
Open access to the Proceedings of
the 15th USENIX Symposium on Networked

Systems Design and Implementation
is sponsored by USENIX.

PCC Vivace: Online-Learning Congestion Control
Mo Dong and Tong Meng, UIUC; Doron Zarchy, The Hebrew University of Jerusalem;

Engin Arslan, UIUC; Yossi Gilad, MIT; Brighten Godfrey, UIUC;
Michael Schapira, The Hebrew University of Jerusalem

https://www.usenix.org/conference/nsdi18/presentation/dong

This paper is included in the Proceedings of the
15th USENIX Symposium on Networked

Systems Design and Implementation (NSDI ’18).
April 9–11, 2018 • Renton, WA, USA

ISBN 978-1-939133-01-4

PCC Vivace: Online-Learning Congestion Control

Mo Dong*, Tong Meng*, Doron Zarchy†, Engin Arslan‡, Yossi Gilad§,
P. Brighten Godfrey* and Michael Schapira†

*UIUC, †Hebrew University of Jerusalem, ‡University of Nevada, Reno, §MIT

Abstract

TCP’s congestion control architecture suffers from no-
toriously bad performance. Consequently, recent years
have witnessed a surge of interest in both academia and
industry in novel approaches to congestion control. We
show, however, that past approaches fall short of at-
taining ideal performance. We leverage ideas from the
rich literature on online (convex) optimization in machine
learning to design Vivace, a novel rate-control protocol,
designed within the recently proposed PCC framework.
Our theoretical and experimental analyses establish that
Vivace significantly outperforms traditional TCP vari-
ants, the previous realization of the PCC framework, and
BBR in terms of performance (throughput, latency, loss),
convergence speed, alleviating bufferbloat, reactivity to
changing network conditions, and friendliness towards
legacy TCP in a range of scenarios. Vivace requires only
sender-side changes and is thus readily deployable.

1 Introduction

The recent surge of interest in both academia and in-
dustry in improving Internet congestion control [8, 11,
13, 19, 21, 22, 24, 25, 31, 32, 36] has made it appar-
ent that today’s prevalent congestion control algorithms,
the TCP family, fall short of important performance re-
quirements. Indeed, transport rate control faces numer-
ous challenges. First and foremost, a congestion con-
trol architecture should be able to efficiently utilize net-
work resources under varying and complex network con-
ditions. This includes optimizing for throughput, loss,
and latency, and doing so in a plethora of environments
— potentially with non-congestion loss [8], high-RTT
cross-continent links, highly dynamic networks such as
WiFi and LTE links, etc. Second, congestion control
should guarantee quick convergence to stable and fair
rates when multiple senders compete over network re-
sources. This desideratum is particularly important for
applications like high quality or virtual reality video

streaming. Last, a congestion control scheme should be
easy and safe (e.g., sufficiently friendly to existing pro-
tocols) to deploy.

Traditional algorithms [6, 15, 23] fail to satisfy the
first two requirements; their performance can be as high
as 10× away from the optimal under non-congestion
packet loss [11]. Recent proposals, including Remy [31],
PCC [11], and BBR [8], investigate new approaches
to this challenge. Remy replaces the human designer
with an offline optimization scheme that searches for the
best scheme within a certain design space, for a pre-
specified range of network conditions. While they can
attain high performance, Remy-generated TCPs are in-
herently prone to degraded performance when the actual
network conditions deviate from input assumptions [27].

BBR takes a white-box network-modeling approach,
translating change patterns in performance measure-
ments (e.g., increase in delivery rate) to presumed un-
derlying network conditions (e.g., bottleneck through-
put and latency). PCC takes a black box approach: a
PCC sender observes performance metrics resulting from
sending at a specific rate, converts these metrics into a
numerical utility value, and adapts the sending rate in the
direction that empirically is associated with higher util-
ity. Our experiments indicate that while improving sub-
stantially over traditional schemes, both the specific real-
ization of PCC in [11], termed “PCC Allegro” (or sim-
ply Allegro) henceforth, and BBR’s implementation [8],
fail to achieve optimal low latency and exhibit far-from-
ideal tradeoffs between convergence speed and stabil-
ity. Specifically, BBR exhibits high rate variance and
high packet loss rate upon convergence, whereas PCC
Allegro’s convergence time is overly long. In addition,
when BBR’s model of the network does not reflect the
complexities of reality, performance can suffer severely.
Lastly, they are both highly aggressive towards TCP, al-
though BBR is designed with TCP-friendliness in mind.

To address the above limitations, we draw inspiration
from literature on online (convex) optimization [12, 16,
37] to design PCC Vivace, a novel congestion control

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 343

scheme. Vivace adopts the high-level architecture of
PCC – a utility function framework and a learning rate-
control algorithm – but realizes both components dif-
ferently. First, Vivace relies on a new, learning-theory-
informed framework for utility derivation that incorpo-
rates crucial considerations such as latency minimization
and TCP friendliness. Second, Vivace employs prov-
ably (asymptotically) optimal online optimization based
on gradient ascent to achieve high utilization of network
capacity, swift reaction to changes, and fast and stable
convergence. In particular, our contributions are:

(1) A principled framework for transport utility with
multiple novel consequences. We prove that for a
proper choice of utility functions that incorporate not
only throughput and loss (as in Allegro), but also la-
tency, a stable global rate configuration (Nash equilib-
rium) always exists; show a tradeoff between random
loss tolerance and packet loss at convergence with com-
peting senders; and allow controllable capacity alloca-
tion among competing senders with heterogeneous utili-
ties (suggesting a future opportunity for centralized net-
work control in an SDN or OpenTCP [13] architecture).

(2) A rate control scheme that utilizes gradient-ascent
algorithms from online learning theory to achieve an
improved tradeoff between stability and reactivity. We
prove that our rate-control scheme guarantees quick con-
vergence to the equilibrium guaranteed by our choice
of utility functions, and employ additional techniques to
improve rate control in the face of noisy measurements,
such as linear regression and low-pass filtering.

(3) Extensive experiments with PCC Vivace, PCC Al-
legro, BBR, and various TCP variants, in controlled en-
vironments, real residential Internet scenarios, and with
video-streaming applications. Highlights include: im-
proved performance in rapidly changing conditions (70%
less packet loss and 72.5% higher throughput than PCC
Allegro, and around 20% median throughput gain over
BBR); convergence about 2× faster than Allegro and sta-
bility about 2× better than BBR; 57% less video buffer-
ing time than BBR with multiple ongoing streams; and
significantly improved TCP friendliness.

By no means do we expect that Vivace is the end of
the story. Optimizing rate quickly and accurately with
limited information in a complex, noisy environment is
difficult, and we highlight a simulated LTE environment
where a “white-box” model-based approach engineered
for this context, namely Sprout [32], outperforms Vi-
vace, as a case for future work. However, Vivace repre-
sents a substantial overall advance, showing how a strong
learning-theoretic basis yields practical improvements.

2 Rate-Control Through Online Learning
When approached from an online learning perspective,
the challenges outlined in § 1 fall naturally into the cat-

egory of online optimization in machine learning and
game theory [16, 37] (a.k.a. “no-regret learning”). On-
line learning provides a useful and powerful abstraction
for decision making under uncertainty. In the online
learning setting, a decision maker repeatedly selects be-
tween available strategies. Only after selection is the de-
cision maker aware of the implications of the selected
strategy, in terms of a resulting utility value. State-of-the-
art online learning algorithms provide provable guaran-
tees (namely, the classical “no regret” guarantee [16, 37])
even under complete uncertainty about the environment,
i.e., without assuming/inferring anything about the rela-
tion between choices of strategies and the induced utility
values. In addition, results in game theory establish that
online learning algorithms “play well” together, in the
sense that, under the appropriate conditions, global con-
vergence to a stable equilibrium is guaranteed when there
are multiple decision makers.

We are thus inspired to apply ideas and machinery
from online learning to rate control on the Internet, which
can naturally be cast as an online learning task as follows.
A traffic sender repeatedly selects between sending rates.
After sending at a certain rate for “sufficiently long”, the
sender learns its performance implications by translating
aggregated statistics (e.g., achieved goodput, packet loss
rate, average latency) into a numerical utility value, and
then adapts the sending rate in response. Importantly, the
application of online learning to rate-control is particu-
larly challenging since often only very limited feedback
from the network is available to the sender, and so accu-
rately determining the utility derived from sending at a
certain rate is sometimes infeasible.

PCC [11] is a promising step towards online-learning-
based congestion control. The gist of its architecture is
as follows. Time is divided into consecutive intervals,
called Monitor Intervals (MIs), each devoted to “testing”
the implications for performance of sending at a certain
rate. PCC aggregates selective ACKs for packets sent in
a MI into the above-mentioned meaningful performance
metrics, and feeds these metrics into a utility function
that translates them into a numerical value. PCC’s rate-
control module continuously adjusts the sending rate in
the direction that is most beneficial in terms of utility.

However, the specific realization of PCC Allegro
in [11] is far from tapping the full potential of online
learning. First, Allegro uses a somewhat arbitrary choice
of utility function. While [11] proves this choice induces
desirable properties in some settings, fair convergence
is not provably guaranteed when utility functions are
latency-aware, reasoning about fundamental tradeoffs in
parameter settings is difficult, and there is no theoreti-
cal understanding of what happens when Allegro senders
with different utility functions interact with each other.

Second, Allegro inherently ignores the information re-

344 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 1: Utility-based rate-control
flected in the utility when deciding on step size. Sup-
pose Allegro’s utility function is as described in Fig-
ure 1, where C is the capacity of a single link. Then,
consider two possible initial rates for the Allegro-sender:
r1 and r2 (r1 < C� r2). When starting at r1, the Alle-
gro sender will increase its rate to r1(1+ ε), for a fixed
ε > 0, whereas the initial rate r2 will be followed by a
decrement to r2(1− ε). Intuitively, this rate-adjustment
is not optimal; a small ε will result in slowly lowering the
rate from r2, leading to long convergence time, whereas
choosing too large an ε will increase the rate from r1
by too much, overshooting the optimum. Indeed, any
choice of fixed increase/decrease step size is bound to be
too much in some circumstances and too little in others,
resulting in suboptimal reactivity or convergence.

The combination of Allegro’s fairly naive rate control
scheme and its ad hoc choice of utility function prevents
it from attaining good performance under rapidly chang-
ing network conditions, does not alleviate bufferbloat,
results in convergence rate/stability tradeoff that is bet-
ter TCP’s yet still suboptimal, leads to high packet loss
upon convergence, and is overly aggressive towards TCP.
Hence, despite a promising architecture, the operational
instantiation of PCC in [11] is still far from optimal.

To address the above limitations, Vivace’s design bor-
rows ideas from the rich body of literature on online con-
vex optimization [12, 16, 37] to replace the realization of
the two crucial components of PCC’s high-level architec-
ture: (1) the utility function framework, and (2) the learn-
ing rate-control algorithm. First, Vivace relies on a new,
learning-theory-informed framework for utility deriva-
tion [12], which guarantees multiple competing Vivace
senders will converge to a unique stable rate configura-
tion that is fair and near-optimal. Second, Vivace em-
ploys provably optimal gradient-ascent-based no-regret
online optimization [37] to adjust sending rates, taking
into account not only the direction (increase/decrease)
that is more beneficial utility-wise, but also the extent to
which increasing/decreasing the rate impacts utility.
No-regret learning. The classical objective in online
learning theory is regret minimization. We give an infor-
mal exposition of the implications of no-regret for con-
gestion control here. See [16, 37] for a more complete
treatment. A “no-regret” rate-control protocol, such as
Vivace, guarantees that its choices of rates are asymptot-
ically (across time) no worse, utility-wise, than sending
at what would have been (in hindsight) the best fixed rate.

No-regret is a useful guarantee for two reasons.
First, no-regret provides a formal performance guaran-

tee for individual senders across all network conditions,
even highly dynamic or adversarially chosen (within the
scope of the model). We believe Vivace is the first con-
gestion control scheme to provide such a guarantee.

Second, no-regret provides a powerful lens for theo-
retical analysis, which we will use to reason formally
about convergence with multiple competing no-regret
senders, even with heterogeneous utility functions across
the senders, and also about tradeoffs between resilience
to non-congestion loss and loss upon convergence.

Limitations of no-regret. As no-regret relates perfor-
mance to the best fixed strategy, the quality of this guar-
antee in a dynamic environment depends on the speed at
which the protocol minimizes “regret” [16]. If, from an
arbitrary starting state, the regret vanishes to a desired
low value within T time units, then the no-regret guar-
antee applies relative to the best fixed strategy within ev-
ery T units of time. Empirically (§5.1.4), Vivace adapts
quickly to changes in network conditions.

Of course, a guarantee of near-optimality relative to
the best dynamic strategy would be even better. However,
such guarantees often entail assumptions about the en-
vironment, e.g., that the network behavior exhibits high
regularity. Vivace reflects the design choice of avoiding
such assumptions. That said, an important direction for
future research is to quantify to what extent real-world
networks are sufficiently predictable (e.g., via machine
learning) to improve rate selection.
PCC Allegro vs. PCC Vivace. Compared with PCC Al-
legro, PCC Vivace’s utility framework (1) incorporates
latency awareness, mitigating the bufferbloat problem
and the resulting packet loss and latency inflation, (2)
extends to heterogeneous senders with different utility
functions, enabling flexible network-resource allocation,
and (3) induces more friendly behavior towards TCP, and
thus is better suited for real-world deployment. In addi-
tion, Vivace’s rate-control algorithm (1) provides faster,
more stable convergence, and (2) reacts more quickly
upon changes to network conditions.

3 Vivace’s Utility Framework
Vivace divides time into consecutive Monitor Intervals
(MIs). At the end of each MI, sender i applies the follow-
ing utility function to transform the performance statis-
tics gathered at that MI to a numerical utility value:

u
(

xi,
d(RT Ti)

dT
,Li

)
= xt

i−bxi
d(RT Ti)

dT
− cxi×Li, (1)

where 0< t < 1,b≥ 0,c> 0, xi is sender i’s sending rate,
and Li is its observed loss rate. The term d(RT Ti)

dT is the ob-
served “RTT gradient” during this MI, i.e., the increase in
latency experienced within this MI. The parameters b,c, t
are constants. Intuitively, utility functions of the above

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 345

form reward increase in throughput (via xt
i), and penalize

increase in both latency (bxi
d(RT Ti)

dT) and loss (cxi×Li).
We next identify the properties of utility functions within
our framework, and refer to [2] for formal analysis.

To see why Vivace’s utility function does not consider
the absolute value of latency, instead using RTT gradi-
ent, consider the following example. A single sender on
a link with a large buffer sends at a rate of twice the ca-
pacity of the link for a single MI; then, in the next MI,
it tries a slightly lower but still over-capacity rate. Such
a sender would experience higher absolute latency in the
second MI than in the first MI (since the link’s queue is
only further lengthened), even though lowering the rate
was clearly the right choice. To learn within a single MI
that lowering the rate is more beneficial, the sender ex-
amines the rate at which latency increases or decreases.

The choice of values for the parameters b, c and t
in the utility function have crucial implications for the
existence of an equilibrium point when multiple Vivace
senders compete, and for the latency and congestion loss
in such an equilibrium. Due to space limitations, the full
proofs of the theorems in this section appear in [2].

3.1 Stability and Fairness
When t ≤ 1, the family of utility functions in Equation 1
falls into the category of “socially-concave” in game the-
ory [12]. A utility function within this category, when
coupled with a theoretical model of Vivace’s online-
learning rate-control scheme (described in § 4), guaran-
tees high performance from the individual sender’s per-
spective and ensures quick convergence to a global rate-
configuration [16, 37]. Specifically, we consider a net-
work model with n senders competing on a bottleneck
link with a FIFO queue. The following theorem shows
convergence to a fair equilibrium.

Theorem 1. When n Vivace-senders share a bottleneck
link, and each Vivace-sender i’s utility function is defined
as in Eq. 1, the senders’ sending rates converge to a fixed
configuration (x∗1, . . . ,x

∗
n) such that x∗1 = x∗2 = . . .= x∗n.

We further analyze the latency in equilibrium. Ideally,
upon convergence the latency will not exceed the base
RTT, i.e., the RTT when the link buffer is not occupied.
Theorem 2 shows how Vivace can achieve that through a
proper assignment of value for the parameter b.

Theorem 2. Let C denote the capacity of the bottleneck
link. If b≥ tn2−tCt−1, then the latency in the unique sta-
ble configuration is the base RTT.

3.2 Random Loss vs. Congestion
Non-congestion packet loss (due to lossy wireless links,
port flaps on routers, etc.) is a common phenomenon
in today’s Internet [8]. We say a rate-control protocol

is p-loss-resilient if that protocol does not decrease its
sending rate under random loss rate of at most p.

For Vivace to be p-loss-resilient, we need to set c in the
above utility function framework to be c = tCt−1

p (details
in [2]). However, enduring more random loss comes at
a price. To simplify the analysis, assume that b = 0 (i.e.,
the utility function is purely loss-based). The following
theorem captures a link between random loss resilience
and loss due to many competing senders.

Theorem 3. In a system of n Vivace senders, each p-
loss-resilient, the loss rate L of each sender i in equilib-
rium (with no random loss) satisfies

p =
nL−L+1

(1−L)1−tn2−t . (2)

To illustrate Theorem 3 with simplified algebra,1 sup-
pose that t = 1 and b = 0. Enduring random loss rate
of p implies that the derivative of the utility function u
satisfies:

u̇ = 1− cp≥ 0, and so: c≤ 1/p

By plugging t = 1 in Equation 2, we find that in a
system of n Vivace senders sharing a link, the loss rate
experienced by each sender under equilibrium (to which
Vivace is guaranteed to converge, by Theorem 1), given
n > c (if n < c, then L = 0), is L = p n−1/p

n−1 .
When n → ∞, the congestion loss rate on conver-

gence approaches the random loss resilience p! There-
fore, withstanding more random loss comes at the cost
of suffering more loss upon convergence for a large
number of senders. Our experiments with TCP, BBR,
and Allegro, show a similar tradeoff, indicating that this
is a barrier for current congestion control frameworks.

3.3 Heterogeneous Senders
So far, our discussion focused on the environment where
the senders are homogeneous, i.e., they employ the same
utility function. However, our utility framework allows
us to reason about interactions between heterogeneous
Vivace senders competing over a shared link.

Recent studies on SDN-based traffic engineering [17,
18] and network optimization for big-data systems [9]
suggest a need for resource allocation at the transport
layer. However, globally allocating network resources
to transport-layer connections usually involves complex
schemes for rate-limiting at end-hosts, or utilizing in-
network isolation mechanisms. OpenTCP [13] pro-
poses allocating bandwidth by tuning TCP parameters or
switching between TCP variants. Yet, as TCP has no
direct control knobs for global network-resource alloca-
tion, OpenTCP resorts to clever “hacks” and complicated
feedback loops to indirectly achieve such control.

1Our theorems require t < 1, but t can be arbitrarily close to 1.

346 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Vivace’s utility function framework, in contrast, pro-
vides flexibility in resource-allocation. As a concrete ex-
ample, consider the following loss-based utility:

u(xi,Li) = xi− cixi

(
1

1−Li
−1

)
(3)

This utility function, similar to that of § 3, induces a
unique stable rate configuration to which Vivace senders
are guaranteed to converge (more formally, it is also “so-
cially concave”). Now, suppose that n Vivace senders
share a link and the goal is to allocate the link’s band-
width C between the senders by assigning a rate of xi to
each sender such that ∑ j∈N x j =C. Then we have:

Theorem 4. A system of n Vivace senders, in which each
sender’s utility function is of the form in Equation 3, con-
verge to rate configuration x∗1,x

∗
2, ...,x

∗
n, if for each i∈ [n],

the loss penalty coefficient in Equation 3 is set to ci =
C
x∗i

.

Hence, one can flexibly adjust the bandwidth allocated
to each sender at equilibrium by tuning Vivace’s param-
eters {ci}. We experimentally validate this result in § 5.

4 Vivace’s Rate Control
Vivace’s rate control begins with a slow start phase in
which the sender doubles sending rate every MI and per-
manently exits slow start when its empirically-derived
utility value decreases for the first time. It then enters
the online learning phase, which we focus on here.

4.1 Key Idea and Challenges
Vivace’s online learning phase employs an online
gradient-ascent learning scheme to select transmission
rates. This choice of rate-control algorithm is very
appealing from an online optimization theory perspec-
tive [12, 16, 37]. Specifically, when the utility functions
are strictly convex, which is satisfied when t < 1 in our
utility function formulation (Equation 1), the following
two desiderata are fulfilled (see [2] for proofs). (1) Each
sender is guaranteed that employing Vivace is (asymp-
totically) no worse than the optimal fixed sending rate
in hindsight, termed the “no-regret” guarantee in online
learning literature [12, 16, 37]. This is a strong guarantee
in that it applies even when the sender is presented with
adversarial environments, but it is limited in the sense
that it quantifies performance with respect to the actual
history of experienced network conditions and not to the
conditions that would have resulted from sending at other
rates. (2) When multiple senders share the same link,
quick convergence to an equilibrium point is guaranteed.

In theory, applying gradient ascent to rate-control
means starting at some initial transmission rate and re-
peatedly estimating γ , by which we denote the gradi-
ent (with respect to sending rate) of the utility function,
through sampling and changing the rate by θγ , where θ

is initially set to be a very high positive number. With
time, θ gradually diminishes to 0. But realizing this in
practice involves nontrivial operational challenges.

The first challenge is deciding on the extent to which
the rate should be increased or decreased. The above
theoretical rate-adjustment rule suffers from two serious
problems: (a) The initial step size is potentially huge,
resulting in a sender jumping between very low (e.g.
1 Mbps) and very high rates (e.g. 500 Mbps) in tens of
milliseconds, causing high loss rates and latency infla-
tion. (b) As time goes by, and θ diminishes, changes in
rate become small, leading to slow reaction to changed
network conditions like newly-free capacity. Second,
there are challenges in the basic task of estimating γ .
What happens when the environment is noisy, e.g., due
to complex interactions between multiple senders, non-
congestion loss, or microbursts unrelated to long-term
congestion? We next explain how Vivace tackles this.

4.2 Translating Utility Gradients to Rates
Vivace’s online learning algorithm begins by computing
the gradient of the utility function. Suppose the current
sending rate is r. Then, in the next two MIs, the sender
will test the rates r(1+ε) and r(1−ε), compute the cor-
responding numerical utility values, u1 and u2, respec-
tively, and estimate the gradient of the utility function to
be γ = u1−u2

2εr . Then, Vivace utilizes γ to deduce the direc-
tion and extent to which rate should be changed, selects
the newly computed rate, and repeats the above process.

To convert γ into a change in rate, Vivace starts with
fairly low “conversion factor” and increases the conver-
sion factor value as it gains confidence in its decisions.
Specifically, initially θ is set to be a conservatively small
number θ0 and so, at first, the rate change is ∆r = θ0γ

(i.e., rnew = r+θ0γ). We introduce the concept of confi-
dence amplifier. Intuitively, when the sender repeatedly
decides to change the rate in the same direction (increase
vs. decrease), the confidence amplifier is increased. The
confidence amplifier is a monotonically nondecreasing
function that assigns a real value m(τ) to any integer
τ ≥ 0. After a sender makes τ consecutive decisions to
change the rate in the same direction, θ is set to m(τ)θ0
(and so the rate is changed by ∆r = m(τ)θ0γ). Setting
m(0) = 1 implies that initially the change in rate is θ0γ ,
as described above. When the direction at which rate is
adapted is reversed (increase to decrease or vice-versa),
τ is set back to 0 (and the above process starts anew).

Sampled utility-gradient can be excessively high due
to unreliable measurements or large changes to net-
work conditions between MIs. For instance, a burst of
losses when probing r(1− ε) and no losses when prob-
ing r(1+ ε) might result in huge γ and, consequently,
a drastic rate change that overshoots the link’s capac-
ity. To address this, we introduce a mechanism, called

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 347

the dynamic change boundary ω . Whenever Vivace’s
computed rate change (∆r) exceeds ωr, the effective rate
change is capped at ωr. The dynamic change bound-
ary is initialized to some predetermined value ω = ω0,
is gradually increased every time ∆r > ω , and is de-
creased when ∆r < ω . Specifically, ω is updated to
ω = ω0 + k · δ following k consecutive rate adjustments
in which the gradient-based rate-change ∆r exceeded the
dynamic change boundary, for a predetermined constant
δ > 0. Whenever ∆r ≤ r ·ω , Vivace recalibrates the value
of k in the formula ω = ω0+k ·δ to be the smallest value
for which ∆r ≤ rω . k is reset to 0 when the direction of
rate adjustment changes (e.g., from increase to decrease).

4.3 Contending with Unreliable Statistics
In general, accurate measurements require long observa-
tion time, yet that slows reaction to changing environ-
ments. We next discuss the ideas Vivace incorporates to
address this challenge.

Estimating the RTT gradient via linear regression.
The RTT gradient d(RT Tx)

dt in MI x could be estimated by
quantifying the RTT experienced by the first packet and
the last packet sent in that MI. To estimate the RTT gra-
dient more accurately, we utilize linear regression. Vi-
vace assembles the 2-dimensional data set of (sampled
packet RTT, time of sampling) for the packets in a MI,
and uses the linear-regression-generated slope (the “β

coefficient”) as the RTT gradient.

Low-pass filtering of RTT gradient. Non-congestion-
induced latency jitters often occur, e.g., because of recov-
ery from packet losses in the physical layer (especially on
wireless links), software packet processing devices, for-
warding path flaps, or simply measurement errors due to
processing time at the end-host networking stack. When
Vivace employs a latency-sensitive utility function, this
can result in misinformed decisions. To resolve this, Vi-
vace leverages a low-pass filtering mechanism that treats
latency gradient measurement smaller than fltlatency as 0,
to ignore small, brief latency jitters.

Double checking abnormal measurements. Occasion-
ally, measurements lead to “counterintuitive” observa-
tions. We address the specific case that sending faster
results in lower loss. While in general we avoid assump-
tions about the network, even with complex conditions
it is highly unlikely that sending faster is the cause of
lower loss; more likely, this is due to measurement noise
or changing conditions (e.g., another sender reducing its
rate). In this abnormal situation, Vivace “double checks”
by re-running the same pair of rates. If this produces the
same outcome in terms of which rate has higher utility,
Vivace averages the utility-gradients; otherwise it throws
out the original abnormal measurement.2

2In our experiments, double checking is mostly triggered during

MI timeout. Generally, all information regarding pack-
ets sent during an MI will be returned after approxi-
mately one RTT. However, in the case of sudden net-
work condition changes, a large number of packets can
be lost or delayed. The measurements Vivace did before
the sudden change are no longer meaningful. Therefore,
if Vivace has not learned the fate of all packets sent in an
MI when a certain timeout Ttimeout (a certain number of
RTTs) expires, Vivace halves the sending rate.

4.4 TCP Friendliness
A common requirement from new congestion control
schemes is to fairly share bandwidth with existing TCP
connections (e.g., CUBIC). Attaining perfect friendli-
ness to TCP can be at odds with achieving high perfor-
mance, as the congestion control protocol is expected to
both not aggressively take over spare capacity freed by a
TCP connection when it backs off, and quickly take over
spare capacity freed by the very same TCP connection
when it terminates. We conjecture that it is fundamen-
tally hard for any loss-based protocol to achieve consis-
tently high performance and at the same time be fair to-
wards TCP. The best is to hope it does not dominate TCP
too much. Worse yet, latency-aware protocols can be
entirely dominated by today’s prevalent loss-based TCP
CUBIC. Fast TCP [29], for instance, backs off as latency
deviates from the minimal latency due to TCP CUBIC
continuously filling the network buffer.

How, then, can a rate-control protocol both optimize
latency and avoid being “killed” by loss-based TCP con-
nections? We argue that the combination of Vivace’s util-
ity function and its rate control algorithm is a big step in
this direction. Informally, Vivace captures the objective
that can be expressed as “care about latency when your
rate selection makes a difference”. To see this, consider
the scenario that a Vivace sender is the only sender on a
certain link. It tries out two rates that exceed the link’s
bandwidth, and the buffer for that link is not yet full. Vi-
vace’s utility function will assign a higher value to the
lower of these rates, since the achieved goodput and loss
rate are identical to those attained when sending at the
higher rate, but the latency gradient is lower. Thus, in this
context, the Vivace sender behaves in a latency-sensitive
manner and reduces its transmission rate. Now, con-
sider the scenario that the Vivace sender is sharing a link
that is already heavily utilized by many loss-based pro-
tocols like TCP CUBIC and the buffer is, consequently,
almost always full. When testing different rates, the Vi-
vace sender will constantly perceive the latency gradi-
ent as roughly 0, and thus disregard latency and com-

changing network conditions and multiflow competition, and lowers
the packet loss rate with almost no influence on throughput, e.g., turn-
ing on double-checking lowers Vivace’s converged congestion loss
from close to 7% to 5%. We omit these results due to limited space.

348 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

MI duration 1 RTT
sampling step ε 0.05
initial conversion factor θ0 1
initial dynamic boundary ω0 0.05
dynamic boundary increment δ 0.1
RTT gradient filter threshold fltlatency 0.01
MI timeout Ttimeout 4 RTT
confidence amplifier m(τ) τ (τ ≤ 3)

2τ−3 (τ > 3)

Table 1: Vivace’s rate control default parameters

pete against the TCP senders over the link capacity, ef-
fectively transforming into a loss-based protocol. Our
experimental results in § 5.3 illustrate this intuition.

5 Implementation and Evaluation
We implemented a user-space prototype of Vivace based
on UDT [14]. We set the specific parameters for t,b,c
based on our theoretical analyses in § 3. We first set
t = 0.9, satisfying the requirement that t < 1 in our family
of utility functions, and then adjust the remaining param-
eters according to that t. We set b = 900 so as to achieve
(in theory) no inflation in latency with up to 1000 com-
peting senders on a 1000 Mbps bottleneck link, as estab-
lished in Theorem 2. We set the parameter c = 11.35 so
as to endure up to 5% random packet-loss rate according
to the formula in §3.2 that c= tCt−1

p . We believe these are
reasonable design choices in practice, and note that our
analysis enables tuning this parameter to accommodate
other scenarios. Unless stated otherwise, our evaluation
of Vivace uses the parameter default values in Table 1.
For BBR, we use the net-next Linux kernel v4.10 [3].

Setup. We report on our experimental results with Vi-
vace under emulated realistic network conditions, in the
Internet, and in emulated application scenarios.

To cleanly separate Vivace’s loss-related properties
from its latency-related properties, our experiments
sometimes involve evaluating Vivace when the latency
penalty coefficient is b = 0, i.e., studying a purely loss-
based variant of Vivace. We refer to this variant of Vivace
as “Vivace-Loss” and to Vivace with the default parame-
ter assignment as “Vivace-Latency”.

5.1 Consistent High Performance
5.1.1 Resilience to Random Loss (Fig. 2)

Using Emulab [30], we evaluate the throughput of Vi-
vace with a single flow on a link with 100 Mbps band-
width, 30 ms RTT, 75 KB buffer, and varying random
loss rate, and compare it with Allegro, BBR, and two
TCP variants. As shown in Figure 2, both Vivace vari-
ants and Allegro achieve more than 90 Mbps throughput
when the random loss rate is at most 3%, and remain
above 80 Mbps until 3.5% loss rate. After that point,
corresponding to the employed 5% loss resistance in the
utility functions, their throughput reduces to 1

10 of link

 0.1

 1

 10

 100

0 0.02 0.04 0.06

T
h
ro

u
g
h
p
u
t

(M
b
p
s)

 Random Loss Rate

Vivace-Loss
Vivace-Latency
Allegro
BBR
TCP CUBIC
TCP Illinois

0.16

Figure 2: Random loss resilience

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 1 10 100 1000

T
h
ro

u
g
h
p
u
t

(M
b
p
s)

Buffer Size (KB)

Vivace-Loss
Vivace-Latency
Allegro
BBR
TCP CUBIC
TCP Vegas
TCP Illinois
TCP Reno
TCP Hybla

Figure 3: Long RTT tolerance

capacity. Vivace does not achieve full capacity at close
to 4% random loss due to temporary bursty losses, which
may exceed 5% in some monitor intervals.

BBR keeps close-to-capacity throughput until 15%
loss. By tuning Vivace’s utility parameter c, we can
achieve similarly high resilience to random loss. How-
ever, the theoretical insights (§ 3.2) and experiments we
later present (§ 5.2.2) suggest that BBR’s higher loss re-
silience induces comparable congestion loss with multi-
ple competing flows, which we think is a less reasonable
design choice. Finally, Figure 2 also shows gains of 20-
50× over TCP family protocols.

5.1.2 High Performance on Satellite Links (Fig. 3)

We set up an emulated satellite link (as in [11]) with
42 Mbps bandwidth, 800 ms RTT and 0.74% random
loss. Figure 3 shows the throughput achieved. Both
Vivace-Loss and Vivace-Latency perform at least similar
to Allegro, outperforming all the other protocols. Specif-
ically, Vivace reaches more than 90% link capacity with
a 7.5KB buffer, in which case it is more than 40% larger
than BBR. When the buffer size increases to 1000KB,
the two Vivace flavors are at least 20% better than BBR
as well, while the throughput of Allegro starts to fall. We
also observed 20-300× higher performance compared to
the best-in-class TCP variant.

5.1.3 High Throughput without Bufferbloat (Fig. 4)
To demonstrate the effect of Vivace’s latency-aware and
provably fair utility function framework, we evaluate (us-
ing Emulab) its throughput and latency performance on
a link with 100 Mbps bottleneck bandwidth, 30 ms RTT,
and varying buffer size. On the throughput front, as

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 349

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 50 100 150 200 250 300

T
h
ro

u
g

h
p

u
t

(M
b

p
s)

Buffer Size (KB)

Vivace-Loss
Vivace-Latency
Allegro
BBR
TCP CUBIC
TCP Vegas
TCP Illinois
TCP Reno
TCP Hybla

(a) High capacity

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

0 30 60 90 120 150

P
a
ck

e
t

Lo
ss

 R
a
te

 (
%

)

Buffer Size (KB)

Vivace-Loss
Vivace-Latency
Allegro
BBR
TCP CUBIC
TCP Vegas
TCP Illinois

(b) Low packet losses

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 100 200 300 400 500 600 700 800 900

La
te

n
cy

 I
n
fl
a
ti

o
n
 R

a
ti

o

Buffer Size (KB)

Vivace-Loss
Vivace-Latency
Allegro
BBR
TCP CUBIC
TCP Vegas
TCP Illinois

(c) Negligible RTT overflow

Figure 4: Vivace can achieve better performance with shallow buffer

0

20

40

60

80

100

 0 10 20 30 40 50 60 70

Optimal

P
e
rc

e
n
ta

g
e
 o

f
T
ri

a
ls

 (
%

)

Average Throughput (Mbps)

(a) Achieving high capacity

0

20

40

60

80

100

0.0 0.05 0.10 0.15

P
e
rc

e
n
ta

g
e
 o

f
T
ri

a
ls

 (
%

)

Packet Loss Ratio

Vivace-Loss
Vivace-Latency
Allegro
Allegro-Latency
BBR
TCP CUBIC
TCP Illinois

(b) Moderate packet loss

0

20

40

60

80

 100 120 140 160 180 200

S
e
n
d
in

g
 R

a
te

 (
M

b
p
s)

Time (s)

Optimal
Vivace-Latency

Allegro
BBR

TCP CUBIC

(c) More responsive latency-sensitivity

Figure 5: Vivace can adapt to rapidly changing network conditions

shown in Figure 4(a), to achieve more than 90 Mbps,
Vivace, BBR and Allegro only need a shallow queue of
7.5KB, which is 95% smaller than needed by CUBIC.

We next study how small a buffer each protocol re-
quires to achieve minimal latency inflation and near-
lossless data transfer (less than 0.5% loss rate). As
shown in Figure 4(b)3, Vivace-Latency only needs a
13.5 KB buffer to guarantee nearly zero (less than 0.5%)
loss, which is 55%, 70%, 74.3%, and 91% smaller than
that of CUBIC, Vegas, Illinois, and BBR, respectively.
Meanwhile, Vivace-Loss and Allegro exhibit interesting
behavior as maximum buffer length grows. Initially, like
all protocols, their loss rate decreases as the buffer be-
comes able to handle the inevitable randomness in packet
arrival. But later, loss increases because a larger buffer
(which these protocols fill) increases RTT and slows re-
action when the buffer occasionally overflows. Even so,
Vivace-Loss has lower loss than Allegro in all cases.

Finally, Figure 4(c) compares the latency inflation
ratio, computed as the 95th percentile of self-inflicted
RTT divided by the maximal possible latency inflation
with given buffer size (when the buffer is full). Vivace-
Latency’s latency inflation ratio is kept small with its ab-
solute RTT overflow always below 2ms. However, both
TCP Illinois and BBR have close to 100% inflation ratio
(i.e., an almost full buffer) for as large as 300 KB buffer.
When the buffer size is as large as 2 BDP (750 KB),
Vivace-Latency still has more than 90% less latency in-
flation ratio than BBR. BBR’s performance disadvan-

3For conciseness, we leave out TCP Reno and Hybla, which have
similar performance as the presented TCP variants.

tage may be due to its white-box assumptions about the
buffer size. Vegas achieves good performance on la-
tency inflation by sacrificing the ability to fully utilize
the available bandwidth (as shown in Figure 4(a)). As
expected, Vivace-Loss, Allegro, and TCP CUBIC have
around 100% inflation ratio, because they lack latency
awareness.4 In sum, Vivace achieves superior latency-
awareness and high throughput at the same time.
5.1.4 Swift Reaction to Changes (Figures 5-6)

We next demonstrate how Vivace’s online learning rate
control significantly improves the reactiveness to dynam-
ically changing network conditions.

Emulated changing networks. We start with a network
on Emulab where the RTT, bottleneck bandwidth, and
random loss rate all change every 5 seconds with uniform
distribution ranging from 10-100 ms, 10-100 Mbps, and
0-1%, respectively. For each protocol, we repeat the ex-
periment 100 times with 500 sec duration each, and cal-
culate the cumulative distribution of average throughput
and packet loss rate. Allegro’s latency-based utility func-
tion, which does not guarantee fairness and convergence,
is also evaluated (denoted Allegro-Latency).

Figure 5(a) shows Vivace-Loss achieves the highest
average throughput. Quantitatively, it reaches 49Mbps
in median case, which is 88.3% of the optimal, corre-
sponding to a gain of 5.4%, 25.6%, 72.5%, 5.7×, and
15.3× compared with Allegro, BBR, Allegro-Latency,
TCP Illinois, and CUBIC, respectively. Vivace-Latency

4Although TCP CUBIC considers per-packet latency, it still cannot
avoid severe buffer bloat, which explains its high inflation ratio.

350 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

 0

 2

 4

 6

 8

 10

 0.1 1 10 100

Better

Vivace-Loss

Vivace-Latency

Vivace-Latency (b=2)

Allegro

Allegro-Latency

BBR CUBIC

Vegas
Sprout

T
h
ro

u
g
h
p

u
t

(M
b

p
s)

Self-inflicted Latency (s)

Figure 6: LTE throughput vs. self-inflicted latency

performs similarly to Allegro, still with a median gain
of 17.9%, 62.0%, 5.3×, and 14.3× over BBR, Allegro-
Latency, TCP Illinois, and CUBIC.

To further demonstrate Vivace’s reactivity, we com-
pare different protocols’ packet loss. As shown in Fig-
ure 5(b), the median case loss rates of Vivace-Loss and
Vivace-Latency are only 4.9% and 3.3%. Specifically,
Vivace-Latency has similar median loss as BBR (but
higher throughput), while outperforming Allegro and Al-
legro-Latency by 55.7% and 75.8%. This is because
Allegro’s fixed-rate control algorithm reduces rate too
slowly when available bandwidth suddenly decreases.

Figure 5(c) illustrates the behavior of several of the
protocols across time. BBR occasionally suffers sudden
rate degradation; we find this is associated with increases
in latency, to which BBR reacts badly. Allegro reduces
rate slower than Vivace-Loss when the bandwidth drops,
which explains its higher packet loss rate.

LTE networks. An even more challenging network sce-
nario, as suggested by [32, 36], is the LTE environment
where very deep queues are accompanied by drastically
changing available bandwidth in a matter of millisec-
onds. On one hand, this extremely dynamic environment
requires a long measurement time to prune out random
noise. On the other hand, if Vivace takes too long to mea-
sure, network conditions may have drastically changed,
invalidating previous measurements.

We use Mahimahi [26] to replay the Verizon-LTE trace
provided by [32]. We compare Vivace with Allegro-
Latency, BBR, CUBIC, Vegas and Sprout [32]. Fig-
ure 6 shows the achieved tradeoff between throughput
and self-inflicted latency (as defined in [32]). Alle-
gro, due to its overly aggressive behavior, significantly
inflates latency, and also fails to deliver good through-
put. Vivace-Loss reduces latency by 50.7%, 94.9%, and
95.5% compared to BBR, Allegro-Latency, and TCP
CUBIC, at the cost of only 16.3%, 17.1%, and 23.4%
smaller throughput, respectively. However, Vivace is still
suboptimal. Compared with the best-in-class TCP (Ve-
gas), Vivace-Loss has 17.7% larger throughput, but also
21.6% larger latency. Sprout, which is specifically de-
signed for cellular networks with an explicit cellular link
measurement model and receiver-side feedback changes

0

20

40

60

80

100

0 500 1000 1500 2000 2500 3000 3500

Vivace-Latency

T
h
ro

u
g
h
p
u
t

(M
b
p
s)

Time (s)

500 1000 1500 2000 2500 3000 3500

Allegro-Latency

Time (s)

0

20

40

60

80

100

BBR

T
h
ro

u
g
h
p
u
t

(M
b
p
s)

CUBIC

Figure 7: Vivace has fair and stable convergence

to TCP, outperforms Vivace-Loss with 75.2% shorter la-
tency and only 35.6% smaller throughput. Furthermore,
Vivace-Latency is impeded by the noisy latency mea-
surements, and achieves the smallest throughput.

We also test with a smaller latency coefficient, b = 2.
The consequence is supporting fewer competing senders,
but the typical resource allocation in LTE networks [34]
lowers the possibility of competition by many concurrent
flows. This improves performance, with 39.0% lower
latency and 26.3% smaller throughput than Vegas, but
still falls short of Sprout. Vivace’s performance in LTE
networks may further improve through better reaction to
noisy environments; we leave this to future work.

5.2 Convergence Properties
We next demonstrate that Vivace improves the conver-
gence speed vs. stability tradeoff compared to state-of-
the-art protocols. We also experimentally show the trade-
off between congestion loss and random loss resilience.

5.2.1 Convergence Speed and Stability (Fig. 7-8)
Temporal behavior of convergence. We set up a dumb-
bell topology on Emulab to demonstrate convergence
performance with 4 flows sharing a link with 100 Mbps
bandwidth, 30 ms RTT, and 75 KB buffer. Figure 7
shows the convergence process of several protocols with
1s granularity. Vivace achieves fair rate convergence
among competing flows and is more stable than BBR and
CUBIC. Compared with Allegro-Latency, which does
not have any convergence guarantee, Vivace’s default
latency-aware utility function achieves significantly bet-
ter convergence speed and stability at the same time.

Better convergence speed-stability tradeoff. We mea-
sure the quantitative trade-off between speed and stabil-
ity of convergence, reproducing an experiment in [11].

On a link of 100 Mbps bandwidth and 30 ms RTT,
we let an initial flow run for 10 s, which is significantly
longer than needed for its convergence, then start a sec-
ond flow. The convergence time is calculated as the
time from the second flow’s entry to the earliest time af-
ter which it maintains a sending rate within ±25% of
its ideal fair share (50 Mbps) for at least 5s. The con-
vergence stability is calculated as the standard deviation
of throughput of the second flow after its convergence.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 351

 0

 2

 4

 6

 8

 10

 12

 0 5 10 15 20 25 30 35

 Initial
Ignorance

BBR

CUBIC

Reno
Hybla

T
h
ro

u
g

h
p

u
t

D
e
v
ia

ti
o
n
 (

M
b

p
s)

Convergence Time (s)

Vivace-Loss
Vivace-Latency
Allegro

Figure 8: Better tradeoff curve

0.00

0.03

0.06

0.09

0.12

0.15

 0 5 10 15 20 25 30 35 40

P
a
ck

e
t

Lo
ss

 R
a
te

Number of Flows

Vivace-Loss
Vivace-Latency
Allegro
BBR

Figure 9: Multi-flow congestion

0.1

1

10

100

0 8 16 24 32

8Mbps/5KB 4Mbps/30KB

more friendly

less friendly

T
h
ro

u
g

h
p

u
t

R
a
ti

o

Number of CUBIC Flows

 Vivace-Loss
 Vivace-Latency
 Allegro
 BBR

Figure 10: More friendly to TCP

To produce a tradeoff curve in Vivace, we vary param-
eters that affect response speed within a certain range
(1.0 ≤ θ0 ≤ 1.5, 0.05 ≤ ω0,δ ≤ 0.1); we show all re-
sulting points and highlight the lower-left Pareto front.

Figure 8 illustrates that there is a “virtual wall” in the
trade-off plane at around 10s convergence time that nei-
ther TCP variants nor Allegro can pass even by trad-
ing off stability. Interestingly, BBR and Vivace pene-
trate that wall. Vivace, by default, achieves significantly
better tradeoff points. Both Vivace-latency and Vivace-
loss achieve similar convergence stability as Allegro, but
using nearly 60% smaller convergence time. With con-
vergence speed slightly higher than BBR, both Vivace
variants have around 50% smaller throughput deviation.
These improved trade-offs demonstrate the effectiveness
of Vivace’s no-regret online learning scheme.

However, any of the protocols here could choose to
adopt more aggressive slow-start algorithms. As a sim-
ple example, we implemented an “initial ignorance” of
loss (first 50 lost packets) and latency inflation (gradient
smaller than 0.2), resulting in 37% faster convergence,
and better stability, than BBR. In general, the startup al-
gorithm is orthogonal to long-term rate control, and more
advanced techniques like [22] might improve both BBR
and Allegro; we leave this to future work.

5.2.2 Lower Price for Loss Resilience (Figure 9)
As we analyzed in § 3.2, resilience to random loss comes
at the cost of sustaining packet-loss after convergence
when the number of senders increases. Importantly, this
is only the theoretical “minimal price” one has to pay to
endure random packet loss within the Vivace framework.
Due to the network dynamics from multi-sender interac-
tion and efficiency of rate control algorithm, the actual
price can be even higher.

To experimentally evaluate this trade-off, we set up
an experiment with 30 ms RTT. We increase the number
of concurrent competing flows, while proportionally in-
creasing the FIFO queue link’s total bandwidth to main-
tain a per flow 8 Mbps and 25 KB (close to 1 BDP) buffer
share on average. Figure 9 shows the average packet loss
per flow as the number of flows increases.

We observe that the packet loss rate of Vivace-Loss

converges at the theoretical bound of 5%. Even though
BBR does not fall into Vivace’s online learning analy-
sis framework, it shows a surprisingly similar tradeoff: it
endures more random loss but pays a much higher price
(14% loss) compared to Vivace. Though one might argue
that high congestion loss is fine as long as the final good-
put reaches full link utilization, this is often not true, e.g.,
high loss rate can cause additional delays for key frames,
resulting in a lag in interactive or video streaming appli-
cations; and the large amount of transmission can cause
additional energy burden on mobile devices.

In light of this discovery, we urge future conges-
tion control designs to carefully consider this tradeoff.
Though Allegro also achieves 5% random loss resilience
similar to Vivace, due to its naı̈ve rate control algorithm,
it pays a higher convergence loss (9%) price. BBR, posi-
tioned as a latency-aware protocol, also has the same ef-
fect. We also observe that though Vivace-latency main-
tains low loss rate when there is only a single flow, its
loss rate still grows as the number of concurrent senders
increases. This may be due to factors not modeled in our
theoretical analysis, including measurement noise and
the fact that the large number of senders are constantly
probing rather than staying in a perfect equilibrium. We
hope to study this congestion loss in the future.

5.3 Improved Friendliness to TCP
We set up a 30 ms RTT bottleneck link with one flow us-
ing a new protocol (BBR, Allegro, or Vivace) and com-
peting with an increasing number of CUBIC flows. As
the number of senders increases, we also increase the
total bandwidth and bottleneck buffer to maintain the
same per-flow share, as before. We used two per-flow
share settings: (4Mbps, 30KB) and (8Mbps, 5KB), cor-
responding to 2BDP and 0.12BDP of buffer size, respec-
tively. Figure 10 shows the ratio between the through-
put of the new-protocol flow and average throughput per
CUBIC flow. A ratio of 1 in Figure 10 indicates per-
fect friendliness; larger ratios indicate aggressiveness to-
wards CUBIC.

Vivace-Latency behaves as expected in the design
(§4.4). When the number of CUBIC flows is small, since
the queue is not always full, Vivace-Latency finds it can

352 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

 0

 20

 40

 60

 80

 100

 0 50 100 150 200

G
o
o
d

p
u
t

(M
b

p
s)

Time (s)

Flow 1
Flow 2

Flow 1 Optimal
Flow 2 Optimal

Figure 11: Flexible equilibrium by tuning utility knobs

reduce RTT by reducing its rate, and thus achieves lower
throughput than CUBIC flows. However, as the number
of CUBIC senders increases, it achieves the best fairness
among new generation protocols. Would Vivace-Latency
on the Internet still be conservative when the number of
competing CUBIC flows is small? Only large scale de-
ployment experiences can tell for sure, but our real world
experiments in §5.5.2 strongly suggest positive results.

Among the evaluated protocols, BBR yields the worst
TCP friendliness. In [1, 8], BBR’s TCP friendliness was
noted to be satisfactory, based on a single BBR flow
competing with a single CUBIC flow over a large buffer
(2 BDP). We successfully reproduced this specific result
(the leftmost point in the 4 Mbps/30 KB (2 BDP) BBR
line of Figure 10). However, we discovered that as we
add more CUBIC flows, BBR becomes increasingly ag-
gressive: it effectively treats all competing CUBIC flows
as a single “bundle” with its throughput ratio increasing
linearly with the number of CUBIC flows until about 16.
Therefore, in practice, BBR can be very unfriendly when
there are multiple competing CUBIC flows.

Though Allegro and Vivace-Loss are both loss-based,
Vivace is much more agile in its reaction to competing
TCP flows, especially under a shallow buffered network:
its throughput ratio converges at 2.5 vs. Allegro’s 8. In
addition, though Vivace-Loss dominates CUBIC when
the number of concurrent flows is small, the final con-
verged throughput ratio (about 5 at 2 BDP) is less than
half of that in BBR. In sum, though perfect TCP friend-
liness is fundamentally hard, we believe that Vivace pro-
vides a viable path towards adoption.

5.4 Flexible Convergence Equilibrium
With its unique utility function framework (§ 3.3), Vivace
unleashes the potential to be flexible and centrally con-
trolled. To demonstrate this capability experimentally,
we set up a link with 100 Mbps bandwidth, 30 ms RTT,
and two competing flows. As shown in Figure 11, we
control the two flows’ bandwidth share by changing their
utility functions at 60s, 120s and 180s. The actual send-
ing rate closely tracks the ideal allocation (dashed lines).
This is only to illustrate the basic capability of Vivace;
we leave a full-fledged system leveraging this capability
to future work.

5.5 Benefits in the Real World
In addition to the above transport-level experiments on
controlled networks, we test a video streaming applica-
tion and performance in the wild Internet.

5.5.1 Video Streaming
We implemented a transparent proxy so that RTSP-over-
TCP traffic flows from an OpenRTSP [4] client over a
legacy TCP connection ending at a client-side proxy,
then over a configurable transport protocol across the
bottleneck link to a server-side proxy, and finally over a
second legacy TCP connection to an OpenRTSP server;
similar proxying occurs in reverse. We compare the
streamed video’s buffering ratio [10], calculated as the
ratio of time spent during buffering relative to total
streaming session time, using Vivace-Latency, Allegro-
Latency, BBR, and TCP CUBIC. We test with four 4K
videos, with 15 Mbps, 30 Mbps, 50 Mbps, and 95 Mbps
average bit rate requirements in experiments in Emulab.

We first evaluate the buffering ratio with RTT chang-
ing every five seconds to a value uniform-randomly se-
lected between 10 ms and 100 ms. We set up a link with
300 KB buffer and 0.01% random loss rate, with the net-
work bandwidth at least 10% more than the bit rate re-
quired to stream the requested video. Fig. 12(a) shows
the average buffering ratio of Vivace-Latency stays be-
low 8%, similar to Allegro-Latency – a reduction of at
least 86% and 90% compared with BBR and CUBIC.

To demonstrate the application-level benefit of Vi-
vace’s stable convergence, we set up three competing
streaming flows from three client-server pairs. They
share a bottleneck link with 75 KB buffer, 100 ms RTT,
0.01% random loss, and adequate bandwidth for all three
to stream. As shown in Figure 12(b), Vivace-Latency
outperforms Allegro-Latency, BBR, and CUBIC by at
least 48%, 57%, and 80%, respectively. We attribute the
degraded performance of Allegro-Latency to its inferior
latency awareness and reaction, and that of BBR to its
high throughput variance among flows.

5.5.2 The Wild Internet
Finally, we evaluate Vivace’s real-world performance in
the wild Internet. We set up senders at 3 different resi-
dential WiFi networks and receivers at 14 Amazon Web
Service (AWS) sites, i.e., 42 sender-receiver pairs.5 As
WiFi networks have more noise in latency than wired
networks, we use a slightly larger fltlatency = 0.05 to filter
small variation of latency.6 For each AWS site we test all
protocols, and compute the average throughput of each
protocol from five 100 sec transmissions. Figure 12(c)

5We test only the uplink because the virtualized AWS server im-
pacts performance of our current user-space UDP-based packet pacing.

6We expect that in a full implementation, Vivace can automatically
adjust fltlatency when observing high latency variance.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 353

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 10 20 30 40 50 60 70 80 90 100

B
u
ff

e
ri

n
g
 R

a
ti

o
 (

%
)

Bit Rate (Mbps)

Vivace-Latency
Allegro-Latency
BBR
TCP Cubic

(a) Video streaming with varying latency

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 10 20 30 40 50 60 70 80 90 100

B
u
ff

e
ri

n
g
 R

a
ti

o
 (

%
)

Bit Rate (Mbps)

Vivace-Latency
Allegro-Latency
BBR
TCP Cubic

(b) Multiflow video streaming

0

20

40

60

80

100

 0 5 10 15 20 25 30 35 40

P
e
rc

e
n
ta

g
e
 o

f
T
ri

a
ls

 (
%

)

Average Throughput (Mbps)

Vivace-Loss
Vivace-Latency
Allegro
BBR
TCP CUBIC

(c) Throughput from home networks to
AWS

Figure 12: Performance gain in application and live Internet environments

shows the cumulative distribution of average through-
put. Similar to the results in controlled networks, Vivace-
Loss is slightly better than Vivace-Latency, and they both
outperform BBR and CUBIC. Specifically, Vivace-Loss
has a median throughput gain of 7.2%, 18.9%, and 4.0×
compared with Allegro, BBR, and CUBIC, respectively.

More importantly, even though having the possibility
to be overly friendly to TCP, Vivace-Latency success-
fully achieves 11.6% and 3.7× better throughput than
BBR and CUBIC in the median, i.e., CUBIC flows just
cannot efficiently utilize the available bandwidth. This
serves as a strong validation that Vivace provides a viable
deployment path, although larger scale evaluation is de-
sirable. Specifically, more substantial measurements are
needed to answer the question of how Vivace behaves on
real-world traffic patterns [28].

The root cause of the difference between Vivace-Loss
and Allegro is Allegro’s slow reaction to network condi-
tion variation, e.g. packet loss due to available bandwidth
reduction or congestion. As a result, it may gain higher
throughput occasionally (only after 90th percentile), but
it will suffer from a higher loss rate and often yield more
aggressive behavior compared to Vivace.

6 Related Work
We have already discussed Remy, and compared with
several TCP variants, PCC Allegro, and BBR. We next
place Vivace in the context of other related work.

In-network feedback. One class of protocols improve
congestion control by providing explicit in-network
feedback (e.g. available bandwidth and ECN) for bet-
ter informed decisions [5, 7, 20]. These protocols yield
good performance, but have been proven to be hard to
deploy outside of data centers: they require coordinated
change of protocols and network devices. Vivace on the
other hand is compatible with the TCP message format,
only requires deployment at the sender, and is therefore
readily deployable.

Specially engineered congestion control. Another class
of the recent works targets TCP’s poor performance in
specific network scenarios like LTE networks [32, 36]
or data center networks [5, 24, 33] by leveraging unique

insights of particular networks’ behavior models, spe-
cial tools or explicit feedback from the receiver. Some
of these works are also moving away from TCP’s hard-
wired control mechanism and are more like BBR; e.g.,
Timely [24] uses the RTT-gradient as a control signal
similar to Vivace, but it still uses a hardwired rate con-
trol algorithm that maps events to fixed reactions (e.g.,
using fixed thresholds and step sizes). Protocols in this
class provide significant performance gains, but only tar-
get very specific environments. Some of them also re-
quire changes at both endpoints [32], which may chal-
lenge deployment in practice.

Short flows. Some congestion control protocols aim
to optimize performance of very short flows [22, 25].
These are complementary to Vivace, because short-flow
optimization in many cases is an “open loop” problem
(i.e. transfer as much data as possible in first few RTTs
with very limited feedback) whereas Vivace targets the
“closed loop” phase of data transfer (when meaningful
feedback can be gathered with long enough data trans-
fer). In fact Vivace could plausibly utilize [22, 25] as its
starting phase, replacing slow-start.

7 Conclusion
We proposed Vivace, a congestion control architecture
based on online optimization theory. Vivace lever-
ages a novel latency-aware utility function framework
with gradient-ascent-based online learning rate control to
achieve provably fast convergence and fairness guaran-
tees. Extensive experimentation reveals that Vivace sig-
nificantly improves upon the existing state of the art in
terms of performance, convergence speed, reactiveness,
TCP friendliness, and more. Vivace requires sender-only
changes and is hence readily deployable. We leave re-
search questions regarding centralized resource alloca-
tion via Vivace’s simple interface, and Vivace’s integra-
tion into comprehensive emulators such as Pantheon [35]
and production systems such as QUIC [21] and the Linux
kernel, to the future.

We thank our shepherd, Alex Snoeren, and the review-
ers for their helpful comments, and Google and Huawei
for ongoing support of the PCC project.

354 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References

[1] BBR talk in IETF 97. www.ietf.org/
proceedings/97/slides/slides-97-
iccrg-bbr-congestion-control-01.
pdf.

[2] Full Proof of Theorems. http://www.
ttmeng.net/pubs/vivace_proof.pdf.

[3] Linux net-next. https : / / kernel .
googlesource . com / pub / scm /
linux / kernel / git / davem / net -
next.git/+/v4.10.

[4] OpenRTSP. http://www.live555.com/
openRTSP/.

[5] ALIZADEH, M., GREENBERG, A., MALTZ, D.,
PADHYE, J., PATEL, P., PRABHAKAR, B., SEN-
GUPTA, S., AND SRIDHARAN, M. Data center
TCP. Proc. of ACM SIGCOMM (September 2010).

[6] BRAKMO, L., LAWRENCE, S., O’MALLEY, S.,
AND PETERSON, L. TCP Vegas: New techniques
for congestion detection and avoidance. Proc. of
ACM SIGCOMM (1994).

[7] CAESAR, M., CALDWELL, D., FEAMSTER, N.,
REXFORD, J., SHAIKH, A., AND VAN DER
MERWE, K. Design and implementation of a rout-
ing control platform. Proc. of NSDI (April 2005).

[8] CARDWELL, N., CHENG, Y., GUNN, C.,
YEGANEH, S., AND JACOBSON, V. BBR:
Congestion-based congestion control. Queue 14,
5 (2016), 50.

[9] CHOWDHURY, M., ZHONG, Y., AND STOICA, I.
Efficient coflow scheduling with varys.

[10] DOBRIAN, F., SEKAR, V., AWAN, A., STOICA,
I., JOSEPH, D., GANJAM, A., ZHAN, J., AND
ZHANG, H. Understanding the impact of video
quality on user engagement. Proc. of ACM SIG-
COMM (August 2011).

[11] DONG, M., LI, Q., ZARCHY, D., GODFREY,
P. B., AND SCHAPIRA, M. PCC: Re-architecting
Congestion Control for Consistent High Perfor-
mance. Proc. of NSDI (March 2015).

[12] EVEN-DAR, M. E., MANSOUR, Y., AND NADAV,
U. On the convergence of regret minimization dy-
namics in concave games. Proc. of ACM sympo-
sium on Theory of computing (2009).

[13] GHOBADI, M., YEGANEH, S., AND GANJALI,
Y. Rethinking end-to-end congestion control
in software-defined networks. Proc. of HotNets
(November 2012).

[14] GU, Y. UDT: a high performance data transport
protocol. University of Illinois at Chicago, 2005.

[15] HA, S., RHEE, I., AND XU, L. CUBIC: A
new TCP-friendly high-speed TCP variant. ACM
SIGOPS Operating Systems Review (2008).

[16] HAZAN, E. Introduction to online con-
vex optimization. http://ocobook.cs.
princeton.edu/OCObook.pdf.

[17] HONG, C., KANDULA, S., MAHAJAN, R.,
ZHANG, M., GILL, V., NANDURI, M., AND WAT-
TENHOFER, R. Achieving high utilization with
software-driven WAN. Proc. of ACM SIGCOMM
(August 2013).

[18] JAIN, S., KUMAR, A., MANDAL, S., ONG, J.,
POUTIEVSKI, L., SINGH, A., VENKATA, S.,
WANDERER, J., ZHOU, J., AND ZHU, M. B4:
Experience with a globally-deployed software de-
fined wan. ACM Computer Communication Review
(September 2013).

[19] JIANG, J., SUN, S., SEKAR, V., AND ZHANG,
H. Pytheas: Enabling data-driven quality of expe-
rience optimization using group-based exploration-
exploitation. Proc. of NSDI (March 2017).

[20] KATABI, D., HANDLEY, M., AND ROHRS, C.
Congestion control for high bandwidth-delay prod-
uct networks. Proc. of ACM SIGCOMM (August
2002).

[21] LANGLEY, A., RIDDOCH, A., WILK, A., VI-
CENTE, A., KRASIC, C., ZHANG, D., YANG, F.,
KOURANOV, F., SWETT, I., IYENGAR, J., ET AL.
The quic transport protocol: Design and internet-
scale deployment. In Proceedings of the Confer-
ence of the ACM Special Interest Group on Data
Communication (2017), ACM, pp. 183–196.

[22] LI, Q., DONG, M., AND GODFREY, P. Halfback:
Running short flows quickly and safely. Proc. of
CoNEXT (November 2015).

[23] LIU, S., BAŞAR, T., AND SRIKANT, R. TCP-
Illinois: A loss-and delay-based congestion control
algorithm for high-speed networks. Performance
Evaluation (2008).

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 355

[24] MITTAL, R., LAM, V. T., DUKKIPATI, N., BLEM,
E. R., WASSEL, H. M. G., GHOBADI, M., VAH-
DAT, A., WANG, Y., WETHERALL, D., AND
ZATS, D. TIMELY: RTT-based congestion con-
trol for the datacenter. In Proceedings of the
2015 ACM Conference on Special Interest Group
on Data Communication, SIGCOMM 2015, Lon-
don, United Kingdom, August 17-21, 2015 (2015),
S. Uhlig, O. Maennel, B. Karp, and J. Padhye, Eds.,
ACM, pp. 537–550.

[25] MITTAL, R., SHERRY, J., RATNASAMY, S., AND
SHENKER, S. Recursively cautious congestion
control. Proc. of NSDI (March 2014).

[26] NETRAVALI, R., SIVARAMAN, A., DAS, S.,
GOYAL, A., WINSTEIN, K., MICKENS, J., AND
BALAKRISHNAN, H. Mahimahi: Accurate record-
and-replay for HTTP. Proc. USENIX ATC (August
2015).

[27] SIVARAMAN, A., WINSTEIN, K., THAKER, P.,
AND BALAKRISHNAN, H. An experimental study
of the learnability of congestion control. Proc. of
ACM SIGCOMM (August 2014).

[28] SUN, Y., YIN, X., JIANG, J., SEKAR, V., LIN, F.,
WANG, N., LIU, T., AND SINOPOLI, B. Cs2p: Im-
proving video bitrate selection and adaptation with
data-driven throughput prediction. Proc. of ACM
SIGCOMM (August 2016).

[29] WEI, D., JIN, C., LOW, S., AND HEGDE, S. FAST
TCP: motivation, architecture, algorithms, perfor-
mance. IEEE/ACM Transactions on Networking
(2006).

[30] WHITE, B., LEPREAU, J., STOLLER, L., RICCI,
R., GURUPRASAD, G., NEWBOLD, M., HIBLER,
M., BARB, C., AND JOGLEKAR, A. An integrated
experimental environment for distributed systems
and networks. Proc. of OSDI (December 2002).

[31] WINSTEIN, K., AND BALAKRISHNAN, H. TCP ex
Machina: computer-generated congestion control.
Proc. of ACM SIGCOMM (August 2013).

[32] WINSTEIN, K., SIVARAMAN, A., AND BALAKR-
ISHNAN, H. Stochastic forecasts achieve high
throughput and low delay over cellular networks.
Proc. of NSDI (March 2013).

[33] WU, H., FENG, Z., GUO, C., AND ZHANG, Y.
ICTCP: Incast congestion control for TCP in data
center networks. Proc. of CoNEXT (November
2010).

[34] XIE, X., ZHANG, X., KUMAR, S., AND LI, L. E.
pistream: Physical layer informed adaptive video
streaming over lte. In Mobicom (2015).

[35] YAN, F. Y., MA, J., HILL, G., RAGHAVAN,
D., WAHBY, R. S., LEVIS, P., AND WINSTEIN,
K. Pantheon: the training ground for internet
congestion-control research, 2018.

[36] ZAKI, Y., PÖTSCH, T., CHEN, J., SUBRAMA-
NIAN, L., AND GÖRG, C. Adaptive congestion
control for unpredictable cellular networks. Proc.
of ACM SIGCOMM (August 2015).

[37] ZINKEVICH, M. Online convex programming and
generalized infinitesimal gradient ascent. In ICML
(2003), AAAI Press, pp. 928–936.

356 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

