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Abstract
Everyone agrees that web pages should load more
quickly. However, a good definition for “page load time”
is elusive. We argue that, for pages that care about user
interaction, load times should be defined with respect
to interactivity: a page is “loaded” when above-the-fold
content is visible, and the associated JavaScript event
handling state is functional. We define a new load time
metric, called Ready Index, which explicitly captures our
proposed notion of load time. Defining the metric is
straightforward, but actually measuring it is not, since
web developers do not explicitly annotate the JavaScript
state and the DOM elements which support interactiv-
ity. To solve this problem, we introduce Vesper, a tool
that rewrites a page’s JavaScript and HTML to automat-
ically discover the page’s interactive state. Armed with
Vesper, we compare Ready Index to prior load time met-
rics like Speed Index; across a variety of network con-
ditions, prior metrics underestimate or overestimate the
true load time for a page by 24%–64%. We introduce a
tool that optimizes a page for Ready Index, decreasing
the median time to page interactivity by 29%–32%.

1 INTRODUCTION

Users want web pages to load quickly [31, 40, 42]. Thus,
a vast array of techniques have been invented to de-
crease load times. For example, browser caches try to
satisfy network requests using local storage. CDNs [9,
27, 36] push servers near clients, so that cache misses
can be handled with minimal network latency. Cloud
browsers [4, 29, 34, 38] resolve a page’s dependency
graph on a proxy that has low-latency links to web
servers; this allows a client to download all objects in
a page using a single HTTP round-trip to the proxy.

All of these approaches try to reduce page load time.
However, an inconvenient truth remains: none of these
techniques directly optimize the speed with which a page
becomes interactive. Modern web pages have sophisti-
cated, dynamic GUIs that contain both visual and pro-
grammatic aspects. For example, many sites provide a
search feature via a text input with autocompletion sup-
port. From a user’s perspective, such a text input is
worthless if the associated HTML tags have not been
rendered; however, the text input is also crippled if the
JavaScript code that implements autocompletion has not
been fetched and evaluated. JavaScript code can also im-
plement animations or other visual effects that do not re-
ceive GUI inputs directly, but which are still necessary

* These authors contributed equally to this work.

Figure 1: For the Alexa US Top 500 sites, we observed
the median number of GUI event handlers to be 182.

for a page to be ready for user interaction. As shown in
Figure 1, pages often contain hundreds of event handlers
that drive interactivity.

In this paper, we propose a new definition for load time
that directly captures page interactivity. We define a page
to be fully loaded when:
(1) the visual content in the initial browser viewport1

has completely rendered, and
(2) for each interactive element in the initial view-

port, the browser has fetched and evaluated the
JavaScript and DOM state that supports the ele-
ment’s interactive functionality.

Prior definitions for page load time overdetermine or un-
derdetermine one or both of those conditions (§2), lead-
ing to inaccurate measurements of page interactivity. For
example, the traditional definition of page load time, as
represented by the JavaScript onload event, captures
when all of a page’s HTML, JavaScript, CSS, and images
have been fetched and evaluated; however, this definition
is overly conservative, since only a subset of that state
may be needed to allow a user to interact with the content
in the initial viewport. Newer metrics like above-the-fold
time [21] and Speed Index [14] measure the time that a
page needs to render the initial viewport. However, these
metrics do not capture whether the page has loaded crit-
ical JavaScript state (e.g., event handlers that respond to
GUI interactions, or timers that implement animations).

To accurately measure page interactivity, we must de-
termine when conditions (1) and (2) are satisfied. Deter-
mining when condition (1) has been satisfied is relatively
straightforward, since rendering progress can be mea-
sured using screenshots or the paint events that are emit-
ted by the browser’s debugger interface. However, deter-
mining when condition (2) has been satisfied is challeng-
ing. How does one precisely enumerate the JavaScript
state that supports interactivity? How does one determine
when this state is ready? To answer these questions, we
introduce a new measurement framework called Vesper.

1The viewport is the region of a page that the browser is currently
displaying. Content in the initial viewport is often called “above-the-
fold” content.
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(a) Loading the normal version of the page.

(b) Loading a version that optimizes for above-the-fold time.

(c) Loading a version that optimizes for Ready Time.
Figure 2: Timelines for loading amazon.com, indicat-
ing when critical interactive components become fully
interactive. Note that Ready Time best captures when
the site is interactive; furthermore, optimizing for Ready
Time is the best way to decrease the page’s time-to-
interactivity. The client used a 12 Mbit/s link with a 100
ms RTT (§5.1).

RTT PLT RT AFT

25 ms 1.5 (3.9) 1.1 (2.9) 0.8 (1.9)
50 ms 3.4 (7.2) 2.5 (5.8) 1.9 (4.7)
100 ms 6.1 (12.5) 3.9 (9.1) 2.9 (7.0)
200 ms 9.2 (20.6) 5.6 (12.8) 3.8 (8.9)

Figure 3: Median (95th percentile) load time estimates
in units of seconds. Each page in our 350 site corpus was
loaded over a 12 Mbit/s link.

Vesper rewrites a page’s JavaScript and HTML; when the
rewritten page loads, the page automatically logs paint
events as well as reads and writes to individual JavaScript
variables and DOM elements.2 By analyzing these logs,
Vesper generates a progressive load metric, called Ready
Index, which quantifies the fraction of the initial view-
port that is interactive (i.e., visible and functional) at
a given moment. Vesper also outputs a derived metric,
called Ready Time, which represents the exact time at
which all of the above-the-fold state is interactive.

Using a test corpus of 350 popular sites, we compared
our new load metrics to traditional ones. Figure 2(a) pro-
vides a concrete example of the results, showing the dif-

2Each HTML tag in a web page has a corresponding DOM element.
The DOM element is a special JavaScript object that JavaScript code
can use to manipulate the properties of the underlying HTML tag.

ferences between page load time (PLT), above-the-fold
time (AFT), and Ready Time (RT) for the amazon.com
homepage when loaded over a 12 Mbit/s link with a 100
ms RTT. AFT underestimates time-to-full-interactivity
by 2.56 seconds; PLT overestimates the time-to-full-
interactivity by 2.72 seconds. Web developers celebrate
the elimination of milliseconds of “load time,” claim-
ing that a slight decrease can result in millions of dol-
lars of extra income for a large site [6, 8, 41]. How-
ever, our results suggest that developers may be optimiz-
ing for the wrong definition of load time. As shown in
Figure 3, prior metrics inaccurately forecast time-to-full-
interactivity under a variety of network conditions, with
median inaccuracies of 24%–39%; as shown in our user
study (§6), users with interactive goals prefer websites
that actually prioritize the loading of interactive content.

The differences between load metrics are particularly
stark if a page’s dependency graph [25, 37] is deep, or
if a page’s clients are stuck behind high-latency links. In
these scenarios, the incremental interactivity of a slowly-
loading page is important: as the page trickles down
the wire, interactive HTML tags should become visible
and functional as soon as possible. This allows users to
meaningfully engage with the site, even if some content
is missing; incremental interactivity also minimizes the
time window for race conditions in which user inputs are
generated at the same time that JavaScript event handling
state is being loaded [30]. To enable developers to build
incrementally-interactive pages with low Ready Indices,
we extended Polaris [25], a JavaScript framework that
allows a page to explicitly schedule the order in which
objects are fetched and evaluated. We created a new Po-
laris scheduler that optimizes for Ready Index; the result-
ing scheduler improves RI by a median of 29%, and RT
by a median of 32%. Figure 2(c) demonstrates the sched-
uler’s performance on the amazon.com homepage. Im-
portantly, Figure 2(b) shows that optimizing for above-
the-fold time does not optimize for time-to-interactivity.

Of course, not all sites have interactive content, and
even interactive sites can be loaded by users who only
look at the content. In these situations, pages should op-
timize for the rendering speed of above-the-fold content.
Fortunately, our user study shows that pages which op-
timize for Ready Index will substantially reduce user-
perceived rendering delays too (§6). If desired, Vesper
enables developers to automatically optimize their pages
solely for rendering speed instead of Ready Index.

In summary, this paper has four contributions. First,
we define a new load metric called Ready Index which
quantifies a page’s interactive status (§3). Determining
how interactivity evolves over time is challenging. Thus,
our second contribution is a tool called Vesper that au-
tomates the measurement of Ready Index (§4). Our third
contribution is a study of Ready Index in 350 real pages.
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By loading those pages in a variety of network condi-
tions, we explain the page characteristics that lead to
faster interactivity times (§5). Our fourth contribution is
an automated framework for optimizing a page’s Ready
Index or pure rendering speed; both optimizations are en-
abled by Vesper-collected data. User studies demonstrate
that pages which optimize for Ready Index provide better
support for immediate interactivity (§6).

2 BACKGROUND

In this section, we describe prior attempts to define “page
load time.” Each metric tracks a different set of page be-
haviors; thus, for a given page load, different metrics may
provide radically different estimates of the load time.

The Original Definition: The oldest metric is defined
with respect to the JavaScript onload event. A browser
fires that event when all of the external content in a
page’s static HTML file has been fetched and evalu-
ated. All image data must be present and rendered; all
JavaScript must be parsed and executed; all style files
must be processed and applied to the relevant HTML
tags; and so on. The load time for a page is defined as the
elapsed time between the navigationStart event
and the onload event. In the rest of the paper, we re-
fer to this load metric as PLT (“page load time”).

PLT was a useful metric in the early days of the web,
but modern web pages often dynamically fetch content
after the onload event has fired [12, 13]. PLT also pe-
nalizes web pages that have large amounts of statically-
declared below-the-fold content. Below-the-fold content
resides beneath the initial browser viewport, and can only
be revealed by user scrolling. PLT requires static below-
the-fold content to be fetched and evaluated before a
page load is considered done. However, from a user’s
perspective, a page can be ready even if its below-the-
fold content is initially missing: the interactivity of the
initial viewport content is the primary desideratum.

Time to First Paint: Time to First Paint (TTFP) mea-
sures when the browser has received enough page data
to render the first pixels in the viewport. Time to First
Meaningful Paint [33], or TTFMP, measures the time un-
til the biggest layout change, using the intuition that the
associated paint event is the one that matters most. TTFP
and TTFMP try to capture the earliest time that a human
could usefully interact with a page. For a given PLT, a
lower TTFP or TTFMP is better. However, decreasing a
page’s PLT is not guaranteed to lower the other metrics,
and vice versa [1]. For example, when the HTML parser
(which generates input for the rendering pipeline) hits a
<script> tag, the parser may need to synchronously
fetch and evaluate the JavaScript file before continuing
the HTML parse [25]. By pushing <script> tags to
the end of a page’s HTML, render times may improve;

however, careless deferral of JavaScript evaluation may
hurt interactivity, since event handlers will be registered
later, animation callbacks will start firing later, and so on.

Above-the-fold Time: This metric represents the time
that the browser needs to render the final state of all pix-
els in the initial browser viewport. Like TTFP, above-the-
fold time (AFT) is not guaranteed to move in lockstep
with PLT. Measuring AFT and TTFP requires a mech-
anism for tracking on-screen events. WebKit-derived
browsers like Chrome and Opera expose paint events via
their debugging interfaces. Rendering progress can also
be tracked using screenshots [16, 19].

If a web page contains animations, or videos that au-
tomatically start playing, a naı̈ve measurement of AFT
would conclude that the page never fully loaded. Thus,
AFT algorithms must distinguish between static pixels
that are expected to change a few times at most, and
dynamic pixels that are expected to change frequently,
even once the page has fully loaded. To differentiate be-
tween static and dynamic pixels, AFT algorithms use a
threshold number of pixel updates; a pixel which is up-
dated more often than the threshold is considered to be
dynamic. AFT is defined as the time that elapses until the
last change to a static pixel.

Speed Index: AFT fails to capture the progressive na-
ture of the rendering process. Consider two hypothetical
pages which have the same AFT, but different rendering
behavior: the first page updates the screen incrementally,
while the second page displays nothing until the very end
of the page load. Most users will prefer the first page,
even though both pages have the same AFT.

Speed Index [14] captures this preference by explic-
itly logging the progressive nature of page rendering. In-
tuitively speaking, Speed Index tracks the fraction of a
page which has not been rendered at any given time. By
integrating that function over time, Speed Index can pe-
nalize sites that leave large portions of the screen unren-
dered for long periods of time. More formally, a page’s
Speed Index is

∫ end
0 1− p(t)

100 dt, where end is the AFT
time, and p(t) is the percentage of static pixels at time
t that are set to their final value. A lower Speed Index is
better than a higher one.

Strictly speaking, a page’s Speed Index has units of
“percentage-of-visual-content-that-is-not-displayed mil-
liseconds.” For brevity, we abuse nomenclature and re-
port Speed Index results in units of just “milliseconds.”
However, a Speed Index cannot be directly compared to a
metric like AFT that is actually measured in units of time.
Also note that TTFP, AFT, and Speed Index do not con-
sider the load status of JavaScript state. As a result, these
metrics cannot determine (for example) when a button
that has been rendered has actually gone live as result of
the associated event handlers being registered.
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User-perceived PLT: This metric captures when a user
believes that a page render has finished [20, 35]. Un-
like Speed Index, User-perceived PLT is not defined
programmatically; instead, it is defined via user stud-
ies which empirically observe when humans think that
enough of a page has rendered for the page load to be
“finished.” Like Speed Index, User-perceived PLT ig-
nores page functionality (and thus page interactivity).
User-perceived PLT also cannot be automatically mea-
sured, which prevents developers from easily optimizing
for the metric.

TTI: Several commercial products claim to measure
a page’s time-to-interactivity (TTI) [28, 32]; however,
these products do not explicitly state how interactivity
is defined or measured. In contrast, Google is currently
working on an open standard for defining TTI [15]. The
standard’s definition of TTI is still in flux. The cur-
rent definition expresses interactivity in terms of time-
to-first-meaningful-paint, the number of in-flight net-
work requests, and the utilization of the browser’s main
thread (which is used to dispatch GUI events, execute
JavaScript event handlers, and render content). TTI de-
fines an “interactive window” as a period in which the
main thread runs no tasks that require more than 50 ms;
in other words, during an interactive window, the browser
can respond to user input in at most 50 ms. A page’s TTI
is the maximum of:
(1) the time when the DOMContentLoaded event

has fired, and
(2) the start time of the first interactive window that has

at most two network requests in flight for 5 consec-
utive seconds.

This definition for load time has several problems. First,
it could declare a page to be loaded even if the page has
not rendered all of the content in the initial viewport. Sec-
ond, condition (2) does not consider whether a network
request is for above-the-fold, interactive content; a win-
dow with many outstanding network requests may repre-
sent an interactive page if those network requests are for
below-the-fold state. Similarly, this TTI definition makes
no explicit reference to the JavaScript state that supports
above-the-fold event handlers, and the JavaScript state
that does not. User-perceived interactivity requires the
former state to be loaded, but not the latter.

Summary: Traditional metrics for load time fail to
capture important aspects of user-perceived page readi-
ness. PLT does not explicitly track rendering behavior,
and implicitly assumes that all JavaScript state is neces-
sary to make above-the-fold content usable. AFT, Speed
Index, User-perceived PLT, and TTFP/TTFMP consider
visual content, but are largely oblivious to the status of
JavaScript code—the code is important only to the extent

that it might update a pixel using DOM methods [23].
However, AFT, Speed Index, User-perceived PLT, and
TTFP/TTFMP completely ignore event handlers (and the
program state that event handlers manipulate). Conse-
quently, these metrics fail to capture the interactive com-
ponent of page usability. Google’s TTI also imprecisely
captures above-the-fold, interactive state.

3 READY INDEX

In this section, we formally define Ready Index (RI).
Like Speed Index, RI is a progressive metric that captures
incremental rendering updates. Unlike Speed Index, RI
also captures the progressive loading of JavaScript state
that supports interactivity.

Defining Functionality: Let T be an upper-bound on
the time that a browser needs to load a page’s above-the-
fold state, and make that state interactive. This upper-
bound does not need to be tight; in practice (§5), we use
a static value of 30 seconds.

Let E be the set of DOM elements that are visible in
the viewport at T . For each e∈ E, let h(e) be the set of all
event handlers that are attached to e at or before T . Let te
be the earliest time at which, for all handlers h∈ h(e), h’s
JavaScript function has been declared, and all JavaScript
state and DOM state that would be accessed by h’s execu-
tion has been loaded. Given those definitions, we express
the functionality progress of e as

F(e, t) =

{
0 t < te
1 t ≥ te

(1)

Intuitively speaking, Equation 1 states that a DOM node
is not functional until all of the necessary event han-
dlers have been attached to the node, and the browser
has loaded all of the state that the handlers would touch
if executed.

Defining Visibility: An element e may be the target of
multiple paint events, e.g., as the browser parses addi-
tional HTML and recalculates e’s position in the layout.
We assume that e is not fully visible until its last paint
completes. Let P(e) be the set of all paint events that up-
date e, and let Pt(e)⊆ P(e) be the paint events that have
occurred by time t. The visibility progress of e is

V (e, t) =
|Pt(e)|
|P(e)|

(2)

Similar to how Speed Index computes progressive ren-
dering scores for pixels [14], Equation 2 assumes that
each paint of e contributes equally to e’s visibility score.
Note that 0≤V (e, t)≤ 1.

Defining Readiness: Given the preceding definitions
for functionality and visibility, we define the readiness
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of an element e as

R(e, t) =
1
2

F(e, t)+
1
2

V (e, t) (3)

such that the functionality and visibility of e are equally
weighed,3 and 0≤R(e, t)≤ 1. The readiness of the entire
page is then defined as

R(t) = ∑
e∈E

A(e)R(e, t) (4)

where A(e) is the area (in pixels) that e has at time T .

Putting It All Together: An element e is fully ready
at time t if R(e, t) = 1, i.e., if e is both fully visible and
fully functional. A page’s Ready Time (RT) is thus the
smallest time at which all of the above-the-fold elements
are ready. A page’s Ready Index (RI) is the area above
the curve of the readiness progress function. Thus, RI is
equal to

RI =
∫ T

0
1− R(t)

R(T )
dt (5)

4 VESPER

Vesper is a tool that allows a web developer to determine
the RI and RT for a specific page. Vesper must satisfy
three design goals. First, Vesper must produce high cov-
erage, i.e., Vesper must identify all of a page’s interac-
tive, above-the-fold state. Second, Vesper’s instrumenta-
tion must have minimal overhead, such that instrumented
pages have RI and RT scores that are close to those of un-
modified pages. Ideally, Vesper would also be browser-
agnostic, i.e., capable of measuring a page’s RI and RT
without requiring changes to the underlying browser.

These design goals are in tension. To make Ves-
per browser-agnostic, Vesper should be implemented by
rewriting a page’s JavaScript code and HTML files, not
through modification of a browser’s JavaScript engine
and rendering pipeline; unfortunately, the most direct
way to track interactive state is via heavyweight instru-
mentation of all reads and writes that a page makes to
the JavaScript heap, the DOM, and the rendering bitmap.
Vesper resolves the design tension by splitting instru-
mentation and log analysis across two separate page
loads. Each load uses a differently-rewritten version of
a page, with the first version using heavyweight instru-
mentation, and the second version using lightweight in-
strumentation. As a result, the second page load injects
minimal timing distortion into the page’s true RI and RT
scores. Figure 4 provides an overview of Vesper’s two-
phase workflow. We provide more details in the remain-
der of this section.

3The use of equal weights reflects our assumption that functionality
and visibility are equally important. However, future empirical research
may suggest better weighting schemes.

4.1 Phase 1
The goal of this phase is to identify the subset of DOM
nodes and JavaScript state that support above-the-fold in-
teractivity.

Element Visibility: For most pages, only a subset of
all DOM nodes will have bounding boxes that overlap
with the initial viewport. Even if a node is above-the-
fold, it may not be visible, e.g., due to CSS styling which
hides the node. Vesper injects a JavaScript timer into the
page which runs at time T . When the timer function exe-
cutes, it traverses the DOM tree and records which nodes
are visible. In the rest of the section, we refer to this timer
as the Vesper timer.

Event Handlers: Developers make a DOM element
interactive by attaching one or more event handlers to
that element. For example, a <button> element does
nothing in response to clicks until JavaScript code regis-
ters onclick handlers for the element. To detect when
such handlers are added, Vesper shims the event registra-
tion interfaces [22]. There are two types of registration
mechanisms:
• DOM elements define JavaScript-accessible

properties and methods that support event
handler registration. For example, as-
signing a function f to a property like
DOMnode.onclick will make f an event
handler for clicks on that DOM node. Invoking
DOMnode.addEventListener("click",
f) has similar semantics. Vesper interposes on reg-
istration mechanisms by injecting new JavaScript
into a page that modifies the DOM prototypes [22];
the modified prototypes insert logging code into
the registration interfaces, such that each regis-
tered handler is added to a Vesper-maintained,
in-memory list of the page’s handlers.
• Event handlers can also be defined via HTML, e.g.,
<img src=... onload=handler()/>. At
T , the Vesper timer iterates through the page’s
DOM tree, identifying event handlers that were
not registered via a JavaScript-level interface, and
adding those handlers to Vesper’s list.

The Vesper timer only adds a handler if the handler is
attached to a visible DOM element that resides within
the initial viewport.

Event Handler State: When a handler fires, it issues
reads and writes to program state. That state may belong
to JavaScript variables, or to DOM state like the con-
tents of a <b> tag. As the handler executes, it may invoke
other functions, each of which may touch an additional
set of state. The aggregate set of state that the call chain
may touch is the functional state for the handler. Given
a DOM element e, we define e’s functional state as the
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Figure 4: Vesper’s two-phase approach for measuring RI and RT. Shaded boxes indicate steps that occur during a page
load. Clear boxes represent pre- and post-processing steps.

union of the functional state that belongs to each of e’s
event handlers.

If e resides within the initial viewport, then e is not
functional until two conditions have been satisfied:

1. all of e’s event handlers must be registered, and
2. all of e’s functional state must be loaded.

At any given moment during the page load, none, either,
or both of these conditions may be satisfied. For exam-
ple, if e’s event handlers are defined in a <script>
tag, but key functional state is defined by downstream
HTML or <script> tags, then after evaluation of the
first <script> tag, condition (1) is true, but condition
(2) is not.

To identify a page’s functional state, Vesper instru-
ments the HTML and JavaScript in a page, such that,
when the instrumented page loads, the page will log
all reads and writes to JavaScript variables and DOM
state. When the Vesper timer runs, it actively invokes the
event handlers that were captured by event registration
shimming. As those handlers fire, their call chains touch
functional state. By post-processing the page’s logs, and
looking for reads and writes that occurred after the Ves-
per timer began execution, Vesper can identify a page’s
functional state. In particular, Vesper can associate each
handler with its functional state, and each DOM element
with the union of the functional states of its handlers.

To fire the handlers for a specific event type like
click, the Vesper timer determines the minimally-
sized DOM subtree that contains all handlers for
the click event. Vesper then constructs a syn-
thetic click event, and invokes the built-in
DOMnode.dispatchEvent() method for each
leaf of the subtree. This approach ensures that synthetic
events follow the same dispatch path used by real events.

Some event types are logically related to a sin-
gle, high-level user interaction. For example, when
a user clicks a mouse button, her browser generates
mousedown, click, and mouseup events, in that or-
der. Vesper is aware of these semantic relationships, and
uses them to guide the generation of synthetic events, en-
suring a realistic sequence of handler firings.

Implementation: To instrument a page, Vesper could
modify the browser’s renderer and JavaScript engine to
track reads and writes to DOM objects and JavaScript
variables. However, our Vesper prototype leverages
Scout [25] instead. Scout is a browser-agnostic rewrit-
ing framework that instruments a page’s JavaScript and
HTML to log reads and writes. A browser-agnostic ap-
proach is useful because it allows Vesper to compare a
page’s Ready Index across different browser types (§5.4).

The instrumentation that tracks element visibility and
handler registration adds negligible overhead to the page
load process. However, tracking all reads and writes to
page state is more costly. Across the 350 pages in our
test corpus, we measured a Scout-induced load time in-
crease of 4.5% at the median, and 7.6% at the 95th per-
centile. Thus, trying to calculate RI and RT directly in
Phase 1 would lead to inflated estimates. To avoid this
problem, we use the outputs of Phase 1 as the inputs to
a second phase of instrumentation. This second phase is
more lightweight, and directly calculates RI and RT.

4.2 Phase 2
In Phase 1, Vesper discovers the DOM nodes and
JavaScript variables that support above-the-fold interac-
tivity. In Phase 2, Vesper tracks the rendering progress of
the above-the-fold DOM elements that were identified in
Phase 1. Vesper also tracks the rate at which functional
JavaScript state is created. This information is sufficient
to derive RI and RT.

4.2.1 Measuring Functionality Progress
A DOM element becomes functional when all of its
event handlers have been registered, and all of the func-
tional state for those handlers has been created. An el-
ement’s functional state may span both the JavaScript
heap and the DOM. Vesper uses different techniques to
detect when the two types of state become ready.

JavaScript state: By analyzing Scout logs from Phase
1, Vesper can determine when the last write to each
JavaScript variable occurs. The “last write” is defined as
a source code line and an execution count for that line.
The execution count represents the fact that a source code
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line can be run multiple times, e.g., if it resides within a
loop body.

At the beginning of Phase 2, Vesper rewrites a page’s
original JavaScript code, injecting a logging statement
after each source code line that generates a final write
to functional JavaScript state. The logging statement up-
dates the execution count for the line, and only outputs a
log entry if the final write has been generated.

DOM state: An event handler’s functional state may
also contain DOM nodes. For example, a keypress
handler may assume the existence of a specific DOM
node whose properties will be modified by the handler.
At the beginning of Phase 2, Vesper rewrites a page’s
original HTML to output the creation time for each
DOM node. The rewriting is complicated by the fact that,
when a browser parses HTML, it does not trigger a syn-
chronous, JavaScript-visible event upon the creation of a
DOM node. Thus, Vesper rewrites a page’s HTML to in-
clude a new <script> tag after every original HTML
tag. The new <script> tag logs two things: the cre-
ation of the preceding DOM node, and the bounding
boxes of all DOM nodes which exist at that moment in
the HTML parse. The <script> tag then removes it-
self from the DOM tree (so that at any point in the HTML
parse, non-Vesper code that inspects the DOM tree will
see the original DOM tree which does not contain Ves-
per’s self-destructing tags). DOM snapshots using self-
destructing JavaScript tags are by far the most expen-
sive part of the Phase 2 instrumentation; however, they
only increase page load times by 1.9% at the median,
and 3.9% at the 95th percentile. Thus, we believe that
the overhead is acceptable.

After the initial HTML parse, DOM nodes may
be created by asynchronous event handlers. Vesper
logs such creations by interposing on DOM methods
like DOMnode.appendChild(). This interposition-
ing has negligible overhead and ensures that Vesper has
DOM snapshots after the initial HTML parse.

4.2.2 Measuring Visibility Progress
DOM snapshots allow Vesper to detect when elements
are created. However, a newly-created element will not
become visible until some point in the future, because the
construction of the DOM tree is earlier in the rendering
pipeline than the paint engine. Browsers do not expose
layout or paint events to JavaScript code. Fortunately,
Vesper can extract those events from the browser’s de-
bugging output [11]. Each layout or paint message con-
tains the bounding box and timestamp for the activ-
ity. Unfortunately, the message does not identify which
DOM nodes were affected by the paint; thus, Vesper
must derive the identities of those nodes.

After the Phase 2 page load is complete, Vesper col-
lates the DOM snapshots and the layout+paint debug-

ging events, using the following algorithm to determine
the layout and paint events that rendered a specific DOM
element e:

1. Vesper finds the first DOM snapshot that contains a
bounding box for e. Let that snapshot have a times-
tamp of td . Vesper searches for the layout event that
immediately precedes td and has a bounding box
that contains e’s bounding box. Vesper defines that
layout event L f irst to be the one which added e to
the layout tree.

2. Vesper then rolls forward through the log of paint
and layout events, starting at L f irst , and tracking all
paint events to e’s bounding box. That bounding box
may change during the page load process, but any
changes will be captured in the page’s DOM snap-
shots. Thus, Vesper can determine the appropriate
bounding box for e at any given time.

As described in Equation 2, each paint event contributes
equally towards e’s visibility score. For example, if e is
updated by four different paints, then e is 25% visible
after the first one, 50% visible after the second one, and
so on.

In summary, the output of the Phase 2 page load is
a trace of a page’s functionality progress and visibility
progress. Using that trace, and Equations 4 and 5, Vesper
determines the page’s RT and RI. Note that, for a given
version of a page (i.e., for a particular set of HTML, CSS,
and JavaScript files), Phase 1 only needs to run once, on
the server-side, with Phase 2 running during the live page
loads on clients in the wild.

4.3 Discussion
The PLT metric is natively supported by commodity
browsers, meaning that a page can measure its own
PLT simply by registering a handler for the onload
event. Newer metrics that lack native browser support re-
quire 1) browsers to install a special plugin (the SI ap-
proach [10]), or 2) page developers to rewrite content
(the approach used by our Vesper prototype). Vesper is
amenable to implementation via plugins or native sup-
port; either option would enable lower instrumentation
overhead, possibly allowing Vesper to collapse its two
phases into one.

As a practical concern, a rewriting-based implementa-
tion of Vesper must deal with the fact that a single page
often links to objects from multiple origins. For exam-
ple, a developer for foo.com will lack control over the
bytes in linked objects from bar.com. As described in
Section 5, our Vesper prototype uses Mahimahi [26], a
web replay tool, to record all of the content in a page;
Vesper rewrites the recorded content, and then replays
the modified content to a browser that runs on a machine
controlled by the foo.com developer. In this manner, as
with the browser plugin approach, a developer can mea-
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sure RI and RT for any page, regardless of whether the
developer owns all, some, or none of the page content.

All load metrics are sensitive to nondeterministic page
behavior. In the context of Vesper, such behavior may
result in a page having different interactive state across
different page loads. For example, an event handler
that branches on the return value of Math.random()
might access five different DOM nodes across five differ-
ent loads of the page. Even if a page’s state is determinis-
tic, Vesper’s synthetic event generation (§4.1) is not guar-
anteed to exhaustively explore all possible event han-
dler interleavings—instead, Vesper tests the most likely
event sequences based on how a realistic human user
would generate GUI events. Vesper could use symbolic
execution [7] to increase path coverage, but we believe
that Vesper’s current level of coverage is sufficiently
high for two reasons. First, from the empirical perspec-
tive, the pages in our large test corpus do not exhibit
nondeterminism that results in different functional state
across different loads. Second, the Vesper timer does not
fire synthetic events until a page is fully loaded; thus,
“unexpected” event-level race conditions arising from
partially-loaded content [30] should not arise.

5 EVALUATION

In this section, we compare RI and RT to three prior met-
rics for page load time (PLT, AFT, and Speed Index). We
do not evaluate Google’s TTI because the metric’s defi-
nition is still evolving.

Across a variety of network conditions, we find that
PLT overestimates the time that a page requires to be-
come interactive; in contrast, AFT and Speed Index un-
derestimate the time-to-interactivity (§5.2 and A.1.1).
These biases persist when browser caches are warm
(§A.1.2). Furthermore, the discrepancies between prior
metrics and our interactive metrics are large, with me-
dian and 95th percentile load time estimates often differ-
ing by multiple seconds (Figures 3 and 6). Thus, Ready
Index and Ready Time provide a fundamentally new way
of understanding how pages load.

5.1 Methodology

We evaluated the various load metrics using a test cor-
pus of 350 pages. The pages were selected from the
Alexa US Top 500 list [2]. We filtered out sites using
deprecated JavaScript statements that Scout [25] does
not rewrite. We also filtered sites that caused errors with
Speedline [19], a preexisting tool for capturing SI.

To measure PLT, we recorded the time between the
JavaScript navigationStart and onload events
(§2). RT and RI were measured with Vesper; we set T
to 30 seconds. We also used Vesper to measure AFT and

SI.4 Calibration experiments showed that Vesper’s esti-
mates of SI were within 2.1% of Speedline’s estimates at
the median, and within 3.9% at the 95th percentile.

Measuring PLT is non-invasive, since unmodified
pages will naturally fire the navigationStart and
onload events. Capturing the other metrics requires
new instrumentation, like DOM snapshots (§4.2.1). To
avoid measurement biases due to varying instrumenta-
tion overheads, each experimental trial loaded each page
five times, and in each of the five loads, we enabled all
of Vesper’s Phase 2 instrumentation, such that each load
metric could be calculated. Enabling all of the instrumen-
tation increased PLT by 1.9% at the median, and 3.9% at
the 95th percentile.

We used Mahimahi [26] to record the content in each
test page, and later replay the content via emulated net-
work links. With the exception of the mobile experiments
(§A.1.1), all experiments were performed on Amazon
EC2 instances running Ubuntu 14.04. Unless otherwise
specified, each page load used Google Chrome (v53)
with a cold browser cache and remote debugging enabled
so that we could track layout and paint events.

5.2 Cross-metric Comparisons
On computationally-powerful devices like desktops and
laptops, network latency (not bandwidth) is the primary
determinant of how quickly a page loads [1, 5, 25, 34].
So, our first set of tests used a t2.large EC2 VM with a
fixed bandwidth of 12 Mbit/s, but a minimum round-trip
latency that was drawn from the set {25 ms, 50 ms, 100
ms, 200 ms}. These emulated network conditions were
enforced by the Mahimahi web replay tool.

Figure 3 summarizes the results for PLT, RT, and AFT.
Recall that these metrics are non-progressive, i.e., they
express a page’s load time as a single number that repre-
sents when the browser has “completely” loaded the page
(for some definition of “completely”). As expected, PLT
is higher than RT because PLT requires all page state, in-
cluding below-the-fold state, to be loaded before a page
load is finished. Also as expected, AFT is lower than RT,
because AFT ignores the load status of JavaScript code
that is necessary to make visible elements functional.

The surprising aspect of the results is that the differ-
ences between the metrics are so noticeable. As shown in
Figures 2(a) and 3, the differences are large in terms of
percentage (24.0%–64.3%); more importantly, the differ-
ences are large in terms of absolute magnitude, equating
to hundreds or thousands of milliseconds. For example,
with a round-trip latency of 50 ms, RT and PLT differ by
roughly 900 ms at the median, and by 1.4 seconds at the
95th percentile. For the same round-trip latency, RT and

4To compute SI, Vesper only considers element visibility, assigning
zero weight to functionality.
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(a) 50 ms RTT (b) 100 ms RTT (c) 200 ms RTT
Figure 5: Comparing RT, PLT, and AFT. Results used emulated links with a bandwidth of 12 Mbit/s.

RTT Ready Index Speed Index

25 ms 714 (1522) 568 (1027)
50 ms 1759 (3846) 1325 (3183)

100 ms 2737 (6174) 2054 (4549)
200 ms 4252 (9719) 3071 (6913)

Figure 6: Median (95th percentile) load time estimates
(see Section 2 for a discussion of the units). Results used
our entire 350 page corpus. Content was loaded over a
12 Mbit/s link.

AFT differ by approximately 600 ms at the median, and
by 1.1 seconds at the 95th percentile.

The discrepancies increase as RTTs increase. This ob-
servation is important, because cellular and residential
networks often have RTTs that exceed 100 ms [3, 18].
For example, in our emulated network with an RTT of
100 ms, RT differed from PLT by 2.2 seconds at the me-
dian; RT differed from AFT by 1 second at the median.
From the perspective of a web developer, the differences
between RT and AFT are particularly important. Users
frequently assume that a visible element is also func-
tional. However, visibility does not necessarily imply
functionality, and interactions with partially-functional
elements can lead to race conditions and broken page be-
havior [30]. In Section 6, we describe how developers
can create incrementally-interactive pages that minimize
the window in which a visual element is not interactive.

Figure 5 compares the RT, PLT, and AFT values for
each page in our 350 site corpus. Pages are sorted along
the x-axis in ascending AFT order. Figure 5 vividly
demonstrates that PLT is an overly conservative defini-
tion for user-perceived notions of page readiness. The
spikiness of the RT line also demonstrates that pages
with similar AFT values often have very different RT
scores. For example, consider an emulated link with a
100 ms round-trip time. Sites 200 (mashable.com)
and 201 (overdrive.com) have AFT values of 3099
ms and 3129 ms, respectively. However, the sites have
RT values of 4418 ms and 3970 ms, a difference of over
400 ms. In Section 5.3, we explain how the relationships
between a page’s HTML, CSS, and JavaScript cause di-
vergences in RT and AFT.

Figures 6 and 7 compare the two progressive metrics.
The results mirror those for the non-progressive metrics.

A page’s SI is lower than its RI, because SI does not
consider the load status of JavaScript code that supports
interactivity. Furthermore, pages with similar SIs often
have much different RIs.

5.3 Case Studies
Figure 8 uses two randomly-selected pages to demon-
strate how interactivity evolves. Figure 8(a) describes the
homepage for Bank of America, whereas Figure 8(b) de-
scribes the homepage for WebMD. Using the terminol-
ogy from Section 3, each graph plots the visual progres-
sion of the page (∑e∈E V (e, t)A(e)) and the readiness pro-
gression of the page (R(t)); in the graphs, each data point
is normalized to the range [0.0,1.0]. At any given mo-
ment, a page’s readiness progression is less than or equal
to its visual progression, since visual progression does
not consider the status of functional state.

The gaps between the red and blue curves indicate the
existence of visible, interactive DOM elements that are
not yet functional. If users try to interact with such ele-
ments, then at best, nothing will happen; at worst, an in-
complete set of event handlers will interact with incom-
plete JavaScript and DOM state, leading to erroneous
page behavior. For example, the Bank of America site
contains a text input that supports autocompletion. With
RTTs of 100 ms and above, we encountered scenarios in
which the input was visible but not functional. In these
situations, we manually verified that a human user could
type into the text box, have no autosuggestions appear,
and then experience the text disappear and reappear with
autosuggestions as the page load completed.

Both the red and blue curves contain stalls, i.e.,
time periods in which no progress is made. For exam-
ple, both pages exhibit a lengthy stall in their visual
progression—for roughly a second, neither page updates
the screen. Both pages also contain stretches that lack
visual progress or readiness progress. During these win-
dows, a page is not executing any JavaScript code that
creates interactive state.

Functionality progression stalls when the <script>
tags supporting functionality have not been fetched, or
have been fetched but not evaluated. Visual progres-
sion may stall for a variety of reasons. For example, the
browser might be blocked on network fetches, waiting on
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(a) 50 ms RTT (b) 100 ms RTT (c) 200 ms RTT
Figure 7: Comparing the progressive metrics (Ready Index versus Speed Index). Results used emulated links with a
bandwidth of 12 Mbit/s.

Speed Index: 1342 ms
Ready Index: 1967 ms

(a) https://www.bankofamerica.com

Speed Index: 1736 ms
Ready Index: 2093 ms

(b) http://www.webmd.com
Figure 8: Exploring how visibility and functionality evolve for two different pages. The client had a 12 Mbit/s link
with an RTT of 100 ms. Remember that a progressive metric like Ready Index is calculated by examining the area that
is above a curve.

HTML data so that new tags can be parsed and rendered.
Browsers also use a single thread for HTML parsing,
DOM node rendering, and JavaScript execution; thus, ex-
ecuting a <script> tag blocks parsing and rendering
of downstream HTML. As described in Section 6, devel-
opers can use automated tools to minimize these stalls
and improve a page’s Ready Time and Ready Index.

5.4 Other Page Load Scenarios
In Section A.1, we analyze how Ready Index evolves in
three additional scenarios: mobile page loads, page loads
that use a warm browser cache, and page loads on two
different browsers (namely, Chrome versus Opera). Due
to space restrictions, we merely provide a summary here:

Mobile page loads: Mobile page loads exhibit the
same trends that we observed on more powerful client
devices. For example, on a Nexus 5 phone running on
an emulated Verizon LTE cellular link, the median PLT
is 35.2% larger than the median RT; the median RI is
29.7% larger than the median Speed Index.

Warm cache loads: The results from earlier in this
section used cold caches. However, clients sometimes
have a warm cache for objects in a page to load. As ex-
pected, pages load faster (for all metrics) when caches
are warm. However, the general trends from Section 5.2
still hold. For example, on a desktop browser with a 12
Mbit/s, 100 ms RTT link, the median warm-cache PLT

is 38.2% larger than the median RT. The median RT is
26.0% larger than the median AFT.

Chrome vs. Opera: Since our Vesper implementation
is browser-agnostic, it can measure a single page’s load
metrics across different browser types. For example, we
compared RI on Chrome and Opera. With cold browser
caches and a 12 Mbit/s, 100 ms RTT link, Chrome’s RI
values were 6.5% lower at the median, and 11.9% lower
at the 95th percentile. Since Vesper’s logs contain low-
level information about reads and writes to interactive
state, browser vendors can use these logs to help optimize
the internal browser code that handles page loading.

6 OPTIMIZING FOR INTERACTIVITY

To minimize a page’s Ready Time and Ready Index,
browsers must fetch and evaluate objects in a way that
prioritizes interactivity. In particular, a browser should:

1. maximize utilization of the client’s network connec-
tion;

2. prioritize the fetching and evaluating of HTML files
that define above-the-fold DOM elements;

3. prioritize the fetching and evaluating of <script>
tags that generate interactive, above-the-fold state;
and

4. respect the semantic dependencies between a page’s
objects.

By maximizing network utilization (Goal (1)), a browser
minimizes the number of CPU stalls that occur due to
synchronous network fetches; ideally, a browser would
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Figure 9: The dependency graph for priceline.com.
OPT-PLT assigns equal weights to all nodes. OPT-SI pri-
oritizes the shaded objects. OPT-RI prioritizes the ob-
jects with dashed outlines.

fetch each piece of content before that content is de-
sired by a parsing/evaluation engine. Goals (2) and (3)
directly follow from the definitions for page readiness in
Section 3. However, Goal (4) is in tension with the oth-
ers: fetching and evaluating objects in a way that satis-
fies Goals (1), (2), and (3) may break page functionality.
For example, two JavaScript libraries may have shared
state, like a variable that is written by the first library
and read by the second. Invalid reads and other prob-
lems will arise if a browser evaluates the two libraries
“out-of-order” with respect to the lexical order of their
<script> tags in the page’s HTML.

Web pages contain a variety of additional dependen-
cies that constrain the order in which objects can be
fetched and evaluated. Polaris [25] is a load optimizer
that uses Scout to extract all of these dependencies and
generate an explicit dependency graph (i.e., a partial or-
dering that specifies how certain objects must be loaded
before others). Polaris then rewrites the page so that the
page is self-assembling. The rewritten page uses a cus-
tom JavaScript library to schedule the fetching and eval-
uating of objects in a way that satisfies Goals (1) and (4).

At any given moment in a page load, the dynamic crit-
ical path is the path in the dependency graph that has the
largest number of unfetched objects. The default Polaris
scheduler prioritizes the fetching of objects along the dy-
namic critical path. This policy minimizes PLT, but may
increase or decrease RT, depending on whether interac-
tive, above-the-fold state is created by objects along the
dynamic critical path.

We created a new scheduling policy, called OPT-RI
(“optimize RI”), which prioritizes the loading of interac-
tive content. Let Ointeractive be the objects (e.g., HTML
files, JavaScript files) that Vesper identifies as generating
interactive, above-the-fold state. Given Ointeractive and
the dependency graph from Scout, OPT-RI assigns node
weights of zero to nodes that do not reside in Ointeractive;
for a node in Ointeractive, OPT-RI finds all of the above-
the-fold elements that the node affects, and then weights
the node by the fraction of the initial viewport area that
those elements cover. During the actual page load, the

OPT-RI scheduler prioritizes objects along the weighted
dynamic critical path.

We also defined OPT-SI, which only considers visual
progress. Nodes that do not lead to the creation of vis-
ible, above-the-fold DOM elements receive a weight of
zero. For each remaining node, OPT-SI finds the DOM
elements that the node influences, and assigns a node
weight that is proportional to the fraction of the view-
port that the elements cover. OPT-SI will not prioritize
JavaScript files that only define event handler state; how-
ever, OPT-SI will prioritize JavaScript files that dynam-
ically create above-the-fold content via DOM methods
like document.appendChild(). Figure 9 provides
an example of a real dependency graph, and the nodes
that are prioritized by the various schedulers.

Figure 10 compares the performance of the sched-
ulers. OPT-RI and OPT-SI reduce all load metrics, but
the targeted metrics decrease the most. Thus, sites that
want to decrease time-to-interactivity must explicitly tar-
get RI and RT, not preexisting metrics like SI and PLT.
For example, consider the search button in Figures 2(b)
and 2(c). OPT-RI makes the button interactive 1.5 sec-
onds earlier than OPT-SI. Differences of that magnitude
have significant impacts on user satisfaction and site rev-
enue [6, 8, 41].

As shown in Figure 10, OPT-RI reduces RI by a me-
dian of 29%, and RT by a median of 32%; PLT, AFT, and
SI also drop, but not as much (by 23%, 15%, and 12%,
respectively). Interestingly, the default Polaris scheduler
(OPT-PLT) improves PLT, RT, and RI, but actually hurts
AFT and SI by -4% and -7% at the median. The rea-
son is that JavaScript files often form long dependency
chains; evaluating one JavaScript file in the chain leads
to the fetching and evaluation of additional JavaScript
files. These long dependency chains tend to lie along
the dynamic critical paths that are preferentially explored
by OPT-PLT. By focusing on those chains, OPT-PLT in-
creases the speed at which event handling state is loaded.
However, this approach defers the loading of content in
short chains. Short chains often contain images, since im-
ages (unlike HTML, CSS, and JavaScript) cannot trigger
new object fetches. Deferring image loading hurts AFT
and SI, though RT and RI improve, and the likelihood of
broken user interactions (§5.2 and §5.3) decreases.

User Study 1: Do User-perceived Rendering Times
Actually Change? The results from Figure 10 pro-
grammatically compare OPT-PLT, OPT-SI, and OPT-RI.
We now evaluate how the differences between these op-
timization strategies are perceived by real users. We per-
formed a user study in which 73 people judged the load
times of 15 randomly-selected sites from our corpus,
each of which had three versions (one for each opti-
mization strategy). We used a standard methodology for
evaluating user-perceived load times [20, 35]. We pre-
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Weights PLT RT AFT SI RI
OPT-PLT 36% (51%) 13% (22%) -4% (5%) -7% (4%) 8% (17%)
OPT-RI 23% (34%) 32% (48%) 15% (26%) 12% (20%) 29% (35%)
OPT-SI 10% (19%) 18% (31%) 27% (39%) 18% (28%) 14% (23%)

Figure 10: Median (95th percentile) load time improvements using our custom Polaris schedulers and the default one
(OPT-PLT). Results used our entire 350-page corpus. Loads were performed on a desktop Chrome browser that had a
12 Mbit/s link with an RTT of 100 ms; the performance baseline was a regular (i.e., non-Polaris) page load. The best
scheduler for each load metric is highlighted.

sented each user with 10 randomly-selected pages that
employed a randomly-selected optimization target; we
injected a JavaScript keypress handler into each page,
so that users could press a key to log the time when they
believed the page to be fully loaded. In all of the user
studies, content was served from Mahimahi on a Mac-
book Pro, using an emulated 12 Mbit/s link with a 100
ms RTT.

Unsurprisingly, users believed that OPT-PLT resulted
in the slowest loads for all 15 pages. However, OPT-SI
did not categorically produce the lowest user-perceived
rendering times; users thought that OPT-RI was the
fastest for 4 pages, and OPT-SI was the fastest for
11. Across the study, median (95th percentile) user-
perceived rendering times with OPT-RI were within
4.7% (10.9%) of those with OPT-SI. Furthermore, the
performance of OPT-RI and OPT-SI were closer to each
other than to that of OPT-PLT. At the median (95th per-
centile), OPT-RI was 14.3% (25.3%) faster than OPT-
PLT, whereas OPT-SI was 17.4% (32.9%) faster.

These results indicate that a page that only wants to
decrease rendering delays should optimize for SI. How-
ever, optimizing for RI results in comparable decreases
in rendering time. Our next user study shows that op-
timizing for RI also decreases user-perceived time-to-
interactivity.
User Study 2: Does OPT-RI Help Interactive Sites?
Unlike the first user study, our second one asked users
to interact with five well-known landing pages: Ama-
zon, Macy’s, Food Network, Zillow, and Walmart. For
each site, users completed a site-specific task that normal
users would be likely to perform. For example, on the
Macy’s page, users were asked to hover over the “shop-
ping bag” icon until the page displayed a pop-up icon
that listed the items in the shopping bag. On the Walmart
site, users were asked to search for “towels” using the au-
tocompleting text input at the top of the page; they then
had to select the autocompleted suggestion. To avoid ori-
entation delays, users were shown all five pages and the
location of the relevant interactive elements at the begin-
ning of the study. This setup emulated users who were
returning to frequently-visited sites.

The study had 85 users interact with three different
versions of each page: a default page load, a load that
was optimized with OPT-SI, and one that was optimized

Load method Preference %
OPT-RI 83%
OPT-SI 4%

Default load 7%
None 6%

Figure 11: The results of our second user study. OPT-RI
leads to human-perceivable reductions in the completion
times for interactive tasks.

with OPT-RI. For each page, users were presented with
the three variations in a random order and were unaware
of which variant they were seeing. Users were asked to
select the variant that enabled them to complete the given
task the fastest; if users felt that there was no perceivable
difference between the loads, users could report “none.”

As shown in Figure 11, OPT-RI was overwhelmingly
preferred, with 83% of users believing that OPT-RI led
to the fastest time-to-interactivity. For example, on the
Macy’s page, OPT-RI made the shopping bag icon fully
interactive 1.6 seconds faster than the default page load,
and 2.1 seconds faster than the OPT-SI load. Time-to-
interactivity differences of these magnitudes are easily
perceived by humans. Thus, for pages with interactive,
high-priority content, OPT-RI is a valuable tool for re-
ducing time-to-interactivity (as well as the time needed
to fully render the page). Optimizing for interactivity is
particularly important for web browsing atop mobile de-
vices with poor network connectivity. In these scenarios,
users often desire to interact with pages as soon as rele-
vant content becomes visible [17].

7 CONCLUSION

A web page is not usable until its above-the-fold con-
tent is both visible and functional. In this paper, we de-
fine Ready Index, the first load time metric that explicitly
quantifies page interactivity. We introduce a new tool,
called Vesper, that automates the measurement of Ready
Index. Using a corpus of 350 pages, we show that Ready
Index captures interactivity better than prior metrics like
PLT and SI. We also present an automated page-rewriting
framework that uses Vesper to optimize a page for Ready
Index or pure rendering speed. User studies show that
pages which optimize for Ready Index support more im-
mediate user interactions with less user frustration.
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A APPENDIX

A.1 Additional Evaluation Results
In this section, we elaborate on the experimental results
from Section 5.4, discussing how Ready Index applies
to mobile page loads (§A.1.1), warm cache page loads
(§A.1.2), and loads on different browser types (§A.1.3).

A.1.1 Mobile Page Loads
Mobile browsers run on devices with limited computa-
tional resources. As a result, mobile page loads are typi-
cally compute-bound, with less sensitivity to network la-
tency [5, 34]. To explore RI and RT on mobile devices,
we USB-tethered a Nexus 5 phone running Android
5.1.1 to a Linux desktop machine that ran Mahimahi.
Mahimahi emulated a Verizon LTE cellular link [39]
with a 100 ms RTT. The phone used Google Chrome
v53 to load pages from a test corpus. The corpus had the
same 350 sites from our standard corpus, but used the
mobile version of each site if such a version was avail-
able. Mobile sites are reformatted to fit within smaller
screens, and to contain fewer bytes to avoid expensive
fetches over cellular networks.

As shown in Figure 12, mobile page loads exhibit the
same trends that we observed on more powerful client
devices. For example, the median PLT is 35.2% larger
than the median RT; the median RI is 29.7% larger than
the median Speed Index. These differences persist even
when considering only the mobile-optimized pages in
our corpus. For that subset of pages, the median PLT is
27.4% larger than the median RT, and the median RI is
25.3% larger than the median Speed Index.

A.1.2 Browser Caching
Our prior experiments used cold browser caches, mean-
ing that, to load a particular site, a browser had to fetch
each of the constituent objects over the network. How-
ever, users often visit the same page multiple times; dif-
ferent sites also share objects. Thus, in practice, browsers
often have warm caches that allow some object fetches to
be satisfied locally.

To determine how warm caches affect page loads, we
examined the HTTP caching headers [24] for each ob-
ject in our corpus. For each object that was marked as
cacheable, we rewrote the headers to indicate that the
object would be cacheable forever. We then loaded each
page in our corpus twice, back to back; the first load pop-
ulated the cache, and the second one leveraged the pre-
warmed cache. Figure 13 shows the results for a desktop
browser which used a 12 Mbit/s link with a 100 ms RTT.

As expected, pages load faster when caches are warm.
However, the general trends from Section 5.2 still hold.
For example, the median PLT is 38.2% larger than the
median RT, which is 26.0% larger than the median AFT.
The correlations between various metrics also continue
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(a) RT vs. PLT vs. AFT (b) RI vs. SI
Figure 12: Comparing the load metrics for mobile pages loaded on a Nexus 5 phone. The network used an emulated
Verizon LTE link with a 100 ms RTT.

(a) RT vs. PLT vs. AFT (b) RI vs. SI
Figure 13: Page loads with warm browser caches. The desktop browser used a 12 Mbit/s link with a 100 ms RTT.

Figure 14: The Ready Index for each page in our corpus,
as measured on Chrome and Opera. Pages are sorted on
the x-axis by increasing Ready Index on Chrome. The
results were collected using cold browser caches and a
12 Mbit/s link with an RTT of 100 ms.

to be noisy. For example, SI increases from 1147 ms to
1168 ms between sites 134 (duckduckgo.com) and
135 (nexusmods.com); however, RI decreases from
1601 ms to 1228 ms.

A.1.3 Cross-Browser Comparisons
Different browsers are built in different ways. As shown
in Figure 14, those architectural variations impact page
load times. Figure 14 compares Ready Index on Chrome
v53 and Opera v42. Chrome and Opera both use the We-
bKit rendering engine and the V8 JavaScript runtime.

However, the browsers’ code is sufficiently different to
produce noticeable biases in RI values: Chrome’s RI val-
ues are 6.5% lower at the median, and 11.9% lower at the
95th percentile.

To understand the causes for such discrepancies, de-
velopers must analyze the steps that a browser takes
to load a page. Tools like WProf [37] and the built-in
Chrome debugger allow developers to examine coarse-
grained interactions between high-level activities like
HTML parsing, screen painting, and JavaScript execu-
tion. However, Vesper’s logs describe how interactive
state loads at the granularity of individual JavaScript
variables and DOM nodes. For example, Vesper allows
a developer to associate a dynamically-created text input
with the specific code that creates the input and regis-
ters event handlers for the input; Vesper also tracks the
JavaScript variables that are manipulated by the execu-
tion of the event handlers. None of this information is
explicitly annotated by developers, nor should it be: for
a large, frequently-changing site, humans should focus
on the correct implementation of desired features, not
the construction of low-level bookkeeping details about
data and code dependencies. Thus, automatic extraction
of these dependencies is crucial, since, as we demon-
strate in Section 6, a fine-grained understanding of those
dependencies is necessary to minimize a page’s time-to-
interactivity.
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