
Open access to the Proceedings of
the 15th USENIX Symposium on Networked

Systems Design and Implementation
is sponsored by USENIX.

zkLedger: Privacy-Preserving Auditing
for Distributed Ledgers

Neha Narula, MIT Media Lab; Willy Vasquez, University of Texas at Austin;
Madars Virza, MIT Media Lab

https://www.usenix.org/conference/nsdi18/presentation/narula

This paper is included in the Proceedings of the
15th USENIX Symposium on Networked

Systems Design and Implementation (NSDI ’18).
April 9–11, 2018 • Renton, WA, USA

ISBN 978-1-939133-01-4

zkLedger: Privacy-Preserving Auditing for Distributed Ledgers
Neha Narula

MIT Media Lab
Willy Vasquez

University of Texas at Austin∗
Madars Virza

MIT Media Lab

Abstract
Distributed ledgers (e.g. blockchains) enable financial in-
stitutions to efficiently reconcile cross-organization trans-
actions. For example, banks might use a distributed ledger
as a settlement log for digital assets. Unfortunately, these
ledgers are either entirely public to all participants, re-
vealing sensitive strategy and trading information, or are
private but do not support third-party auditing without
revealing the contents of transactions to the auditor. Au-
diting and financial oversight are critical to proving insti-
tutions are complying with regulation.

This paper presents zkLedger, the first system to protect
ledger participants’ privacy and provide fast, provably cor-
rect auditing. Banks create digital asset transactions that
are visible only to the organizations party to the transac-
tion, but are publicly verifiable. An auditor sends queries
to banks, for example “What is the outstanding amount
of a certain digital asset on your balance sheet?” and
gets a response and cryptographic assurance that the re-
sponse is correct. zkLedger has two important benefits
over previous work. First, zkLedger provides fast, rich
auditing with a new proof scheme using Schnorr-type non-
interactive zero-knowledge proofs. Unlike zk-SNARKs,
our techniques do not require trusted setup and only rely
on widely-used cryptographic assumptions. Second, zk-
Ledger provides completeness; it uses a columnar ledger
construction so that banks cannot hide transactions from
the auditor, and participants can use rolling caches to
produce and verify answers quickly. We implement a dis-
tributed version of zkLedger that can produce provably-
correct answers to auditor queries on a ledger with a
hundred thousand transactions in less than 10 millisec-
onds.

1 Introduction
Institutions engage trusted third-party auditors to prove
that they are complying with laws and regulation. Tradi-
tionally this is done by auditing companies like Deloitte,
Pricewaterhouse Coopers, Ernst and Young, and KPMG
(known as the “Big Four”), which together audit 99% of

* Work completed at the MIT Media Lab.
† Source code and full version of the paper: zkledger.org.

the companies in the S&P 500 [19]. This type of audit-
ing is laborious and time-consuming, so regulators and
investors do not get real-time access to information about
the financial status of institutions. In addition, trusted
third parties can make mistakes. The most well-known
example of this is the collapse of Arthur Anderson in
2002, after it failed to catch Enron’s $100 billion account-
ing fraud.

Recently, financial institutions are exploring distributed
ledgers (or blockchains) to reduce verification and recon-
ciliation costs in an environment with multiple distrusting
parties. Distributed ledgers enable real-time validation
by all participants (known as public verifiability), but at
the cost of privacy—every participant must download
all transactions in order to verify their integrity. This is
untenable for institutions that rely on secrecy to protect
strategy and intellectual property (e.g. trading strategies),
and for organizations that have to comply with laws and
regulation around data privacy (for example, the General
Data Protection Regulation in Europe [24]).

Distributed ledgers that support privacy generally op-
erate in one of two ways: either by only committing to
hashes of transactions on the ledger, using trusted third
parties to independently verify transactions [22, 23], or
by using cryptographic commitment schemes to hide the
content of transactions [17, 42, 47, 51]. The former class
of ledgers suffers from the fact that participants can no
longer verify the integrity of private transactions, elimi-
nating the distributed ledger benefit. The latter class still
has public verifiability, but either reveals the transaction
graph [17, 42] or requires trusted setup, which, if compro-
mised, would let an adversary undetectably create new
assets [47, 51]. None of the existing privacy-preserving
distributed ledgers offer an important property for real-
world systems—efficient auditing.

This paper presents zkLedger, the first distributed
ledger system to support strong transaction privacy, pub-
lic verifiability, and practical, useful auditing. zkLedger
provides strong transaction privacy: an adversary cannot
tell who is participating in a transaction or how much is
being transacted, and crucially, zkLedger does not reveal
the transaction graph, or linkages between transactions.
The time of transactions and the type of asset being trans-
ferred are public. All participants in zkLedger can still

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 65

http://zkledger.org/

verify transactions are maintaining important financial
invariants, like conservation of assets, and an auditor can
issue a rich set of auditing queries to the participants
and receive answers that are provably consistent with the
ledger. zkLedger supports a useful set of auditing primi-
tives including sums, moving averages, variance, standard
deviation, and ratios. An auditor can use these primitives
to measure financial leverage, asset illiquidity, counter-
party risk exposures, and market concentration, for the
system as a whole or for individual participants.

A set of banks might use zkLedger to construct a set-
tlement log for an over-the-counter market trading digital
assets. In these markets, buyers and sellers are matched
via electronic exchanges, trades are frequent and fast set-
tlement helps lower counterparty risk. Once a trade is
confirmed, a bank can initiate the transfer of the asset as
a transaction in zkLedger, which, when accepted in the
ledger, settles the transaction. Each bank stores plain-text
transaction data in its own private datastores. In zkLed-
ger, instead of storing plain-text transactions, participants
store value commitments on the distributed ledger. Im-
portantly, these commitments can be homomorphically
combined. A bank can prove to an auditor how much of
an asset it has on its balance sheet by opening up the prod-
uct of all transaction commitments it has referencing that
asset. The auditor can confirm that the opened product
is consistent with the product of the commitments on the
ledger.

Designing zkLedger required overcoming three key
challenges:

Providing privacy and auditing. The first challenge
is to preserve privacy while still allowing an auditor to
compute provably correct measurements over the data
in the ledger. zkLedger is the first system to simultane-
ously achieve this, by combining several cryptographic
primitives. To hide values, zkLedger uses Pedersen com-
mitments [41]. Pedersen commitments can be homomor-
phically combined, so a verifier can, for example, confirm
that the sum of the outputs is less than or equal to the
sum of the inputs, conserving assets. More than that,
an auditor can combine commitments to compute linear
combinations of values in different rows in the ledger.
Previous confidential blockchain systems also use Ped-
ersen commitments to hide values but end up revealing
linkages between transactions, and do not support private
auditing [17, 34, 42].

zkLedger uses an interactive map/reduce paradigm over
the ledger with non-interactive zero-knowledge proofs
(NIZKs) to compute measurements that go beyond sums.
These are Generalized Schnorr Proofs [48], which are fast
and rely only on widely accepted cryptographic assump-

tions. Banks can provably recommit to functions over
values in the ledger, such as f : v→ v2, which lets the
auditor compute measurements like variance, skew, and
outliers without revealing individual transaction details.

Auditing completeness. Since an auditor cannot deter-
mine who was involved in which transactions, zkLed-
ger must ensure that during auditing, a participant can-
not leave out transactions to hide assets from the audi-
tor. We call this property completeness. At the same
time, we do not want to reveal to the auditor who was
involved in which transactions. zkLedger uses a novel
table-construction in the ledger. A transaction is a row
which includes an entry for every participant, and an
empty entry is indistinguishable from an entry involving a
transfer of assets. All of a participant’s transfers are in its
column in the ledger. An auditor audits every transaction
when auditing a participant, meaning a participant can-
not hide transactions. This presents efficiency challenges,
which zkLedger addresses by using commitment caches
and audit tokens, described below.

Efficiency. The third challenge is supporting all of this
efficiently. zkLedger implements a number of optimiza-
tions: every participant and the auditor keeps commitment
caches, which are rolling products of every participants’
column in the ledger; this makes it fast to generate asset
proofs and to answer audits. To reduce communication
costs, zkLedger is designed so that participants do not
have to interact to construct the proofs for the transac-
tion; the spender can create the transaction alone (this is
similar to how other blockchain systems work). But a
malicious spender could try to encode incorrect values in
the commitments for other banks—we must ensure all of
the commitments and proofs are correct and that every
participant has what they need to later respond to an audit.
To do this, we designed a set of proofs that everyone can
publicly verify—transactions with incorrect proofs will be
ignored. These proofs ensure that every participant has an
audit token, which they can use to later open up commit-
ments for that row, and that all proofs and commitments
are consistent. The audit token and the consistency proofs
are publicly verifiable, but do not leak any transaction
information. They are also non-interactive, so zkLedger
makes progress even if banks cannot communicate, and
they are encoded for a specific bank, so a token for one
bank cannot be used by another bank to lie to the auditor.

The slowest part of transaction creation and validation
are range proofs, which ensure that an asset’s value is in
a pre-specified range, and prevent a malicious attacker
from undetectably creating new assets. Range proofs are
10× the size of the other proofs and take 5× as much
time to prove and verify. A naive implementation of

66 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

zkLedger might require multiple range proofs, but by
using disjunctive proofs, we can multiplex different values
into one range proof per entry.

In summary, the contributions of this paper are:

• zkLedger, the first distributed ledger system to achieve
strong privacy and complete auditing;

• a design combining fast, well-understood cryptographic
primitives using audit tokens and map/reduce to com-
pute provably correct answers to queries;

• an evaluation of zkLedger showing efficient transaction
creation and auditing; and

• an analysis of the types of queries zkLedger can support,
suggesting that zkLedger can efficiently handle a useful
set of auditing measurements.

2 Related Work
zkLedger is related to work in auditing or computing on
private data and privacy-preserving blockchains. zkLed-
ger achieves fast, provably correct auditing by creating
a new distributed ledger table model and applying a new
scheme using zero-knowledge proofs.

2.1 Computing on Private Data
Previous work proposed a multi-party computation
scheme in which participants use a secure protocol to
compute the results of functions which answer questions
about systemic financial risk, the same problem which zk-
Ledger aims to address [3, 10], and network security [14].
This work provides privacy benefits over existing analyt-
ics systems by allowing participants to keep their data
secret. However, it only supports overall system auditing,
it is not a solution to audit individual participants. There
is also nothing preventing participants from lying in the
inputs to the multi-party computation; they do not achieve
completeness.

Provisions [21] is a way for Bitcoin exchanges to prove
they are solvent without revealing their total holdings.
Provisions uses Proof of Assets and Proof of Liabilities,
which are very similar to the zero-knowledge proofs we
use in zkLedger. However, in Provisions, an exchange
could “borrow” private keys from another Bitcoin holder
and thus prove assets they do not actually hold; in fact
multiple exchanges could share the same assets. More-
over, Provisions does not provide completeness. By using
a columnar construction with a distributed ledger, zkLed-
ger achieves completeness.

In Prio [18], untrusted servers can compute privately
on mobile client data. Prio does not operate on distributed
ledgers, and thus does not guarantee public verifiability.

Prio requires all servers to cooperate in order for client
proofs to validate; zkLedger can tolerate non-cooperating
participants.

Several systems provide private and correct computing
using trusted hardware [4–6, 49, 52]. In our setting, we
cannot guarantee that all participants will trust the same
hardware provider. In addition, it would be a conflict
of interest to use such a system to audit the company
providing the trusted hardware.

There are many systems which compute on encrypted
data to protect user confidentiality in the event of a server
compromise [25, 31, 32, 40, 43, 44, 50]. These systems
address a different problem than what zkLedger is trying
to solve. Instead, we provide interactive, provably correct
auditing over private data generated by many parties.

2.2 Privacy-preserving blockchains
Bitcoin, a decentralized cryptocurrency released in 2009,
was the first blockchain [37]. Many companies have ex-
plored using a blockchain to record the transfer of assets.
These systems are marked by the following characteris-
tics: (1) Multiple, possibly distrusting participants, all
with write permissions and no single point of failure or
control; (2) A consensus protocol to construct an append-
only, globally ordered log with a chain of hashes to pre-
vent tampering with the past; and (3) Digitally signed
transactions to indicate intent to transfer ownership.

In Bitcoin and most other blockchains, all transactions
are public: every participant receives each transaction,
and can verify all the details. Users create pseudonyms
by generating one-time use public keys for payment ad-
dresses, but transaction amounts and the links between
transactions are still globally visible. Confidential Trans-
actions [34] and Confidential Assets [17, 42] are exten-
sions to Bitcoin which blind the assets and amounts in
transactions while still ensuring that all participants can
validate transactions. Though these systems hide assets
and amounts, they leak the transaction graph and do not
support private auditing—an auditor would require ac-
cess to all plain-text transactions in order to ensure com-
pleteness. The transaction graph alone leaks substantial
information [36, 38, 45, 46]; for example, the FBI fol-
lowed linked transactions to trace bitcoins and used this
as evidence in court [28]. zkLedger provides stronger
transaction privacy and private auditing, but at the cost
of scalability. Transactions in zkLedger are sized order
the number of participants in the whole system, requiring
more time to produce and verify as the number of par-
ticipants grows. This makes zkLedger more suitable to
ledgers with fewer participants who require more privacy.

Solidus [16] is a distributed ledger system that uses
Oblivious RAM to hide the transaction graph and trans-

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 67

action amount between bank customers. While this con-
struction also provides private transactions, Solidus can
only support auditing by revealing all of the keys used in
the system to an auditor, and opening transactions. zk-
Ledger achieves performance similar to Solidus while
providing private auditing.

R3’s Corda [22], and Digital Asset Holding’s Global
Synchronization Log (GSL) [23] are distributed ledgers
geared towards financial institutions that rely on trusted
third parties to pass through information. In Corda, no-
taries verify transactions and maintain privacy of partici-
pants, while GSL segments its ledger, only storing a hash
of the values globally and limiting access to fine-grained
transaction data. Neither support private auditing.

Another approach is that of Zerocash [47], and its re-
lated implementation Zcash [51], an anonymous cryp-
tocurrency based on Bitcoin. Zerocash uses zk-SNARKs
[7] to hide transaction amounts, participants, and the
transaction graph. The zk-SNARKs as used in Zcash
can be extended to handle policies to enforce regulations,
KYC/AML laws, and taxes [27]. These policies do not
support arbitrary queries, but instead put limits on the
new types of transactions that can take place. These ideas
have not yet been implemented in a practical system.

zk-SNARKs are quite efficient for some statements
but unfortunately, the price of this efficiency is paid in
setup assumptions: as of now, all concretely efficient
zk-SNARKs require a trusted third party for setup. The
consequences of incorrect or compromised setup are po-
tentially disastrous: an adversary who can learn the secret
randomness used during setup can make fraudulent proofs
of false statements that are indistinguishable from proofs
of true statements. In our setting (international bank-
ing), such proofs would permit unrestricted creation or
destruction of financial assets or liabilities. There may
not even be a viable party to perform the one-time trusted
setup. For example, Russia might not trust the Federal
Reserve or the European Central Bank, or it might not
be politically expedient to be seen as doing so. While it
is possible to mitigate this concern, e.g., by distributing
the setup between multiple parties [8, 11, 12], this process
is onerous and expensive. Ideally, the financial integrity
of the system would not rely on trusted setup at all. We
choose to base consensus-critical portions of zkLedger’s
design on standard NIZKs.

3 zkLedger Overview
3.1 Architecture

System participants. There are n participants which we
call banks that issue transactions to transfer digital assets,
Bank1, . . . ,Bankn and an auditor Auditor, that verifies

certain operational aspects of transactions performed by
the banks (e.g. “is a particular bank Banki solvent?”).
These roles are not distinct; a bank could also audit. A
Depositor or set of Depositors can issue and withdraw
assets from the system; for example, the European Cen-
tral Bank might issue 1M C to Banki in the system. Is-
suance and withdrawal of all assets are controlled by the
Depositors and are global, public events.

Transactions. Banks exchange assets by creating trans-
fer transactions, whose details are hidden. A transfer
transaction captures an event where Banki is transferring
v shares of asset t to Bank j. Our scheme supports a bank
transferring to multiple other banks, but for simplicity we
assume there is one spending and one receiving bank in
each transaction. Banks determine the details of a trans-
fer transaction outside of zkLedger, perhaps through an
exchange. We assume they use encrypted channels.

Append-only ledger. Banks submit transactions to an
append-only ledger, which globally orders all valid trans-
actions. If a digital asset only exists on the ledger, then
transfer on the ledger is change in legal custody of the dig-
ital assets, not merely a record of ownership change, and
an Auditor is guaranteed a Bank is not hiding assets. This
ledger could be maintained by a trusted third party, by the
banks themselves, or via a blockchain like Ethereum or
Bitcoin. Maintaining a fault-tolerant, globally ordered log
is outside the scope of this paper, but can be done using
standard techniques [15, 30, 39].

3.2 Cryptographic building blocks

Commitment schemes. To protect their privacy partici-
pant banks do not broadcast payment details, such as the
transaction amount, in plain. Instead the banks post hid-
ing commitments to the append-only ledger; in particular,
zkLedger uses Pedersen commitments [41]. Let G be a
cyclic group with s = |G| elements, and let g and h be two
random generators of G. Then a Pedersen commitment to
an integer v ∈ {0,1, . . . ,s−1} is formed as follows: pick
commitment randomness r, and return the commitment
cm := COMM(v,r) = gvhr.

Pedersen commitments are perfectly hiding: the com-
mitment cm reveals nothing about the committed value v.
In a similar way, the commitments are also computation-
ally binding: if an adversary can open a commitment cm
in two different ways (for the same r, two different values
v and v′), then the same adversary can be used to compute
logh(g) and thus break the discrete logarithm problem in
G. In zkLedger we choose G to be the group of points on
the elliptic curve secp256k1.

A very useful property of Pedersen commitments is
that they are additively homomorphic. If cm1 and cm2 are

68 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Use Commitment
Cache to prove answer

0 $
1 €
2 $

TX DB

Commitment Cache

Bank of America

13:05:58 2/17/18

13:05:59 2/17/18

13:06:01 2/17/18

Add transaction
Notify of new transaction

Determine
trade

details

Commitment Cache

Auditor

Notify of new transaction

TX DB

Commitment Cache

JPMorgan

Respond
to Audit Audit

Use Commitment
Cache to verify audit

Bank of America Goldman Sachs JP Morgan

transaction commitments and proofs

Figure 1: Overall zkLed-
ger system design showing
the interactions between the
three main entities (banks,
auditor, and the shared
ledger) in our system. Each
bank maintains private state,
consisting of the transaction
database for transactions the
bank originated, and the
bank’s secret key.

two commitments to values v1 and v2, using commitment
randomness r1 and r2, respectively, then cm := cm1 ·cm2
is a commitment to v1 + v2 using randomness r1 + r2, as
cm=(gv1hr1) ·(gv2hr2)= gv1+v2 hr1+r2 . To speed up trans-
action generation and auditing zkLedger makes extensive
use of the ability to additively combine commitments.

Public-key encryption. Every bank i also generates a
Schnorr signature keypair keypair consisting of a secret
key ski and public key pki := hski , and distributes the
public key pki to all other system participants.

Non-interactive zero-knowledge proofs. To make
privacy-preserving assertions about payment details zk-
Ledger relies on non-interactive zero-knowledge proofs
(NIZKs) [9]. In brief, zero-knowledge proofs concern
two parties: the prover, who holds some private data, and
the verifier, who wishes to be convinced of some property
about this private data. For example, the prover might
know the opening of a commitment cm, and wish to con-
vince the verifier that the committed value v is in some
range, e.g., 0 ≤ v < 106. Using NIZKs, the prover can
produce a binary string π , the proof, that simultaneously
persuades the verifier, yet does not reveal anything else
about v. Verifying π does not require any interaction
between the prover and the verifier, and the prover can
append π to the ledger, where it can be verified by any
party of the system.

In theory, NIZK proof systems exist for all properties
in NP whereas the practical feasibility of NIZKs is highly-
dependent on the complexity of the property at hand. In
particular, algebraic properties in cyclic groups, such as,
knowledge of discrete logarithm, equality of values com-
mitted in Pedersen commitments, or similar have very
efficient NIZK proof systems. The design of zkLedger is
carefully structured so that all NIZK proofs have particu-
larly efficient constructions.

3.3 Security Goals
The goals of zkLedger are to hide the amounts, partici-
pants, and links between transactions while maintaining a
verifiable transaction ledger, and for the Auditor to receive
reliable answers to its queries. Specifically, zkLedger lets
banks issue hidden transfer transactions which are still
publicly verifiable by all other participants; every partici-
pant can confirm a transaction conserves assets and assets
are only transferred with the spending bank’s authority.
For example, if Banki transfers 10,000 C to Bank j, both
the banks and amount are hidden. The asset (C) and time
of the transaction are not hidden. zkLedger also hides the
transaction graph, meaning which previous transaction(s)
supplied the 10,000 C to Banki in the first place.

An Auditor can query a Bank about its contents on the
ledger, for example “How many euros does Bank j hold?”
A bank should be able to produce commitments which
will convince the auditor that the bank’s answer to the
auditing query is correct, meaning consistent with the
transactions on the ledger. zkLedger ensures that if a bank
gives the Auditor an answer that is inconsistent with the
ledger, the Auditor will catch such attempt of cheating
with high probability (and of course, a trustworthy answer
must always be accepted).

3.4 Threat model
zkLedger does not assume that banks will behave
honestly—they can attempt to steal assets, hide assets,
manipulate their account balances, or lie to auditors. We
assume banks can arbitrarily collude. zkLedger keeps the
amounts and participants of transactions private as long
as neither the spender nor receiver in a transaction collude
with an observer, like the Auditor. We assume that the
ledger does not omit transactions and is available. zkLed-
ger does not protect against an adversary who observes
traffic on the network; for example, if only two banks
are exchanging messages, it’s reasonable to assume the
transactions in the ledger involve those banks. Nothing

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 69

beyond what is necessarily leaked by an audit is revealed.
However, frequent auditing might reveal transaction con-
tents; e.g. if an auditor asks for banks’ assets after every
transaction.

4 Design
The challenge in creating zkLedger is to practically sup-
port complete, confidential auditing—an Auditor should
not be able to see individual bank transactions, but a Bank
should not be able to hide assets from the Auditor dur-
ing an audit, and the auditor should be able to detect an
incorrect answer.

Figure 1 shows a general overview of zkLedger. There
are banks which determine transactions out of band and
then settle them by appending transactions to the ledger.
The ledger makes sure all banks and any auditors see
new transactions. Each bank and auditor maintains a
commitment cache, which are commitments to summed
values used to make creating transactions and responding
to audits faster. Each bank also has private stores of plain-
text transaction data.

The rest of this section describes the zkLedger trans-
action format, how banks create transactions, and how a
bank can answer a simple query from the auditor.

4.1 Transactions
The ledger in zkLedger is a table where transactions cor-
respond to rows, and Banks correspond to columns. Each
transaction has an entry for each Bank. Figure 2 shows a
ledger with n banks. Each entry in a transaction includes
a commitment to a value which is the amount of the asset
that is being debited or credited to the bank. For exam-
ple, if Banki wants to transfer 100 shares of an asset to
Bank j, i’s entry in the transaction would contain a com-
mitment to -100 and j’s would contain a commitment to
100. All other entries in the transaction would contain
commitments to 0, since none of the other bank balances
were changed. This scheme has the nice property that
an outside observer can look at a bank’s entire column
and know that this represents the entirety of the bank’s
holdings.

Hiding amounts. As described in §3.2, zkLedger does
not include the value in plain-text in the transaction. In-
stead, zkLedger uses Pedersen commitments to commit
to the value in transfer transactions. This makes value
commitments completely indistinguishable—an outside
observer cannot tell the difference between a commitment
to a positive value, a negative value, or 0. Recall that a
commitment to a value v is cm := COMM(v,r) = gvhr.
If desired, a prover can reveal v and r to a verifier who
knows cm and the verifier can confirm this is consistent.

Since a transaction in zkLedger contains an entry for
every Bank, there is a size-n vector ~cm committing to
values in ~v. Each commitment cmk uses a fresh com-
mitment randomness rk. Most of the entries will contain
commitments to 0, for banks that are not involved with the
transaction, but this is not apparent to an outside observer.

zkLedger maintains the following financial invariants:

• A transfer transaction cannot create or destroy assets

• The spending bank must give consent to the transfer
and must actually own enough of the particular asset to
execute this transaction

In a public blockchain, the validators could simply
confirm that these things are true by looking at the history
of transactions and the current transaction, and making
sure the spending bank has the funds to spend. However,
in zkLedger these values are not public. Instead, we
create a set of proofs that the spender can create to prove
the invariants are maintained. The spender can create
a transaction without interacting with any of the other
banks.

First, zkLedger introduces a Proof of Balance (πB).
This is a proof that the transaction conserves assets; no
assets are created or destroyed (of course, public is-
suance and withdrawal transactions do not have such
proofs). More formally, the committed values should
satisfy ∑

n
k=1 vk = 0. To prove this, the prover chooses the

rk carefully: it should also be the case that ∑
n
k=1 rk = 0.

If this is true and the values also sum to 0, then the ver-
ifier can check to make sure that ∏

n
k=1 cmk = 1 for the

commitments in the row.
Next, zkLedger must ensure that the spending bank

actually has the assets to transfer. To do this, zkLedger in-
troduces a Proof of Assets (πA). Other privacy-preserving
blockchain systems use Unspent Transaction Outputs,
or UTXOs, to show proof of assets and prevent double
spending. For example, if Alice wants to send a coin to
Bob, she chooses one of her coins, creates a new trans-
action addressing the coin to Bob, and includes a pointer
to the previous transaction where she received the coin.
This previous transaction is an output. All of the valida-
tors in the system maintain the invariant that outputs can
only be spent once. Unfortunately, in systems without zk-
SNARKs, this leaks the transaction graph. In zkLedger, a
bank proves it has assets by creating a commitment to the
sum of the values for the asset in its column, including
this transaction. If the sum is greater than or equal to 0,
then the bank has assets to transfer. Note that this is true
since the bank’s column represents all the assets it has
received or spent, and the Pedersen commitments can be
homomorphically added in columns as well as in rows. In

70 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

order to produce a proof with the correct sum, the bank
must have seen every previous transaction. This implies
that banks must create transactions serially. In its own
entry where the value is negative, the bank includes proof
of knowledge of secret key to show that it authorized the
transaction. This requires creating a disjunctive proof—
either the committed value for entry i has vi ≥ 0, or the
creator of the transaction knows the secret key for Banki.

Range proofs. Because commitment values are in an
elliptic curve group and rely on modulus, we need to make
sure that the commited values are within an acceptable
range. To see why, note that if N is the order of the
group, then COMM(v,r) = COMM(v+N,r); there is no
way to distinguish between the two. Without a check
to make sure the commited value is within the range
[0,N − 1], a malicious bank could undetectably create
assets. To address this, we use range proofs as described
in Confidential Assets [42], which uses Borromean ring
signatures [35]. zkLedger supports asset value amounts
up to a trillion. Range proofs are the most expensive
part of the transaction; as described, our scheme requires
two range proofs—one for the commitment value, and
another for the sum of assets in the column. We can
squash the two range proofs down to one range proof by
introducing an auxiliary commitment, cm′i. cm′i is either
a re-commitment to the value in cmi or the sum of the
values in the column up to row m, ∑

m
k=0 vk, which can be

achieved by computing the product of the commitments
in the column, ∏

m
k=0 cmk. Then, we can do one range

proof on the value in cm′i. Either this is the spending
bank, in which case cm′i must be a commitment to the
sum, or it is another bank which is receiving funds or not
involved, in which case cm′i could be either (and it does
not matter which it is).

This satisfies the financial invariants described above.
However, a particular design choice we made in zkLedger
is that a spending bank can create a transaction spending
its own assets without interacting with other banks. This
means that a malicious bank could create transactions
which maintain financial invariants but are ill-formed. We
will address this problem after describing how auditing
works.

Once created, a bank broadcasts the transaction, and
it will be appended to the ledger. If the banks are main-
taining the ledger, each bank is responsible for validating
the transaction before accepting it to the ledger. If a third
party is maintaining the ledger, then the third party should
verify the proofs in a transaction before accepting it.

Example transaction. Figure 2 shows a transaction
where Bank of America is transferring one million euros
to Goldman Sachs. Bank of America creates the transfer

transaction, publishing the transaction id, timestamp, and
asset type (euros) publicly. Bank of America commits to
the amount deducted from its own assets, −1,000,000,
in its own entry and 1,000,000 in Goldman Sachs’s en-
try. For every other bank, Bank of America commits to
0. This serves to hide the banks involved in the transfer;
no one except Bank of America can distinguish between
the commitments to determine which are commiting to
nonzero values. Bank of America then broadcasts the
transaction to the ledger. The ledger maintainer validates
the transaction and appends it to the ledger. Once ac-
cepted to the ledger, this serves as a complete transfer
of 1,000,000 euros from Bank of America to Goldman
Sachs.

4.2 Auditing Protocol
The Auditor has a copy of the ledger and interacts with
the banks to calculate functions on their private data, in
order to get a view of the financial system represented by
the ledger.

The Auditor audits Banki by issuing a query to Banki,
for example, “How many euros do you hold at time t?”.
Banki responds to the auditor with an answer and a proof
that the answer is consistent with the transactions on the
ledger. The Auditor multiplies the commitments on the
ledger in Banki’s column for euros, and verifies the proof
and answer with the total. This is a commitment to the
the total amount of euros Banki holds.

The key insight here is that given this table construction,
the Auditor can read bank i’s column and know that it
is seeing every asset transfer involving i. There is no
way for i to “hide” assets on the ledger without actually
transferring assets and giving control to another bank. In
contrast, during a traditional audit, a bank could simply
not show the auditor some of its balance sheet.

Banks could collude to hold assets for each other tem-
porarily; for example Bank j might transfer assets to
Banki and take them back later. For that time period,
the assets would be part of Banki’s holdings. But banks
cannot collude after an Auditor poses a query because
the Auditor has already specified the time t at which the
query applies. Any transfer would necessarily have to be
after t. So at this point, it is too late for a malicious bank
to create a new transaction transferring assets to another
bank.

As described above, a bank can create a transaction
transferring its own assets without any interaction. This
is common with most blockchain systems, where only
the signature of the sender is required to create a valid
transaction. There is no in-protocol way for a receiver to
object to a transfer. Given our table construction, every
bank is affected by every transaction, because a bank must

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 71

Metadata Bank1 Bank2 Bank3 . . . Bankn
ID Asset Time (Bank of America) (Goldman Sachs) (JPMorgan) . . . (Citigroup)

1 e 13:06:01 COMM(−106,r1) COMM(106,r2) COMM(0,r3) · · · COMM(0,rn)
2/17/18 Token1 Token2 Token2 · · · Tokenn

πA
1 ,π

B
1 ,π

C
1 πA

2 ,π
B
2 ,π

C
2 πA

3 ,π
B
3 ,π

C
3 · · · πA

n ,π
B
n ,π

C
n

Figure 2: Contents of the ledger pertaining to a transaction that sends 106 euros from Bank1 to Bank2. Note that while asset type (euro) is visible
as part of the metadata, the transaction amount (106 e) and participating institutions (Bank of America and Goldman Sachs) remain private. We
use Pedersen commitments, so the commitment part of the row has values g−106

hr1 , g106
hr2 ,and hr3 , . . . , hrn . Similarly, audit tokens pictured

have values (pk1)
r1 , (pk2)

r2 , For each bank Banki, the corresponding column also includes proof-of-assets πA
i , proof-of-balance πB

i , and
proof-of-consistency πC

i .

total all of the commitments in its column to respond to
the Auditor—even commitments for transactions in which
it was not involved. A malicious Banki could create a
transaction and not inform the another Bank j of the r j
used in its entry, even if it is not transferring assets to
Bank j. Bank j would be unable to respond to the Auditor
because it would not be able to open up the product of the
commitments in its column.

In order to prove the integrity of a transfer transaction,
zkLedger must ensure an additional invariant:

• All banks have enough information in the transaction
to open up commitments for the Auditor

zkLedger does this by requiring the spending bank to
include a publicly verifiable Token in every entry. This
is defined as Tokenk := (pkk)

rk . Bankk uses this token to
open up the product of its commitments for the Auditor,
without needing to know rk.
Using audit tokens. Consider a query for a sum of values
in a bank’s column. One way of answering this query
would be to reveal ∑vk and ∑rk. Then the auditor would
simply check that these plain values are consistent with
the homomorphically computed value ∏cmk = g∑vk h∑rk .

However, a bank does not necessarily know all the
commitment randomnesses rk (in particular, these values
are unknown for any transaction that the bank was not
party to), so the naive approach does not work.

One approach could be to ask the preparer of the trans-
action (i.e. the sender) to encrypt rk so that the non-
participating bank Bankk can decrypt it. To prevent the
sending bank from placing a “garbage” ciphertext on the
ledger (and thus making Bankk fail the auditor’s queries),
one would need a zero-knowledge proof of consistency
between the encrypted value and the commitment. Con-
structing a concretely efficient proof for this statement is
non-trivial: in a nutshell, standard encryption schemes
(e.g. ElGamal) embed plain-text in a group element, while
Pedersen commitments would have this value in the expo-
nent.

Our insight is that Bankk does not need to open ∑rk
to prove that ∑vk is correct. Instead, suppose that Bankk

wants to claim that s = g∑vk h∑rk opens up to a value
∑vk. To do so, the bank computes s′ = s/g∑vk = h∑rk and
t = ∏k Tokenk = hsk∑rk . Note that the auditor can also
compute the values of s′ and t from the ledger and the
claimed answer ∑vk.

It suffices for the bank to prove that logs′ t = logh pk.
Observe that both logarithms evaluate to sk so a bank can
produce this proof without knowing ∑ri. Moreover, if
this equation holds then t1/sk = s′ = s/g∑v, but if the ∑v
was incorrect then knowledge of sk would reveal a linear
relationship between g and h, which is ruled out by our
security assumption.

To show that the r in the Tokenk is the same as the
r in rk, we require an additional Proof of Consistency
(πC). This is a zero-knowledge proof asserting that for
each k the value rk used to form cmk and Tokenk is the
same. (See Appendix B for details of how such proof is
constructed.)

Note that audit tokens are only useful to the bank open-
ing its commitment; though public, a malicious bank
cannot use another bank’s Token to successfully open an
incorrect result or learn information about other bank’s
transactions.

4.3 Final transaction construction
For a transfer transaction in row m, each entry i contains
the following items:
• Commitment (cmi): (gvihri) a Pedersen commitment

to the value we are transferring.
• Audit Token (Tokeni): (pki)

ri . This is used to answer
audits without knowing the randomness used in the
commitment.

• Proof of Balance (πB): a zero-knowledge proof assert-
ing that the committed values satisfy ∑

n
k=1 vk = 0.

• Proof of Assets (πA): a new commitment cm′i, corre-
sponding token Token′i, and a zero-knowledge proof
asserting that either cm′i is a re-commitment of the
value in cmi or a recommitment to the sum of the val-
ues in ∏

m
j=0 cm j, and cm′i is in range [0,240). If the

committed value in cmi is negative, the proof asserts
bank i consented to the transfer.

72 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

• Proof of Consistency (πC): two zero-knowledge
proofs asserting the randomness used in cmi and Tokeni
are the same, and the randomness used in cm′i and
Token′i are the same. This is to prevent a malicious
bank from adding data to the ledger that would stop
another bank from being able to open its commitments
for the Auditor.
Transactions may contain additional metadata in plain-

text or not. For example, banks might want to include
encrypted account numbers, addresses, or identifying in-
formation on behalf of a customer to satisfy the Travel
Rule specified in the Bank Secrecy Act of 1970 [1]. zk-
Ledger supports auditing over metadata in the transaction
as well, but it does not have a way to publicly verify
additional metadata.

4.4 Adding or removing banks
zkLedger can support dynamically adding or removing
banks if done so publicly. The participants (or another
authority) append a signed transaction to the ledger indi-
cating which banks, and thus columns, should be added
or removed. For example, to add a new bank to the
ledger shown in Figure 2, the involved banks would ap-
pend a transaction to the ledger indicating an intent to
add Bankn+1. From that point forward, all transactions
should contain n+ 1 entries. The Proof of Assets for
Bankn+1’s entry in each transaction will start at the row
where Bankn+1 was added. Similarly, if a bank is re-
moved, later transactions should not include entries for
that bank. Since all participants can see which banks
were added or removed, they can adjust their proofs and
verifications accordingly.

4.5 Optimizations
zkLedger employs several optimizations to make produc-
ing and verifying these proofs faster, and to support faster
auditing. First, caching the product of the commitments
in a bank’s column improves auditing and proof creation
speed. Each bank stores a rolling product of commitments
by row and by asset so that it can quickly produce proofs
of assets and answer queries from auditors. Using these
caches, a bank can quickly answer an auditor’s query on
a subset of rows in the ledger.

Most transactions in zkLedger do not include every
bank. Every bank can pre-generate many range proofs
for the value 0. We speedup transaction throughput by
parallelizing range proof generation and validation.

5 Auditing
Auditing is a critical component of the financial system,
and regulators use various techniques to measure systemic
financial risk. Through the use of sums, means, ratios,

variance, co-variance, and standard deviation, an auditor
in zkLedger can determine the following, among other
measurements:
• Leverage ratios. zkLedger can show how much of an

asset a bank has on its books compared to its other
holdings. This is helpful to estimate counterparty risk.

• Concentration. Regulators use a measure called the
Herfindahl-Hirschman Index (HHI) to measure how
competitive an industry is [29].

• Real-time price indexes. Auditors can get a sense of
the price of assets that are traded over-the-counter and
thus not tracked through exchanges.
Natively, zkLedger supports sums, which means linear

combinations of values stored in the ledger. This comes
from the additive structure of Pedersen commitments.
But zkLedger also supports a more general query model,
which can be considered in two parts: A map step and a
reduce step.
Basic auditing. Consider the basic example where an
auditor wants to determine how much of an asset a bank
has on its books. As described in §4.2, the auditor will
filter the rows by asset, multiply the entries in the bank’s
column, and then ask the bank to open the commitment
product. This only requires one round of communica-
tion between the auditor and the bank and the messages
are a constant size, independent of the number of rows.
Because of zkLedger’s commitment caches, this is very
fast.
Map/reduce. An auditor can issue more complex queries
that might require the exchange of more data or might
require the participants to look at most of the rows in the
ledger. Let’s consider an auditor which wants to know the
mean transaction size for a given bank and asset. An au-
ditor cannot verify a bank’s answer by simply totaling the
bank’s column of commitments and dividing the opened
value by the number of rows, because such a computation
would have an incorrect denominator. Namely, when the
bank is not involved in a transaction, its column in the
row will be commitment to 0, and should be discounted.
In order to determine the correct denominator, the auditor
and the bank run the following protocol:
1. Filter. The bank will filter the rows by asset.
2. Produce new commitments. For each row, the bank

will commit to a single bit b, 1 or 0, depending on if
the bank was involved in the transaction or not, and cre-
ate a proof that the bank has done this recommitment
correctly. Crucially, the auditor cannot distinguish
between these commitments and so the bank’s trans-
actions are not revealed. We call this act of producing
new commitments the map step. The map step also
requires producing proofs that the new values were

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 73

correctly computed; in our example, for each transac-
tion, the bank would produce a NIZK proof that b = 1
if and only if the transaction value was not equal to 0.

3. Compute number of non-zero transactions. The
bank computes the homomorphic sum of the new com-
mitments to bits~b and opens it to reveal how many
transactions were non-zero. This is the reduce step.
This is the correct denominator to compute the mean
transaction size. The auditor cannot tell anything about
the values in~b beyond what is revealed by the sum.

4. Respond to auditor. The bank then sends the auditor
the sum of the values in its column, the vector of bit
commitments and corresponding NIZK proofs, the
number of its non-zero transactions n, and the sum of
the r values in the commitments.

5. Verification. The auditor verifies the map step by
verifying the commitments were done correctly, and
verifies the reduce step and the number of non-zero
transactions by confirming that the product of the vec-
tor of bit commitments is gnh∑

N
k=1 rk .

6. Compute answer. The auditor computes the mean
from the sum of the bank’s column and the number of
non-zero transactions.
An auditor could ask a bank for outlier transactions

using a similar technique. For each row, the bank will
commit to a bit b where b = 1 if a transaction’s value for
that bank is outside a specified range. As when computing
the mean, the auditor can verify these commitments were
produced correctly and obtain the sum. The bank can then
open only the transactions where b = 1, and the auditor
knows exactly how many transactions should be opened.

More complex auditing queries require multiple map
and reduce computations. For example, here is how
an auditor can learn the variance of transaction values
v1, . . . ,vN :

1. Compute the average transaction value. Execute
the protocol described above to compute the number
of non-zero transactions n, and their average value v̄.

2. Apply the squaring map. For each entry vi in its row,
the bank produces a fresh commitment cm′i to v2

i and
sends these commitments to the auditor. The bank also
supplies NIZK proofs that the value hidden in each
cm′i is exactly the square of the value vi committed to
on the ledger.

3. Apply the reduce step. The auditor computes the
product of the commitments cm′i, and the bank opens
up this commitment as V = v2

1 + · · ·+ v2
N by revealing

R = ∑
N
i=1 ri. The auditor confirms that the product of

the commitments is equal to gV hR.

The auditor now computes the variance σ as follows:
σ2 = 1

n ∑vi 6=0(vi− v̄)2 = 1
nV − v̄2.

We note that whereas the square mapping used above
corresponds to the second moment (variance), zkLedger
can also compute higher statistical moments (e.g. skew-
ness and kurtosis) using similar techniques and using
cubing and fourth power mappings, respectively. See Ap-
pendix A for a list of measurements zkLedger supports.

zkLedger can support limited information release by
using more complex reduce mappings. For example, in-
stead of releasing the sum of values, the bank can produce
a commitment to the rounded sum of values (e.g. to the
first two decimal places), and use range proofs, also im-
plemented in zkLedger, to show that the rounding was
done correctly. Revealing just the order of magnitude of
the quantity at hand lets the parties balance the granularity
of information disclosure.
6 Implementation
To evaluate zkLedger’s design, we implemented a pro-
totype of zkLedger in Go. Our prototype uses a modi-
fied version of the btcec library [2] that contains the pa-
rameters and methods to compute with the elliptic curve
secp256k1. We use Go’s built-in SHA-256 implementa-
tion for our cryptographic hash function, and determin-
istically pick g and h by applying point decompression
to the “nothing-up-my-sleeve” strings SHA256(0) and
SHA256(1). Our prototype consists of approximately
3,200 lines of code, of which 40% implement crypto-
graphic tools used by zkLedger (zero-knowledge proofs,
range proofs, etc).

The implementation of the curve in zkLedger uses Go’s
big.Int type, which we make no effort to compress or
serialize in an efficient way. A more optimized imple-
mentation could compress curve points. Our range proofs
implement the protocol used in Confidential Assets [42].
Our NIZKs are based on Generalized Schnorr Proofs,
which are three move interactive protocols; to make them
non-interactive we apply the Fiat-Shamir heuristic [26],
where we instantiate the random oracle using the SHA-
256 hash function. Our prototype implementation does
not implement the complex queries described in §5, and
thus we do not evaluate them in §7.

7 Evaluation
Our evaluation answers the following questions:
• How expensive is it to store, prove and verify the differ-

ent proofs in zkLedger? (§7.2)
• How does auditing scale with the size of the ledger?

(§7.3)
• How does zkLedger scale with the number of banks?

(§7.4)

74 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Component Create Verify Size

2k Commitment 0.5 ms 0.5 ms 64 B
2k Consistency 0.7 ms 0.8 ms 224 B
k Disjunctive 0.9 ms 0.9 ms 288 B
k Range 4.7 ms 3.5 ms 3936 B

Table 1: Number of each proof component in a transaction for k banks.
Size of and time to create and verify the components with 12 cores. The
range proof create and verify benefit from the additional cores.

7.1 Experimental setup

Microbenchmarks. We run microbenchmarks on a 12
core Intel machine with i7-X980 3.33 GHz CPUs and
24GB of RAM, running 64-bit Linux 4.4.0 on Ubuntu
16.04.3. Each microbenchmark runs the same code a
Bank runs to create and validate transactions.

Distributed experiment. We run the distributed experi-
ments on a set of 12 virtual machines each with 4 cores of
Intel Xeon E5-2640 2.5 GHz processors, 24GB of RAM,
and the same software setup as above. There is one au-
ditor, one server providing the service of the ledger, and
a varying number of banks, one per server. Servers com-
municate using the net/rpc Go package over TCP. All
experiments use Go version 1.9.

7.2 Proof overhead in zkLedger
Table 1 shows the time to prove and verify the proofs in a
transaction in zkLedger. There are two commitments, two
consistency proofs, and one each of the disjunctive and
range proofs in a transaction entry. There is a transaction
entry per Bank. Table 1 also shows the sizes of the various
proofs, in bytes. These sizes are estimated based on the
size of the underlying fields in the struct in memory;
these proofs could be further compressed. Range proofs
dominate the size of the transactions.

The left graph in Figure 3 shows the time it takes to
create and verify a transaction varying the number of
overall banks, which increases the number of entries per
transaction. This indicates that as we increase the number
of banks, both transaction creation and verification times
per bank increase linearly, but parallelization helps. Prov-
ing and validating range proofs dominates transaction
creation and verification, but this cost is also highly paral-
lelizable. 12 cores gives a 2.8× speedup when creating a
transaction with 20 banks; a bank can create or validate a
transaction for up to 20 banks in less than 200ms.

As described in §4.1, zkLedger uses Borromean ring
signatures to prove that a value is in a certain range, and
supports values up to 240. Reducing the supported range
of values would reduce range proof cost since that cost is
linear in the number of bits in the size of the range. There
are also newer proof systems, such as Bulletproofs, which

might create much smaller range proofs [13]. We plan to
evaluate zkLedger with Bulletproofs in future work.

7.3 Cost of auditing ledgers
The left graph in Figure 4 shows that for certain func-
tions, the time to audit is independent of the number of
transactions in the ledger. This is because the Auditor
and Banks maintain commitment caches, which already
have the commitment product necessary to prove to the
auditor the sum of the values in its column. The audit
function is measuring the Herfindhal-Hirschman Index,
so the auditor communicates with each bank.

When the auditor cannot use a commitment cache, per-
haps because it was offline, it must process the whole
ledger to compute the commitment product. This also
applies to more complex auditing like the types described
in §5, when the auditor has to verify recommitments for
every row in the ledger. These costs are shown in the
middle graph in Figure 4. This graph shows how long it
takes the auditor to compute the Herfindahl-Hirschman
Index on a ledger of varying sizes without using the com-
mitment caches, so the auditor must process every row of
the ledger. In these measurements, the auditor does not
verify each row. As expected, this time increases linearly
with the number of rows. This indicates that maintaining
commitment caches is important for real-time auditing.
However, even without commitment caches, auditing time
is reasonable: 3.5 seconds for 100K transactions. This
suggests the complex auditing queries, in which the au-
ditor computes a similar set of operations per row, will
also be on the order of many seconds. zkLedger currently
only maintains commitment product caches per asset per
bank, but could maintain more.

For a fixed size ledger, this audit function costs order
the number of banks. The right graph in Figure 4 demon-
strates the auditing costs of computing the Herfindahl-
Hirschman Index on a ledger of 2000 transactions as we
vary the number of banks, both with and without com-
mitment caches. The auditor audits the banks in parallel.
Auditing cost for this function grows slightly with the
number of banks, since more banks increase the variabil-
ity in parallel auditing and the auditor must wait for the
last bank to respond before computing the final answer.

In these figures, each point is the mean of running the
auditing query 20 times, with error bars representing one
standard deviation from the mean.

7.4 Scaling with more banks
There are two significant costs that grow with the number
of banks in zkLedger: a serial step to create transactions
that increases linearly, and verifying transactions which
increases quadratically with the number of banks. As

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 75

 0

 100

 200

 300

 400

 500

 600

 2 4 6 8 10 12 14 16 18 20

T
im

e
 (

m
s
)

number of banks

verify-1
create-1
verify-12

create-12

 0

 200

 400

 600

 800

 1000

 2 3 4 5 6 7 8 9 10

T
im

e
 (

m
s
)

number of banks

complete transactions

 0

 2

 4

 6

 8

 10

 12

 2 3 4 5 6 7 8 9 10

T
h

ro
u

g
h

p
u

t
(t

x
n

s
/s

e
c
)

number of banks

all banks transacting
one bank transacting

Figure 3: Transaction creation and verification time for one bank (left), varying the number of entries in the transaction. Single-threaded and
multi-threaded performance, with 12 threads. Time to fully process a transaction including creation, broadcast to ledger, banks and auditor, and
verification by all parties (middle). Throughput (right) varying the number of banks.

 0

 2

 4

 6

 8

 10

 12

0K 20K 40K 60K 80K 100K

A
u

d
it
in

g
 t

im
e

 (
m

s
)

Transactions in ledger

online auditor

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

0K 20K 40K 60K 80K 100K

Transactions in ledger

offline auditor

 0

 20

 40

 60

 80

 100

 120

 2 3 4 5 6 7 8 9 10

Number of banks

offline auditor

online auditor

Figure 4: Time to audit ledgers of different sizes (4 banks), and with a varying number of banks (2000 row ledger). Audit time is independent of the
size of the ledger (left) thanks to commitment caches maintained by the online auditor. When commitment cache optimization is turned off (middle)
the audit time is linear in the size of the ledger. Audit time grows with the number of banks (right) and is much higher without commitment caches.

described in §4.1, a bank needs to use its entry from
transaction n−1 to create transaction n. So though a bank
can use many cores to produce the proofs for a single
transaction in parallel, multiple banks cannot produce
different transactions in parallel. In zkLedger, banks start
creating transaction n before seeing n− 1 but the bank
cannot complete the transaction until n−1 is accepted to
the ledger and verified, causing an inherent bottleneck.

The second major cost is around verification. Every
bank must verify every transaction, so the more banks,
the larger each transaction and thus the more work that
needs to be done by each bank. The middle graph in
Figure 3 measures the time it takes one bank to create
and all participants in zkLedger to completely process
a transaction. One bank creates a transaction and sends
it to the ledger, which then broadcasts the transaction to
all banks and an online auditor. The auditor and every
bank verify the transaction. As we increase the number
of banks, work increases quadratically; however, banks
can verify transactions in parallel so the time to process
transactions only increases linearly. The right graph in
Figure 3 shows that as we surmised, zkLedger’s through-
put worsens with more banks. The one bank transacting
line in this graph is the same data as the middle graph.

Since range proofs dominate the costs of transaction
creation and verification, we are optimistic that a faster
range proof implementation will directly improve perfor-
mance. zkLedger’s current performance is comparable
to Solidus, a privacy-preserving distributed ledger which
achieves 3-4 transactions per second with online valida-
tion but, unlike zkLedger, does not support auditing.

8 Future work
zkLedger focuses on providing provably correct auditing
over private transaction data, but zkLedger does not have
a way to recover if the distributed ledger is corrupted. In
this case, the parties maintaining the ledger would have
to come together to recreate historical transactions. zk-
Ledger also does not provide recourse if a bank commits
an unintended transaction to the ledger. A future ver-
sion of zkLedger might provide rectifying transactions or
participant agreed-upon rollback.

9 Conclusion
zkLedger is the first distributed ledger system to provide
strong transaction privacy, public verifiability, and com-
plete, provably correct auditing. zkLedger supports a rich
set of auditing queries which are useful to measure the
financial health of a market. We developed a design using
non-interactive zero-knowledge proofs to prove transac-
tions maintain financial invariants and to support auditing.
Our evaluation shows that zkLedger has reasonable per-
formance for transaction settlement and auditing.

10 Acknowledgements
We thank Alexander Chernyakhovsky, Thaddeus Dryja,
David Lazar, Ronald L. Rivest, C.J. Williams, and our
shepherd and reviewers for helpful comments. The re-
search leading to these results has received funding from:
the Center for Science of Information (CSoI), an NSF
Science and Technology Center, under grant agreement
CCF-0939370; and the Ethics and Governance of Artifi-
cial Intelligence Fund.

76 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References
[1] Bank secrecy act of 1970, October 1970. 12 U.S.C. 103.
[2] Package btcec implements support for the elliptic curves

needed for Bitcoin., July 2017. https://godoc.org/
github.com/btcsuite/btcd/btcec.

[3] ABBE, E. A., KHANDANI, A. E., AND LO, A. W.
Privacy-preserving methods for sharing financial risk ex-
posures. The American Economic Review 102, 3 (2012),
65–70.

[4] ARASU, A., BLANAS, S., EGURO, K., KAUSHIK, R.,
KOSSMANN, D., RAMAMURTHY, R., AND VENKATE-
SAN, R. Orthogonal security with cipherbase. In CIDR
(2013).

[5] BAJAJ, S., AND SION, R. Trusteddb: A trusted hardware-
based database with privacy and data confidentiality. IEEE
Transactions on Knowledge and Data Engineering 26, 3
(2014), 752–765.

[6] BAUMANN, A., PEINADO, M., AND HUNT, G. Shielding
applications from an untrusted cloud with haven. ACM
Transactions on Computer Systems (TOCS) 33, 3 (2015),
8.

[7] BEN-SASSON, E., CHIESA, A., GENKIN, D., TROMER,
E., AND VIRZA, M. SNARKs for C: Verifying program
executions succinctly and in zero knowledge. In Advances
in Cryptology–CRYPTO 2013. Springer, 2013, pp. 90–108.

[8] BEN-SASSON, E., CHIESA, A., GREEN, M., TROMER,
E., AND VIRZA, M. Secure sampling of public parameters
for succinct zero knowledge proofs. In Proceedings of the
2015 IEEE Symposium on Security and Privacy (2015),
SP ’15, pp. 287–304.

[9] BLUM, M., FELDMAN, P., AND MICALI, S. Non-
interactive zero-knowledge and its applications. In Pro-
ceedings of the 20th Annual ACM Symposium on Theory
of Computing (1988), STOC ’88, pp. 103–112.

[10] BOGDANOV, D., TALVISTE, R., AND WILLEMSON, J.
Deploying secure multi-party computation for financial
data analysis. In International Conference on Financial
Cryptography and Data Security (2012), Springer, pp. 57–
64.

[11] BOWE, S., GABIZON, A., AND GREEN, M. A multi-
party protocol for constructing the public parameters of
the Pinocchio zk-SNARK. Cryptology ePrint Archive,
Report 2017/602, 2017.

[12] BOWE, S., GABIZON, A., AND MIERS, I. Scalable multi-
party computation for zk-SNARK parameters in the ran-
dom beacon model. Cryptology ePrint Archive, Report
2017/1050, 2017.

[13] BÜNZ, B., BOOTLE, J., BONEH, D., POELSTRA, A.,
AND MAXWELL, G. Bulletproofs: Short proofs for Con-
fidential Transactions and more. In Security and Privacy
(SP), 2018 IEEE Symposium on (2018), IEEE.

[14] BURKHART, M., STRASSER, M., MANY, D., AND DIM-
ITROPOULOS, X. Sepia: Privacy-preserving aggregation
of multi-domain network events and statistics. Network 1,
101101 (2010).

[15] CASTRO, M., AND LISKOV, B. Practical byzantine fault
tolerance. In OSDI (1999), vol. 99, pp. 173–186.

[16] CECCHETTI, E., ZHANG, F., JI, Y., KOSBA, A., JUELS,
A., AND SHI, E. Solidus: Confidential distributed ledger
transactions via pvorm.

[17] CHAIN, I. Confidential assets. https:
//blog.chain.com/hidden-in-plain-
sight-transacting-privately-on-a-
blockchain-835ab75c01cb.

[18] CORRIGAN-GIBBS, H., AND BONEH, D. Prio: Private,
robust, and scalable computation of aggregate statistics.
arXiv preprint arXiv:1703.06255 (2017).

[19] COUNCIL, F. R. Developments in audit 2016/2017
full report, 2017. http://www.frc.org.uk/
getattachment/915c15a4-dbc7-4223-b8ae-
cad53dbcca17/Developments-in-Audit-
2016-17-Full-report.pdf.

[20] CRAMER, R., DAMGÅRD, I., AND SCHOENMAKERS,
B. Proofs of partial knowledge and simplified design of
witness hiding protocols. In Advances in Cryptology -
CRYPTO ’94, 14th Annual International Cryptology Con-
ference, Santa Barbara, California, USA, August 21-25,
1994, Proceedings (1994), pp. 174–187.

[21] DAGHER, G. G., BÜNZ, B., BONNEAU, J., CLARK, J.,
AND BONEH, D. Provisions: Privacy-preserving proofs
of solvency for Bitcoin exchanges. In Proceedings of the
22nd ACM SIGSAC Conference on Computer and Com-
munications Security (Denver, CO, 2015), ACM, pp. 720–
731.

[22] Corda, 2017. https://github.com/corda/
corda.

[23] Digital asset holdings, 2017. http://digitalasset.
com.

[24] Regulation (EU) 2016/679 of the European Parliament
and of the Council of 27 April 2016 on the protection of
natural persons with regard to the processing of personal
data and on the free movement of such data, and repealing
Directive 95/46/EC (General Data Protection Regulation).
Official Journal of the European Union L119 (May 2016),
1–88.

[25] FELDMAN, A. J., ZELLER, W. P., FREEDMAN, M. J.,
AND FELTEN, E. W. Sporc: Group collaboration us-
ing untrusted cloud resources. In OSDI (2010), vol. 10,
pp. 337–350.

[26] FIAT, A., AND SHAMIR, A. How to prove yourself:
practical solutions to identification and signature problems.
In Proceedings of the 6th Annual International Cryptology
Conference (1987), CRYPTO ’87, pp. 186–194.

[27] GARMAN, C., GREEN, M., AND MIERS, I. Accountable
privacy for decentralized anonymous payments. Cryp-
tology ePrint Archive, Report 2016/061, 2016. http:
//eprint.iacr.org/2016/061.

[28] GREENBERG, A. Fbi says it’s seized $28.5 million in
bitcoins from ross ulbricht, alleged owner of silk road.
Forbes 25 (2013).

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 77

https://godoc.org/github.com/btcsuite/btcd/btcec
https://godoc.org/github.com/btcsuite/btcd/btcec
https://blog.chain.com/hidden-in-plain-sight-transacting-privately-on-a-blockchain-835ab75c01cb
https://blog.chain.com/hidden-in-plain-sight-transacting-privately-on-a-blockchain-835ab75c01cb
https://blog.chain.com/hidden-in-plain-sight-transacting-privately-on-a-blockchain-835ab75c01cb
https://blog.chain.com/hidden-in-plain-sight-transacting-privately-on-a-blockchain-835ab75c01cb
http://www.frc.org.uk/getattachment/915c15a4-dbc7-4223-b8ae-cad53dbcca17/Developments-in-Audit-2016-17-Full-report.pdf
http://www.frc.org.uk/getattachment/915c15a4-dbc7-4223-b8ae-cad53dbcca17/Developments-in-Audit-2016-17-Full-report.pdf
http://www.frc.org.uk/getattachment/915c15a4-dbc7-4223-b8ae-cad53dbcca17/Developments-in-Audit-2016-17-Full-report.pdf
http://www.frc.org.uk/getattachment/915c15a4-dbc7-4223-b8ae-cad53dbcca17/Developments-in-Audit-2016-17-Full-report.pdf
https://github.com/corda/corda
https://github.com/corda/corda
http://digitalasset.com
http://digitalasset.com
http://eprint.iacr.org/2016/061
http://eprint.iacr.org/2016/061

[29] HERFINDAHL, O. C. Concentration in the steel industry.
PhD thesis, Columbia University New York, 1950.

[30] LAMPORT, L., ET AL. Paxos made simple. ACM Sigact
News 32, 4 (2001), 18–25.

[31] LI, J., KROHN, M. N., MAZIERES, D., AND SHASHA,
D. E. Secure untrusted data repository (sundr). In OSDI
(2004), vol. 4, pp. 9–9.

[32] MAHAJAN, P., SETTY, S., LEE, S., CLEMENT, A.,
ALVISI, L., DAHLIN, M., AND WALFISH, M. Depot:
Cloud storage with minimal trust. ACM Transactions on
Computer Systems (TOCS) 29, 4 (2011), 12.

[33] MAURER, U. Unifying zero-knowledge proofs of knowl-
edge. Proceedings of the 2nd International Conference on
Cryptology in Africa (2009), 272–286.

[34] MAXWELL, G. Confidential transactions. https:
//people.xiph.org/˜greg/confidential_
values.txt (Accessed 8/2017) (2015).

[35] MAXWELL, G., AND POELSTRA, A. Borromean ring
signatures. https://raw.githubusercontent.
com/Blockstream/borromean_paper/
master/borromean_draft_0.01_34241bb.
pdf (Accessed 6/2017) (2015).

[36] MEIKLEJOHN, S., POMAROLE, M., JORDAN, G.,
LEVCHENKO, K., MCCOY, D., VOELKER, G. M., AND

SAVAGE, S. A fistful of bitcoins: characterizing payments
among men with no names. In Proceedings of the 2013
conference on Internet measurement conference (2013),
ACM, pp. 127–140.

[37] NAKAMOTO, S. Bitcoin: A peer-to-peer electronic cash
system, 2008.

[38] OBER, M., KATZENBEISSER, S., AND HAMACHER, K.
Structure and anonymity of the bitcoin transaction graph.
Future internet 5, 2 (2013), 237–250.

[39] ONGARO, D., AND OUSTERHOUT, J. K. In search of an
understandable consensus algorithm. In USENIX Annual
Technical Conference (2014), pp. 305–319.

[40] PAPADIMITRIOU, A., BHAGWAN, R., CHANDRAN, N.,
RAMJEE, R., HAEBERLEN, A., SINGH, H., MODI, A.,
AND BADRINARAYANAN, S. Big data analytics over
encrypted datasets with seabed. In OSDI (2016), pp. 587–
602.

[41] PEDERSEN, T. P. Non-interactive and information-
theoretic secure verifiable secret sharing. In Proceedings
of the 11th Annual International Cryptology Conference
(1992), CRYPTO ’91, pp. 129–140.

[42] POELSTRA, A., BACK, A., FRIEDENBACH, M.,
MAXWELL, G., AND WUILLE, P. Confidential assets,
2017. 4th Workshop on Bitcoin and Blockchain Research.

[43] POPA, R. A., REDFIELD, C., ZELDOVICH, N., AND BAL-
AKRISHNAN, H. CryptDB: protecting confidentiality with
encrypted query processing. In Proceedings of the Twenty-
Third ACM Symposium on Operating Systems Principles
(2011), ACM, pp. 85–100.

[44] POPA, R. A., STARK, E., HELFER, J., VALDEZ, S., ZEL-
DOVICH, N., KAASHOEK, M. F., AND BALAKRISHNAN,

H. Building web applications on top of encrypted data
using mylar. In NSDI (2014), pp. 157–172.

[45] REID, F., AND HARRIGAN, M. An analysis of anonymity
in the bitcoin system. In Security and privacy in social
networks. Springer, 2013, pp. 197–223.

[46] RON, D., AND SHAMIR, A. Quantitative analysis of
the full bitcoin transaction graph. In International Confer-
ence on Financial Cryptography and Data Security (2013),
Springer, pp. 6–24.

[47] SASSON, E. B., CHIESA, A., GARMAN, C., GREEN,
M., MIERS, I., TROMER, E., AND VIRZA, M. Zerocash:
Decentralized anonymous payments from Bitcoin. In Se-
curity and Privacy (SP), 2014 IEEE Symposium on (2014),
IEEE, pp. 459–474.

[48] SCHNORR, C.-P. Efficient signature generation by smart
cards. Journal of cryptology 4, 3 (1991), 161–174.

[49] SCHUSTER, F., COSTA, M., FOURNET, C., GKANTSIDIS,
C., PEINADO, M., MAINAR-RUIZ, G., AND RUSSI-
NOVICH, M. Vc3: Trustworthy data analytics in the cloud
using sgx. In Security and Privacy (SP), 2015 IEEE Sym-
posium on (2015), IEEE, pp. 38–54.

[50] TU, S., KAASHOEK, M. F., MADDEN, S., AND ZEL-
DOVICH, N. Processing analytical queries over encrypted
data. In Proceedings of the VLDB Endowment (2013),
vol. 6, VLDB Endowment, pp. 289–300.

[51] Zcash, 2017. http://z.cash.
[52] ZHENG, W., DAVE, A., BEEKMAN, J. G., POPA, R. A.,

GONZALEZ, J. E., AND STOICA, I. Opaque: An oblivious
and encrypted distributed analytics platform. In NSDI
(2017), pp. 283–298.

A Auditing Queries
Figure 5 is a list of the types of measurements zkLedger
supports, including the estimated running time and the
data beyond the measurement that is leaked. For example,
as described in §5, computing transaction size variance
requires leaking the mean transaction size and number of
transactions per bank.

B Zero-knowledge proofs and privacy
guarantees

To build our zero-knowledge protocols we rely on the
following general result of Maurer (Theorem 3, [33]):

Theorem B.1. Let (H1,?) and (H2,⊗) be two (not-
necessarily commutative) groups and f : H1→ H2 be a
group homomorphism: f (x? y) = f (x)⊗ f (y). Let ` ∈ Z,
u ∈ H1, C ⊂ Z be such that:
1. gcd(c1− c2, `) = 1 for all c1,c2 ∈ C (with c1 6= c2),

and
2. f (u) = z`.
There exists a 2-extractable Σ-protocol for language
L := {z : ∃w s.t. z = f (w)}. Moreover, a protocol con-

78 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://people. xiph.org/~greg/confidential_values.txt
https://people. xiph.org/~greg/confidential_values.txt
https://people. xiph.org/~greg/confidential_values.txt
https://raw.githubusercontent.com/Blockstream/borromean_paper/master/borromean_draft_0.01_34241bb.pdf
https://raw.githubusercontent.com/Blockstream/borromean_paper/master/borromean_draft_0.01_34241bb.pdf
https://raw.githubusercontent.com/Blockstream/borromean_paper/master/borromean_draft_0.01_34241bb.pdf
https://raw.githubusercontent.com/Blockstream/borromean_paper/master/borromean_draft_0.01_34241bb.pdf
http://z.cash

Measurement Time Additional information leaked

Sum total of asset(s) per bank O(1) none
Outlier transactions per bank O(n) none
Concentration O(k) Sum totals per bank
Ratio holdings O(k) Sum totals per bank, number of transactions per bank
Mean transaction size per bank O(kn) Number of transactions per bank
Variance, skew, kurtosis O(kn) Mean per bank, number of transactions per bank
Real-time price averages O(kn) Number of transactions and average per bank over time period t

Figure 5: Types of supported auditing queries, their running time to audit based on the number of banks k and the number of rows in the ledger n,
and a description of what information is leaked to the auditor.

sisting of s rounds is proof-of-knowledge if 1/|C |s is negli-
gible, and zero-knowledge if |C | is polynomially bounded.

Using Theorem B.1 we can now unify the treatment
of most of the zero-knowledge proofs used in our sys-
tem. For example, the consistency proofs πC rely on the
following result:

Theorem B.2. Let G be an order-r cyclic group and
g,h,pk be any three elements of G. There exists a
2-extractable Σ-protocol for language Laux := {(cm,
Token) : ∃v,r s.t. cm= gvhr ∧Token= pkr}.

Proof. Consider H1 = Zr×Zr, defining the group opera-
tion to be component-wise addition, and let H2 =G×G,
similarly defining group operation to be component-
wise. Then f (x,y) := (gxhy,pky) is a group homomor-
phism between H1 and H2. Indeed, f (x1 + x2,y1 + y2) =
(gx1+x2hy1+y2 ,pky1+y2) = f (x1,y1)⊗ f (x2,y2). Further-
more, setting ` = r and u = (0,0) we have that for all
z ∈H2 the following holds: z` = (1,1) = f (u). Therefore,
we can apply Theorem B.1 and conclude that Laux has a
2-extractable Σ-protocol.

To summarize, the three proofs in zkLedger (see Sec-
tion 4.3) that relate commitments cmi :=: gvihri and audit
tokens Tokeni := (pki)

ri have the following form:
• Proof of Assets (πA). This proof consists of a new

commitment cm′i, together with an audit token Token′i,
and a zero-knowledge proof asserting that either cm′i is
a re-commitment of the value in cmi or a recommitment
to the sum of the values in ∏

m
j=0 cm j. To create this

proof zkLedger relies on Theorem B.1 for constituent
proofs; as these are Sigma-protocols we apply the stan-
dard OR-composition [20] to get the final disjunctive
zero-knowledge proof. To prove that the commited
value is in the range we use the range proofs in Confi-
dential Assets [42]. We are investigating more recent
proof systems (e.g. Bulletproofs [13]) to further reduce
the proof size.

• Proof of Balance (πB). In our implementation this
proof is an empty string: the prover simply chooses the

commitment randomness subject to condition ∑ri = 0.
With such a choice the auditor homomorphically adds
the commitments and checks that this addition results
in the neutral element of the group ∏cmi = g∑vih∑ri =
g0h0 = 1.

• Proof of Consistency (πC). We use two proofs derived
from Theorem B.2 to assert that the randomness used
in cmi and Tokeni are the same, and the randomness
used in cm′i and Token′i are the same.

C Privacy in the combined system
Pedersen commitments provide information-theoretic pri-
vacy. In zkLedger Pedersen commitments are published
together with authentication tokens and zero-knowledge
proofs. We note that zero-knowledge proofs indeed don’t
spoil the information-theoretic privacy of committed val-
ues: the output of the zero-knowledge proof simulator
is identical to the output produced by parties in the sys-
tem. However, when combining Pedersen commitments
and authentication tokens, the privacy guarantees become
computational as we now explain.

The commitment, audit token, and public key
triple (cm,Token) is of the form (gvhr,pkr,pk) =
(gvhr,hsk·r,hsk), and these three values uniquely deter-
mine the v. That is, if an adversary could break the dis-
crete logarithm problem, it could solve for sk, use that and
value of Token to infer r, and finally recover v. That said,
under the Decisional Diffie-Hellman (DDH) assumption,
no information is leaked. Furthermore, the DDH assump-
tion is widely assumed to hold in zkLedger’s elliptic curve
group.

Recall, that DDH holds if no polynomially-bounded
adversary can distinguish between tuples of the form
(h,ha,hb,hab) and (h,ha,hb,hc) for a randomly chosen
generator h and exponents a,b,c. Assume that a state-
ful adversary AzkL, when given input (g,h,pk) is able to
produce two values v1 and v2 such that it can distinguish
commitments (and associated audit tokens) to v1 from
commitments (and audit tokens) to v2, i.e. the adversary
is able to distinguish the distributions (gv1hr,hsk·r,hsk)

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 79

and (gv2hr,hsk·r,hsk). We now show how to use AzkL to
construct an adversary ADDH breaking the DDH assump-
tions.

After receiving its challenge (h,x,y,z), where (x,y,z)
is distributed either as (ha,hb,hab) or as (ha,hb,hc), the
adversary ADDH proceeds as follows. It samples a random
generator g and calls AzkL on input (g,h,x), x now serving
the role of the bank’s public key. When AzkL returns
two values v1 and v2, the DDH adversary ADDH picks a
random k ∈ {1,2} and prepares cmk = gvk y, Token = z
and sends (cmk,Token) to AzkL. Finally, if AzkL’s guess
for k is correct, ADDH responds that the DDH challenge
was of the form (h,ha,hb,hab) (i.e. a DDH quadruple),
otherwise it responds that the DDH challenge was of the

form (h,ha,hb,hc) (i.e. a random quadruple).
Note that when ADDH’s challenge is a DDH quadru-

ple, the zkLedger adversary AzkL is run on a distribution
it expects. In particular, all of its inputs are correctly
formed with respect to sk= a and r = b. Whereas, when
ADDH’s challenge is a random quadruple, the inputs to
AzkL have information-theoretically no information about
the committed value: indeed, Token= hc is unrelated to
cm = gvhb. Therefore, if the zkLedger adversary AzkL

wins the commitment hiding game with non-negligible
advantage, so does ADDH in the DDH game. Note that
the proof extends to the multiple entry case by a standard
hybrid argument.

80 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

	1 Introduction
	2 Related Work
	2.1 Computing on Private Data
	2.2 Privacy-preserving blockchains

	3 zkLedger Overview
	3.1 Architecture
	3.2 Cryptographic building blocks
	3.3 Security Goals
	3.4 Threat model

	4 Design
	4.1 Transactions
	4.2 Auditing Protocol
	4.3 Final transaction construction
	4.4 Adding or removing banks
	4.5 Optimizations

	5 Auditing
	6 Implementation
	7 Evaluation
	7.1 Experimental setup
	7.2 Proof overhead in zkLedger
	7.3 Cost of auditing ledgers
	7.4 Scaling with more banks

	8 Future work
	9 Conclusion
	10 Acknowledgements
	A Auditing Queries
	B Zero-knowledge proofs and privacy guarantees
	C Privacy in the combined system

