
Open access to the Proceedings of
the 15th USENIX Symposium on Networked

Systems Design and Implementation
is sponsored by USENIX.

Exploiting a Natural Network Effect for Scalable,
Fine-grained Clock Synchronization

Yilong Geng, Shiyu Liu, and Zi Yin, Stanford University; Ashish Naik, Google Inc.;
Balaji Prabhakar and Mendel Rosenblum, Stanford University; Amin Vahdat, Google Inc.

https://www.usenix.org/conference/nsdi18/presentation/geng

This paper is included in the Proceedings of the
15th USENIX Symposium on Networked

Systems Design and Implementation (NSDI ’18).
April 9–11, 2018 • Renton, WA, USA

ISBN 978-1-939133-01-4

Exploiting a Natural Network Effect for Scalable, Fine-grained Clock
Synchronization

Yilong Geng1, Shiyu Liu1, Zi Yin1, Ashish Naik2,
Balaji Prabhakar1, Mendel Rosunblum1, and Amin Vahdat2

1Stanford University, 2Google Inc.

Abstract

Nanosecond-level clock synchronization can be an en-
abler of a new spectrum of timing- and delay-critical
applications in data centers. However, the popular
clock synchronization algorithm, NTP, can only achieve
millisecond-level accuracy. Current solutions for achiev-
ing a synchronization accuracy of 10s-100s of nanosec-
onds require specially designed hardware throughout
the network for combatting random network delays and
component noise or to exploit clock synchronization in-
herent in Ethernet standards for the PHY.

In this paper, we present HUYGENS, a software clock
synchronization system that uses a synchronization net-
work and leverages three key ideas. First, coded probes
identify and reject impure probe data—data captured by
probes which suffer queuing delays, random jitter, and
NIC timestamp noise. Next, HUYGENS processes the pu-
rified data with Support Vector Machines, a widely-used
and powerful classifier, to accurately estimate one-way
propagation times and achieve clock synchronization to
within 100 nanoseconds. Finally, HUYGENS exploits a
natural network effect—the idea that a group of pair-wise
synchronized clocks must be transitively synchronized—
to detect and correct synchronization errors even further.

Through evaluation of two hardware testbeds, we
quantify the imprecision of existing clock synchroniza-
tion across server-pairs, and the effect of temperature on
clock speeds. We find the discrepancy between clock fre-
quencies is typically 5-10µs/sec, but it can be as much
as 30µs/sec. We show that HUYGENS achieves synchro-
nization to within a few 10s of nanoseconds under vary-
ing loads, with a negligible overhead upon link band-
width due to probes. Because HUYGENS is implemented
in software running on standard hardware, it can be read-
ily deployed in current data centers.

1 Introduction

Synchronizing clocks in a distributed system has been
a long-standing important problem. Accurate clocks
enable applications to operate on a common time axis
across the different nodes, which, in turn, enables key
functions like consistency, event ordering, causality and
the scheduling of tasks and resources with precise tim-
ing. An early paper by Lamport [13] frames the question
of ordering events in distributed systems and proposes a
solution known for obtaining partial orders using “vir-
tual clocks,” and Liskov [16] describes many fundamen-
tal uses of synchronized clocks in distributed systems.

Our work is motivated by several compelling new
applications and the possibility of obtaining very fine-
grained clock sychronization at an accuracy and cost
that is much less than provided by current solutions.
For example, in finance and e-commerce, clock syn-
chronization is crucial for determining transaction or-
der: a trading platform needs to match bids and offers
in the order in which they were placed, even if they en-
tered the trading platform from different gateways. In
distributed databases, accurate clock synchronization al-
lows a database to enforce external consistency [8] and
improves the throughput and latency of the database. In
software-defined networks, the ability to schedule tasks
with precise timing would enforce an ordering of for-
warding rule updates so that routing loops can be avoided
[18]. In network congestion control, the ability to send
traffic during time slots assigned by a central arbiter
helps achieve high bandwidth and near-zero queueing
delays [28]. Indeed, precisely synchronized clocks can
help to revise the “clockless” assumption underlying the
design of distributed systems and change the way such
systems are built.

Consider distributed databases as an example. Span-
ner [8] provides external consistency1 at a global scale

1A database is said to be externally consistent if it can ensure for
each transaction A that commits before another transaction B starts, A
is serialized before B.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 81

using clocks synchronized to within T units of time,
typically a few milliseconds. In order to achieve ex-
ternal consistency, a write-transaction in Spanner has
to wait out the clock uncertainty period, T , before re-
leasing locks on the relevant records and committing.
Spanner can afford this wait time because T is com-
parable to the delay of the two-phase-commit protocol
across globally distributed data centers. However, for
databases used by real-time, single data center applica-
tions, the millisecond-level clock uncertainty would fun-
damentally limit the database’s write latency, throughput
and performance. Thus, if a low latency database, for
example, RAMCloud [24], were to provide external con-
sistency by relying on clock synchronization, it would be
critical for T to be in the order of 10s of nanoseconds so
as not degrade the performance.

This relationship between clock synchronization and
database consistency can been seen in CockroachDB[1],
an open source scalable database. In CockroachDB, un-
certainty about clocks in the system can cause perfor-
mance degradation with read requests having to be re-
tried. That is, a read issued by server A with timestamp
t for a record at server B will be successful if the last
update of the record at B has a timestamp s, where s≤ t
or s > t +T . Else, clock uncertainty necessitates that A
retry the read with timestamp s. For example, in an ex-
perimental CockroachDB cluster of 32 servers we read
128 records, each updated every 25 ms. We found that
as the clock uncertainty T was reduced from 1 ms to 10
us and then to 100 ns, the retry rate fell from 99.30% to
4.74% and to 0.08% in an experiment with 10,000 reads
for each value of T .

Thus, while it is very desirable to have accurately syn-
chronized clocks in distributed systems, the following
reasons make it hard to achieve in practice. First, transac-
tion and network speeds have shortened inter-event times
to a degree which severely exposes clock synchroniza-
tion inaccuracies. The most commonly used clocks have
a quartz crystal oscillator, whose resonant frequency is
accurate to a few parts per million at its ideal operat-
ing temperature of 25-28◦C [34]. When the tempera-
ture at a clock varies (in either direction), the resonant
frequency decreases quadratically with the temperature
(see [34] for details). Thus, a quartz clock may drift
from true time at the rate of 6-10 microseconds/sec. But
the one-way delay (OWD), defined as the raw propaga-
tion (zero-queuing) time between sender and receiver,
in high-performance data centers is under 10 µs. So,
if the clocks at the sender and receiver are not fre-
quently and finely synchronized, packet timestamps are
rendered meaningless! Second, “path noise” has made
the nanosecond-level estimation of the OWD, a criti-
cal step in synchronizing clocks, exceedingly difficult.
Whereas large queuing delays can be determined and re-

moved from the OWD calculation, path noise—due to
small fluctuations in switching times, path asymmetries
(e.g., due to cables of different length) and clock times-
tamp noise, which is in the order of 10s–100s of ns is not
easy to estimate and remove from the OWD.

The most commonly used methods of estimating the
OWD are the Network Time Protocol (NTP) [21], the
Precision Time Protocol (PTP) [4], Pulse Per Second
(PPS) [25]—a GPS-based system, and the recently pro-
posed Data center Time Protocol (DTP) [14]. We re-
view these methods is more detail later; for now, we note
that they are either cheap and easy to deploy but per-
form poorly (NTP) or provide clock synchronization to
an accuracy of 10s–100s of nanoseconds in data center
settings but require hardware upgrades (PTP, DTP and
PPS) which impose significant capital and operational
costs that scale with the size of the network.

The algorithm we propose here, HUYGENS, achieves
clock synchronization to an accuracy of 10s of nanosec-
onds at scale, and works with current generation network
interface cards (NICs) and switches in data centers with-
out the need for any additional hardware. A crucial fea-
ture of HUYGENS is that it processes the transmit (Tx)
and receive (Rx) timestamps of probe packets exchanged
by a pair of clocks in bulk: over a 2 second interval
and simultaneously from multiple servers. This contrasts
with PTP, PPS and DTP which look at the Tx and Rx
timestamps of a single probe–ack pair individually (i.e.,
4 timestamps at a time). By processing the timestamps
in bulk, HUYGENS is able to fully exploit the power of
inference techniques like Support Vector Machines and
estimate both the “instantaneous time offset” between a
pair of clocks and their “relative frequency offset”. These
estimates enable HUYGENS to be not bound by rounding
errors arising from clock periods.
Contributions of the paper. The goal of our work is
to precisely synchronize clocks in data centers, thereby
making “timestamping guarantees” available to divers
applications as a fundamental primitive alongside band-
width, latency, privacy and security guarantees. We have
chosen to synchronize clocks (e.g. the PTP Hardware
Clocks, or PHCs [2]) in the NICs attached to servers. By
accurately synchronizing NIC clocks, we obtain glob-
ally accurate timestamps for data, protocol messages and
other transactions between different servers. NIC-to-
NIC probes encounter the minimum amount of noise
in the path propagation time as compared to server-to-
server probes which also suffer highly variable stack la-
tencies. Our main contributions are:
(1) A comprehensive and large-scale study of clock dis-
crepancies in real-world networks. The major findings
are: (i) pairwise clock rates can differ by as much as
30µs/sec; (ii) clock frequencies vary at time scales of
minutes due to temperature effects, but are fairly constant

82 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

over 2–4 second intervals; and (iii) a quantification of the
effect of queueing delays, path noise and path asymme-
try on clock synchronization.
(2) The HUYGENS algorithm and its real-time extension
HUYGENS-R, which can respectively be used by appli-
cations for aligning timestamps offline or for real-time
clock synchronization.
(3) A NetFPGA-based verification in a 128-server, 2-
stage Clos data center network shows that HUYGENS and
HUYGENS-R achieve less than 12–15ns average error
and under 30–45ns 99th percentile error at 40% network
load. At 90% load, the numbers increase to 16–23ns and
45–58ns, respectively.
(4) We propose a lightweight implementation of HUY-
GENS that runs “in-place” with the probe data. In a 40
Gbps data center testbed, HUYGENS only takes around
0.05% of the link bandwidth and less than 0.44% of a
server’s CPU time.

2 Literature survey

As mentioned in the Introduction, all methods of deter-
mining clock offsets involve estimating the OWD. In or-
der to estimate the OWD between clocks A and B, A
sends a probe packet to B containing the transmission
time of the probe. The OWD can either be estimated di-
rectly by determining the time spent by the probe at each
element en route from A to B (e.g., as in PTP), or by
estimating the RTT (where B sends a probe back to A).
In the latter case, assuming the OWD is equal in both
directions, halving the estimated RTT gives the OWD.
Using the estimate of the OWD and the probe’s transmit
time, B can work out the time at A and synchronize with
it. We survey the four methods mentioned previously for
estimating the OWD between a pair of clocks.
NTP. NTP [21] is a widely-used clock synchronization
protocol. It estimates the offset between two clocks by
considering multiple probe-echo pairs, picking the three
with the smallest RTTs, and taking half their average to
get the OWD. It achieves an accuracy of tens of millisec-
onds [23] to 10s of microseconds [26], depending on the
network type (e.g., wide-area vs data center).

NTP uses simple methods to process the probe data,
hence it only achieves a coarse-grained clock synchro-
nization. HUYGENS does stronger processing of the
same probe data to extract a much more refined estimate
of the offset between a pair of clocks. It then uses the
network effect to obtain a further 3x reduction in the es-
timation error.
PTP. PTP [4] uses hardware timestamps to counter stack
delays. It uses “transparent” switches which are able to
record the ingress and egress time of a packet to accu-
rately obtain packet dwell times at switches. With more
extensive hardware support at switches and a dedicated

network for carrying PTP packets the White Rabbit sys-
tem [22] can achieve sub-nanosecond precision. How-
ever, the accuracy in a conventional fully “PTP-enabled
network” ranges from a few tens to hundreds of nanosec-
onds [32]. If the network is not fully PTP-enabled, syn-
chronization accuracy can degrade by 1000x even when
the two clocks are only a few hops apart [32]. Detailed
tests conducted in [14] show that PTP performs poorly
under high load, corroborating similar findings in [32].
DTP. The DTP protocol [14] sidesteps the issue of esti-
mating time-varying queue sizes, stack times, and most
noise variables by making a clever observation: The
IEEE 802.3 Ethernet standards provide a natural clock
synchronization mechanism between the transmitter and
receiver PHYs at either end of a wire. Therefore, DTP
can achieve a very fine-grained clock synchronization
without increasing network traffic and its performance is
not load-dependent. It is limited by the clock-granularity
of the standard: for a 10Gbps network link the granular-
ity is 6.4ns, and since four timestamps are involved in
calculating OWD, a single hop synchronization accuracy
of 25.6ns can be achieved. DTP requires special extra
hardware at every PHY in the data center, necessitating a
fully “DTP-enabled network” for its deployment.
PPS. PPS obtains accurate (atomic) time using a GPS re-
ceiver antenna mounted on the roof of the data center. It
brings this signal to a multi-terminal distribution box us-
ing cables with precisely measured lengths. The multi-
terminal box amplifies and relays the clock over cables
(also with precisely known lengths) to NICs which are
capable of receiving PPS signals. This makes PPS pro-
hibitively expensive to deploy at scale, most installations
have a designated “stratum 1” zone with just a few (typ-
ically tens of) servers that have access to PPS.

In summary, current methods of synchronizing clocks
in a data center are either not accurate enough or require
hardware modifications to almost every element of a data
center, making them very expensive to deploy.

3 Our approach

The HUYGENS algorithm exploits some key aspects of
modern data centers2 and uses novel estimation algo-
rithms and signal processing techniques. We look at
these in turn.
Data center features. Most data centers employ a sym-
metric, multi-level, fat-tree switching fabric [30, 29]. By
symmetry we mean that the number of hops between any
pair of servers, A and B, is the same in both directions.
We do not require the paths to involve identically the

2Even though this paper is focused on clock synchronization in data
centers, we believe the principles extend to wide area networks, possi-
bly with a loss in synchronization accuracy.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 83

Networkpkt
1

pkt
2

pkt
1

pkt
2

pkt
1

pkt
2

pkt
1

pkt
2

s

>> s

<< s

≈ s

t

t

t

t

Figure 1: Coded probes

same switches in both directions.3 Symmetry essentially
equalizes the OWD between a pair of NICs in each direc-
tion, except for a small amount of “path noise” (quanti-
fied in Section 4). Furthermore, these propagation times
are small, well-bounded by 25–30µs. Abundant bisec-
tion bandwidth and multiple paths between any pair of
servers ensure that, even under 40-90% load, there is a
reasonably good chance probes can traverse a network
without encountering queueing delays. Finally, there are
many servers (and NICs), making it possible to synchro-
nize them in concert.
Algorithms and techniques. HUYGENS sets up a syn-
chronization network of probes between servers; each
server probes 10–20 others, regardless of the total num-
ber of servers in the network.
Coded probes. Naturally, probes which encounter no
queueing delays and no noise on the path convey the
most accurate OWDs. To automatically identify such
probes, we introduce coded probes: a pair of probe pack-
ets going from server i to j with a small inter-probe
transmission time spacing of s. If the spacing between
the probe-pair when they are received at server j is very
close to s, we deem them as “pure” and keep them both.
Else, they are impure and we reject them. In Figure 1 the
first two possibilities on the receiver side show impure
probes and the third shows pure probes. Coded probes
are very effective in weeding out bad probe data and they
improve synchronization accuracy by a factor of 4 or 5.4

Support Vector Machines. The filtered probe data is pro-
cessed by an SVM [9], a powerful and widely-used clas-
sifier in supervised learning. SVMs provide much more
accurate estimates of propagation times between a pair
of NICs than possible by the simpler processing meth-
ods employed by NTP and PTP. In Section 4 we shall
see that “path noise” is small in magnitude and patho-
logical in the sense that it has “negative-delay” compo-
nents. Thus, simple techniques such as estimating the

3In Section 4 we show that a real-world 40 Gbps network has highly
symmetric paths, for symmetry as defined here.

4The idea of using a pair of closely-spaced packets to determine the
available bandwidth on a path was introduced in [12], see also [10].
Whereas that use case needs the separation between probes to increase
in order to determine available bandwidth, we require no separation.

min-RTT or linear regression to process the probe data
do not work. They can filter out large delays but cannot
cope with small-magnitude path noise and are adversely
affected by the negative-delay components which artifi-
cally shrink the OWD. The combination of coded probes
and SVMs copes well with these problems.
Network effect.5 Even though a data center network in-
creases the path noise between clocks A and B because
of multiple hops, it can simultaneously increase the sig-
nal by providing other clocks and new, potentially non-
overlapping, paths for A and B to synchronize with them.
Therefore, it is better—more accurate and scalable—to
synchronize many clocks simultaneously than a pair of
them at a time, as explained below. A significant by-
product of using the network effect is that it is particu-
larly good at detecting and correcting path asymmetries.

A B20
(10)

A B

C

(a)
D

A B

C

A B

C

A B

C

D

A B

C

(b) (c)

20

-155

15

-17.52.5

16.7

-18.31.6

20
-155

25-15

10
-155

15-25

Figure 2: The Network Effect. How more clocks can help
identify and reduce synchronization errors

Consider Figure 2. In (a), after pair-wise synchroniza-
tion, clocks A and B believe that B is ahead of A by
20 units of time (A 20−→B). However, the truth (shown in
green) is that B is ahead of A by only 10 units of time.
A and B can never discover this error by themselves.
In (b), a third clock C has undergone pairwise synchro-
nization with A and B, and the resulting pairwise offsets
are shown on the directed edges. Going around the loop
A→B→C→A, we see that there is a loop offset surplus
of 10 units! This immediately tells all three clocks there
are errors in the pairwise synchronization. The bottom of
Figure 2 (b) shows two possible corrections to the pair-
wise estimates to remove the loop surplus. Of these two
choices, the HUYGENS algorithm will pick the one on the
right, A 16.7−→B−18.3−→C 1.6−→A. This is the minimum-norm so-
lution and evenly distributes the loop surplus of 10 onto
the 3 edges. Of course, if a fourth clock, D, joins the net-
work, the two loop surpluses, equal to 10 and 30, are re-
distributed according to the minimum-norm solution by

5Synchronization must be reflexive, symmetric and transitive; net-
work effect is a deliberate exploitation of the transitivity property.

84 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

HUYGENS and this ends up correcting the discrepancy
on edge A→B to its correct value of 10 units.

In general, the minimum-norm solution does not com-
pletely correct synchronization errors, nor does it evenly
distribute loop surpluses. Its effect is to significantly pull
in outlier errors (see Section 5).

The network effect is related to co-operative clock
synchronization algorithms in the wireless literature [31,
15, 17, 19]. In the wireless setting, synchronization is
viewed from the point of view of achieving consensus;
that is, nodes try to achieve a global consensus on time
by combining local information, and they use ”gossip al-
gorithms” to do so. Thus, a node exchanges informa-
tion on time with neighboring nodes and this informa-
tion gradually flows to the whole network with time syn-
chronization as the outcome. This approach is appropri-
ate in ad hoc wireless networks where nodes only know
their neighbors. However, convergence times can be long
and it can be hard to guarantee synchronization accuracy.
Like [31], HUYGENS uses the network effect to directly
verify and impose the transitivity property required of
synchronization. In the wired setting in which HUY-
GENS operates, far away nodes are connected via the syn-
chronization network, typically over a data center fabric.
Thus, the probes have to contend with potentially severe
network congestion, but the synchronization network can
be chosen and not be restricted by network connectivity
as in the ad hoc wireless case. The synchronization algo-
rithm can be central and hence very fast (one-shot matrix
multiplication—see Section 5) and yield provable syn-
chronization error reduction guarantees.

4 Clocks in the real-world

In this section we use two testbeds and empirically study
the degree to which pairs of clocks differ and drift with
respect to one another, the effect of temperature in alter-
ing clock frequencies, and a characterization of queueing
delays and path noise affecting the accurate measurement
of the end-to-end propagation time of probes.
Testbed T-40. This is a 3-stage Clos network, all links
running at 40Gbps. T-40 has 20 racks each with a top-
of-the-rack (TOR) switch, and a total of 237 servers with
roughly 12 servers per rack. There are 32 switches at
spine layer 1. Each TOR switch is connected to 8 of these
switches while each spine layer 1 switch is connected to
5 TOR switches. Thus, there is a 3:2 (12:8) oversub-
scription at the TOR switches. Each spine layer 1 switch
is connected to 8 spine layer 2 switches and vice versa
(there are 32 spine layer 2 switches). T-40 represents a
state-of-the-art data center.
Testbed T-1. T-1 is a 2-stage Clos network with all links
running at 1Gbps. It consists of 8 racks, each rack has a
1Gbps TOR switch and 16 logical servers. The 16 logi-

cal servers are built out of 4 Jetway network appliances
(JNA) [11], 4 logical servers per JNA, as explained be-
low. Each TOR switch has 16 downlinks and 8 uplinks,
each uplink connecting it to one of 8 logically distinct
spine switches. Thus, there is a 2:1 oversubscription at
the TOR switches. The 8 logically distinct spine switches
are built from 4 48-port 1Gbps physical switches using
VLAN configurations [33]. T-1 respresents a low-end
commodity data center.

For reasons of economy—in monetary, space and heat
dissipation terms—we use JNAs to build servers in T-1.
Each JNA has a 4-core Intel Celeron J1900 CPU, 8GB
RAM, 250GB of disk storage, and ten 1Gbps Ethernet
ports. Each Ethernet port has an Intel I211 NIC. The
logical servers in a single JNA share the CPU, the RAM
and the PCIe buses. Even though there can be 10 logical
servers per JNA (one per NIC), to avoid overwhelming
the CPU we build 4 logical servers per JNA. Each logical
server is built inside a Docker container [20], giving them
complete independence of operation. The servers imple-
ment a probing/responding application as well as various
workload traffic generation applications. The different
capabilities of T-40 and T-1 necessitated different prob-
ing and timestamping mechanisms, as explained below.
Probing. Recall that a probe is actually a pair of packets,
called coded probes. We use 64-byte UDP packets for
probing. Each server probes K other randomly chosen
servers once every T seconds. Probing is bidirectional:
servers which are probed send back probes every T sec-
onds. In T-40, K = 20 and T = 500µs, and in T-1, K = 10
and T = 4ms.
Timestamping. The receive timestamps in T-40 and T-
1 are recorded upon the receipt of the probes. In T-40,
the transmit timestamp is equal to the time the probe’s
TX completion descriptor is written back into the host
memory. The write-back time is often nearly equal to
the transmission time, but, occasionally, it can be a few
10s or 100s of nanoseconds after the probe transmit
time. This gives rise to a “negative-delay” timestamp
noise; i.e., noise which can lead to probe propagation
times strictly smaller than the absolute minimum possi-
ble. In T-1, the JNA’s architecture makes the write-back
approach perform much worse. Instead, the Intel I211
NIC in the JNA places the transmit start time of a probe
in its payload and forwards it to the receiving NIC, where
it is extracted.6

𝑇𝑋# 𝑅𝑋%

𝑡𝑥%𝑟𝑥#

𝑡 𝑟

Server	A Server	B

Figure 3: Signaling between clocks.

6This feature is not supported by the NICs in T-40.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 85

Signaling. Consider Figure 3. Let T and R be the abso-
lute times at which a probe was transmitted at NIC A and
received at NIC B. Let T XA and RXB be the correspond-
ing transmit and receive timestamps taken by the NICs.
Define ∆A = T XA−T and ∆B = RXB−R. Since R > T ,
we get RXB−∆B > T XA−∆A. Rearranging terms, we get

∆B−∆A < RXB−T XA. (1)
From a probe (or echo) in the reverse direction, we get

txB− rxA < ∆B−∆A < RXB−T XA. (2)
Thus, each probe gives either an upper bound or a

lower bound on the discrepancy between two clocks de-
pending on its direction; the tightest bounds come from
probes encountering zero queueing delay and negligible
noise. The discrepancy is time-varying due to different
clock frequencies.

Figure 4: Bounds on the discrepancy between clocks in T-40

4.1 Clock frequencies across servers
Figure 4 shows upper and lower bounds on ∆B−∆A in T-
40 plotted against the time at NIC clock A: each blue dot
is an upper bound and each green dot is a lower bound.
The following observations can be made:
1. The set of blue points delineating the “least upper
bound” of the data points lie on a straight line over short
timescales, 2 seconds in this case. This line is parallel
to the straight line on which the green dots delineating
the “greatest lower bound” lie. We refer to the region
between the lines as the “forbidden zone.” There are
a number of blue dots and green dots in the forbidden
zone. These are due to the “negative-delay” NIC times-
tamp noise mentioned previously. It is crucial to filter
out these points.
2. Since the dots on the lines bounding the forbidden
zone capture the smallest one-way propagation time of a
probe (equal only to wire and switching times), the spac-
ing between them (roughly equal to 1700 ns in Figure
4) is the smallest RTT between the two NICs. Assum-
ing symmetric paths in both directions, half of the spac-
ing will equal the smallest one-way propagation time
(roughly 850 ns).

3. The upper and lower bound lines have a non-zero
slope and intercept. The slope in Figure 4 is close to
−1.6µs/sec and it measures the “drift” in the frequencies
of the clocks at A and B. That is, when clock A measures
out one second of time, clock B would have measured out
1− (1.6× 10−6) second. The average of the two inter-
cepts is the offset between the two clocks: when clock
A’s time is 0, clock B’s time is roughly −93.3µs.
Remark. The slope captures the discrepancy in the clock
frequencies and represents the intrinsic pull away from
synchronism between the two clocks. When the clocks
are completely synchronized, the slope and the average
of the two intercepts should both be 0.

(a) 1-hop in T-40 (b) 3-hop in T-40 (c) 5-hop in T-40

(d) 1-hop in T-1 (e) 3-hop in T-1 (f) 3-hop in T-1

Figure 5: Examples of clock drifts

Figure 5 shows more examples of relative clock drifts
in T-40 and T-1. Figures 6 (a) and (b) show the his-
tograms of the drifts between pairs of clocks in T-40 and
T-1, respectively. The number of pairs considered in each
testbed and a numerical quantification of the data in Fig-
ure 6 is in Table 1. While most pair-wise clock drifts
are around 6-10µs/sec, the maximum can get as high as
30µs/sec.

−30 −20 −10 0 10 20 30

Clock drift (us/sec)

0

50

100

150

200

250

300

350

N
um

be
ro

fs
er

ve
rp

ai
rs

(a) T-40

−30 −20 −10 0 10 20 30

Clock drift (us/sec)

0

10

20

30

40

50

60

70

N
um

be
ro

fs
er

ve
rp

ai
rs

(b) T-1

Figure 6: Distribution of the relative frequency difference be-
tween pairs of clocks

Variation in clock frequencies due to temperature

When considering longer timescales, in the order of min-
utes, one can sometimes observe nonlinearities in the up-
per and lower bound curves, see Figure 7. This is due

86 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Testbed #Servers #Clock St.dev. Max abs.
pairs of slope of slope

(drift) (drift)
T-40 237 4740 4.5µs/sec 32.1µs/sec
T-1 128 1280 5.7µs/sec 16.5µs/sec

Table 1: Summary statistics of clock drift rates

to temperature changes which affect the resonance fre-
quency of the clocks. The temperature can change when
a NIC sends a lot of data or otherwise dissipates a lot
of power. The temperature of a NIC varies slowly with
time. Therefore, even though there is nonlinearity in the
order of minutes or longer, at timescales of 2-4 seconds
the upper and lower bound curves are essentially linear.
We shall approximate the nonlinear curves by piecewise
linear functions over 2-4 seconds.

(a) T-40 (b) T-1

Figure 7: Nonlinear drifts in clock frequencies

4.2 Queueing delays and path noise

1. Queueing delay. This is the total queueing delay on
the path and can be 100s of microseconds to a few mil-
liseconds, depending on the load. However, we shall see
that even at 90% loads there are enough points with zero
queueing delay (hence, on the boundary of the forbidden
zone) to accurately synchronize clocks.
2. Path noise. We distinguish two types of path noise.
Switching noise. Even under 0 load, a probe’s switch-
traversal time can be jittered due to random delays from
passing through multiple clock domains, input arbitra-
tion, or other hardware implementation reasons specific
to the switch (e.g., store-and-forward versus cut-through
switching). “Dark matter packets” are another source of
switch noise. These are protocol packets (e.g., spanning
tree protocol (STP) [5], SNMP [3], link-layer discovery
protocol (LLDP) [6]) not emitted by the end-hosts, hence
invisible to them. When probes queue behind them at
switches, small and random switching delays are added.
NIC timestamp noise. This is the discrepancy between
the timestamp reported by the NIC and the true time
that the probe was transmitted or received. This can be
caused by faulty hardware, or the way timestamping is
implemented in the NIC. As described in Section 4, the
latter can cause negative-delay, giving rise to points in

the forbidden zone.
Empirically, path noise larger than 50ns degrades per-

formance in T-40. In T-1 that number is 2µs. Packet
transmission times in switches, in the PHYs, etc, are 40
times longer on T-1 than T-40, and this corresponds with
an increase in noise magnitude.

4.3 Path symmetry

T-40 is a fat-tree network with 1, 3 and 5 hops between
server pairs. By investigating the statistics of the RTTs
between servers at different hop distances, we can test
the veracity of our path symmetry assumption. Recall
that path symmetry means that servers separated by a cer-
tain number of hops have more or less the same OWD,
regardless of the particular paths taken in the forward
and reverse direction to go between them.

1 hop 3 hops 5 hops
server-pairs 390 1779 6867
Ave. ZD-RTT 1570 ns 4881 ns 7130 ns
Min. ZD-RTT 1512 ns 4569 ns 6740 ns
Max. ZD-RTT 1650 ns 4993 ns 7253 ns

Table 2: Zero-delay-RTTs (ZD-RTTs) in T-40

In Table 2, we consider the zero-delay-RTT (ZD-RTT)
between server pairs at different hops from one another.
The forward and reverse routes between a pair of servers
in T-40 are arbitrary and not identical. Nevertheless, we
see from the minimum, average and maximum values of
the ZD-RTT that it is tightly clustered around the mean.
Since this was taken over a large number of server-pairs,
we see empirical evidence supporting path symmetry.

If asymmetry exists in a network, it will degrade the
overall synchronization accuracy by half the difference
in the forward and reverse path delays. Fortunately, the
network effect can be used to identify asymmetric paths
and potentially replace them with symmetric paths (or
paths that are less asymmetric).

5 The Huygens Algorithm

The Huygens algorithm synchronizes clocks in a net-
work every 2 seconds in a “progressive-batch-delayed”
fashion. Probe data gathered over the interval [0, 2) sec-
onds will be processed during the interval [2, 4) seconds
(hence batch and delayed). The algorithm completes the
processing before 4 seconds and corrections can be ap-
plied to the timestamps at 1 sec, the midpoint of the in-
terval [0, 2) seconds. Then we consider probe data in the
interval [2, 4) seconds, and so on. By joining the times at
the midpoints of all the intervals with straight lines, we
obtain the corrections at all times. Thus, the corrected
time is available as of a few seconds before the present

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 87

time (hence progressive).7

Coded probes. Presented informally previously, coded
probes are a pair of packets, P1 and P2, with transmit
timestamps t1 and t2 and receive timestamps r1 and r2,
respectively. A coded probe is “pure” if r2 > r1 and
|(r2− r1)− (t2− t1)| < ε , where ε > 0 is a prescribed
guard band. Else, it is “impure”. The timestamps of both
of the pure probes are retained, and those of both impure
probes are discarded. If either P1 and P2 is dropped, we
discard the coded pair.
Support Vector Machines. SVMs are a widely used and
powerful tool for linear and nonlinear classification in su-
pervised learning settings [9]. A linear SVM is supplied
with a collection of points (xi, li) for 1 ≤ i ≤ N, where
xi is a point in R2 and li is a binary label such as “upper
bound point” or “lower bound point”. It classifies points
of like label, separating them with a hyperplane of maxi-
mal margin; that is, a hyperplane which is at a maximum
distance from the closest point of either label in the data.

When used in our context, the SVM is given the up-
per and lower bound points derived from the probe data
between clocks A and B over a 2-second interval. If the
data is clean, i.e., if there are no points in the forbidden
zone (defined in Section 4.1) and there are enough points
with noise- and delay-free propagation time in both prob-
ing directions, the SVM will return a straight line with
slope αAB and intercept βAB.

We use soft-margin SVMs which can tolerate points
in the forbidden zone and other noise and delays. How-
ever, the performance of the SVM is sensitive to these
artifacts, and especially to points in the forbidden zone.
Therefore, even if the SVM returns a line in the noisy
case, it will not be an accurate estimate of the discrep-
ancy ∆B−∆A. For this reason we first treat the data with
the coded probe filter and extract pure probes to which
we apply the SVM. For example, in Figure 8 (a) the
SVM processes all probe data between a pair of clocks
in T-40 and it is clear that its estimation of the upper and
lower bound lines (the support vectors) are inaccurate. In
(b) we see the significant improvement from using coded
probes to filter out bad probe data.

(a) All coded probes (b) “Pure” coded probes

Figure 8: Effectiveness of coded probes. In T-40, coded
probes reduce synchronization error by 4-5x.

7In Section 8 we obtain a real-time extension of the HUYGENS.

5.1 Network Effect
Suppose there are n clocks, C1, ...,Cn, connected through
a data center fabric. WLOG let C1 be the “reference”
clock with which all clocks will be synchronized. At
time 0 a probe mesh is set up between the n clocks,
each one probing K others. This is done using messages
between the nodes and results in the “probing graph,”
G = (V,E). The “owner” of edge (i, j) is the node who
initiated the probing, ties broken at random. Once the
probe mesh has been set up, we construct the Refer-
ence Spanning Tree (RST) on G with C1 as the root in
a breadth-first fashion.

In every 2-second interval, we synchronize Ci to C1
at the midpoint of the interval.8 The midpoints of ad-
jacent intervals are then connected with straight lines to
obtain a piecewise linear synchronization of Ci with C1.
Accordingly, consider the interval [2 j,2(j+1)) seconds
for some j ≥ 0. For ease of notation, denote 2 j by L,
2(j+1) by R, and the midpoint 2 j+1 by M.

Iteration
1. Coded probes and SVMs. Timestamp data collected
during [L,R) is processed using the coded probes filter
and bad probes are discarded. For each edge (i, j) ∈ G,
where i is the owner of the edge, the filtered data is pro-
cessed by an SVM to yield the slope, αi j, and the inter-
cept, βi j of the hyperplane determined by the SVM. Let
(~α,~β) be the vectors of the αi, j and βi, j for (i, j) ∈ G.
The equations

α ji =
−αi j

1+αi j
and β ji =

−βi j

1+αi j
(3)

relate the slopes and intercepts in one direction of (i, j)
to the other.
2. Preliminary estimates at time M. Use the RST and
the (~α,~β) to obtain the preliminary, group-synchronized
time at clock Ci with respect to the reference clock’s time
of M1 sec. This is done as follows. First consider Ci to
be a neighbor of C1 on the RST. Then,

MP
i = M1 +α1iM1 +β1i.

Proceed inductively down the tree to obtain MP
j at each

clock C j when C1 equals M1.

3. Obtain ∆P
i j
4
= αi jMP

i +βi j for every i and j, with the
convention MP

1 = M1. Gather the ∆P
i j into a vector ∆P,

the “preliminary pair-wise clock discrepancy vector.”
4. Network effect: loop correction. Apply loop correc-
tion to ∆P to determine the degree of inconsistency in
the pair-wise clock estimates, and obtain ∆F , the “final
pair-wise clock discrepancy vector.”

∆
F =

[
I−AT (AAT)−1

A
]

∆
P,where the (4)

“loop-composition matrix”, A, is defined below.
5. Obtain the final estimates MF

i at Ci when the time at

8For concreteness, time instances are taken with reference to C1.

88 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

C1 equals M1. For a neighbor Ci of C1 on the RST:
MF

i = M1 +∆F
1i.

Proceed inductively down the RST to obtain MF
j at each

clock C j when C1 equals M1.
End Iteration

Elaboration of Steps 2–4

Steps 2 and 3. In Step 2 preliminary midpoint times are
obtained using only the probe data on the edges of the
RST. These midpoint estimates are used in Step 3 to get
preliminary discrepancies, ∆P, between the clock-pairs
across all edges of the probing graph, G.
Step 4. Using equation (4), loop-wise correction is ap-
plied to ∆P to obtain the final pair-wise clock discrepancy
vector, ∆F . Given G = (V,E), the matrix A is obtained
as follows. The number of columns of A equals |E|, each
column corresponds with a directed edge (i→ j) ∈ E.
Each row of A represents a loop of G, traversed in a
particular direction. For example, suppose loop L is tra-
versed along edges (i→ j), (j→ k), (k→ l) and (l→ i).
Then, the row in A corresponding to loop L will be a 1
at columns corresponding to edges (i→ j), (j→ k) and
(k→ l), a −1 corresponding to column (i→ l), and 0
elsewhere. The number of rows of A equals the largest
set of linearly independent loops (represented in the row-
vector form described) in G.
Derivation of equation (4). The quantity A∆P gives the
total surplus in the preliminary pair-wise clock discrep-
ancy in each loop of A. For example, for loop L defined
above, this would equal:

∆
P
i j +∆

P
jk +∆

P
kl−∆

P
il
4
= yL.

Let Y = A∆P represent the vector of loop-wise surpluses.
In order to apply the loop-wise correction, we look
for a vector N which also solves Y = AN and posit
the correction to be ∆F = ∆P − N. Now, A has full
row rank, since the loops are all linearly independent.
Further, since the number of linearly independent loops
in G equals |E| − |V |+ 1 which is less than |E|, the
equation Y = AN is under-determined and has multiple
solutions. We look for the minimum-norm solution since
this is most likely the best explanation of the errors in
the loop-wise surpluses.9 Since the pseudo-inverse,
N = AT (AAT)−1Y = AT (AAT)−1A∆P, is well-known to
be the minimum-norm solution [27], we get

∆F = ∆P−N = [I−AT (AAT)−1A]∆P,
which is equation (4).10

9It is most likely that the loop-wise surpluses are due to a lot of
small errors on the edges rather than a few large ones.

10Under a Gaussian assumption on the noise in the discrepancy vec-
tor ∆P, we’ve shown that the standard deviation of the noise in ∆F is a
factor 1√

K
of the noise in ∆P. Numerically, this means a reduction of

the errors by 68.4% and 77.6% when K = 10 and 20, respectively. Due
to a shortage of space, we omit the proof here.

Remark. The minimum-norm solution gives the opti-
mal (Maximum Likelihood) estimate of edge errors if
they were distributed as independent and identically dis-
tributed (IID) Gaussians before applying the network ef-
fect. Even when edge errors are not IID Gaussians,
the minimum-norm solution ensures that the edge er-
rors after the network effect are closer to Gaussian with
a much smaller variance (1√

K
of the pre-network-effect

variance). Most importantly, this is true whether the ini-
tial edge errors occured due to significant path asymme-
tries (which can be large and systematic) or due to path
noise (which is typically small and nearly zero mean).

Figure 9 illustrates the point. In a network of 256
nodes, each probing 10 other nodes, we see the network
effect reduces the standard deviation of edge errors (af-
ter coded probes and SVMs) in two cases: (a) the edge
errors are typically small but some times can be as large
as 100 ns, and (b) distribted uniformly between -100 ns
and 100 ns. In both cases the errors after appying the
minimum-norm solution are clustered around 0 in a bell-
shaped distribution.

−150 −100 −50 0 50 100 150
Edge error (ns)

0.0

0.2

0.4

0.6

0.8

1.0

N
um

be
ro

fe
dg

es

×107 Before network effect

−150 −100 −50 0 50 100 150
Edge error (ns)

0.0

0.2

0.4

0.6

0.8

1.0 ×107 After network effect

(a) Network effect eliminates large edge errors

−150 −100 −50 0 50 100 150
Edge error (ns)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

N
um

be
ro

fe
dg

es

×106 Before network effect

−150 −100 −50 0 50 100 150
Edge error (ns)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0 ×106 After network effect

(b) Network effect compresses uniformly distributed edge
errors

Figure 9: Examples of network effect: N=256, K = 10, collec-
tive results across 10000 runs

6 Implementation and Evaluation

The probing phase of HUYGENS is obviously distributed:
it must occur along the edges of G. Many of the other
basic operations can also by implemented distributedly
at the sensing nodes, hence significantly reducing data
movement overheads. Or, they can be implemented on
a dedicated computing system separate from the sensing
system. We describe the distributed implementation.

6.1 A lightweight, scalable implementation
We implement HUYGENS as an “in-place” distributed
system, making it lightweight and scalable. There are

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 89

three main components—the master, the slaves and the
sensors. A global master node initiates the probing phase
and runs loop-wise correction (Steps 2–5). There is a
sensor and a slave node at each server for conducting
probing, data collection, coded probe filtering and run-
ning SVMs. The sensor sends the probes and collects
timestamps, the slave runs all the computations. This
implementation eliminates overheads due to data trans-
fer and makes HUYGENS scalable because each sensor–
slave combination only needs to send the α- and β -
values to the master node and not the probe data.
Probing bandwidth and CPU overhead. Probing at the
rates we have implemented (see Probing in Section 4),
HUYGENS takes 0.05% of the bandwidth at each node in
T-40 and 0.25% of the bandwidth at each node in T-1.
The fact that HUYGENS takes a much smaller percent-
age of the bandwidth in T-40 than in T-1 is due to an
important property: it sends roughly the same number of
probes per unit time regardless of the line rate.

The CPU overhead imposed by HUYGENS is negligi-
ble. On an 2.8 GHz Intel i5 (5575R) CPU, using only one
core and running SVM for 2 seconds probe data from one
edge takes less than 7ms. Therefore, the in-place dis-
tributed implementation would take less than 0.44% of
CPU time in a modern 32-core server even when K = 20.

6.2 Evaluation
We run experiments on T-1 to evaluate: (i) the accuracy
of HUYGENS using NetFPGAs, (ii) the efficacy of the
network effect, and (iii) HUYGENS’ performance under
very high network load.
Network load. We use the traffic generator in [7]: each
server requests files simultaneously from a random num-
ber (30% 1, 50% 2 and 20% 4) of other servers, called
the “fanout” of the request. The gap between adjacent re-
quests are independent exponentials with load-dependent
rate. The file sizes are distributed according to a heavy-
tailed distribution in the range [10KB, 30MB] with an
average file size of 2.4MB. This traffic pattern can mimic
a combination of single flow file transfers (fanout = 1)
and RPC style incast traffic (fanout > 1).

Evaluation Methodology

NetFPGA-CML boards provide two natural ways to ver-
ify HUYGENS’ accuracy in synchronizing clocks:
(i) Single FPGA. Each NetFPGA has four 1GE ports
connected to a common clock. We take two of these
ports, say P1 and P2, and make them independent servers
by attaching a separate Docker container to each. P1 and
P2 then become two additional servers in the 128-server
T-1 testbed. Using HUYGENS we obtain the “discrep-
ancy” in the clocks at P1 and P2, whereas the ground truth
is that there is 0 discrepancy since P1 and P2 have the
same clock.

Remark. To make it more difficult for HUYGENS to
synchronize P1 and P2, we do not allow them to directly
probe each other. They are at least 2 or 3 hops away on
the RST.
(ii) Different FPGAs. This time P1 and P2 are ports on
different FPGAs, with clocks C1 and C2, say. They can be
synchronized using HUYGENS on the T-1 testbed. They
can also be synchronized using a direct channel by con-
necting the GPIO pins on the two NetFPGAs using cop-
per jumper wires. The direct channel provides us with an
essentially noise- and delay-free, short RTT11 signaling
method between C1 and C2. The pin-to-pin signals are
sent and echoed between the NetFPGAs every 10ms. We
process the TX and RX timestamps of the pin-to-pin sig-
nals using a linear regression and obtain the discrepancy
between C1 and C2 using the direct channel.

In both (i) and (ii), the HUYGENS probe data is pro-
cessed using the algorithm described in Section 5. We
take C1 (the clock at P1) as the root of the RST. C2 is
then another node on the RST and HUYGENS gives a
preliminary and a final estimate of its midpoint in a 2
second probing interval with respect to C1’s midpoint (as
described in Steps 2–5). This is compared to the ground
truth or direct channel discrepancy between C1 and C2.
Even though (i) gives us a ground truth comparison, we
use (ii) because it gives a sense of the degree of syn-
chonization possible between two different clocks that
are connected directly.

7 Verification

We consider a 10-minute experiment.12 For the single
FPGA comparison, we obtain HUYGENS’ preliminary
and final estimates of the midpoint times at C2 in succes-
sive 2-second intervals with respect to C1. We compare
these estimates with the ground truth discrepancy, which
is 0. There are 300 2-second intervals in total; we report
the average and the 99th percentile discrepancies. In the
case of different FPGAs, we compare the estimates from
HUYGENS with the estimate from the direct channel. Ta-
ble 3 contains the results.

Single NetFPGA Different NetFPGAs
Prelim Final Prelim Final

(net effect) (net effect)
Mean of 41.4 11.2 47.8 13.4abs. error (ns)

99th percentile 91.0 22.0 92.1 30.2of abs. error (ns)

Table 3: HUYGENS synchronization accuracy: 16-hour exper-
iment in T-1 at 40% load with K = 10

We see that the network effect (loop-wise correc-
tion) is quite powerful, yielding a 3-4x improvement in

11The RTT between the FPGAs is 8 clock cycles (64ns) or smaller.
12Section 8 presents results from a 16 hour run.

90 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

the accuracy of clock synchronization. The most com-
pelling demonstration is the single FPGA comparison in
which the ground truth is unambiguously 0. The dif-
ferent FPGA comparison shows HUYGENS with loop
correction obtains the same performance as an almost
error-free, direct connection between the two clocks even
though in HUYGENS the clocks are connected through a
network of intermediaries.

Figure 10 shows a 2 minute sample trajectory of the
errors as well as the distribution of the errors over 10
minutes in the same FPGA comparison.

0 20 40 60 80 100 120

Time (sec)

−40

−20

0

20

40

E
rr

or
(n

s)

Error

(a) A 2 min zoom-in

−40 −20 0 20 40

Error (ns)

0

500

1000

1500

2000

2500

3000

3500

4000

N
um

be
ro

fs
am

pl
in

g
po

in
ts

(b) Distribution of errors

Figure 10: HUYGENS vs ground truth for 2 ports on the same
NetFPGA: 16-hour experiment at 40% load with K = 10

7.1 The network effect

We consider the benefit of the network effect by increas-
ing K from 2 to 12. Under an assumed theoretical model,
it was stated in Section 5 that this would reduce the stan-
dard deviation of the clock synchronization error by a
factor 1√

K
. Figure 11 quantifies the benefit of the net-

work effect for the mean of the absolute error and the
99th percentile errors as K gets larger.

0 2 4 6 8 10 12

K

0

10

20

30

40

50

E
rr

or
(n

s)

mean
99th percentile

(a) Same NetFPGA

0 2 4 6 8 10 12

K

0

10

20

30

40

50

E
rr

or
(n

s)

mean
99th percentile

(b) Different NetFPGAs

Figure 11: Mean and 99th percentile synchronization error in
T-1 as K varies with 40% load

7.2 Performance under high load

Figure 12 shows the accuracy of HUYGENS under dif-
ferent network loads. As can be seen, even at 90% load
HUYGENS is still able to synchronize clocks with 99th

percentile error smaller than 60 nanoseconds. HUYGENS
is robust to very high network load for the following
reasons: (i) It applies intensive statistical procedures on
each 2 seconds of probe data; the 2 second interval hap-

pens to be long enough that, even at very high load, a
small number of probes go though empty queues, allow-
ing HUYGENS to obtain accurate estimates. (ii) HUY-
GENS takes advantage of the redundant connectivity in
the network: even if one probing pair is blocked due to
congestion, the two clocks in this probing pair will still
quite likely be able to reach other clocks and synchronize
with them. (iii) Loop-wise correction is able to identify
and compensate probing pairs which are badly affected
by high load. We couldn’t load T-1 at more than 90% be-
cause the switches in T-1 have shallow buffers and drop
large numbers of packets, leading to excessive TCP time-
outs.

0 10 20 30 40 50 60 70 80 90

Network load (%)

0

10

20

30

40

50

60

E
rr

or
(n

s)

mean
99th percentile

(a) Same NetFPGA

0 10 20 30 40 50 60 70 80 90

Network load (%)

0

10

20

30

40

50

60

E
rr

or
(n

s)

mean
99th percentile

(b) Different NetFPGAs

Figure 12: HUYGENS error at different loads in T-1, K = 10.

7.3 Comparision with NTP
Since NTP is a widely-used algorithm and does not re-
quire specialized hardware, it is worth comparing it to
HUYGENS on T-1. For fairness, we let NTP use the
same hardware timestamps as HUYGENS, although al-
most all real-world implementations of NTP use CPU
timestamps.

Load Method Single NetFPGA Different NetFPGAs
Mean of 99th percen- Mean of 99th percen-
abs. error tile of abs. abs. error tile of abs.

(ns) error (ns) (ns) error (ns)
0% HUYGENS 10.2 18.5 11.3 19.5

NTP 177.7 558.8 207.8 643.6
40% HUYGENS 11.2 22.0 13.4 30.2

NTP 77975.2 347638.4 93394.0 538329.9
80% HUYGENS 14.3 32.7 16.4 38.4

NTP 211011.7 778070.4 194353.5 688229.1

Table 4: A comparison of HUYGENS and NTP.

Table 4 shows that, even with hardware timestamps,
NTP’s error is 4 orders of magnitude larger than HUY-
GENS’s under medium to high network loads. Note that
although some implementations of NTP use a DAG-like
graph to synchronize a clock with clocks which are up-
stream on the DAG, this operation is local when com-
pared to the more global loop-wise correction step in the
network effect.

8 Real-time Huygens

We now extend HUYGENS to get a real-time version,
HUYGENS-R. Underlying this extension is the empiri-

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 91

cal observation in Section 4 that clock frequencies are
slowly varying. Therefore, a linear extrapolation of the
estimates of HUYGENS over a few seconds will yield a
reasonably accurate real-time clock synchronization al-
gorithm.

The extension is best described using Figure 13. Con-
sider clocks C1 and Ci. Let Ik be the time interval
[2(k−1),2k). Step 5 of the HUYGENS algorithm yields
the final offset of the midpoint of each Ik at Ci from the
midpoint of the same interval at C1. For example, T2 +3
is the time at Ci when the time at C1 is 3 seconds; in gen-
eral, Tk +(2k−1) is the time at Ci when the time at C1 is
2k−1 seconds. By connecting the Tk with straight lines,
we get the HUYGENS offsets between Ci and C1 at all
times.

The green points, Ol , are the offsets between clocks
Ci and C1 for the real-time version. They are obtained as
shown in the figure: Ol lies on the line from Tl to Tl+1
when the time at C1 equals 2l+6. Thus, O1 is on the line
from T1 to T2 when C1’s time equals 8, etc. Connect the
successive points Ol and Ol+1 using straight lines to ob-
tain the green curve. This curve gives the HUYGENS-R
offsets between clocks Ci and C1 at all times after 8 sec-
onds. Since HUYGENS-R is an extrapolation of HUY-
GENS, it is not defined until some time after HUYGENS
has been operational. As defined above, the earliest time
at which HUYGENS-R can provide synchronized clocks
is when C1’s time equals 8 seconds.

0 2 4 6 8 10 12 14 16

T1
T2 T3 T4

T5
T6

T7 T8

O1

O2
O3

O4

O5

Time at C1

Time at Ci

- Time at C1

Figure 13: From HUYGENS to HUYGENS-R

Figure 14 quantifies the accuracy of HUYGENS-R us-
ing a single NetFPGA. In part (a) of the figure we see that
while HUYGENS-R’s errors are worse than HUYGENS’
errors, they are not much worse. Part (b) of the figure
gives a distribution of the errors. Under 40% load, the av-
erage value and the 99th percentile of the absolute error
are 14.1ns and 43.5ns for HUYGENS-R, slightly larger
than the corresponding numbers of 11.0ns and 22.7ns
for HUYGENS. These numbers increase to 22.1ns and
55.0ns respectively, versus 14.3ns and 32.7ns for HUY-
GENS under 80% network load.

Deployment. Even though HUYGENS and HUYGENS-R
work effectively at 90% load, the desire for “high avail-

0 20 40 60 80 100 120

Time (sec)

−30

−20

−10

0

10

20

30

E
rr

or
(n

s)

Offline Error
Real-time Error

(a) A 2 min zoom-in

−40 −20 0 20 40

Error (ns)

0

200

400

600

800

1000

1200

1400

1600

1800

N
um

be
ro

fs
am

pl
in

g
po

in
ts

(b) Distribution of errors

Figure 14: HUYGENS-R vs HUYGENS: 16-hour experiment
at 40% load with K = 10

ability” in practice may require the use of a dedicated
IEEE 802.1 QoS priority for the probes. This not only
isolates probe traffic (thereby ensuring that HUYGENS
and HUYGENS-R run at all loads), but by giving probe
traffic the highest priority, we can also reduce the effect
of queueing delays.

9 Conclusion

In this paper, we investigated the practicality of deploy-
ing accurate timestamping as a primitive service in data
center networks, in support of a number of higher-level
services such as consistency in replicated databases and
congestion control. We set out to achieve synchroniza-
tion accuracy at the granularity of tens of nanoseconds
for all servers in a data center with low overhead among
a number of dimensions, including host CPU, network
bandwidth, and deployment complexity. When com-
pared with existing approaches to clock synchroniza-
tion, we aimed to support currently functioning data cen-
ter deployments with no specialized hardware, except
NICs that support hardware timestamping (e.g., PHC).
With these goals, we introduced HUYGENS, a probe-
based, end-to-end clock synchronization algorithm. By
using coded probes, Support Vector Machines and the
network effect, HUYGENS achieves an accuracy of 10s
of nanoseconds even at high network load. HUYGENS
can scale to the whole data center since each server
only needs to probe a constant number (10–20) of other
servers and the resulting data can be processed in-place.
In particular, the parameters and the 2-second update
times HUYGENS uses remain the same regardless of the
number of servers. In a 40 Gbps data center testbed
HUYGENS only consumes around 0.05% of the servers
bandwidth and less than 0.44% of its CPU time. Since it
only requires hardware timestamping capability which is
widely-available in modern NICs, HUYGENS is ready for
deployment in current data centers. We are currently ex-
ploring the performance of HUYGENS in wide area set-
tings and are seeing promising results.

92 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References
[1] CockroachDB. https://github.com/cockroachdb/

cockroach. Accessed: 2017-9-22.

[2] PTP hardware clock infrastructure for Linux. https://www.

kernel.org/doc/Documentation/ptp/ptp.txt. Accessed:
2017-9-22.

[3] Simple Network Management Protocol. https://en.

wikipedia.org/wiki/Simple_Network_Management_

Protocol. Accessed: 2017-9-22.

[4] IEEE Standard for a Precision Clock Synchronization Protocol
for Networked Measurement and Control Systems. IEEE Stan-
dard 1588 (2008).

[5] IEEE Standard for Local and metropolitan area networks–Media
Access Control (MAC) Bridges and Virtual Bridged Local Area
Networks–Amendment 20: Shortest Path Bridging. IEEE Stan-
dard 802.1AQ (2012).

[6] IEEE Standard for Local and metropolitan area networks - Sta-
tion and Media Access Control Connectivity Discovery. IEEE
Standard 802.1AB (2016).

[7] ALIZADEH, M., GREENBERG, A., MALTZ, D. A., PADHYE,
J., PATEL, P., PRABHAKAR, B., SENGUPTA, S., AND SRID-
HARAN, M. Data center TCP (DCTCP). In ACM SIGCOMM
computer communication review (2010), vol. 40, ACM, pp. 63–
74.

[8] CORBETT, J. C., DEAN, J., EPSTEIN, M., FIKES, A., FROST,
C., FURMAN, J. J., GHEMAWAT, S., GUBAREV, A., HEISER,
C., HOCHSCHILD, P., HSIEH, W. C., KANTHAK, S., KOGAN,
E., LI, H., LLOYD, A., MELNIK, S., MWAURA, D., NAGLE,
D., QUINLAN, S., RAO, R., ROLIG, L., SAITO, Y., SZYMA-
NIAK, M., TAYLOR, C., WANG, R., AND WOODFORD, D.
Spanner: Googles globally distributed database. ACM Transac-
tions on Computer Systems 31, 3 (2013), 8.

[9] CORTES, C., AND VAPNIK, V. Support-vector networks. Ma-
chine learning 20, 3 (1995), 273–297.

[10] JAIN, M., AND DOVROLIS, C. Ten fallacies and pitfalls on end-
to-end available bandwidth estimation. In Proceedings of the 4th
ACM SIGCOMM conference on Internet measurement (2004),
ACM, pp. 272–277.

[11] JETWAY COMPUTER CORPORATION. Cableless & Fanless Em-
bedded Barebone Celeron J1900 / 10 Intel Gigabit LAN . http:
//www.jetwaycomputer.com/spec/JBC390F541AA.pdf, 11
2016. Accessed: 2017-9-22.

[12] KESHAV, S. The packet pair flow control protocol. International
Computer Science Institute, 1991.

[13] LAMPORT, L. Time, clocks, and the ordering of events in a dis-
tributed system. Communications of the ACM 21, 7 (1978), 558–
565.

[14] LEE, K. S., WANG, H., SHRIVASTAV, V., AND WEATHER-
SPOON, H. Globally synchronized time via datacenter networks.
In Proceedings of the 2016 conference on ACM SIGCOMM 2016
Conference (2016), ACM, pp. 454–467.

[15] LENG, M., AND WU, Y.-C. Distributed clock synchroniza-
tion for wireless sensor networks using belief propagation. IEEE
Transactions on Signal Processing 59, 11 (2011), 5404–5414.

[16] LISKOV, B. Practical uses of synchronized clocks in distributed
systems. Distributed Computing 6, 4 (1993), 211–219.

[17] MAGGS, M. K., O’KEEFE, S. G., AND THIEL, D. V. Consen-
sus clock synchronization for wireless sensor networks. IEEE
sensors Journal 12, 6 (2012), 2269–2277.

[18] MAHAJAN, R., AND WATTENHOFER, R. On consistent updates
in software defined networks. In Proceedings of the Twelfth ACM
Workshop on Hot Topics in Networks (2013), ACM, p. 20.

[19] MALLADA, E., MENG, X., HACK, M., ZHANG, L., AND
TANG, A. Skewless network clock synchronization without dis-
continuity: Convergence and performance. IEEE/ACM Transac-
tions on Networking (TON) 23, 5 (2015), 1619–1633.

[20] MERKEL, D. Docker: lightweight linux containers for consistent
development and deployment. Linux Journal 2014, 239 (2014),
2.

[21] MILLS, D. L. Internet time synchronization: the network time
protocol. IEEE Transactions on communications 39, 10 (1991),
1482–1493.

[22] MOREIRA, P., SERRANO, J., WLOSTOWSKI, T., LOSCHMIDT,
P., AND GADERER, G. White rabbit: Sub-nanosecond timing
distribution over ethernet. In 2009 International Symposium on
Precision Clock Synchronization for Measurement, Control and
Communication (2009), IEEE, pp. 1–5.

[23] MURTA, C. D., TORRES JR, P. R., AND MOHAPATRA, P.
QRPp1-4: Characterizing Quality of Time and Topology in a
Time Synchronization Network. In IEEE Globecom 2006 (2006),
IEEE, pp. 1–5.

[24] OUSTERHOUT, J. K., AGRAWAL, P., ERICKSON, D.,
KOZYRAKIS, C., LEVERICH, J., MAZIRES, D., MITRA, S.,
NARAYANAN, A., PARULKAR, G. M., ROSENBLUM, M.,
RUMBLE, S. M., STRATMANN, E., AND STUTSMAN, R. The
case for ramclouds: scalable high-performance storage entirely
in dram. Operating Systems Review 43, 4 (2010), 92–105.

[25] PARKINSON, B. W. Progress in astronautics and aeronau-
tics: Global positioning system: Theory and applications, vol. 2.
AIAA, 1996.

[26] PÁSZTOR, A., AND VEITCH, D. Pc based precision timing with-
out gps. In ACM SIGMETRICS Performance Evaluation Review
(2002), vol. 30, ACM, pp. 1–10.

[27] PENROSE, R. A generalized inverse for matrices. In Mathemat-
ical proceedings of the Cambridge philosophical society (1955),
vol. 51, Cambridge Univ Press, pp. 406–413.

[28] PERRY, J., OUSTERHOUT, A., BALAKRISHNAN, H., SHAH, D.,
AND FUGAL, H. Fastpass: A centralized zero-queue datacenter
network. In ACM SIGCOMM Computer Communication Review
(2014), vol. 44, ACM, pp. 307–318.

[29] ROY, A., ZENG, H., BAGGA, J., PORTER, G., AND SNOEREN,
A. C. Inside the social network’s (datacenter) network. In ACM
SIGCOMM Computer Communication Review (2015), vol. 45,
ACM, pp. 123–137.

[30] SINGH, A., ONG, J., AGARWAL, A., ANDERSON, G., ARMIS-
TEAD, A., BANNON, R., BOVING, S., DESAI, G., FELDER-
MAN, B., GERMANO, P., KANAGALA, A., PROVOST, J., SIM-
MONS, J., TANDA, E., WANDERER, J., HLZLE, U., STUART,
S., AND VAHDAT, A. Jupiter rising: A decade of clos topologies
and centralized control in google’s datacenter network. In Pro-
ceedings of the 2015 ACM Conference on Special Interest Group
on Data Communication (2015), vol. 45, pp. 183–197.

[31] SOLIS, R., BORKAR, V. S., AND KUMAR, P. A new distributed
time synchronization protocol for multihop wireless networks. In
Decision and Control, 2006 45th IEEE Conference on (2006),
IEEE, pp. 2734–2739.

[32] WATT, S. T., ACHANTA, S., ABUBAKARI, H., SAGEN, E., KO-
RKMAZ, Z., AND AHMED, H. Understanding and applying pre-
cision time protocol. In 2015 Saudi Arabia Smart Grid (SASG)
(2015), IEEE, pp. 1–7.

[33] YUASA, H., SATAKE, T., CARDONA, M. J., FUJII, H., YA-
SUDA, A., YAMASHITA, K., SUZAKI, S., IKEZAWA, H.,
OHNO, M., MATSUZAKI, A., ET AL. Virtual LAN system,
July 4 2000. US Patent 6,085,238.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 93

[34] ZHOU, H., NICHOLLS, C., KUNZ, T., AND SCHWARTZ, H. Fre-
quency accuracy & stability dependencies of crystal oscillators.
Carleton University, Systems and Computer Engineering, Tech-
nical Report SCE-08-12 (2008).

94 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

