detected Error Undetected Error

Early Handle Generic Semantic
terminat. incorrect. except. except.

Apache 23 18 9 15
Squid 23 9 10 8
Postgres 24 4 5 12
SVN 26 0 7 12
Coreutils 17 10 8 10

Total 113(73%) 41(27%) 39(41%) 57(59%)
154 96

Table 3: Error manifestation characteristics of examined soft-
ware. All detected errors were caught by generic exception
checks such as those in Table 5. Some undetected errors could
have been detected in the same way.

Appl. Early Termination Handle Incorrectly
no log w/ log no log w/ log

Apache 3 20 14 4
Squid 4 19 8 1
Postgres 0 24 4 0
SVN 1 25 0 0
Coreutils 3 14 9 1
Total 11(10%) 102(90%) 35(85%) 6(15%)
Detected 113 41

Table 4: Logging practices when general errors are detected.

shows how our sampled failures map to the error manifes-
tation model presented in Section 3. Table 3 breaks them
down by application, where the behavior is generally con-
sistent. This indicates that programmers did reasonably
well in anticipating many possible errors in advance.

However, as shown in Figure 5 programmers do not
comprehensively log these detected errors. Fortunately,
the result also indicates that log automation can be a
rescue—at least 61% of failures manifest themselves
through explicitly detected exceptions, which provide nat-
ural places to log the errors for postmortem diagnosis.

Further drilling down, we consider two categories of
failures for which programmers themselves detected er-
rors along the fault propagation path: early termination
and incorrect handling. As shown in Table 4, the vast ma-
jority (90%) of the first category log the errors appropri-
ately (10% miss this easy opportunity and impose unnec-

Generic Exception Conditions Detected Errors
total w/ logs

Function return errors 69 (45%) 50 (72%)
Exception signals(e.g., SIGSEGV) 22 (14%) 22 (100%)
Unexpected cases falling into default 27 (18%) 12 (44%)
Resource leak 1 (1%) 1 (100%)
Failed input validity check 17 (11%) 8 (47%)
Failed memory safety check 7 (4%) 7 (100%)
Abnormal exit/abort from execution 11 (7%) 8 (73%)
Total 154 108 (70%)

Table 5: Logging practices for common exceptions.

essary obstacles to debugging; Figure 1 documents one
such omission in Apache). Logging overhead is not a big
concern since the programs subsequently terminate.

For the second category (i.e., those failure cases where
programs decided to tolerate the errors but unfortunately
did so incorrectly), the majority of the cases did not log
the detected errors.

Table 4 also shows that Postgres and SVN are much
more conservative in surviving detected errors. Among
their 54 detected errors, developers chose early termina-
tion in 93% (50/54) of the detected errors. In compari-
son, for the other three applications, only 63% of the de-
tected errors terminate the executions. We surmise this
is because data integrity is the first class requirement for
Postgres and SVN—when errors occur, they seldom al-
low executions to continue at the risk of data damaging.
• Finding 5: 41 of the 250 randomly sampled failures are
caused by incorrect or incomplete error handling. Un-
fortunately, most (85%) of them do not have logs. This
indicates that developers should be conservative in error
handling code: at least log the detected errors since error
handling code is often buggy. The squid example shown
in Figure 2 documents such an example.

Adding together the two categories, there are a total of
46 cases that did not log detected errors. In addition, there
are also 39 failures shown in Table 3 in which the pro-
grams could have detected the error via generic checks
(e.g., system call error returns). Therefore we have:
• Finding 6: Among the 142 failures without log mes-
sages, there were obvious logging opportunities for 60%
(85) of them. In particular, 54% (46) of them already did
such checks, but did not log the detected errors.
Logging Practice Recommendation: Overall, these find-
ings suggest that it is worthwhile to conservatively log de-
tected errors, regardless of whether there is error-handling
code to survive or tolerate the errors.

4.2 Logging Generic Exceptions
Table 5 documents these generic exception patterns, many
of which are checked by the studied programs but are not
logged. We explain some of them and highlight good prac-
tices that we encountered.
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Figure 6: SVN’s good logging practices for checking and log-
ging function return errors.

static void reaper(...) {            
  while((pid = waitpid(-1, &s,..)) > 0) {
     ereport( (%d) was terminated by
    signal %d , pid, WTERMSIG(s)); 
     }
} /* Postgresql, postmaster.c */

void death(int sig) {
  if (sig == SIGBUS)
    fprintf(log, "Recv Bus Error.\n");
     ...  
  else
    fprintf(log, "Recv Sig %d\n", sig);
  PrintCPUusage();                           
 dumpMallocStatus();                  
  #ifdef STACK_TRACE
                                                 
  #endif 
 } /* Squid, main.c */

(b) Bad logging practice (c) Good logging practice 

void hash_lookup(Hash_t *table, ..){
   *bucket = table->bucket +  ; 

/* coreutils, hash.c */

 NO context info

(a) NO signal handler: OS prints segf.

can be NULL

  Context 
info

Figure 7: Logging practices for exception signals.

(1) Function return errors: It is a common practice to
check for function (e.g., system call) return errors. In our
study, 45% of detected errors were caught via function re-
turn values as shown on Table 5. However, a significant
percentage (28%) of them did not log such errors.

Good practice: SVN uniformly logs function return er-
rors. First, as shown in Figure 6, almost all SVN function
calls are made through a special macro SVN ERR, which
checks for error return. Second, if a function returns an
error to its caller, it prepares an error message in a buffer,
err->message. Every error is eventually returned back
to main through the call path via SVN ERR and then main
prints out the error message. Consequently, as shown in
Table 4, almost all exceptions detected by SVN are logged
before early termination.

(2) Exception signals: In general, many server programs
register their own signal handlers to catch fatal signals
(e.g., SIGSEGV, SIGTERM). In our study, about 14% of
detected errors were caught by the programs’ own signal
handlers, and fortunately all were logged.

However, all examined software (except for squid)
only logs signal names. Figure 7 compares the logging
practices in three of them: (a) Coreutils does not have
a signal handler. OS prints a generic “segmentation fault”
message. (b) Postgres’s log does not provide much bet-
ter information than the default OS’s signal handler. (c)
Good practice: squid logs system status and context in-
formation such as CPU and memory usage, as well as the
stack frames, when catching exception signals.

Statement cov.* 10 (18%) Decision cov. 12 (21%)
Condition cov. 2 (4%) Weak mutation 4 (7%)
Mult. cond. cov. 2 (4%) Loop cov. 1 (2%)
Concurr. cov. 1 (2%) Perf. profiling 1 (2%)
Functional cov. 34 (60%) Total failures 57

Table 6: The number of hard-to-check failures that could have
been caught during testing, assuming 100% test coverage with
each criteria. *: can also be detected by decision coverage test.

(3) Unexpected cases falling through into default: Some-
times when programs fail to enumerate all possible cases
in a switch statement, the execution may unexpectedly fall
through into the base “default” case, and lead to a failure.
In our study, 18% of detected errors belong to this cate-
gory, but only 44% of them are logged.
(4) Other exceptions: Programs also perform other types
of generic exception checks such as bound-checks, input
vadility checks, resource leak checks, etc., (Table 5) but
they often forget to log detected errors, losing opportuni-
ties to gather evidences for postmortem diagnosis.

4.3 Logging for Hard-to-check Failures
As shown earlier in Table 3, 57 failures are hard to de-
tect via generic exception checks. We refer them as hard-
to-check errors. When a production failure occurs, it is
usually due to an unusual input or environment triggering
some code paths that are not covered during in-house test-
ing. Table 6 shows that 21% of the 57 hard-to-check fail-
ure cases execute some branch edges that we surmise have
never been executed during testing (otherwise, the bugs on
those edges would definitely have been exposed)3. There-
fore, if we log on those branch decisions that have not been
covered during testing, i.e., cold paths, it would be useful
for diagnosis. Of course, special care needs to be taken if
some cold paths show up too frequently during runtime.
• Finding 7: Logging for untested code paths would col-
lect diagnostic information for some of them.

5 Errlog: A Practical Logging Tool
Driven by the findings in our study, we further build an
automatic logging tool called Errlog , which analyzes the
source code to identify potential unlogged exceptions (ab-
normal or unusual conditions), and then inserts log state-
ments. Therefore, Errlog can automatically enforce good
logging practices. We implement our source code analysis
algorithms using the Saturn [2] static analysis framework.

Errlog faces three major challenges: (1) Where are such
potential exceptions? (2) Has the program itself checked
for the exception? If so, has the program logged it after
checking it? (3) Since not every potential exception may
be terminal (either because the program has mechanisms
to survive it or it is not a true exception at all), how do we

3Due to software’s complexity, cost of testing, and time-to-market
pressure, complex systems can rarely achieve 100% test coverage.
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Exception Pattern How to identify in source code

DE

Function return error
Mechanically search for libc/system calls. If a libc/system call’s error return value is not
checked by the program, Errlog injects new error checking code. Such a check won’t incur
too much overhead as it is masked by the overhead of a function call.

Failed memory safety
check

Search for checks for null pointer dereference and out-of-bound array index. If no such safety
check exists, Errlog does NOT add any check due to false positive concerns.

Abnormal exit/abort Search for “abort, exit, exit”. The constraint EC for this pattern is “true”.
Exception signals Intercept and log abnormal signals. Our logging code uses memory buffer and is re-entrant.

LE

Unexpected cases
falling into default

Search for the “default” in a switch statement or a switch-like logic, such as if.. else
if.. else..., where at least the same variable is tested in each if condition.

Invalid input check
Search for text inputs, using a simple heuristic to look for string comparisons (e.g., strcmp).
The exception is the condition that these functions return “not-matched” status. In our study,
47% of the “invalid input checks” are from these standard string matching functions.

AG Resource leak Errlog monitors resource (memory and file descriptor) usage and logs them with context
information. Errlog uses exponential-based sampling to reduce the overhead (Section 5.3).

Table 7: Generic exception patterns searched by Errlog. These patterns are directly from our findings in Table 5 in Section 4.

avoid significant performance overhead without missing
important diagnostic information?

To address the first challenge, Errlog follows the obser-
vations from our characterization study. It identifies po-
tential exceptions by mechanically searching in the source
code for the seven generic exception patterns in Table 5. In
addition, since many other exception conditions are pro-
gram specific, Errlog further “learns” these exceptions by
identifying the frequently logged conditions in the target
program. Moreover, it also optionally identifies untested
code area after in-house testing.

For the second challenge, Errlog checks if the exception
check already exists, and if so, whether a log statement
also exists. Based on the results, Errlog decides whether
to insert appropriate code to log the exception.

To address the third challenge, Errlog provides three
logging modes for developers to choose from, based on
their preferences for balancing the amount of log messages
versus performance overhead: Errlog-DE for logging def-
inite exceptions, Errlog-LE for logging definite and likely
exceptions, and Errlog-AG for aggressive logging. More-
over, Errlog’s runtime logging library uses dynamic sam-
pling to further reduce the overhead of logging without
losing too much logging information.
Usage Users of Errlog only need to provide the name of
the default logging functions used in each software. For
example, the following command is to use Errlog on the
CVS version control system:
Errlog --logfunc="error" path-to-CVS-src

where error is the logging library used by CVS. Errlog
then automatically analyzes the code and modifies it to
insert new log statements. Errlog can also be used as a
tool that recommends where to log (e.g., a plug-in to the
IDE) to the developers, allowing them to insert logging
code to make the message more meaningful.

5.1 Exception Identification
In this step, Errlog scans the code and generates the fol-
lowing predicate: exception(program point P, constraint

EC), where P is the program location of an exception
check, and EC is the constraint that causes the exception to
happen. In the example shown in Figure 2, P is the source
code location of “if (status!=COMM OK)”, and EC is
status!=COMM OK. EC is used later to determine under
which condition we should log the exception and whether
the developer has already logged the exception.
Search for generic exceptions Table 7 shows the generic
exception patterns Errlog automatically identifies, which
are directly from the findings in our characterization study.

5.1.1 Learning Program-Specific Exceptions
Errlog-LE further attempts to automatically identify
program-specific exceptionswithout any program-specific
knowledge. If a certain condition is frequently logged
by programmers in multiple code locations, it is likely
to be “log-worthy”. For example, the condition
status!=COMM OK in Figure 2 is a squid-specific excep-
tion that is frequently followed by an error message. Simi-
lar to previous work [12] that statically learns program in-
variants for bug detection, Errlog-LE automatically learns
the conditions that programmers log on more than two oc-
casions. To avoid false positives, Errlog also checks that
the logged occasions outnumber the unlogged ones.
The need for control and data flow analysis It is
non-trivial to correctly identify log-worthy conditions.








Figure 8: Example
showing the need of con-
trol & data flow analysis.

For example, the exception
condition in Figure 8 is that
pcre malloc returns NULL,
not tmp==NULL. Errlog first an-
alyzes the control-flow to iden-
tify the condition that immedi-
ately leads to an error message.
It then analyzes the data-flow,
in a backward manner, on each
variable involved in this condition to identify its source.
However, such data-flow analysis cannot be carried ar-
bitrarily deep as doing so will likely miss the actual
exception source. For each variable a, Errlog’s data-
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flow analysis stops when it finds a live-in variable as its
source, i.e., a function parameter, a global variable, a
constant, or a function return value. In Figure 8, Er-
rlog first identifies the condition that leads to the er-
ror message being tmp==NULL. By analyzing the data-
flow of tmp, Errlog further finds its source being the re-
turn value of pcre malloc. Finally, it replaces the tmp
with pcre malloc() and derives the correct error con-
dition, pcre malloc()==NULL. Similarly, the condition
status!=COMM OK in Figure 2 is learnt because status
is a formal parameter of the function.
Identifying helper logging functions Errlog only re-
quires developers to provide the name of the default log-
ging function. However, in all the large software we stud-
ied, there are also many helper logging functions that sim-
ply wrap around the default ones. Errlog identifies them
by recursively analyzing each function in the bottom-up
order along the call graph. If a function F prints a log
message under the condition true, F is added to the set
of logging functions.
Explicitly specified exceptions (optional) Errlog also
allows developers to explicitly specify domain-specific ex-
ception conditions in the form of code comments right be-
fore the exception condition check. Our experiments are
conducted without this option.

5.1.2 Identifying Untested Code Area (optional)
Errlog-AG further inserts log points for code regions not
covered by in-house testing. We use the test coverage tool
GNU gcov [14] and the branch decision coverage criteria.
For each untested branch decision, Errlog instruments a
log point. For multiple nested branches, Errlog only in-
serts a log point at the top level. This option is not enabled
in our experiments unless otherwise specified.

5.2 Log Printing Statement Insertion
Filter the exceptions already logged by a program This
is to avoid redundant logging, which can result in overhead
and redundant messages. Determining if an exception E
has already been logged by a log point L is challenging.
First, L may not be in the basic block immediately after
E . For example, in Figure 8, the exception check and its
corresponding log point are far apart. Therefore, simply
searching for L within the basic block following E is not
enough. Second, E might be logged by the caller function
via an error return code. Third, even if L is executed when
E occurs, it might not indicate that E is logged since L
may be printed regardless of whether E occurs or not.

Errlog uses precise path sensitive analysis to determine
whether an exception has been logged. For each identified
exception(P,EC), Errlog first checks whether there is a
log point L within the same function F that: i) will execute
if EC occurs, and ii) there is a path reaching P but not L
(which implies that L is not always executed regardless of
EC). If such an L exists, then EC has already been logged.

To check for these two conditions, Errlog first captures
the path-sensitive conditions to reach P and L as CP and
CL respectively. It then turns the checking of the above
two conditions into a satisfiability problem by checking
the following using a SAT solver:

1. CP ∧EC∧¬CL is not satisfiable.
2. CP ∧¬CL is satisfiable.

The first condition is equivalent to i), while the second
condition is equivalent to ii).

If no such log point exists, Errlog further checks if the
exception is propagated to the caller via return code. It
checks if there is a return statement associated with EC in
a similar way as it checks for a log point. It remembers
the return value, and then analyzes the caller function to
check if this return value is logged or further propagated.
Such analysis is recursively repeated in every function.
Log placement If no logging statement is found for an
exception E from the analysis above, Errlog inserts its
own logging library function, “Elog(logID)”, into the
basic block after the exception check. If no such check
exists, Errlog also adds the check.

Each logging statement records (i) a log ID unique to
each log point, (ii) the call stack, (iii) casually-related vari-
able values identified using LogEnhancer [37] 4, (iv) a
global counter that is incremented with each occurrence
of any log point, to help postmortem reconstruction of
the message order. For each system-call return error, the
errno is also recorded. No static text string is printed at
runtime. Errlog will compose a postmortem text message
by mapping the log ID and errno to a text string describ-
ing the exception. For example, Errlog would print the
following message for an open system-call error: “open
system call error: No such file or directory: ./filepath ...”.
5.3 Run-time Logging Library
Due to the lack of run-time information and domain
knowledge during our static analysis, Errlog may also log
non-exception cases, especially with Errlog-LE and Er-
rlog-AG. If these cases occur frequently at run time, the
time/space overhead becomes a concern.

To address this issue, Errlog’s run-time logging library
borrows the idea of adaptive sampling [19]. It exponen-
tially decreases the logging rate when a log point L is
reached from the same calling context many times. The
rationale is that frequently occurred conditions are less
likely to be important exceptions; and even if they are, it
is probably useful enough to only record its 2nth dynamic
occurrences. To reduce the possibility of missing true ex-
ceptions, we also consider the whole context (i.e., the call
stack) instead of just each individual log point. For each
calling context reaching each L we log its 2nth dynamic
occurrences. We further differentiate system call return er-
rors by the value of errno. For efficiency, Errlog logs into

4LogEnhancer [37] is a static analysis tool to identify useful variable
values that should be logged with each existing log message.
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App.
Errlog-DE Errlog-LE Errlog-AG

func. mem. abno. sig- Total switch- input learned Total res. Totalret. safe. exit nals default check errors leak
Apache 30 41 9 22 102 (0.09X) 117 389 360 968 (0.83X) 24 992 (0.86X)
Squid 393 112 29 3 537 (0.47X) 116 147 17 817 (0.72X) 26 843 (0.74X)
Postgres 619 166 28 9 822 (0.13X) 432 7 1442 2703 (0.43X) 65 2768 (0.44X)
SVN 33 6 1 3 43 (0.02X) 53 1 8 105 (0.06X) 31 136 (0.07X)
Coreutil cp 34 4 9 2 49 (0.73X) 13 5 0 67 (1.00X) 4 71 (1.06X)
CVS 1109 360 23 3 1495 (1.30X) 52 49 645 2241 (1.95X) 32 2273 (1.97X)
OpenSSH 714 31 26 3 774 (0.32X) 112 31 63 980 (0.40X) 23 1003 (0.41X)
lighttpd 171 16 30 3 220 (0.27X) 67 27 6 320 (0.39X) 37 357 (0.44X)
gzip 45 3 32 3 83 (0.85X) 40 3 16 142 (1.45X) 14 156 (1.59X)
make 339 6 16 3 364 (2.72X) 29 12 10 415 (3.10X) 6 421 (3.14X)
Total 3487 745 203 54 4489 (0.30X) 1031 671 2567 8758 (0.58X) 262 9020 (0.60X)

Table 8: Additional log points added by Errlog. The “total” of LE and AG include DE and DE+LE, respectively, and are compared
to the number of existing log points (Table 1 and 9). Note that most of these log points are not executed during normal execution.

in-memory buffers and flushes them to disk when they be-
come full, execution terminates, and when receiving user
defined signals.

Note that comparing with other buffering mechanisms
such as “log only the first/last N occurrences”, adaptive
sampling offers a unique advantage: the printed log points
can be postmortem ranked in the reverse order of their
occurrence frequencies, with the intuition that frequently
logged ones are less likely true errors.

6 In-lab Experiment
We evaluate Errlog using both in-lab experiments and a
controlled user study. This section presents the in-lab
experiments. In addition to the applications we used in
our characterization study, we also evaluate Errlog with 5
more applications as shown in Table 9.

6.1 Coverage of Existing Log Points
It is hard to objectively evaluate the usefulness of log mes-
sages added by Errlog without domain knowledge. How-
ever, one objective evaluation is to measure how many
of the existing log points, added manually by developers,
can be added by Errlog automatically. Such measurement
could evaluate how much Errlog matches domain experts’
logging practice.

Note that while our Section 4 suggests that the current
logging practices miss many logging opportunities, we do
not imply that existing log points are unnecessary. On the
contrary, existing error messages are often quite helpful

App. description LOC #Default Log Points
Total Err+Warn

CVS version cont. sys. 111K 1151 1139 (99%)
OpenSSH secure connection 81K 2421 2384 (98%)
lighttpd web server 54K 813 792 (97%)
gzip comp/decom. files 22K 98 95 (97%)
make builds programs 29K 134 129 (96%)

Table 9: The new software projects used to evaluate Errlog, in
addition to the five examined in our characterization study.

0 %

20 %

40 %

60 %

80 %

100 %

C
o
v
er

ag
e

apache

squid

postgres

svn
cp cvs

openssh

lighttpd

gzip
m

ake

DE LE frequent pattern

Figure 9: Coverage of existing log points by Errlog. For Er-
rlog-LE, we break down the coverages into log points identified
by generic exceptions and those learned by frequent logging pat-
terns. AG has similar coverages as LE.

in failure diagnosis as they were added by domain ex-
perts, and many of them were added in the form of after-
thoughts. This is confirmed by our Finding 2: existing
log messages would reduce the diagnosis time by 2.2X.
Therefore, comparing with existing log points provides an
objective measurement on the effectiveness of Errlog.

Figure 9 shows that Errlog , especially with Errlog-LE,
can automatically cover an average of 84% of existing log
points across all evaluated software. In comparison, Er-
rlog-DE logs only definite errors and achieves an average
of 52% coverage, still quite reasonable since on average it
adds less than 1% overhead.

6.2 Additional Log Points
In addition to the existing log points, Errlog also adds
new log points, shown in Table 8. Even though Errlog-LE
adds 0.06X–3.10X additional log points, they only cause
an average of 1.4% overhead (Section 6.3) because most
of them are not triggered when the execution is normal.
Logging for untested branch decision Table 10 shows
Errlog-AG’s optional logging for untested branch deci-
sions, which is not included in the results above. For
Apache, Postgres, SVN and Coreutils, we used the
test cases released together with the software.

9
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App. Uncovered decisions # log points
Apache 57.0% (2915) 655
Postgres 51.7% (51396) 11810

SVN 53.7% (14858) 4051
Coreutils 62.3% (9238) 2293

Table 10: Optional logging for untested branch decisions.

Software Adaptive sampling* No sampling
DE LE AG DE LE

Apache <1% <1% 2.7% <1% <1%
Squid <1% 1.8% 2.1% 4.3% 9.6%
Postgres 1.5% 1.9% 2.0% 12.6% 40.1%
SVN <1% <1% <1% <1% <1%
cp <1% <1% <1% 6.3% 6.3%
CVS <1% <1% <1% <1% 2.3%
Openssh scp 2.0% 4.6% 4.8% 5.2% 27.1%
lighttpd <1% <1% 2.2% <1% <1%
gzip <1% <1% <1% <1% <1%
make 3.9% 4.0% 4.8% 4.2% 6.8%
Average 1.1% 1.4% 2.1% 3.5% 9.4%

Table 11: The performance overhead added by Errlog’s log-
ging. *: By default, Errlog uses adaptive sampling. We also
show the overhead without using sampling only to demonstrate
the effect of adaptive sampling.

func. mem. switch input learned Totalret. safe. default check errors
Log pts. 5 8 5 7 10 35

Table 12: Noisy log points exercised during correct executions.

6.3 Performance Overhead
We evaluate Errlog’s logging overhead during the soft-
ware’s normal execution. Server performance is mea-
sured in peak-throughput. Web servers including Apache
httpd, squid, and lighttpd are measured with ab [4];
Postgres is evaluated with pgbench [24] using the
select-only workload; SVN and CVS with a combination
of check-out, merge, copy, etc.; OpenSSH’s scp with re-
peatedly transferring files; gzip and cp with processing
large files; make with compiling PostgreSQL.

Table 11 shows Errlog’s logging overhead during the
normal execution. For all evaluated software, the default
Errlog-LE imposes an average of 1.4% run-time overhead,
with a maximum of 4.6% for scp. The most aggressive
mode, Errlog-AG, introduces an average of 2.1% over-
head and a maximum of 4.8%. The maximum runtime
memory footprint imposed by Errlog is less than 1MB.
scp and make have larger overhead than others in Ta-

ble 11. It is because scp is relatively CPU intensive
(lots of encryptions) and also has a short execution time.
Compared to I/O intensive workloads, the relative log-
ging overhead added by Errlog becomes more significant
in CPU intensive workloads. Moreover, short execution
time may not allow Errlog to adapt the sampling rate ef-
fectively. make also has relatively short execution time.
Noisy messages More log messages are not always better.
However, it is hard to evaluate whether each log point cap-

App. Tot. w/ exist- Errlog-
fails ing logs DE LE AG

Apache 58 18 (31%) 28 (48%) 43 (74%) 48 (83%)
Squid 45 15 (33%) 23 (51%) 37 (82%) 37 (82%)
Postgres 45 24 (53%) 26 (58%) 32 (71%) 34 (76%)
SVN 45 25 (56%) 30 (67%) 33 (73%) 33 (73%)
Coreutils 45 15 (33%) 28 (62%) 34 (76%) 37 (82%)
Total 238* 97 (41%) 135 (57%) 179 (75%) 189 (79%)

Table 13: Errlog’s effect on the randomly sampled 238 real-
world failure cases. *: 12 of our 250 examined failure cases
cannot be evaluated since the associated code segments are for
different platforms incompatible with our compiler.

tures a true error since doing so requires domain expertise.
Therefore we simply treat the log points that are executed
during our performance testing as noisy messages as we
are not aware of any failures in our performance testing.
Among the five applications we used in our failure study,
only a total of 35 log points (out of 405 error condition
checks) are executed, between 3-12 for each application.
Table 12 breaks down these 35 log points by different pat-
terns. Examples of these include using the error return of
stat system call to verify a file’s non-existence in normal
executions. Since we use adaptive sampling, the size of
run-time log is small (less than 1MB).
Sampling overhead comparison We also evaluate the
efficiency of adaptive sampling by comparing it with “no
sampling” in Table 11. “No sampling” logging records ev-
ery occurrence of executed log points into memory buffer
and flushes it to disk when it becomes full. We do not eval-
uate “no sampling” on Errlog-AG as it is more reasonable
to use sampling to monitor resource usage.

Adaptive sampling effectively reduces Errlog-LE’s
overhead from no-sampling’s 9.4% to 1.4%. The majority
of the overhead is caused by a few log points on an ex-
ecution’s critical paths. For example, in Postgres, the
index-reading function, where a lock is held, contains a
log point. By decreasing the logging rate, adaptive sam-
pling successfully reduces no-sampling’s 40.1% overhead
to 1.9%. In comparison, the effect of sampling is less ob-
vious for make, where its short execution time is not suf-
ficient for adaptive sampling to adjust its sampling rate.
Analysis time Since Errlog is used off-line to add log
statements prior to software release, the analysis time is
less critical. Errlog takes less than 41 minutes to analyze
each evaluated software except for postgres, which took
3.8 hours to analyze since it has 1 million LOC. Since Er-
rlog scans the source code in one-pass, its analysis time
roughly scales linearly with the increase of the code size.
6.4 Real World Failures
Table 13 shows Errlog’s effect to the real-world failures
we studied in Section 4. In this experiment we turn on the
logging for untested code region in Errlog-AG. Originally,
41% of the failures had log messages. With Errlog , 75%
and 79% of the failures (with Errlog-LE and AG, respec-
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Name Repro Description
apache
crash

� A configuration error triggered a NULL
pointer dereference.

apache
no-file

� The name of the group-file contains a typo
in the configuration file.

chmod × fail silently on dangling symbolic link.
cp � fail to copy the content of /proc/cpuinfo.
squid × when using Active Directory as authentica-

tion server, incorrectly denies user’s authen-
tication due to truncation on security token.

Table 14: Real-world failures used in our user study.

tively) have failure-related log messages.
Effectiveness of Errlog for Diagnosis We evaluate the
usefulness of the added log messages in diagnosis using
SherLog [35], a log-inference engine. Given log mes-
sages related to a failure, SherLog reconstructs the exe-
cution paths must/may have taken to lead to the failure.
Our evaluation shows that 80% of the new messages can
help SherLog to successfully infer the root causes.

7 User Study
We conduct a controlled user study to measure the effec-
tiveness of Errlog . Table 14 shows the five real-world pro-
duction failures we used. Except for “apache crash”, the
other four failed silently. Failures are selected to cover
diverse root causes (bugs and misconfigurations), symp-
toms, and reproducibilities. We test on 20 programmers
(no co-author of this paper is included), who indicated that
they have extensive and recent experience in C/C++.

Each participant is asked to fix the 5 failures as best as
she/he could. They are provided a controlled Linux work-
station and a full suite of debugging tools, including GDB.
Each failure is given to a randomly chosen 50% of the pro-
grammers with Errlog inserted logs, and the other 50%
without Errlog logs. All participants are given the expla-
nation of the symptom, the source tree, and instructions
on how to reproduce the three reproducible failures–this is
actually biased against Errlog since it makes the no-Errlog
cases easier (it took us hours to understand how to repro-
duce the two Apache failures). The criteria of a successful
diagnosis is for the users to fix the failure. Further, there is
a 40 minutes time limit per failure; failing to fix the fail-
ure is recorded as using the full limit. 40 minutes is a best
estimation of the maximum time needed.

Note that this is a best-effort user study. The potential
biases should be considered when interpreting our results.
Below we discuss some of the potential biases and how we
addressed them in our user study:
Bias in case selection: We did not select some very hard-
to-diagnose failures and only chose two unreproducible
ones, since diagnosis can easily take hours of time. This
bias, however, is likely against Errlog since our result
shows that Errlog is more effective on failures with a
larger diagnosis time.
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Figure 10: User study result, with error bars showing 95% con-
fidence interval.

Bias in user selection: The participants might not rep-
resent the real programmers of these software. Only four
users indicated familiarities with the code of these soft-
ware. However, we do provide each user a brief tutorial
of the relevant code. Moreover, studies [34] have shown
that many programmers fixing real-world production fail-
ures are also not familiar with the code to be fixed because
many companies rely on sustaining engineers to do the fix.
Sustaining engineers are usually not the developers who
wrote the code in the first place.
Bias in methodology: As our experiment is a single-
blind trial (where we, the experimenters, know the ground
truth), there is a risk that the subjects are influenced by the
interaction. Therefore we give the users written instruc-
tions for each failure, with the only difference being the
presence/absence of the log message; we also minimize
our interactions with the user during the trial.
Results Figure 10 shows our study result. On average
programmers took 60.7% less time diagnosing these fail-
ures when they were provided with the logs added by Er-
rlog (10.37±2.18 minutes versus 25.72±3.75 minutes, at
95% confidence interval). An unpaired T-test shows that
the hypothesis “Errlog saves diagnosis time” is true with a
probability of 99.9999999% (p=5.47×10−10), indicating
the data strongly supports this hypothesis.

Overall, since factors such as individuals’ capability are
amortized among a number of participants, the only con-
stant difference between the two control groups is the ex-
istence of the log messages provided by Errlog. Therefore
we believe the results reflect Errlog’s effectiveness.

Less formally, all the participants reported that they
found the additional error messages provided by Errlog
significantly helped them diagnose the failures. In partic-
ular, many participants reported that “(Errlog added) logs
are in particular helpful for debugging more complex sys-
tems or unfamiliar code where it required a great deal of
time in isolating the buggy code path.”

However, for one failure, “apache crash”, the benefit of
Errlog is not statistically significant. The crash is caused
by a NULL pointer dereference. Errlog’s log message is
printed simply because SIGSEGV is received. Since users
could reproduce the crash and use GDB, they could rela-
tively quickly diagnose it even without the log.

In comparison, Errlog achieves maximum diagnosis
time reduction in two cases: “squid” (by 72.3%) and
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“apache no-file” (by 73.7%). The squid bug is a tricky
one: due to the complexity in setting up the environ-
ment and user privacy concerns, it is not reproducible by
the participants. Without logs, most of the control group
took time-consuming goose chases through the compli-
cated code. In contrast, the error message from Errlog,
caused by the abnormal return of snprintf, guided most
of the users from the other group to quickly spot the unsafe
use of snprintf that truncated a long security token.

In the “apache no-file” case (the one shown in Fig-
ure 1), apache cannot open a file due to a typo in the
configuration file. Without any error message, some pro-
grammers did not even realize this was caused by a mis-
configuration and started to debug the code. In contrast,
the error message provided by Errlog clearly indicates the
open system call cannot find the file, allowing most pro-
grammers in this group to quickly locate and fix the typo.

8 Limitations and Discussions
(1) What failures cannot benefit from Errlog? Not all the
failures can be successfully diagnosed with Errlog . First,
Errlog fails to insert log messages for 21% of the ran-
domly sampled failures (Table 13). The error conditions
of these failures are subtle, domain-specific, or are caused
by underlying systems whose errors are not even properly
propagated to the upper level applications [26]. Errlog
could be further used with low-overhead run-time invari-
ants checking [13] to log the violations to the invariants.

Second, while log messages provide clues to narrow
down the search, they may not pinpoint the root cause.
Section 6.4 shows that for 20% of the failures, the added
log messages are not sufficient for the diagnosis. Such
examples include (i) concurrency bugs where the thread-
interleaving information is required and (ii) failures where
key execution states are already lost at the log point. Note
that a majority (> 98%) of failures in the real world are
caused by semantic bugs, misconfigurations, and hard-
ware errors but not by concurrency bugs [27].

However, this does not mean Errlog can only help di-
agnosing easy failures. Log messages collect more diag-
nostic information, not to pinpoint the exact root cause.
Evidences provided by logs along the fault propagation
chain, despite how complicated this chain is, will likely
help narrowing down the search space. Therefore even
for concurrency bugs, an error message is still likely to be
useful to reduce the diagnosis search space.
(2) What is the trade-off of using adaptive sampling?
Adaptive sampling might limit the usage of log messages.
If the program has already exercised a log point, it is possi-
ble that this log will not be recorded for a subsequent error.
Long running programs such as servers are especially vul-
nerable to this limitation. To alleviate this limitation, we
differentiate messages by runtime execution contexts in-
cluding stack frames and errno. We can also periodically

reset the sampling rate for long running programs.
In addition, adaptive sampling might preclude some

useful forms of reasoning for a developer. For instance,
the absence of a log message no longer guarantees that
the program did not take the path containing the log point
(assuming the log message has already appeared once).
Moreover, even with the global order of each printed mes-
sage, it would be harder to postmortem correlate them
given the absence of some log occurrences.

To address this limitation, programmers can first use
adaptive sampling on every log point during the test-
ing and beta-release runs. Provided with the logs
printed during normal executions, they can later switch to
non-sampling logging for those not-exercised log points
(which more likely capture true errors), while keep using
sampling on those exercised ones for overhead concerns.
(3) Can Errlog completely replace developers in logging?
The semantics of the auto-generated log messages are still
not comparable to those written by developers. The mes-
sage semantic is especially important for support engi-
neers or end users who usually do not have access to the
source code. Errlog can be integrated into the program-
ming IDE, suggesting logging code as developers program
and allowing them to improve inserted log messages and
assign proper verbosity levels.
(4) How about verbose log messages? This paper only
studies log messages under the default verbosity mode,
which is the typical production setting due to overhead
concerns [36]. Indeed, verbose logs can also help debug-
ging production failures as developers might ask user to
reproduce the failure with the verbose logging enabled.
However, such repeated failure reproduction itself is un-
desirable for the users in the first place. How to effectively
insert verbose messages remains as our future work.
(5) What is the impact of the imprecisions of the static
analysis? Such imprecisions, mainly caused by pointer
aliasing in C/C++, might result in redundant logging and
insufficient logging. However, given that Saturn’s intra-
procedural analysis precisely tracks pointer aliases [2],
such impact is limited only to the inter-procedural anal-
ysis (where the error is propagated via return code to the
callers to log). In practice, however, we found program-
mers seldom use aliases on an error return code.

9 Related Work
Log enhancement and analysis Some recent proposals
characterize, improve, and analyze existing log messages
for failure diagnosis [36, 37, 35, 32]. LogEnhancer [37]
adds variables into each existing log message to col-
lect more diagnostic information; Our previous work [36]
studied developers’ modifications to existing logging code
and found that they often cannot get the logging right at
the first attempt. SherLog [35] is a postmortem debugger
that combines runtime logs and source code to reconstruct

12
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the partial execution path occurred in the failed execution.
However, all of these studies only deal with existing log

messages, and do not address the challenge of where to
add new logs as discussed in Section 2.

The different objective makes our techniques very dif-
ferent from the systems listed above. For example, both
SherLog and LogEnhancer start from an existing log mes-
sage to backtrack the execution paths. In comparison, Er-
rlog scans the entire source code to identify different ex-
ception patterns. Errlog also learns the program-specific
errors, identifies the untested code areas, checks whether
exceptions are already logged, and logs with adaptive sam-
pling at runtime. All these techniques are unique to Errlog
for its objective.
Detecting bugs in exception handling code Many
systems aim to expose bugs in the exception handling
code [17, 26, 22, 16, 33], including two [17, 26] that stat-
ically detect the unchecked errors in file-system code. Er-
rlog is different and complementary to these systems. Er-
rlog has a different goal: easing the postmortem failure
diagnosis, instead of detecting bugs. Therefore we need to
empirically study the weakness in logging practices, and
build a tool to automatically add logging statements. Only
our exception identification part (Section 5.1) shares some
similarities with [17, 26]. In addition, some exception pat-
terns such as fall-through in switch statements, signal han-
dling, and domain-specific errors are not checked by prior
systems. These additional exceptions detected by Errlog
might benefit the prior systems for detecting more bugs in
the corresponding error handling code.
Bug-type specific diagnostic information collection
Some studies [5, 19, 6, 38] proposed to collect runtime
information for specific types of bugs. For example,
DCop [38] collects runtime lock/unlock trace for diagnos-
ing deadlocks. These systems are more powerful but are
limited to debugging only specific types of fault, whereas
Errlog applies to various fault types but may log only the
erroneous manifestations (instead of root causes).
Logging for deterministic replay Other systems [31, 3,
11, 29] aim at deterministically replaying the failure exe-
cution, which generally requires recording all the inputs or
impose high run-time logging overhead. Castro et al. pro-
pose replacing private information while preserving diag-
nosis power [8], but they require replaying the execution
at the user’s site. Errlog is complementary and targets the
failures where reproduction is difficult due to privacy con-
cerns, unavailability of execution environments, etc.
Tracing for failure diagnosis Execution trace monitor-
ing [21, 18, 25, 1] has been used to collect diagnostic in-
formation, where both normal and abnormal executions
are monitored. Errlog logs only exceptions so its runtime
overhead is small during normal executions.
Static analysis Errlog uses the Saturn [2] symbolic exe-
cution framework. Similar static analysis [7, 9] was used

for other purposes, such as bug detection. Errlog uses
code analysis for a different objective: log insertion for
future postmortem diagnosis. Therefore many design as-
pects are unique to Errlog , such as checking whether the
exception is logged, learning domain-specific errors, etc.

10 Conclusions
This paper answers a critical question: where is the proper
location to print a log message that will best help post-
mortem failure diagnosis, without undue logging over-
head? We comprehensively investigated 250 randomly
sampled failure reports, and found a number of exception
patterns that, if logged, could help diagnosis. We further
developed Errlog , a tool that adds proactive logging code
with only 1.4% logging overhead. Our controlled user
study shows that the logs added by Errlog can speed up
the failure diagnosis by 60.7%.
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