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Abstract – Network failures continue to plague dat-
acenter operators as their symptoms may not have
direct correlation with where or why they occur. We
introduce 007, a lightweight, always-on diagnosis ap-
plication that can find problematic links and also
pinpoint problems for each TCP connection. 007 is
completely contained within the end host. During
its two month deployment in a tier-1 datacenter, it
detected every problem found by previously deployed
monitoring tools while also finding the sources of
other problems previously undetected.

1 Introduction
007 has an ambitious goal: for every packet drop on a
TCP flow in a datacenter, find the link that dropped
the packet and do so with negligible overhead and
no changes to the network infrastructure.
This goal may sound like an overkill—after all,

TCP is supposed to be able to deal with a few packet
losses. Moreover, packet losses might occur due to
congestion instead of network equipment failures.
Even network failures might be transient. Above all,
there is a danger of drowning in a sea of data without
generating any actionable intelligence.
These objections are valid, but so is the need to

diagnose “failures” that can result in severe problems
for applications. For example, in our datacenters,
VM images are stored in a storage service. When a
VM boots, the image is mounted over the network.
Even a small network outage or a few lossy links can
cause the VM to “panic” and reboot. In fact, 17%
of our VM reboots are due to network issues and in
over 70% of these none of our monitoring tools were
able to find the links that caused the problem.
VM reboots affect customers and we need to un-

derstand their root cause. Any persistent pattern in
such transient failures is a cause for concern and is
potentially actionable. One example is silent packet
drops [1]. These types of problems are nearly impos-
sible to detect with traditional monitoring tools (e.g.,
SNMP). If a switch is experiencing these problems,
we may want to reboot or replace it. These interven-
tions are “costly” as they affect a large number of
flows/VMs. Therefore, careful blame assignment is
necessary. Naturally, this is only one example that
would benefit from such a detection system.

There is a lot of prior work on network failure di-
agnosis, though one of the existing systems meet our

ambitious goal. Pingmesh [1] sends periodic probes
to detect failures and can leave “gaps” in coverage, as
it must manage the overhead of probing. Also, since
it uses out-of-band probes, it cannot detect failures
that affect only in-band data. Roy et al. [2] monitor
all paths to detect failures but require modifications
to routers and special features in the switch (§10).
Everflow [3] can be used to find the location of packet
drops but it would require capturing all traffic and
is not scalable. We asked our operators what would
be the most useful solution for them. Responses in-
cluded: “In a network of ≥ 106 links its a reasonable
assumption that there is a non-zero chance that a
number (> 10) of these links are bad (due to device,
port, or cable, etc.) and we cannot fix them simul-
taneously. Therefore, fixes need to be prioritized
based on customer impact. However, currently we do
not have a direct way to correlate customer impact
with bad links". This shows that current systems
do not satisfy operator needs as they do not provide
application and connection level context.
To address these limitations, we propose 007, a

simple, lightweight, always-on monitoring tool. 007
records the path of TCP connections (flows) suffer-
ing from one or more retransmissions and assigns
proportional “blame” to each link on the path. It
then provides a ranking of links that represents their
relative drop rates. Using this ranking, it can find
the most likely cause of drops in each TCP flow.
007 has several noteworthy properties. First, it

does not require any changes to the existing net-
working infrastructure. Second, it does not require
changes to the client software—the monitoring agent
is an independent entity that sits on the side. Third,
it detects in-band failures. Fourth, it continues to
perform well in the presence of noise (e.g. lone packet
drops). Finally, it’s overhead is negligible.
While the high-level design of 007 appear sim-

ple, the practical challenges of making 007 work
and the theoretical challenge of proving it works
are non-trivial. For example, its path discovery is
based on a traceroute-like approach. Due to the use
of ECMP, traceroute packets have to be carefully
crafted to ensure that they follow the same path as
the TCP flow. Also, we must ensure that we do not
overwhelm routers by sending too many traceroutes
(traceroute responses are handled by control-plane
CPUs of routers, which are quite puny). Thus, we
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need to ensure that our sampling strikes the right
balance between accuracy and the overhead on the
switches. On the theoretical side, we are able to show
that 007’s simple blame assignment scheme is highly
accurate even in the presence of noise.

We make the following contributions: (i) we design
007, a simple, lightweight, and yet accurate fault
localization system for datacenter networks; (ii) we
prove that 007 is accurate without imposing excessive
burden on the switches; (iii) we prove that its blame
assignment scheme correctly finds the failed links
with high probability; and (iv) we show how to tackle
numerous practical challenges involved in deploying
007 in a real datacenter.

Our results from a two month deployment of 007 in
a datacenter show that it finds all problems found by
other previously deployed monitoring tools while also
finding the sources of problems for which information
is not provided by these monitoring tools.

2 Motivation
007 aims to identify the cause of retransmissions
with high probability. It is is driven by two practi-
cal requirements: (i) it should scale to datacenter
size networks and (ii) it should be deployable in a
running datacenter with as little change to the in-
frastructure as possible. Our current focus is mainly
on analyzing infrastructure traffic, especially connec-
tions to services such as storage as these can have
severe consequences (see §1, [4]). Nevertheless, the
same mechanisms can be used in other contexts as
well (see §9). We deliberately include congestion-
induced retransmissions. If episodes of congestion,
however short-lived, are common on a link, we want
to be able to flag them. Of course, in practice, any
such system needs to deal with a certain amount of
noise, a concept we formalize later.
There are a number of ways to find the cause

of packet drops. One can monitor switch counters.
These are inherently unreliable [5] and monitoring
thousands of switches at a fine time granularity is
not scalable. One can use new hardware capabilities
to gather more useful information [6]. Correlating
this data with each retransmission reliably is difficult.
Furthermore, time is needed until such hardware is
production-ready and switches are upgraded. Com-
plicating matters, operators may be unwilling to
incur the expense and overhead of such changes [4].
One can use PingMesh [1] to send probe packets and
monitor link status. Such systems suffer from a rate
of probing trade-off: sending too many probes creates
unacceptable overhead whereas reducing the probing
rate leaves temporal and spatial gaps in coverage.
More importantly, the probe traffic does not capture

what the end user and TCP flows see. Instead, we
choose to use data traffic itself as probe traffic. Us-
ing data traffic has the advantage that the system
introduces little to no monitoring overhead.

As one might expect, almost all traffic in our dat-
acenters is TCP traffic. One way to monitor TCP
traffic is to use a system like Everflow. Everflow
inserts a special tag in every packet and has the
switches mirror tagged packets to special collection
servers. Thus, if a tagged packet is dropped, we can
determine the link on which it happened. Unfortu-
nately, there is no way to know in advance which
packet is going to be dropped, so we would have to
tag and mirror every TCP packet. This is clearly
infeasible. We could tag only a fraction of packets,
but doing so would result in another sampling rate
trade-off. Hence, we choose to rely on some form of
network tomography [7, 8, 9]. We can take advantage
of the fact that TCP is a connection-oriented, reliable
delivery protocol so that any packet loss results in
retransmissions that are easy to detect.

If we knew the path of all flows, we could set up an
optimization to find which link dropped the packet.
Such an optimization would minimize the number of
“blamed” links while simultaneously explaining the
cause of all drops. Indeed past approaches such as
MAX COVERAGE and Tomo [10, 11] aim to approx-
imate the solution of such an optimization (see §12
for an example). There are problems with this ap-
proach: (i) the optimization is NP-hard [12]. Solving
it on a datacenter scale is infeasible. (ii) tracking the
path of every flow in the datacenter is not scalable in
our setting. We can use alternative solutions such as
Everflow or the approach of [2] to track the path of
SYN packets. However, both rely on making changes
to the switches. The only way to find the path of a
flow without any special infrastructure support is to
employ something like a traceroute. Traceroute relies
on getting ICMP TTL exceeded messages back from
the switches. These messages are generated by the
control-plane, i.e., the switch CPU. To avoid over-
loading the CPU, our administrators have capped
the rate of ICMP responses to 100 per second. This
severely limits the number of flows we can track.
Given these limitations, what can we do? We

analyzed the drop patterns in two of our datacenters
and found: typically when there are packet drops,
multiple flows experience drops. We show this in
Figure 1a for TCP flows in production datacenters.
The figure shows the number of flows experiencing
drops in the datacenter conditioned on the total
number of packets dropped in that datacenter in 30
second intervals. The data spans one day. We see
that the more packets are dropped in the datacenter,
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Figure 1: Observations from a production network:
(a) CDF of the number of flows with at least one
retransmission; (b) CDF of the fraction of drops
belonging to each flow in each 30 second interval.
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Figure 2: Overview of 007 architecture

the more flows experience drops and 95% of the time,
at least 3 flows see drops when we condition on ≥ 10
total drops. We focus on the ≥ 10 case because lower
values mostly capture noisy drops due to one-off
packet drops by healthy links. In most cases drops
are distributed across flows and no single flow sees
more than 40% of the total packet drops. This is
shown in Figure 1b (we have discarded all flows with
0 drops and cases where the total number of drops
was less than 10). We see that in ≥ 80% of cases, no
single flow captures more than 34% of all drops.

Based on these observations and the high path
diversity in datacenter networks [13], we show that if:
(a) we only track the path of those flows that have
retransmissions, (b) assign each link on the path of
such a flow a vote of 1/h, where h is the path length,
and (c) sum up the votes during a given period,
then the top-voted links are almost always the ones
dropping packets (see §5)! Unlike the optimization,
our scheme is able to provide a ranking of the links in
terms of their drop rates, i.e. if link A has a higher
vote than B, it is also dropping more packets (with
high probability). This gives us a heat-map of our
network which highlights the links with the most
impact to a given application/customer (because we
know which links impact a particular flows).

3 Design Overview
Figure 2 shows the overall architecture of 007. It is
deployed alongside other applications on each end-
host as a user-level process running in the host OS.
007 consists of three agents responsible for TCP
monitoring, path discovery, and analysis.

The TCP monitoring agent detects retransmissions
at each end-host. The Event Tracing For Windows
(ETW) [14] framework1 notifies the agent as soon as
an active flow suffers a retransmission.

Upon a retransmission, the monitoring agent trig-
gers the path discovery agent (§4) which identifies
the flow’s path to the destination IP (DIP).
At the end-hosts, a voting scheme (§5) is used

based on the paths of flows that had retransmissions.
At regular intervals of 30s the votes are tallied by
a centralized analysis agent to find the top-voted
links. Although we use an aggregation interval of
30s, failures do not have to last for 30s.

007’s implementation consists of 6000 lines of C++
code. Its memory usage never goes beyond 600 KB
on any of our production hosts, its CPU utilization
is minimal (1-3%), and its bandwidth utilization due
to traceroute is minimal (maximum of 200 KBps
per host). 007 is proven to be accurate (§5) in typ-
ical datacenter conditions (a full description of the
assumed conditions can be found in §9).

4 The Path Discovery Agent
The path discovery agent uses traceroute packets
to find the path of flows that suffer retransmissions.
These packets are used solely to identify the path
of a flow. They do not need to be dropped for
007 to operate. We first ensure that the number
of traceroutes sent by the agent does not overload
our switches (§4.1). Then, we briefly describe the
key engineering issues and how we solve them (§4.2).
4.1 ICMP Rate Limiting
Generating ICMP packets in response to traceroute
consumes switch CPU, which is a valuable resource.
In our network, there is a cap of Tmax = 100 on the
number of ICMP messages a switch can send per
second. To ensure that the traceroute load does not
exceed Tmax, we start by noticing that a small frac-
tion of flows go through tier-3 switches (T3). Indeed,
after monitoring all TCP flows in our network for
one hour, only 2.1% went through a T3 switch. Thus
we can ignore T3 switches in our analysis. Given that
our network is a Clos topology and assuming that
hosts under a top of the rack switch (ToR) commu-
nicate with hosts under a different ToR uniformly at
random (see §6 for when this is not the case):

1Similar functionality exists in Linux.
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Theorem 1. The rate of ICMP packets sent by any
switch due to a traceroute is below Tmax if the rate Ct
at which hosts send traceroutes is upper bounded as

Ct ≤
Tmax
n0H

min
[
n1,

n2(n0npod−1)
n0(npod−1)

]
, (1)

where n0, n1, and n2, are the numbers of ToR, T1,
and T2 switches respectively, npod is the number of
pods, and H is the number of hosts under each ToR.

See §12 for proof. The upper bound of Ct in our
datacenters is 10. As long as hosts do not have more
than 10 flows with retransmissions per second, we
can guarantee that the number of traceroutes sent by
007 will not go above Tmax. We use Ct as a threshold
to limit the traceroute rate of each host. Note that
there are two independent rate limits, one set at
the host by 007 and the other set by the network
operators on the switch (Tmax). Additionally, the
agent triggers path discovery for a given connection
no more than once every epoch to further limit the
number of traceroutes. We will show in §5 that this
number is sufficient to ensure high accuracy.
4.2 Engineering Challenges
Using the correct five-tuple. As in most datacen-
ters, our network also uses ECMP. All packets of a
given flow, defined by the five-tuple, follow the same
path [15]. Thus, traceroute packets must have the
same five-tuple as the flow we want to trace. To
ensure this, we must account for load balancers.

TCP connections are initiated in our datacenter in
a way similar to that described in [16]. The connec-
tion is first established to a virtual IP (VIP) and the
SYN packet (containing the VIP as destination) goes
to a software load balancer (SLB) which assigns that
flow to a physical destination IP (DIP) and a service
port associated with that VIP. The SLB then sends a
configuration message to the virtual switch (vSwitch)
in the hypervisor of the source machine that regis-
ters that DIP with that vSwitch. The destination
of all subsequent packets in that flow have the DIP
as their destination and do not go through the SLB.
For the path of the traceroute packets to match that
of the data packets, its header should contain the
DIP and not the VIP. Thus, before tracing the path
of a flow, the path discovery agent first queries the
SLB for the VIP-to-DIP mapping for that flow. An
alternative is to query the vSwitch. In the instances
where the failure also results in connection termina-
tion the mapping may be removed from the vSwitch
table. It is therefore more reliable to query the SLB.
Note that there are cases where the TCP connection
establishment itself may fail due to packet loss. Path
discovery is not triggered for such connections. It is

also not triggered when the query to the SLB fails
to avoid tracerouting the internet.
Re-routing and packet drops. Traceroute itself may
fail. This may happen if the link drop rate is high
or due to a blackhole. This actually helps us, as it
directly pinpoints the faulty link and our analysis
engine (§5) is able to use such partial traceroutes.
A more insidious possibility is that routing may

change by the time traceroute starts. We use BGP
in our datacenter and a lossy link may cause one
or more BGP sessions to fail, triggering rerouting.
Then, the traceroute packets may take a different
path than the original connection. However, RTTs in
a datacenter are typically less than 1 or 2 ms, so TCP
retransmits a dropped packet quickly. The ETW
framework notifies the monitoring agent immediately,
which invokes the path discovery agent. The only
additional delay is the time required to query the
SLB to obtain the VIP-to-DIP mapping, which is
typically less than a millisecond. Thus, as long as
paths are stable for a few milliseconds after a packet
drop, the traceroute packets will follow the same
path as the flow and the probability of error is low.
Past work has shown this to be usually the case [17].
Our network also makes use of link aggrega-

tion (LAG) [18]. However, unless all the links in the
aggregation group fail, the L3 path is not affected.
Router aliasing [19]. This problem is easily solved in
a datacenter, as we know the topology, names, and
IPs of all routers and interfaces. We can simply map
the IPs from the traceroutes to the switch names.
To summarize, 007’s path discovery implementa-

tion is as follows: Once the TCP monitoring agent
notifies the path discovery agent that a flow has
suffered a retransmission, the path discovery agent
checks its cache of discovered path for that epoch
and if need be, queries the SLB for the DIP. It then
sends 15 appropriately crafted TCP packets with
TTL values ranging from 0–15. In order to disam-
biguate the responses, the TTL value is also encoded
in the IP ID field [20]. This allows for concurrent
traceroutes to multiple destinations. The TCP pack-
ets deliberately carry a bad checksum so that they
do not interfere with the ongoing connection.
5 The Analysis Agent
Here, we describe 007’s analysis agent focusing on
its voting-based scheme. We also present alternative
NP-hard optimization solutions for comparison.
5.1 Voting-Based Scheme
007’s analysis agent uses a simple voting scheme. If a
flow sees a retransmission, 007 votes its links as bad.
Each vote has a value that is tallied at the end of
every epoch, providing a natural ranking of the links.
We set the value of good votes to 0 (if a flow has no
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retransmission, no traceroute is needed). Bad votes
are assigned a value of 1

h , where h is the number
of hops on the path, since each link on the path is
equally likely to be responsible for the drop.
The ranking obtained after compiling the votes

allows us to identify the most likely cause of drops
on each flow: links ranked higher have higher drop
rates (Theorem 2). To further guard against high
levels of noise, we can use our knowledge of the
topology to adjust the links votes. Namely, we itera-
tively pick the most voted link lmax and estimate the
portion of votes obtained by all other links due to
failures on lmax. This estimate is obtained for each
link k by (i) assuming all flows having retransmissions
and going through lmax had drops due to lmax and
(ii) finding what fraction of these flows go through k
by assuming ECMP distributes flows uniformly at
random. Our evaluations showed that this results in
a 5% reduction in false positives.

Algorithm 1 Finding the most problematic links in
the network.
1: L← Set of all links
2: P ← Set of all possible paths
3: v(li)← Number of votes for li ∈ L
4: B ← Set of most problematic links
5: lmax← Link with maximum votes in ∀li ∈ L∩Bc

6: while v(lmax)≥ 0.01(
∑

li∈L
v(li)) do

7: lmax← argmaxli∈L∩Bc v(li)
8: B ← B∪{lmax}
9: for li ∈ L∩Bc do
10: if ∃ pi ∈ P s.t. li ∈ pi & lmax ∈ pi then
11: Adjust the score of li
12: end if
13: end for
14: end while
15: return B

007 can also be used to detect failed links using
Algorithm 1. The algorithm sorts the links based on
their votes and uses a threshold to determine if there
are problematic links. If so, it adjusts the votes of all
other links and repeats until no link has votes above
the threshold. In Algorithm 1, we use a threshold
of 1% of the total votes cast based on a parameter
sweep where we found that it provides a reasonable
trade-off between precision and recall. Higher values
reduce false positives but increase false negatives.
Here we have focused on detecting link failures.

007 can also be used to detect switch failures in a
similar fashion by applying votes to switches instead
of links. This is beyond the scope of this work.
5.2 Voting Scheme Analysis
Can 007 deliver on its promise of finding the most
probable cause of packet drops on each flow? This is
not trivial. In its voting scheme, failed connections
contribute to increase the tally of both good and
bad links. Moreover, in a large datacenter such as

ours, occasional, lone, and sporadic drops can and
will happen due to good links. These failures are
akin to noise and can cause severe inaccuracies in any
detection system [21], 007 included. We show that
the likelihood of 007 making these errors is small.
Given our topology (Clos):
Theorem 2. For npod ≥ n0

n1
+ 1, 007 will find with

probability 1− 2e−O(N) the k <
n2(n0npod−1)
n0(npod−1) bad

links that drop packets with probability pb among
good links that drop packets with probability pg if

pg ≤ (nuα)−1 [1− (1−pb)nl ] ,

where N is the total number of flows between hosts,
nl and nu are lower and upper bounds, respectively,
on the number of packets per connection, and

α=
n0(4n0−k)(npod−1)

n2(n0npod−1)−n0(npod−1)k . (2)

The proof is deferred to the appendices due to
space constraints. Theorem 2 states that under mild
conditions, links with higher drop rates are ranked
higher by 007. Since a single flow is unlikely to go
through more than one failed link in a network with
thousands of links, it allows 007 to find the most
likely cause of packet drops on each flow.
A corollary of Theorem 2 is that in the absence

of noise (pg = 0), 007 can find all bad links with
high probability. In the presence of noise, 007 can
still identify the bad links as long as the probabil-
ity of dropping packets on non-failed links is low
enough (the signal-to-noise ratio is large enough).
This number is compatible with typical values found
in practice. As an example, let nl and nu be the 10th
and 90th percentiles respectively of the number of
packets sent by TCP flows across all hosts in a 3 hour
period. If pb≥ 0.05%, the drop rate on good links can
be as high as 1.8×10−6. Drop rates in a production
datacenter are typically below 10−8 [22].
Another important consequence of Theorem 2 is

that it establishes that the probability of errors in
007’s results diminishes exponentially with N , so that
even with the limits imposed by Theorem 1 we can
accurately identify the failed links. The conditions
in Theorem 2 are sufficient but not necessary. In
fact, §6 shows how well 007 performs even when the
conditions in Theorem 2 do not hold.
5.3 Optimization-Based Solutions
One of the advantages of 007’s voting scheme is its
simplicity. Given additional time and resources we
may consider searching for the optimal sets of failed
links by finding the most likely cause of drops given
the available evidence. For instance, we can find the
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least number of links that explain all failures as we
know the flows that had packet drops and their path.
This can be written as an optimization problem we
call the binary program. Explicitly,

minimize ‖p‖0
subject to Ap≥ s

p ∈ {0,1}L
(3)

where A is a C×L routing matrix; s is a C×1 vector
that collects the status of each flow during an epoch
(each element of s is 1 if the connection experienced
at least one retransmission and 0 otherwise); L is the
number of links; C is the number of connections in
an epoch; and ‖p‖0 denotes the number of nonzero
entries of the vector p. Indeed, if the solution of (3)
is p?, then the i-th element of p? indicates whether
the binary program estimates that link i failed.

Problem (3) is the NP-hard minimum set covering
problem [23] and is intractable. Its solutions can be
approximated greedily as in MAX COVERAGE or
Tomo [10, 11] (see appendix). For benchmarking, we
compare 007 to the true solution of (3) obtained by
a mixed-integer linear program (MILP) solver [24].
Our evaluations showed that 007 (Algorithm 1) sig-
nificantly outperforms this binary optimization (by
more than 50% in the presence of noise). We illus-
trate this point in Figures 4 and 10, but otherwise
omit results for this optimization in §6 for clarity.

The binary program (3) does not provide a ranking
of links. We also consider a solution in which we
determine the number of packets dropped by each
link, thus creating a natural ranking. The integer
program can be written as

minimize ‖p‖0
subject to Ap≥ c

‖p‖1 = ‖c‖1
pi ∈ N∪{0}

(4)

where N is the set of natural numbers and c is a C×1
vector that collects the number of retransmissions suf-
fered by each flow during an epoch. The solution p?

of (4) represents the number of packets dropped
by each link, which provides a ranking. The con-
straint ‖p‖1 = ‖c‖1 ensures each failure is explained
only once. As with (3), this problem is NP-hard [12]
and is only used as a benchmark. As it uses more
information than the binary program (the number
of failures), (4) performs better (see §6).
In the next three sections, we present our evalua-

tion of 007 in simulations (§6), in a test cluster (§7),
and in one of our production datacenters (§8).

6 Evaluations: Simulations
We start by evaluating in simulations where we know
the ground truth. 007 first finds flows whose drops
were due to noise and marks them as “noise drops”.
It then finds the link most likely responsible for drops
on the remaining set of flows (“failure drops”). A
noisy drop is defined as one where the corresponding
link only dropped a single packet. 007 never marked
a connection into the noisy category incorrectly. We
therefore focus on the accuracy for connections that
007 puts into the failure drop class.
Performance metrics. Our measure for the perfor-
mance of 007 is accuracy, which is the proportion
of correctly identified drop causes. For evaluating
Algorithm 1, we use recall and precision. Recall is
a measure of reliability and shows how many of the
failures 007 can detect (false negatives). For exam-
ple, if there are 100 failed links and 007 detects 90
of them, its recall is 90%. Precision is a measure of
accuracy and shows to what extent 007’s results can
be trusted (false positives). For example, if 007 flags
100 links as bad, but only 90 of those links actually
failed, its precision is 90%.
Simulation setup. We use a flow level simulator [25]
implemented in MATLAB. Our topology consists of
4160 links, 2 pods, and 20 ToRs per pod. Each host
establishes 2 connections per second to a random
ToR outside of its rack. The simulator has two types
of links. For good links, packets are dropped at a very
low rate chosen uniformly from (0,10−6) to simulate
noise. On the other hand, failed links have a higher
drop rate to simulate failures. By default, drop rates
on failed links are set to vary uniformly from 0.01%
to 1%, though to study the impact of drop rates we
do allow this rate to vary as an input parameter.
The number of good and failed links is also tunable.
Every 30 seconds of simulation time, we send up to
100 packets per flow and drop them based on the
rates above as they traverse links along the path.
The simulator records all flows with at least one drop
and for each such flow, the link with the most drops.
We compare 007 against the solutions described

in §5.3. We only show results for the binary pro-
gram (3) in Figures 4 and 10 since its performance is
typically inferior to 007 and the integer program (4)
due to noise. This also applies to MAX COVERAGE
or Tomo [10, 11, 26] as they are approximations of
the binary program (see [27]).
6.1 In The Optimal Case
The bounds of Theorem 2 are sufficient (not neces-
sary) conditions for accuracy. We first validate that
007 can achieve high levels of accuracy as expected
when these bounds hold. We set the drop rates on the
failed links to be between (0.05%,1%). We refer the
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Figure 4: Algorithm 1 when Theorem 2 holds.

reader to [2] for why these drop rates are reasonable.
Accuracy. Figure 3 shows that 007 has an average
accuracy that is higher than 96% in almost all cases.
Due to its robustness to noise, it also outperforms
the optimization algorithm (§ 5.3) in most cases.
Recall & precision. Figure 4 shows that even when
failed links have low packet drop rates, 007 detects
them with high recall/precision.
We proceed to evaluate 007’s accuracy when the

bounds in Theorem 2 do not hold. This shows these
conditions are not necessary for good performance.
6.2 Varying Drop Rates
Our next experiment aims to push the boundaries of
Theorem 2 by varying the “failed” links drop rates
below the conservative bounds of Theorem 2.
Single Failure. Figure 5a shows results for different
drop rates on a single failed link. It shows that 007
can find the cause of drops on each flow with high
accuracy. Even as the drop rate decreases below the
bounds of Theorem 2, we see that 007 can maintain
accuracy on par with the optimization.
Multiple Failures. Figure 5b shows that 007 is suc-
cessful at finding the link responsible for a drop even
when links have very different drop rates. Prior work
have reported the difficulty of detecting such cases [2].
However, 007’s accuracy remains high.
6.3 Impact of Noise
Single Failure. We vary noise levels by changing the
drop rate of good links. We see that higher noise
levels have little impact on 007’s ability to find the
cause of drops on individual flows (Figure 6a).
Multiple Failures. We repeat this experiment for the
case of 5 failed links. Figure 6b shows the results.
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Figure 6: 007’s accuracy for varying noise levels.

007 shows little sensitivity to the increase in noise
when finding the cause of per-flow drops. Note that
the large confidence intervals of the optimization is
a result of its high sensitivity to noise.
6.4 Varying Number of Connections
In previous experiments, hosts opened 60 connections
per epoch. Here, we allow hosts to choose the number
of connections they create per epoch uniformly at
random between (10,60). Recall, from Theorem 2,
that a larger number of connections from each host
helps 007 improve its accuracy.
Single Failure. Figure 7a shows the results. 007
accurately finds the cause of packet drops on each
connection. It also outperforms the optimization
when the failed link has a low drop rate. This is
because the optimization has multiple optimal points
and is not sufficiently constrained.
Multiple Failures. Figure 7b shows the results for
multiple failures. The optimization suffers from the
lack of information to constrain the set of results. It
therefore has a large variance (confidence intervals).
007 on the other hand maintains high probability of
detection no matter the number of failures.
6.5 Impact of Traffic Skews
Single Failure. We next demonstrate 007’s ability to
detect the cause of drops even under heavily skewed
traffic. We pick 10 ToRs at random (25% of the
ToRs). To skew the traffic, 80% of the flows have
destinations set to hosts under these 10 ToRs. The
remaining flows are routed to randomly chosen hosts.
Figure 8a shows that the optimization is much more
heavily impacted by the skew than 007. 007 continues
to detect the cause of drops with high probability
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(≥ 85%) for drop rates higher than 0.1%.
Multiple Failures. We repeated the above for multi-
ple failures. Figure 8b shows that the optimization’s
accuracy suffers. It consistently shows a low detec-
tion rate as its constraints are not sufficient in guiding
the optimizer to the right solution. 007 maintains a
detection rate of ≥ 98% at all times.
Hot ToR. A special instance of traffic skew occurs
in the presence of a single hot ToR which acts as
a sink for a large number of flows. Figure 9 shows
how 007 performs in these situations. 007 can tol-
erate up to 50% skew, i.e., 50% of all flows go to
the hot ToR, with negligible accuracy degradation.
However, skews above 50% negatively impact its ac-
curacy in the presence of a large number of failures
(≥ 10). Such scenarios are unlikely as datacenter load
balancing mitigates such extreme situations.
6.6 Detecting Bad Links
In our previous experiments, we focused on 007’s
accuracy on a per connection basis. In our next
experiment, we evaluate its ability to detect bad
links.
Single Failure. Figure 10 shows the results. 007
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outperforms the optimization as it does not require
a fully specified set of equations to provide a best
guess as to which links failed. We also evaluate the
impact of failure location on our results (Figure 11).
Multiple Failures. We heavily skew the drop rates
on the failed links. Specifically, at least one failed
link has a drop rate between 10 and 100%, while
all others have a drop rate in (0.01%,0.1%). This
scenario is one that past approaches have reported
as hard to detect [2]. Figure 12 shows that 007 can
detect up to 7 failures with accuracy above 90%. Its
recall drops as the number of failed links increase.
This is because the increase in the number of failures
drives up the votes of all other links increasing the
cutoff threshold and thus increasing the likelihood of
false negatives. In fact if the top k links had been
selected 007’s recall would have been close to 100%.
6.7 Effects of Network Size
Finally, we evaluate 007 in larger networks. Its accu-
racy when finding a single failure was 98%, 92%, 91%,
and 90% on average in a network with 1,2,3, and
4 pods respectively. In contrast, the optimization
had an average accuracy of 94%, 72%, 79%, and 77%
respectively. Algorithm 1 continues to have Recall
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Figure 12: Algorithm 1 with multiple failures. The
drop rates on the links are heavily skewed.
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≥ 98% for up to 6 pods (it drops to 85% for 7 pods).
Precision remains 100% for all pod sizes.

We also evaluate both 007 and the optimization’s
ability to find the cause of per flow drops when the
number of failed links is ≥ 30. We observe that both
approach’s performance remained unchanged for the
most part, e.g., the accuracy of 007 in an example
with 30 failed links is 98.01%.
7 Evaluations: Test Cluster
We next evaluate 007 on the more realistic environ-
ment of a test cluster with 10 ToRs and a total of 80
links. We control 50 hosts in the cluster, while others
are production machines. Therefore, the T1 switches
see real production traffic. We recorded 6 hours
of traffic from a host in production and replayed it
from our hosts in the cluster (with different starting
times). Using Everflow-like functionality [3] on the
ToR switches, we induced different rates of drops
on T1 to ToR links. Our goal is to find the cause
of packet drops on each flow §7.2 and to validate
whether Algorithm 1 works in practice §7.3.
7.1 Clean Testbed Validation
We first validate a clean testbed environment. We
repave the cluster by setting all devices to a clean
state. We then run 007 without injecting any fail-
ures. We see that in the newly-repaved cluster, links
arriving at a particular ToR switch had abnormally
high votes, namely 22.5±3.65 in average. We thus
suspected that this ToR is experiencing problems.
After rebooting it, the total votes of the links went
down to 0, validating our suspicions. This exercise
also provides one example of when 007 is extremely
effective at identifying links with low drop rates.
7.2 Per-connection Failure Analysis
Can 007 identify the cause of drops when links have
very different drop rates? To find out, we induce a
drop rate of 0.2% and 0.05% on two different links
for an hour. We only know the ground truth when
the flow goes through at least one of the two failed
links. Thus, we only consider such flows. For 90.47%
of these, 007 was able to attribute the packet drop
to the correct link (the one with higher drop rate).
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Figure 13: CDF of difference between votes on bad
links and the maximum vote on good links.

7.3 Identifying Failed Links
We next validate Algorithm 1 and its ability to detect
failed links. We inject different drop rates on a chosen
link and determine whether there is a correlation
between total votes and drop rates. Specifically, we
look at the difference between the vote tally on the
bad link and that of the most voted good link. We
induced a packet drop rate of 1%, 0.1%, and 0.05%
on a T1 to ToR link in the test cluster.
Figure 13 shows the distribution for the various

drop rates. The failed link has the highest vote out of
all links when the drop rate is 1% and 0.1%. When
the drop rate is lowered to 0.05%, the failed link
becomes harder to detect due to the smaller gap be-
tween the drop rate of the bad link and that of the
normal links. Indeed, the bad link only has the max-
imum score in 88.89% of the instances (mostly due
to occasional lone drops on healthy links). However,
it is always one of the 2 links with the highest votes.

Figure 13 also shows the high correlation between
the probability of packet drop on a links and its vote
tally. This trivially shows that 007 is 100% accurate
in finding the cause of packet drops on each flow
given a single link failure: the failed link has the
highest votes among all links. We compare 007 with
the optimization problem in (4). We find that the
latter also returns the correct result every time, albeit
at the cost of a large number of false positives. To
illustrate this point: the number of links marked as
bad by (4) on average is 1.5, 1.18, and 1.47 times
higher than the number given by 007 for the drop
rates of 1%, 0.1%, and 0.05% respectively.
What about multiple failures? This is a harder

experiment to configure due to the smaller number of
links in this test cluster and its lower path diversity.
We induce different drop rates (p1 = 0.2% and p2 =
0.1%) on two links in the cluster. The link with
higher drop rate is the most voted 100% of the time.
The second link is the second highest ranked 47% of
the time and the third 32% of the time. It always
remained among the 5 most voted links. This shows
that by allowing a single false positive (identifying
three instead of two links), 007 can detect all failed
links 80% of the time even in a setup where the traffic
distribution is highly skewed. This is something past
approaches [2] could not achieve. In this example,
007 identifies the true cause of packet drops on each
connection 98% of the time.
8 Evaluations: Production
We have deployed 007 in one of our datacenters2. No-
table examples of problems 007 found include: power

2The monitoring agent has been deployed across all our
data centers for over 2 years.
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T = 0 T > 0 & T ≤ 3 T > 3 max(T )
69% 30.98% 0.02% 11

Table 1: Number of ICMPs per second per switch (T ).
We see max(T )≤ Tmax.

supply undervoltages [28], FCS errors [29], switch
reconfigurations, continuous BGP state changes, link
flaps, and software bugs [30]. Also, 007 found every
problem that was caught by our previously deployed
diagnosis tools.
8.1 Validating Theorem 1
Table 1 shows the distribution of the number of ICMP
messages sent by each switch in each epoch over a
week. The number of ICMP messages generated by
007 never exceed Tmax (Theorem 1).
8.2 TCP Connection Diagnosis
In addition to finding problematic links, 007 identifies
the most likely cause of drops on each flow. Knowing
when each individual packet is dropped in production
is hard. We perform a semi-controlled experiment to
test the accuracy of 007. Our environment consists of
thousands of hosts/links. To find the “ground truth”,
we compare its results to that obtained by EverFlow.
EverFlow captures all packets going through each
switch on which it was enabled. It is expensive to
run for extended periods of time. We thus only run
EverFlow for 5 hours and configure it to capture
all outgoing IP traffic from 9 random hosts. The
captures for each host were conducted on different
days. We filter all flows that were detected to have at
least one retransmission during this time and using
EverFlow find where their packets were dropped. We
then check whether the detected link matches that
found by 007. We found that 007 was accurate in
every single case. In this test we also verified that
each path recorded by 007 matches exactly the path
taken by that flow’s packets as captured by EverFlow.
This confirms that it is unlikely for paths to change
fast enough to cause errors in 007’s path discovery.
8.3 VM Reboot Diagnosis
During our deployment, there were 281 VM reboots
in the datacenter for which there was no explanation.
007 found a link as the cause of problems in each case.
Upon further investigation on the SNMP system logs,
we observe that in 262 cases, there were transient
drops on the host to ToR link a number of which
were correlated with high CPU usage on the host.
Two were due to high drop rates on the ToR. In
another 15, the endpoints of the links found were
undergoing configuration updates. In the remaining 2
instances, the link was flapping.
Finally, we looked at our data for one cluster for

one day. 007 identifies an average of 0.45±0.12 links

as dropping packets per epoch. The average across
all epochs of the maximum vote tally was 2.51±0.33.
Out of the links dropping packets 48% are server to
ToR links (38% were due to a single ToR switch that
was eventually taken out for repair), 24% are T1-ToR
links and 6% were due to T2-T1 link failures.
9 Discussion
007 is highly effective in finding the cause of packet
drops on individual flows. By doing so, it provides
flow-level context which is useful in finding the cause
of problems for specific applications. In this section
we discuss a number of other factors we considered
in its design.
9.1 007’s Main Assumptions
The proofs of Theorems 1 and 2 and the design of
the path discovery agent (§4) are based on a number
of assumptions:
ACK loss on reverse path. It is possible that packet
loss on the reverse path is so severe that loss of
ACK packets triggers timeout at the sender. If this
happens, the traceroute would not be going over any
link that triggered the packet drop. Since TCP ACKs
are cumulative, this is typically not a problem and
007 assumes retransmissions in such cases are unlikely.
This is true unless loss rates are very high, in which
case the severity of the problem is such that the cause
is apparent. Spurious retransmissions triggered by
timeouts may also occur if there is sudden increased
delay on forward or reverse paths. This can happen
due to rerouting, or large queue buildups. 007 treats
these retransmissions like any other.
Source NATs. Source network address translators
(SNATs) change the source IP of a packet before it is
sent out to a VIP. Our current implementation of 007
assumes connections are SNAT bypassed. However, if
flows are SNATed, the ICMP messages will not have
the right source address for 007 to get the response
to its traceroutes. This can be fixed by a query to
the SLB. Details are omitted.
L2 networks. Traceroute is not a viable option to
find paths when datacenters operate using L2 routing.
In such cases we recommend one of the following:
(a) If access to the destination is not a problem
and switches can be upgraded one can use the path
discovery methods of [2, 31]. 007 is still useful as it
allows for finding the cause of failures when multiple
failures are present and for individual flows. (b)
Alternatively, EverFlow can be used to find path.
007’s sampling is necessary here as EverFlow doesn’t
scale to capture the path of all flows.
Network topology. The calculations in §5 assume a
known topology (Clos). The same calculations can
be carried out for any known topology by updating
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the values used for ECMP. The accuracy of 007 is
tied to the degree of path diversity and that multiple
paths are available at each hop: the higher the degree
of path diversity, the better 007 performs. This is
also a desired property in any datacenter topology,
most of which follow the Clos topology [13, 32, 33].
ICMP rate limit. In rare instances, the severity of
a failure or the number of flows impacted by it may
be such that it triggers 007’s ICMP rate limit which
stops sending more traceroute messages in that epoch.
This does not impact the accuracy of Algorithm 1.
By the time 007 reaches its rate limit, it has enough
data to localize the problematic links. However, this
limits 007’s ability to find the cause of drops on flows
for which it did not identify the path. We accept
this trade-off in accuracy for the simplicity and lower
overhead of 007.
Unpredictability of ECMP. If the topology and the
ECMP functions on all the routers are known, the
path of a packet can be found by inspecting its header.
However, ECMP functions are typically proprietary
and have initialization “seeds” that change with every
reboot of the switch. Furthermore, ECMP functions
change after link failures and recoveries. Tracking all
link failures/recoveries in real time is not feasible at
a datacenter scale.

9.2 Other Factors To Consider

007 has been designed for a specific use case, namely
finding the cause of packet drops on individual con-
nections in order to provide application context. This
resulted in a number of design choices:
Detecting congestion. 007 should not avoid detecting
major congestion events as they signal severe traffic
imbalance and/or incast and are actionable. However,
the more prevalent (≥ 92%) forms of congestion have
low drop rates 10−8–10−5 [29]. 007 treats these as
noise and does not detect them. Standard congestion
control protocols can effectively react to them.
007’s ranking. 007’s ranking approach will naturally
bias towards the detection of failed links that are
frequently used. This is an intentional design choice
as the goal of 007 is to identity high impact failures
that affect many connections.
Finding the cause of other problems. 007’s goal is
to identify the cause of every packet drop, but other
problems may also be of interest. 007 can be extended
to identify the cause of many such problems. For
example, for latency, ETW provides TCP’s smooth
RTT estimates upon each received ACK. Thresh-
olding on these values allows for identifying “failed”
flows and 007’s voting scheme can be used to provides
a ranked list of suspects. Proving the accuracy of
007 for such problems requires an extension of the

analysis presented in this paper.
VM traffic problems. 007’s goal is to find the cause
of drops on infrastructure connections and through
those, find the failed links in the network. In princi-
ple, we can build a 007-like system to diagnose TCP
failures for connections established by customer VMs
as well. For example, we can update the monitor-
ing agent to capture VM TCP statistics through a
VFP-like system [34]. However, such a system raises
a number of new issues, chief among them being
security. This is part of our future work.
In conclusion, we stress that the purpose of 007

is to explain the cause of drops when they occur.
Many of these are not actionable and do not require
operator intervention. The tally of votes on a given
link provide a starting point for deciding when such
intervention is needed.

10 Related Work
Finding the source of failures in distributed systems,
specifically networks, is a mature topic. We outline
some of the key differences of 007 with these works.

The most closely related work to ours is perhaps [2],
which requires modifications to routers and both end-
points a limitation that 007 does not have. Often
services (e.g. storage) are unwilling to incur the
additional overhead of new monitoring software on
their machines and in many instances the two end-
points are in seperate organizations [4]. Moreover,
in order to apply their approach to our datacenter,
a number of engineering problems need to be over-
come, including finding a substitute for their use of
the DSCP bit, which is used for other purposes in
our datacenter. Lastly, while the statistical testing
method used in [2] (as well as others) are useful when
paths of both failed and non-failed flows are available
they cannot be used in our setting as the limited
number of traceroutes 007 can send prevent it from
tracking the path of all flows. In addition 007 allows
for diagnosis of individual connections and it works
well in the presence of multiple simultaneous failures,
features that [2] does not provide. Indeed, finding
paths only when they are needed is one of the most
attractive features of 007 as it minimizes its overhead
on the system. Maximum cover algorithms [31, 35]
suffer from many of the same limitations described
earlier for the binary optimization, since MAX COV-
ERAGE and Tomo are approximations of (3). Other
related work can be loosely categorized as follows:
Inference and Trace-Based Algorithms [1, 2, 3, 36,
37, 38, 39, 40, 41, 42] use anomaly detection and
trace-based algorithms to find sources of failures.
They require knowledge/inference of the location of
logical devices, e.g. load balancers in the connection
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path. While this information is available to the
network operators, it is not clear which instance of
these entities a flow will go over. This reduces the
accuracy of the results.

Everflow [3] aims to accurately identify the path of
packets of interest. However, it does not scale to be
used as an always on diagnosis system. Furthermore,
it requires additional features to be enabled in the
switch. Similarly, [26, 31] provides another means
of path discovery, however, such approaches require
deploying new applications to the remote end points
which we want to avoid (due to reasons described
in [4]). Also, they depend on SDN enabled networks
and are not applicable to our setting where routing
is based on BGP enabled switches.

Some inference approaches aim at covering the full
topology, e.g. [1]. While this is useful, they typically
only provides a sampled view of connection livelihood
and do not achieve the type of always on monitoring
that 007 provides. The time between probes for [1]
for example is currently 5 minutes. It is likely that
failures that happen at finer time scales slip through
the cracks of its monitoring probes.

Other such work, e.g. [2, 39, 40, 41] require access
to both endpoints and/or switches. Such access may
not always be possible. Finally, NetPoirot [4] can
only identify the general type of a problem (network,
client, server) rather than the responsible device.
Network tomography [7, 8, 9, 11, 21, 43, 44, 45, 46,
47, 48, 49, 50] typically consist of two aspects: (i)
the gathering and filtering of network traffic data to
be used for identifying the points of failure [7, 45]
and (ii) using the information found in the previous
step to identify where/why failures occurred [8, 9, 10,
21, 43, 49, 51]. 007 utilizes ongoing traffic to detect
problems, unlike these approaches which require a
much heavier-weight operation of gathering large
volumes of data. Tomography-based approaches are
also better suited for non-transient failures, while 007
can handle both transient and persistent errors. 007
also has coverage that extends to the entire network
infrastructure, and does not limit coverage to only
paths between designated monitors as some such
approaches do. Work on analyzing failures [7, 21, 43,
45] are complementary and can be applied to 007 to
improve our accuracy.
Anomaly detection [52, 53, 54, 55, 56, 57, 58] find
when a failure has occurred using machine learn-
ing [52, 54] and Fourier transforms [56]. 007 goes a
step further by finding the device responsible.
Fault Localization by Consensus [59] assumes that
a failure on a node common to the path used by a
subset of clients will result in failures on a significant
number of them. NetPoirot [4] illustrates why this

approach fails in the face of a subset of problems that
are common to datacenters. While our work builds
on this idea, it provides a confidence measure that
identifies how reliable a diagnosis report is.
Fault Localization using TCP statistics [2, 60, 61,
62, 63] use TCP metrics for diagnosis. [60] requires
heavyweight active probing. [61] uses learning tech-
niques. Both [61], and T-Rat [62] rely on continuous
packet captures which doesn’t scale. SNAP [63] iden-
tifies performance problems/causes for connections
by acquiring TCP information which are gathered
by querying socket options. It also gathers routing
data combined with topology data to compare the
TCP statistics for flows that share the same host,
link, ToR, or aggregator switch. Given their lack of
continuous monitoring, all of these approaches fail in
detecting the type of problems 007 is designed to de-
tect. Furthermore, the goal of 007 is more ambitious,
namely to find the link that causes packet drops for
each TCP connection.
Learning Based Approaches [4, 64, 65, 66] do fail-
ure detection in home and mobile networks. Our
application domain is different.
Application diagnosis [67, 68] aim at identifying the
cause of problems in a distributed application’s exe-
cution path. The limitations of diagnosing network
level paths and the complexities associated with this
task are different. Obtaining all execution paths seen
by an application, is plausible in such systems but is
not an option in ours.
Failure resilience in datacenters [13, 69, 70, 71, 72,
73, 74, 75, 76, 77] target resilience to failures in dat-
acenters. 007 can be helpful to a number of these
algorithms as it can find problematic areas which
these tools can then help avoid.
Understanding datacenter failures [22, 78] aims to
find the various types of failures in datacenters. They
are useful in understanding the types of problems
that arise in practice and to ensure that our diagnosis
engines are well equipped to find them. 007’s analysis
agent uses the findings of [22].
11 Conclusion
We introduced 007, an always on and scalable mon-
itoring/diagnosis system for datacenters. 007 can
accurately identify drop rates as low as 0.05% in dat-
acenters with thousands of links through monitoring
the status of ongoing TCP flows.
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Figure 14: Simple tomography example.
A Network tomography example
Knowing the path of all flows, it is possible to find
with confidence which link dropped a packet. To
do so, consider the example network in Figure 14.
Suppose that the link between nodes 2 and 4 drops
packets. Flows 1–2 and 3–2 suffer from drops, but
1–3 does not. A set cover optimization, such as the
one used by MAX COVERAGE and Tomo [10, 11],
that minimizes the number of “blamed” links will
correctly find the cause of drops. This problem is
however equivalent to a set covering optimization
problem that is known to be NP-complete [23].

B Proofs
Consider a Clos topology with npod pods each
with n0 ToR switches each with H hosts. Links
between tier-0 and tier-1 switches are referred to
as level 1 links and links between tier-1 and tier-2
switches are called level 2 links (see Figure 15). As-
sume that connection occur uniformly at random
between hosts under different ToR switches. Also,
assume that link failure and connection routing are
independent and that links drop packets indepen-
dently across links and across packets. To make the
derivations clearer, we use calligraphic letter (A) for
sets and boldface (A) to denote random variables.
We also use the notation [M ] = 1, . . . ,M (see [27] for
more detailed proofs).
B.1 Proof of Theorem 1
Proof. First, note that since the number of hosts
below each ToR switch is the same, we can consider
that traceroutes are sent uniformly at random be-
tween ToR switches at a rate CtH. Also, note that
routing probabilities are the same for links on the
same level, so the traceroute rate depends only on
whether the link is on level 1 or level 2. Given ECMP,
the traceroute rates on a level 1 (R1) and level 2 (R2)
link is given by

R1 = 1
n1
CtH and R2 = n0

n1n2

n0(npod−1)
(n0npod−1)CtH.

Since n0 links are connected to a tier-1 switch and n1
links are connected to a tier-2, the rate of ICMP pack-
ets at any links is bounded by T ≤max[n0R1,n1R2].

Taking max[n0R1,n1R2]≤ Tmax yields (1).

B.2 Proof of Theorem 2
We prove a more precise statement of Theorem 2.

Theorem 3. In a Clos topology with n0 ≥ n2 and
npod ≥ 1+max

[
n0
n1
, n2(n0−1)
n0(n0−n2) ,1

]
, 007 will rank with

probability (1−ε) the k < n2(n0npod−1)
n0(npod−1) bad links that

drop packets with probability pb above all good links
that drop packets with probability pg as long as

pg ≤
1− (1−pb)cl

αcu
, (5)

where cl and cu are lower and upper bounds, re-
spectively, on the number of packets per connection,
ε≤ 2e−O(N), N is the total number of connections
between hosts, and

α=
n0(4n0−k)(npod−1)

n2(n0npod−1)−n0(npod−1)k . (6)

Before proceeding, note that the typical scenario
in which n0 ≥ 2n2 and n2(n0−1)

n0(n0−n2) ≤ 1, as in our data
center, the condition on the number of pods from
Theorem 3 reduces to npod ≥ 1+ n0

n1
.

Proof. The proof proceeds as follows. First, we show
that if a link has higher probability of receiving a
vote, then it receives more votes if a large enough
number of connections (N) are established. We do
so using large deviation theory [79], so that we can
show that the probability that this does not happen
decreases exponentially in N .

Lemma 1. Let vb (vg) be the probability of a
bad (good) link receiving a vote. If vb ≥ vg, 007 ranks
bad links above good links with probability 1−e−O(N).

With Lemma 1 in hands, we then need to relate
the probabilities of a link receiving a vote (vb,vg)
to the link drop rates (pb,pg). This will allow us to
derive the signal-to-noise ratio condition in (5). Note
that the probability of a link receiving a vote is the
probability of a flow going through the link and that
a retransmission occurs (i.e., some link in the flow’s
path drops at least one packet).

Lemma 2. In a Clos topology with n0 ≥ n2 and
npod ≥ 1 + max

[
n0
n1
, n2(n0−1)
n0(n0−n2) ,1

]
, it holds that

for k ≤ n0 bad links

vb ≥
rb

n0n1npod
(7a)

vg ≤
1

n1n2npod

n0(npod−1)
n0npod−1

[
(4− k

n0
)rg + k

n0
rb

]
(7b)
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where rb and rg are the probabilities of a retransmis-
sion being due to a bad and a good link, respectively.

Before proving these lemmata, let us see how they
imply Theorem 3. From (7) in Lemma 2,

rb ≥
n0(4n0−k)(npod−1)

n2(n0npod−1)−n0(npod−1)k︸ ︷︷ ︸
α

rg⇒ vb ≥ vg,

(8)
for k < n2(n0npod−1)

n0(npod−1) < n0. Thus, in a Clos topology,
if rb ≥ αrg for α as in (6), then vb ≥ vg. However, (8)
gives a relation in terms of probabilities of retransmis-
sion (rg, rb) instead of the packet drop rates (pg, pb).
Nevertheless, note that the probability r of retrans-
mission during a connection with c packets due
to a link that drops packets with probability p
is r= 1−(1−p)c. Since r is monotonically increasing
in c, we have rb≥ 1−(1−pb)cl and rg ≤ 1−(1−pg)cu .
Using the fact (1−x)n ≥ 1−nx yields (5).

Proof of Lemma 1. First, note in a datacenter-sized
Clos network, almost every connection has a hop
count of 5 (in our datacenter, this happens to 97.5%
of connections). We can therefore approximate links
votes by assuming all bad votes have the same value.

Since links cause retransmissions independently
across connections, the number of votes of a bad link
is a binomial random variable B with parameters N ,
the total number of connections, and vb, the probabil-
ity of a bad link receiving a bad vote. Similarly, let G
be the number of votes on a good link, a binomial
random variable with parameters N and vg. 007 will
correctly rank bad links if B ≥G, i.e., if bad links re-
ceive more votes than good links. This event contains
the event D = {G ≤ (1 + δ)Nvg ∩B ≥ (1− δ)Nvb}
for δ ≤ vb−vg

vb+vg
. Using the union bound [80], the prob-

ability of 007 correctly identifying bad links obeys

P(B ≥G)≥ 1−P [G≥ (1+ δ)Nvg]
−P [B ≤ (1− δ)Nvb] .

(9)

To proceed, bound the probabilities in (9) using the
large deviation principle [79], i.e., use the fact that
for a binomial random variable S with parametersM
and q and for δ > 0 it holds that

P [S ≥ (1+ δ)qM ]≤ e−MDKL((1+δ)q‖q) (10a)

P [S ≤ (1− δ)qM ]≤ e−MDKL((1−δ)q‖q) (10b)

where DKL(q‖r) is the Kullback-Leibler divergence
between two Bernoulli distributions with probabili-
ties of success q and r [81]. The result in Lemma 1
is obtained by substituting (10) into (9).

Level 1 links

Level 2 links

Figure 15: Illustration of notation for Clos topology
used in the proof of Lemma 2

Proof of Lemma 2. Let T0, T1, and T2 denote the set
of ToR, tier-1, and tier-2 switches respectively (Fig-
ure 15). Let T s0 and T s1 , s = [npod], denote the
tier-0 and tier-1 switches in pod s, respectively. Note
that T0 = T 1

0 ∪·· ·∪T
npod

0 and T1 = T 1
1 ∪·· ·∪T

npod
1 .

Throughout the derivation, we use subscripts to de-
note the switch tier and superscripts to denote its pod.
For instance, is0 is the i-th tier-0 switch from pod s,
i.e., is0 ∈ T s0 , and `2 is the `-th tier-2 switch (tier-
2 switches do not belong to specific pods). We
write (is0, js1) for the level 1 link between is0 to js1 (as
in Figure 15) and r(is0, js1) = r(js1 , is0) to refer to the
probability of link (is0, js1) causing a retransmission.

To get the lower bound in (7a), note that a bad link
receives at least as many bad votes as retransmissions
it causes. Therefore, the probability of 007 voting
for a bad link is larger than the probability of that
link causing a retransmission. The bound is obtained
by taking the minimum between the probability of a
connection going through a level 1 and a level 2 link
and that link causing a retransmission, i.e.,

vb ≥min
[

1
n0n1npod

,
1

n1n2npod

n0(npod−1)
n0npod−1

]
rb.

The assumption that npod≥ 1+ n2(n0−1)
n0(n0−n2) makes the

first term smaller than the second and yields (7a).
In contrast, the upper bound in (7b) is obtained by

applying the union bound [80] over all possible ways
that level 1 and level 2 link could be voted. Then,
finding an adversarial placement of good and bad
links that maximizes the probability of the good link
receiving a vote, we find that for n0 ≥ n2, npod ≥ 2,
and k ≤ n2, the worst case is achieved for a level 2
link, yielding (7a).
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