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1 Introduction
Software defined network (SDN) eases the task of programming and managing computer networks. The conceptually
centralized nature of the control plane provides a holistic view of the network, thereby making it feasible to verify
SDN’s functionalities. Verification of SDN is gaining attention in the last few years [1, 5]. There are two main
challenges of SDN: (1) SDNs are often programmed in general-purpose programming languages (e.g. Java, Python),
which makes it tedious and error-prone to apply formal methods over controller applications; (2) the sheer scale of
modern networks makes state explosion problem an insurmountable challenge for model checking. Model checking
techniques combined with limiting the expressiveness of the programming language have demonstrated as an effective
approach to verifying basic properties. However, due to the highly dynamic nature of SDN, verification of more
complex security properties is still challenging.

To address the above challenges, we propose a unified framework for programming and verification of SDNs.
Our framework relies on the use of a declarative language, Network Datalog (NDLog) [4], which provides compact
encoding of SDN functionalities and serves as a basis for formal analysis. As a preliminary step, we demonstrate
that NDLog can encode basic openflow applications succinctly, and preserve well-formed logical structure. Based on
the semantics of NDLog, we develop a sound program logic for verifying invariant properties of NDLog program.
The approach of static analysis avoids the state explosion problem. Also, properties of the system can be verified
in a compositional manner by dividing them into smaller invariants of different components. Compared to existing
proposals such as Frenetic [3], NDLog has a tighter connection to first-order logic and therefore makes the verification
tasks easier.

2 Declarative Programming
A NDLog program consists of several rules of the form h :− b1, ..., bn, where h and bi are tuples representing
controller (or switch) state. Each tuple is associated with a location specifier (indicated by an “@” sign) that indicates
the location of the tuple. Informally, the rule head (h) is derived when all tuples in the rule body (bi) hold. The
distributed evaluation of NDLog programs computes all derivable tuples from given base tuples. During this process,
when necessary, tuples are sent over (retrieved from) the network.
Network Datalog. To illustrate NDLog’s syntax and how it can be used to model SDN controllers, we present an
example controller program for Ethernet MAC learning. (For ease of exposition, the program is based on a simplified
openflow specification. But it is not difficult to modify it to capture the exact packet format).

rc1 flowMod(@swc, smac, iport) :− ofConn(@ctl, swc), ofPacket(@ctl, swc, iport, smac, dmac).
rc2 broadcast(@swc, smac, dmac) :− ofConn(@ctl, swc), ofPacket(@ctl, swc, iport, smac, dmac).

The program models the scenario where an Ethernet packet with source MAC address smac is received at switch swc
from the iport port, and cannot match any rule on the switch. The packet is then forwarded to the controller (i.e., the
ofPacket tuple), and the controller, on receiving ofPacket, performs two actions: 1) it instructs the switch to install a
rule that forwards all packets destined to smac through port iport (rule rc1), and 2) it instructs the switch to broadcast
the unmatched Ethernet packet (rule rc2).
Openflow Switch. To capture a uniform view of a complete SDN system for ease of verification, we also model
openflow switches—both its software (openflow interface) and hardware (packet forwarding) functionalities using
NDLog. Due to space limitation, we omit the detailed NDLog encoding. It is worth noting that, unlike the controller,
the encoding of openflow switch is fixed given a specific openflow version, thus can be included as an embedded
component in our proposed framework, transparent to the users.

3 Verification
We intend to use an extension of a program logic for proving invariant properties of NDLog programs [2] to verify
SDN configurations.
Network Abstraction. We model a network as a set of connected nodes, each of which runs an NDLog program.
The behavior of the network is then modeled as execution traces, each of which is a sequence of actions, generated
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by controllers and switches in the network. A set of transition rules based on NDLog’s operational semantics dictates
how these traces are generated. Such a network abstraction goes beyond modeling flows of packets; it also captures
events occurring at switches and controllers, which are key to verifying complex properties.
Properties. The properties of interest include the usual reachability type of properties (e.g., can packets matching
specific descriptions flow from A to B?) and stateful properties (e.g., can packets matching specific descriptions flow
from A to B after a specific event?). More concretely, we are interested in properties expressible as linear temporal
logic formulas (LTL). Many correctness and security properties of the network can be specified in LTL. Below is an
example property of our example program:
Reactive flow installation: the controller adds a flow entry to a switch only after the controller receives a corresponding
openflow packet from that switch.
Program Logic. We use first-order logic as the specification language for properties. Atomic predicates represent
actions, as well as derivable NDLog tuples. For instance, ofConn(ctl , swc, ctl , t) means that a tuple ofConn(@ctl , swc)
is derivable at the controller ctl at time t.

Our prior work has developed a Hoare-style program logic to reason about the properties of NDLog programs [2].
We can prove invariant properties (properties that are true throughout the execution of a program) using a combination
of manual annotation, automated lemma generation and interactive theorem proving. The main idea is that the global
property of the entire network is manually decomposed into local properties of each individual node and the local
properties are verified against the NDLog program on that node. The verification steps include (1) specifying the
global and local properties, (2) generating supporting lemmas for proving that local properties are satisfied given the
NDLog program, (3) proving these lemmas using a theorem prover and (4) proving that the composition of local
properties implies the global property. Our initial results show that this methodology can be extended to apply to SDN
verification.

4 Challenges
At a high level, the switches and controllers communicate to each other via asynchronous messages. The number of
possible permutations of these messages can be huge, which is a main cause of problems in model-checking based
techniques. This is also a problem for our proof-based verification technique, as our model over-approximates the
states to ensure soundness. Naı̈ve application of our technique is likely to leave many properties unprovable, even
when they are true. We are interested in refining the model based on failed proofs. Failed proofs can also be used to
identify potential problems. For example, a failed attempt in proving “non-redundant flow installation” of our example
program reveals that two identical openflow packets sent to the controller before the controller makes any response
would cause the same flow entry to be installed twice on the same switch.

Automation is key to the adoption of our techniques. We will investigate (1) automated local property specification
and (2) automated first-order logic proofs. Our prior work relies on manual annotations and an interactive theorem
prover. From our experience, only a small fragment of the proofs requires manual efforts (e.g., how to carry out
inductive proofs). Sub-goals of these proofs tend to be plain first-order logic formulas, and therefore, it is feasible to
maximize automated portions of the verification.
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