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Abstract
Many systems run rich analytics on sensitive data in the

cloud, but are prone to data breaches. Hardware enclaves
promise data confidentiality and secure execution of ar-
bitrary computation, yet still suffer from access pattern
leakage. We propose Opaque, a distributed data analytics
platform supporting a wide range of queries while provid-
ing strong security guarantees. Opaque introduces new
distributed oblivious relational operators that hide access
patterns, and new query planning techniques to optimize
these new operators. Opaque is implemented on Spark
SQL with few changes to the underlying system. Opaque
provides data encryption, authentication and computa-
tion verification with a performance ranging from 52%
faster to 3.3x slower as compared to vanilla Spark SQL;
obliviousness comes with a 1.6–46x overhead. Opaque
provides an improvement of three orders of magnitude
over state-of-the-art oblivious protocols, and our query
optimization techniques improve performance by 2–5x.

1 Introduction
Cloud-based big data platforms collect and analyze vast
amounts of sensitive data such as user information (emails,
social interactions, shopping history), medical data, and
financial data. These systems extract value out of this data
through advanced SQL [4], machine learning [25, 15], or
graph analytics [14] queries. However, these information-
rich systems are also valuable targets for attacks [16, 32].
Ideally, we want to both protect data confidentiality

and maintain its value by supporting the existing rich
stack of analytics tools. Recent innovation in trusted
hardware enclaves (such as Intel SGX [24] and AMD
Memory Encryption [19]) promise support for arbitrary
computation [6, 34] at processor speeds while protecting
the data.
Unfortunately, enclaves still suffer from an important

attack vector: access pattern leakage [41, 28]. Such
leakage occurs at the memory level and the network level.
Memory-level access pattern leakage happens when a
compromised OS is able to infer information about the en-
crypted data by monitoring an application’s page accesses.
Previous work [41] has shown that an attacker can extract
hundreds of kilobytes of data from confidential documents
in a spellcheck application, as well as discernible outlines
of jpeg images from an image processing application
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Figure 1: Opaque efficiently executes a wide range of distributed
data analytics tasks by introducing SGX-enabled oblivious rela-
tional operators that mask data access patterns and new query
optimization techniques to reduce performance overhead.

running inside the enclave. Network-level access pattern
leakage occurs in the distributed setting because tasks
(e.g., sorting or hash-partitioning) can produce network
traffic that reveals information about the encrypted data
(e.g., key skew), even if the messages sent over the network
are encrypted. For example, Ohrimenko et al [28] showed
that an attacker who observes the metadata of network
messages, such as source and destination (but not their
content), in a MapReduce computation can identify the
age group, marital status, and place of birth for some rows
in a census database. Therefore, to truly secure the data,
the computation should be oblivious: i.e., it should not
leak any access patterns.
In this paper, we introduce Opaque1, an oblivious dis-

tributed data analytics platform. Utilizing Intel SGX
hardware enclaves, Opaque provides strong security guar-
antees including computation integrity and obliviousness.
One key question when implementing the oblivious

functionality is: at what layer in the software stack should
we implement it? Implementing at the application layer
will likely result in application-specific solutions that are
not widely applicable. Implementing at the execution
layer, while very general, provides us with little seman-
tics about an application beyond the execution graph and
significantly reduces our ability to optimize the imple-
mentation. Thus, neither of these two natural approaches
appears satisfactory.
Fortunately, recent developments and trends in big

data processing frameworks provide us with a compelling
opportunity: the query optimization layer. Previous work
has shown that the relational model can express a wide

1The name “Opaque” stands for Oblivious Platform for Analytic
QUEries, as well as opacity, hiding sensitive information.
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variety of big data workloads, including complex graph
analytics [14] and machine learning [17]. We chose to
implement Opaque at this layer. While the techniques
we present in this paper are general, we instantiate them
using Apache Spark [4] by layering Opaque on top of
Catalyst, the Spark SQL query optimizer (see Fig. 1).
Our design requires no changes to Spark’s libraries and
requires minimal extensions to Catalyst.
The main challenge we faced in designing Opaque is

the question of how to efficiently provide access pattern
protection. It has long been known in the literature that
such protection brings high overheads. For example,
the state-of-the-art framework for oblivious computation,
ObliVM [22], has an overhead of 9.3×106x and is not
designed for distributed workloads. Even GraphSC [27],
a special-purpose platform for oblivious parallel graph
computation, reports a 105x slowdown.
To address this challenge, we propose a two-part solu-

tion. First, we introduce a set of new distributed relational
operators that protect against both memory and network
access pattern leakage at the same time. These include
operators for joins and group-by aggregates. The contri-
bution of these relational operators is to achieve oblivious-
ness in a distributed and parallel setting. One recurring
challenge here is to handle boundary conditions (when
a value that repeats in rows spans multiple machines) in
a way that is efficient and does not leak access patterns.
These operators also come with computation integrity
guarantees, called self-verifying computation, preventing
an attacker from affecting the computation result.
Second, we provide novel query planning techniques,

both rule-based and cost-based, to further improve the
performance of oblivious computation.

• Rule-based optimization. Oblivious SQL operators in
Opaque consist of fine-grained oblivious computation
blocks called Opaque operators. We observe that by
taking a global view across these Opaque operators and
applying Opaque-specific rules, some operators can be
combined or removed while preserving security.

• Cost-based optimization. We develop a cost model for
oblivious operators that lets us evaluate the cost of a
physical plan. This model introduces security as a new
dimension to query optimization. We show that it is
possible to achieve significant performance gains by us-
ing join reordering to minimize the number of oblivious
operators. One key aspect used by our cost model is that
not all tables in a database are sensitive: some contain
public information. Hence, we can query such tables
using non-oblivious operators to improve performance.
Opaque allows database administrators to specify which
tables are sensitive. However, sensitive tables can be
related with seemingly insensitive tables. To protect
the sensitive tables in this case, Opaque leverages a

technique in the database literature called inference
detection [18, 9] to propagate sensitivity through ta-
bles based on their schema information. Additionally,
Opaque propagates operator sensitivity as well for all
operators that touch sensitive tables.
We implemented Opaque using Intel SGX on top of

Spark SQL with minimal modifications to Spark SQL.
Opaque can be run in three modes: in encryption mode,
Opaque provides data encryption and authentication as
well as guarantees the correct execution of the compu-
tation; in oblivious mode, Opaque additionally provides
oblivious execution that protects against access pattern
leakage; in oblivious pad mode, Opaque improves on the
oblivious mode by preventing size leakage.

We evaluate Opaque on three types of workloads: SQL,
machine learning, and graph analytics. To evaluate SQL,
we utilize the Big Data Benchmark [1]. We also evaluated
Opaque on least squares regression and PageRank. In
a 5-node cluster of SGX machines, encryption mode’s
performance is competitive with the baseline (unencrypted
and non-oblivious): it ranges frombeing 52% faster to 3.3x
slower. The performance gains are due to C++ execution in
the enclave versus the JVM in untrusted mode (for vanilla
Spark SQL). Oblivious mode slows down the baseline
by 1.6–46x. Much of the oblivious costs are due to the
fact that Intel SGX is not set up for big data analytics
processing; future architectures [8, 21, 35] providing
larger and oblivious enclave memory will reduce this cost
significantly. We compare Opaque with GraphSC [27],
a state-of-the-art oblivious graph processing system, by
evaluating both systems on PageRank. Opaque is able to
achieve three orders of magnitude (2300x) of performance
gain, while also providing general SQL functionality.
Finally, while obliviousness is fundamentally costly, we
show that our new query optimization techniques achieve
a performance gain of 2–5x.

2 Background
Opaque combines advances in secure enclaves with the
Spark SQL distributed relational dataflow system. Here
we briefly describe these two technologies, as well as
exemplify an access pattern leakage attack.

2.1 Hardware Enclaves
Secure enclaves are a recent advance in computer proces-
sor technology providing three main security properties:
fully isolated execution, sealing, and remote attestation.
The exact implementation details of these properties vary
by platform (e.g. Intel SGX [24] or AMD Memory En-
cryption [19]), but the general concepts are the same. Our
design builds on the general notion of an enclave, which
has several properties. First, isolated execution of an
enclave process restricts access to a subset of memory
such that only that particular enclave can access it. No
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other process on the same processor, not even the OS,
hypervisor, or system management module, can access
that memory. Second, sealing enables encrypting and
authenticating the enclave’s data such that no process
other than the exact same enclave can decrypt or modify
it (undetectably). This enables other parties, such as
the operating system, to store information on behalf of
the enclave. Third, remote attestation is the ability to
prove that the desired code is indeed running securely and
unmodified within the enclave of a particular device.

2.2 Access pattern leakage attacks
To understand access pattern leakage concretely, consider
an example query in the medical setting:
SELECT COUNT(*) FROM patient WHERE age > 30
GROUP BY disease

The “group by” operation commonly uses hash bucketing:
each machine iterates through its records and assigns each
record to a bucket. The records are then shuffled over the
network so that records within the same bucket are sent
to the same machine. For simplicity, assume each bucket
is assigned to a separate machine. By watching network
packets, the attacker sees the number of items sent to each
machine. Combined with public knowledge about disease
likelihood, the attacker infers each bucket’s disease type.

Moreover, the attacker can learn the disease type for
a specific database record, as follows. By observing
page access patterns, the attacker can track a specific
record’s bucket assignment. If the bucket’s disease type
is known, then the record’s disease type is also known. A
combination of page-based access patterns and network-
level access patterns thus gives attackers a powerful tool
to gain information about encrypted data.

2.3 Spark background
We implemented Opaque on top of Spark SQL [42, 4], a
popular cluster computing framework, and we use Spark
terminology in our design for concreteness. We emphasize
that the design ofOpaque is not tied to Spark or Spark SQL:
the oblivious operators and query planning techniques are
applicable to other relational frameworks.

The design of Spark SQL [42, 4] is built around two
components: master and workers. The user interacts with
the master which is often running with the workers in
the cloud. When a user issues a query to Spark SQL,
the command is sent to the master which constructs and
optimizes a physical query plan in the form of a DAG
(directed acyclic graph) whose nodes are tasks and whose
edges indicate data flow. The conversion of the SQL query
into a physical query plan is mediated by the Catalyst query
optimizer.

3 Overview
3.1 Threat model and assumptions
We assume a powerful adversary who controls the cloud
provider’s software stack. As a result, the adversary can
observe and modify the network traffic between different
nodes in the cloud as well as between the cloud and the
client. The attacker may gain root access to the operating
system, modify data or communications that are not inside
a secure enclave, and observe the content and order of
memory accesses by an enclave to untrusted memory
(i.e., memory that is not part of a secure enclave). In
particular, the adversary may perform a rollback attack,
in which it restores sealed data to a previous state.

We assume the adversary cannot compromise the trusted
hardware, relevant enclave keys, or client software. In
particular, the attacker cannot issue queries or change
server-side data through the client. Denial-of-service
attacks are out of scope for this paper. A cloud provider
may destroy all customer data or deny or delay access
to the service, but this would not be in the provider’s
interest. Customers also have the option to choose a
different provider if necessary. Side-channel attacks based
on power analysis or timing attacks (including those that
measure the time spent in the enclave or the time when
queries arrive) are also out of scope.

We assume that accesses to the source code of Opaque
that runs in the enclave are oblivious. This can be achieved
either by making accesses oblivious using tools such as
GhostRider [21], or by using an enclave architecture that
provides a pool of oblivious memory [8, 21, 35]; the latter
need only provide a small amount of memory because the
relevant Opaque source code is ≈ 1.4MB.

3.2 Opaque’s architecture
Figure 2 shows Opaque’s architecture. Opaque does
not change the layout of Spark and Spark SQL, except
for one aspect. Opaque moves the query planner to the
client side because a malicious cloud controlling the query
planner can result in incorrect job execution. However,
we keep the scheduler on the server side, where it runs
in the untrusted domain. We augment Opaque with a
computation verification mechanism (§4.2) to prevent an
attacker from corrupting the computation results.
The Catalyst planner resides in the job driver and is

extended with Opaque optimization rules. Given a job,
the job driver outputs a task DAG and a unique job
identifier JID for this job. For example, the query from
§2.2 translates to the DAG shown in Fig. 3. The job driver
annotates each edge with an ID, e.g., E1, and each node
with a task ID, e.g., task 4. The input data is split in
partitions, each having its own identifier.
Oblivious memory parameter. As discussed, the cur-
rent Intel SGX architecture leaks memory access patterns
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both when accessing the enclave’s memory (EPC) and the
rest of main memory. Nevertheless, recent work, such as
Sanctum [8], GhostRider [21], and T-SGX [35], proposes
enclave designs that protect against access patterns to the
EPC. Hence, such systems yield a pool of oblivious mem-
ory, which can be used as a cache to speed up oblivious
computations. Since the size of the oblivious pool depends
on the architecture used, we parameterize Opaque with
a variable specifying the size of the oblivious memory.
This parameter can range from as small as the registers
(plus Opaque’s enclave code size) to as large as the entire
EPC [8, 35] or main memory. Bigger oblivious memory
allows faster oblivious execution in Opaque. In all cases,
Opaque provides oblivious accesses to the non-oblivious
part of the EPC, to the rest of RAM, and over the network.

3.3 Security guarantees
Encryptionmode. In encryption mode, Opaque provides
data encryption and authentication guarantees. Opaque’s
self-verifying integrity protocol (§4.2) guarantees that, if
the client verifies the received result of the computation
successfully, then the result is correct, i.e., not affected
by a malicious attacker. The proof of security for the
self-verifying integrity protocol is rather straightforward,
and similar to the proof for VC3 [34].
Oblivious modes. In the two oblivious modes, Opaque
provides the strong guarantee of oblivious execution with
respect to memory, disk, and network accesses for every
sensitive SQL operator. As explained in §6.3, these are
operators taking as input at least one sensitive table or
intermediate results from a set of operators involving
at least one sensitive table. Opaque does not hide the
computation/queries run at the server or data sizes, but it
protects the data content. In oblivious mode, the attacker
learns the size of each input and output to a SQL operator
and the query plan chosen by Catalyst, which might leak
some statistical information. The oblivious pad mode,
explained in §5.3, hides even this information by pushing
up all filters and padding the final output to a public
upper bound, in exchange for more performance overhead.
We formalize and prove our obliviousness guarantees in
the extended version of this paper, and present only the
statement of the guarantees here.
Consider oblivious mode. The standard way to for-

malize that a system hides access patterns is to exhibit a
simulator that takes as input a query plan and data sizes

but not the data content, yet is able to produce the same
trace of memory and network accesses as the system. In-
tuitively, since the simulator did not take the data as input,
it means that the accesses of the system do not depend on
the data content. Whatever the simulator takes as input is
an upper bound on what the system leaks.
To specify the leakage of Opaque, consider the fol-

lowing (informal) notation. Let D be a dataset and Q a
query. Let Size(D) be the sizing information ofD, which
includes the size of each table, row, column, attribute, the
number of rows, the number of columns, but does not
include the value of each attribute. Let S be the schema
information, which includes table and column names in
D, as well as which tables are sensitive. Opaque can
easily hide table and column names via encryption. The
sensitive tables include those marked by the administra-
tor, as well as those marked by Opaque after sensitivity
propagation (§6.3). Let IOSize(D,Q) be the input/output
size of each SQL operator in Q when run on D. We
define P = OpaquePlan(D,Q) to be the physical plan
generated by Opaque. We define Trace to be the trace of
memory accesses and network traffic patterns (the source,
destination, execution stage, and size of each message) for
sensitive operators.
Theorem1. For allD, S, whereD is a dataset and S is its
schema, and for each query Q, there exists a polynomial-
time simulator Sim such that, for P =OpaquePlan(D,Q),

Sim(Size(D), S, IOSize(D,Q),P) = Trace(D,P).

The existence of Sim demonstrates that access patterns
of the execution are oblivious, and that the attacker does
not learn the data content D beyond sizing information
and the query plan. The fact that the planner chose a
certain query plan over other possible plans for the same
query might leak some information about the statistics
on the data maintained by the planner. Nevertheless, the
planner maintains only a small amount of such statistics
that contain much less information than the actual data
content. Further, the attacker does not see these statistics
directly and does not have the power to change data or
queries and observe changes to the query plan.
Oblivious pad mode’s security guarantees are similar

to the above, except that the simulator no longer takes
as input IOSize(D,Q), but instead only a public upper
bound on the size of a query’s final output.
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Note that Opaque protects most constants in a query
using semantic security: for example it hides the constant
in “age ≥ 30”, but not in “LIMIT 30”.

Coupling oblivious accesses with the fact that the con-
tent of every write to memory and every network mes-
sage is freshly encrypted with semantic security enables
Opaque to provide a strong degree of data confidentiality.
In particular, Opaque protects against the memory and
network access patterns attacks presented in [41] and [28].

4 Opaque’s encryption mode
In this section, we describe Opaque’s encryption mode,
which provides data encryption, authentication and com-
putation integrity.

4.1 Data encryption and authentication
Similar to previous designs [6, 34], Opaque uses remote
attestation to ensure that the correct code has been loaded
into enclaves. A secure communication channel is then
established and used to agree upon a shared secret key k
between the client and the enclaves.

All data in an enclave is automatically encrypted by the
enclave hardware using the processor key of that enclave.
Before communicating with another enclave, an enclave
always encrypts its data with AuthEnc using the shared
secret key k. AuthEnc encrypts data with AES in GCM
mode, a high-speed mode that provides authenticated
encryption. In addition to encryption, this mode also
produces a 128-bit MAC to be used for checking integrity.

4.2 Self-verifying computation
Ensuring computation integrity is necessary because a
malicious OS could drop messages, alter data or computa-
tion. We call our integrity checking strategy self-verifying
computation because the computation verifies itself as it
proceeds. The mere fact that the computation finished
without aborting means that it was not tampered with.

Let us first discuss how to check that the input data was
not corrupted. As in VC3 [34], the identifier of a partition
of input data is its MAC. TheMAC acts as a self-certifying
identifier because an attacker cannot produce a different
partition content for a given ID. Finally, the job driver
computes C← AuthEnck (JID, DAG, P1, . . .,Pp ), where
P1, . . .,Pp indicates the identifiers of the partitions to be
taken as input. Every worker node receives C. Opaque’s
verifier running in the enclave decrypts and checks the
authenticity of the DAG in C.
Then, to verify the integrity of the computation, each

task needs to check that the computation up to it has
proceeded correctly. First, if E1, . . .,Et are edges incoming
into task T in the DAG, the verifier checks that it has
received authentic input on each edge from the correct
previous task and that it has received input for all edges.
To ensure this invariant, each node producing an output o

for an edge E encrypts this output using AuthEnck (JID,
E,o). The receiving node can check the authenticity of
this data and that it has received data for every edge in the
DAG. Second, the node will run the correct taskT because
the enclave code was set up using remote attestation and
task T is integrity-verified in the DAG. Finally, each job
ends with the job driver receiving the final result and
checking its MAC. The last MAC serves as a proof of
correct completion of this task.

This protocol improves over VC3 [34], which requires
an extra stage where all workers send their inputs and
outputs to a master which checks that they all received
complete and correct inputs. Opaque avoids the cost of
this extra stage and performs the verification during the
computation, resulting in negligible cost.
Rollback attacks. Spark’s RDDs combined with our ver-
ification method implicitly defend against rollback attacks,
because the input to the workers is matched against the
expectedMACs from the client and afterwards, the compu-
tation proceeds deterministically. The computation result
is the same even with rollbacks.

4.3 Fault tolerance
In Spark, if the scheduler notices that somemachine is slow
or unresponsive, it reassigns that task to another machine.
Opaque’s architecture facilitates this process because the
encrypted DAG is independent from the workers’ physical
machines. As a result, the scheduler can live entirely
in the untrusted domain, and does not affect Opaque’s
security if compromised.

5 Oblivious execution
In this section, we describe Opaque’s oblivious execution
design. We first present two oblivious building blocks,
followed by Opaque’s oblivious SQL operator designs.

5.1 Oblivious building blocks
Oblivious sorting is central to the design of oblivious
SQL operators. Opaque adapts existing oblivious sorting
algorithms for both local and distributed sorting, which
we now explain.

5.1.1 Intra-machine oblivious sorting
Sorting networks [7] are abstract networks that consist of
a set of comparators that compare and swap two elements.
Elements travel over wires from the input to comparators,
where they are sorted and output again over wires. Sorting
networks are able to sort any sequence of elements using
a fixed set of comparisons.
Denote by OM, the oblivious memory available for

query processing, as discussed in §3.2. In the worst case,
this is only a part of the registers. If the total size of
the data to be sorted on a single machine fits inside the
OM, then it is possible to load everything into the OM,
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Figure 4: Column sort, used in the distributed setting. Each
column represents a single partition, and we assume that each
machine only has one partition. The algorithm has eight steps.
Steps 1, 3, 5, 7 are sorts, and the rest are shuffle operations.

sort using quicksort, then re-encrypt and write out the
result. If the data cannot fit inside the OM, Opaque will
first partition the data into blocks. Each block is moved
into the OM and sorted using quicksort. We then run a
sorting network called bitonic sort over the blocks, treating
each one as an abstract element in the network. Each
comparator operation loads two blocks into the enclave,
decrypts, merges, and re-encrypts the blocks. The merge
operation only requires a single scan over the blocks.

5.1.2 Inter-machine oblivious sorting
A natural way to adapt the bitonic sorting network in the
distributed setting is to treat each machine as an abstract
element in the sorting network. We can sort within each
machine separately, then run the bitonic sorting network
over the machines. However, each level of comparators
now corresponds to a network shuffling of data. Given
n machines, the sorting network will incur O(log2 n)
number of shuffles, which is high.

Instead, Opaque uses column sort [20], which sorts the
data using a fixed number of shuffles (5 in our experiments)
by exploiting the fact that a single machine can hold many
items. Column sort works as follows: given a sequence
of B input items, we split these items into s partitions,
where each partition has exactly r items (with padding if
necessary). Without loss of generality, we assume that
each machine handles one partition. We treat each parti-
tion as a column in column sort. The sorting algorithm
has 8 steps: the odd-numbered steps are per-column sorts
(implemented as intra-machine oblivious sorting), and
the even-numbered steps shuffle the data deterministically.
Figure 4 gives a visual example of how column sort works.
The sorting algorithm has the restriction that r ≥ 2(s−1)2,

which applies well to our setting because there are many
records in a single partition/column.

An important property of column sort is that, as an obliv-
ious operator, it preserves the balance of the partitions.
This means that after a sort, a partition will have exactly
the same number of items as before. Partition balance
is required to avoid leaking any information regarding
the underlying data’s distribution. However, balanced
partitioning is incompatible with co-locating all records
of a given group. Instead, records with identical grouping
attributes may be split across partitions. Operators that
consume the output of column sort must therefore be
able to transfer information between adjacent partitions
obliviously and efficiently. We address this challenge in
our descriptions of the oblivious operators.

5.2 Oblivious operators
In this section, we show how to use the oblivious building
blocks to construct oblivious relational algebra operators.
The three operators we present are filter, group-by, and
join. Opaque uses an existing oblivious filter operator [3],
but provides new algorithms for the join and group-by
operators, required by the distributed and parallel setting.
In what follows, we focus only on the salient parts of

these algorithms. We do not delve into how tomake simple
structures oblivious like conditionals or increments, which
is already known (e.g., [21]).

5.2.1 Oblivious filter
An oblivious filter ensures that the attacker cannot track
which encrypted input rows pass the filter. A naïve filter
that streams data through the enclave to get rid of unwanted
rows will leak which rows have been filtered out because
the attacker can keep track of which input resulted in an
output. Instead, the filter operator [3] used in Opaque first
scans and marks each row with a “0” (record should be
kept) or a “1” (record should be filtered), then obliviously
sorts all rows with “0” before “1”, and lastly, removes the
“1” rows.

5.2.2 Oblivious Aggregate
Aggregation queries group items with equal grouping
attributes and then aggregate them using an aggregation
function. For example, for the query in §2.2, the grouping
attribute is disease and the aggregation function is count.

A naïve aggregation implementation leaks information
about group sizes (some groups may contain more records
than others), as well as the actual mapping from a record
to a group. For example, a reduce operation that sends all
rows in the same group to a single machine reveals which
and how many rows are in the group. Prior work [28]
showed that an attacker can identify age group or place of
birth from such protocols.

Opaque’s oblivious aggregation starts with an oblivious
sort on the grouping attributes. Once the sort is complete,
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all records that have the same grouping attributes are
located next to each other. A single scan might seem
sufficient to aggregate and output a value for each group,
but this is incorrect. First, the number of groups per
machine can leak the number of values in each group. A
further challenge (mentioned in §5.1.2) is that a set of rows
with the same grouping attributes might span multiple
machines, leaking such information. We need to devise a
parallel solution because a sequential scan is too slow.

We solve the above problems by designing a distributed
group-by operator that reveals neither row-to-group map-
ping nor the size of each group. The logical unit for this
algorithm is a partition, which is assumed to fit on one
machine. The intuition for this algorithm is that we want
to simulate a global sequential scan using per-partition
parallel scans. If all records in a group are in one partition,
the group will be aggregated immediately. Once the last
record in that group has been consumed in the scan, the
aggregation result is complete. If records in a group are
split across partitions, we want to pass information across
partitions efficiently and obliviously so that later partitions
have the information they need to finish the aggregation.
High-cardinality aggregation. This aggregation algo-
rithm should be run when the number of groups is large.
Stage 1 [sort]: Obliviously sort all records based on the
grouping attributes.
Stages 2–4 are the boundary processing stages. These

stages solve the problem of a single group being split
across multiple machines after column sort. Figure 5
illustrates an example.
Stage 2 [per-partition scan 1]: Each worker scans its
partition once to gather some statistics, which include the
partition’s first and last rows, as well as partial aggregates
of the last group in this partition. In Figure 5, each
column represents one partition. Each worker calculates
statistics including Ri , the partial aggregate. In partition
0, R0 = (C,2) is the partial aggregate that corresponds to
the last row in that partition, C.
Stage 3 [boundary processing]: All of the statistics from
stage 2 are collected into a single partition. The worker
assigned this partition will scan all of the statistics and
compute one global partial aggregate (GPA) per partition.
Each partition’s GPA should be given to the next partition.

Figure 5’s stage 3 shows an example of how the GPA is
computed. The first partition always receives a dummy
GPA since it is not preceded by any other partition. Parti-
tion P1 receives (C,2) from P0. With this information,
P1 can correctly compute the aggregation result for group
C, even though the records are split across P0 and P1.
Stage 4 [per-partition scan 2]: Each partition receives a
GPA, which will be used to produce the final aggregation
results. Figure 5’s stage 4 shows that P1 can aggregate
groups C, D and E using R

′

1. Note that one record needs

A
A
B
C
C

C
C
D
E
E

R0 = (C, 2)

F
G
H
H
I

R1 = (E, 2) R2 = (I, 1)
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R2 = (I, 1)
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C
C
D
E
E
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(E, -1)
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Output:

Figure 5: Stages 2 - 4 of oblivious aggregation
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Tp.b ⨝ Tf.b
dummy
Tp.c ⨝ Tf.c
dummy
Tp.d ⨝ Tf.d

Output:

Figure 6: Stages 2–4 of oblivious join.

to be output for every input record, and output rows are
marked as dummy if necessary (e.g., returning −1 for the
count result).
Stage 5 [sort and filter]: Obliviously sort the dummy
records after the real records, and filter out the dummies.
Low-cardinality group-by. If the number of groups is
small (e.g., age groups, states), Opaque provides an al-
ternative algorithm that avoids the second oblivious sort,
which we describe in the extended version of this paper.

5.2.3 Oblivious sort-merge join
Regular joins leak information about howmany and which
records are joined together on the same join attributes.
For example, a regular primary-foreign key join may sort
the two tables separately, maintain a pointer to each table,
and merge the two tables together while advancing the
pointers. The pointer locations reveal information about
how many rows have the same join attributes and which
rows are joined together.
We developed an oblivious equi-join algorithm based

on the sort-merge join algorithm. While our algorithm
presented below focuses on primary-foreign key join, we
can also generalize the algorithm to inner equi-join, which
we describe in our extended paper. Let Tp be the primary
key table, and Tf be the foreign key table.
Stage 1 [union and sort]: We union Tp with Tf , then
obliviously sort them together based on the join attributes.
We break ties by ordering Tp records before Tf records.

As with oblivious aggregation, stages 2–4 are used to
handle the case of a join group (e.g., a set of rows from Tp

and Tf that are joined together) that is split across multiple
machines. We use Figure 6 to illustrate these three stages.
Stage 2 [per-partition scan 1]: Each partition is scanned
once and the last row fromTp in that partition, or a dummy
(if there is no record from Tp on that machine) is returned.
We call this the boundary record.

Figure 6 explains stage 2 with an example, where Tp.x
indicates a record from the primary key table with join
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attribute x, and Tf.x indicates a record from the foreign
key table with join attribute x. In partition P0, Tp.b is the
last record of Tp in that partition, so the boundary record
is set to Tp.b. P1 does not contain any row from Tp , so
its boundary record is set to a dummy value.
Stage 3 [boundary processing]: In stage 3, we want to
generate primary key table records to give back to each
data partition so that all of the foreign key table records
in each partition (even if the information spans across
multiple machines) can be joined with the corresponding
primary key record. We do so by first collecting all of the
boundary records to one partition. This list is scanned
once, and we output a new boundary record for every
partition. Each output is set to the value of the most
recently encountered non-dummy boundary.

For example, Fig. 6’s stage 3 shows that three boundary
records are collected. Partition 0 will always get a dummy
record. Record Tp.b is passed from partition 0 to partitions
1 and 2 because d1 is a dummy. This ensures that any
record from Tf with join attribute b (e.g., the first record
of partition 2) will be joined correctly.
Stage 4 [per-partition scan 2]: Stage 4 is similar to a
normal sort-merge join, where the worker linearly scans
the tables and joins primary key records with the corre-
sponding foreign key records. There are some variations
to preserve obliviousness. First, the initial record in the
primary key table should come from the boundary record
received in stage 3 (except for the first partition). Second,
during the single scan, we need to make sure that one
record is output for every input record, outputting dummy
records as necessary.
Figure 6’s stage 4 shows how the algorithm works on

partition 2. The boundary record’s value is Tp.b, which is
successfully joined with the first row of partition 2. Since
P2’s second row is a new record from Tp , we change the
boundary record to Tp.c, and a dummy is output.
Stage 5 [sort and filter]: Oblivious sort to filter out the
dummies.

5.3 Oblivious pad mode
Oblivious execution provides strong security guarantees
and prevents access pattern leakage. However, it does
not hide the output size of each relational operator. This
means that in a query with multiple relational operators,
the size of each intermediate result is leaked. To solve this
problem, Opaque provides a stronger variant of oblivious
execution: oblivious with padding.

The idea is to never reduce the output size of a relational
operator until the end of the query. This can be easily
achieved by using “filter push up.” For example, a query
that has a join followed by an aggregation will skip stage
5 of the join. After the aggregation, all dummies will be
filtered out in a single sort with filter. We also require the

user to provide an upper bound on the final result size, and
Opaque will pad the final result to this size. In this case,
the query plan also no longer depends on data statistics,
as we discuss in §6.4.

Note that this mode is more inefficient because Opaque
cannot take advantage of selectivity (e.g., of filters), andwe
provide an evaluation in our extended paper. Therefore, we
recommend using padding on extremely sensitive datasets.

6 Query planning
Even with parallelizable oblivious algorithms, oblivious-
ness is still expensive. We now describe Opaque’s query
planner, which reduces obliviousness overheads by in-
troducing novel techniques that build on rule-based and
cost-based optimization, as well as entity-relational mod-
eling. We first formalize a cost model for our oblivious
operators to allow a standard query planner to perform
basic optimizations on oblivious plans. We then describe
several new optimizations specific to Opaque, enabled
by a decomposition of oblivious relational operators into
lower-level Opaque operators. Finally, we describe a
mixed sensitivity setting where a database administrator
can designate tables as sensitive. Opaque applies a tech-
nique in databases known as second path analysis that uses
foreign-key relationships in a data model to identify tables
that are not sensitive, accounting for inference attacks. We
also demonstrate that such sensitivity propagation occurs
within a single query plan, allowing us to substantially
speed up certain queries using join reordering.

6.1 Cost model
Cost estimation in Opaque differs from that of a tradi-
tional SQL database because sorting, the core database
operation, is more costly in the oblivious setting than oth-
erwise. Oblivious sorting has very different algorithmic
behavior from conventional sorting algorithms because
the sequence of comparisons can be constructed based
only on the input size and not the input data. Therefore,
our cost model must accurately model oblivious sorting,
which is the dominant cost in our oblivious operators.

Similarly to a conventional sort, the cost of an oblivious
sort depends on two factors: the number of input items
and the padded record size. Even for datasets that fit in
memory, cost modeling for an oblivious sort is similar
to that of a traditional external sort because the latency
penalty incurred by the enclave for accessing pages outside
of the oblivious memory or EPC effectively adds a layer
to the memory hierarchy. We therefore use a two-level
sorting scheme for oblivious sort, described in §5.1.1,
having a runtime complexity of O(n log2 n).
We now formalize the cost of oblivious sort and use

this to model oblivious join. The costs of other oblivious
operators can be similarly modeled.
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Figure 7: Catalyst oblivious query planning.

Let T be a relation, and r be a padded record. We
denote |T | to be the size of the relation T , and |r | to be
the size of a padded record. Let |OMem| be the size
of the oblivious memory, and K a constant scale factor
representing the cost of executing a compare-and-swap
on two records. We denote n to be the number of records
per block, and B to be the required number of blocks. We
can estimate n, B, and the resulting sort cost Co-sort and
join cost Co-join as follows:

n =
|OMem|
2 |R|

, B = |T | /n, Co-join ≈ 2 ·Co-sort

Co-sort( |T | , |R|) =




K |T | log |T | if |T | · |R| ≤ |OMem|
K
[
Bn logn+ nB logB(1+ logB)/2

]
otherwise

The number of records n per block follows from the fact
that two blocks must fit in oblivious memory at a time for
the merge step. The expression for the sort cost follows
from the two-level sorting scheme. If the input fits inside
the oblivious memory, we bypass the sorting network and
instead use quicksort within this memory, so the estimated
cost is simply the cost of quicksort. Otherwise, we sort
each block individually using quicksort, run a sorting
network on the set of blocks and merge blocks pairwise.
The sorting network performs B logB(1+ logB)/4merges,
each incurring a cost of 2n to merge two blocks. We
experimentally verify this cost model in §8.4.

6.2 Oblivious query optimization
We now describe new optimization rules for a sequence of
oblivious operators. Our rules operate on the lower-level
operations within each oblivious operator, which we call
Opaque operators.

6.2.1 Overview of the query planner
Before describing the Opaque operators, we provide an
overview of the planning process, illustrated in Fig. 7.
Opaque leverages the Catalyst query planner to transform
a SQL query into an operator graph encoding the logical
plan. Opaque interposes in the planning process to mark
all logical operators that process sensitive data as oblivious.
Catalyst can apply standard relational optimizations to the
logical plan such as filter pushdown and join reordering.

Catalyst then generates a physical plan where each log-
ical operator is mapped to one or more physical operators
representing the choice of execution strategy. For example,
a logical non-oblivious join operator could be converted
to a physical hash join or a broadcast join based on the
input cardinalities. Oblivious operators are transformed
into physical Opaque operators at this stage, allowing
us to express rules specific to combinations of oblivious
operators. Similar to Catalyst, generating these physical
operators allows Opaque to select from multiple imple-
mentations of the same logical operator based on table
statistics. For example, if column cardinality is available,
Opaque may use it to decide which oblivious aggregation
algorithm to use. Catalyst then applies our Opaque rules
to the physical plan.
The physical plan is then converted into an encrypted

representation to hide information such as column names,
constants, etc. Finally, Catalyst transforms the encrypted
physical plan into a Spark DAG containing a graph of
RDDs and executes it on the cluster.

6.2.2 Opaque operators
The following is a sampling of the physical Opaque oper-
ators generated during planning:
• SORT(C): obliviously sort on columns C
• FILTER: drop rows if predicate not satisfied
• PROJECT-f: similar to FILTER, but projects filtered out
rows to 1, the rest to 0; preserves input size

• HC-AGG: stages 2–4 of the aggregation algorithm
• SORT-MERGE-JOIN: steps 2–4 of the sort-merge join al-
gorithm

6.2.3 Query optimization
In this section, we give an example of an Opaque-specific
rule:

SORT(C2,FILTER(SORT(C1,PROJECT-f(C1))))
= FILTER(SORT(C1,C2,PROJECT-f(C1)))

Let us take a look at how this rule would work with
a specific query. We use the example query from §2.2,
which translates to the following physical plan:
LC-AGG(disease,
SORT(disease, FILTER(dummy,
SORT(dummy_col,PROJECT-f(age,patient)))))

The filter will first do a projection based on the column
age. To preserve obliviousness, the projected column
is sorted and a real filter is applied. Since a sort-based
aggregation comes after the filter, we need to do another
sort on disease.
We make the observation that the second sort can be

combined with the first sort into one oblivious sort on
multiple columns. Since PROJECT-f always projects a
column that is binary (i.e., the column contains only “0”s
and “1”s), we can first sort on the binary column, then on
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Figure 8: Example medical schema.

the second sort’s columns (in this example, the disease
column). Therefore, the previous plan becomes:

LC-AGG(disease,FILTER(dummy_col,
SORT({dummy_col,disease},
PROJECT-f(age,patient))))

This optimization is rule-based instead of cost-based.
Furthermore, our rule is different from what a regular
SQL optimizer applies because it pushes up the filter,
while a SQL optimizer pushes down the filter. Filter push-
down is unsafe because it does not provide obliviousness
guarantees. Applying the filter before sorting will leak
which records are filtered out.

6.3 Mixed sensitivity
Many applications operate on a database where not all
of the tables are sensitive. For example, a hospital may
treat patient information as sensitive while information
about drugs, diseases, and various hospital services may
be public knowledge (see Figure 8).

6.3.1 Sensitivity propagation
Propagation on tables. In a mixed sensitivity environ-
ment, tables that are not marked as sensitive could still be
sensitive if they reveal information about other sensitive
tables. Consider the example schema in Fig. 8. The
Disease, Medication, and Gene tables are public datasets
or have publicly known distributions in this example and
therefore are not sensitive. Meanwhile the Patient table
would likely be marked as sensitive. But what about Treat-
ment Plan and Treatment Record? It turns out these tables
are also sensitive because they implicitly embed patient
information. Each treatment record belongs to a single
patient, and each patient’s plan may contain multiple treat-
ment records. If an attacker has some prior knowledge,
for example regarding what type of medication a patient
uses, then observing only the Treatment Record table may
allow the attacker to use an inference attack to gain fur-
ther information about that patient such as their treatment
frequency and other medication they may be taking.
To prevent such attacks, we use a technique from

database literature called second path analysis [18]. The

intuition for the inference attack is that information prop-
agates along primary-foreign key relations: since each
treatment record belongs to one treatment plan and one
patient, the treatment record contains implicit information
about patients. The disease table is connected to the
patient table as well, except it has a primary key pointing
into patient. This means that the disease table does not
implicitly embed patient information.
Second path analysis accomplishes table sensitivity

propagation by first directly marking user-specified tables
as sensitive. After this is done, it recursively marks all
tables that are reachable from every sensitive table via
primary-foreign key relationships as sensitive as well.
As in Fig. 8, such relationships are marked in an entity-
relationship diagram using an arrow from the primary key
table to the foreign key table.

This approach has been generalized to associations other
than explicit foreign keys and implemented in automated
tools [9]. We do not reimplement such analysis in Opaque,
instead referring to the existing work.

Propagation on operators. Another form of sensitivity
propagation occurs when an operator (e.g., join) involves
a sensitive and a non-sensitive table. In this case, we
must run the entire operator obliviously. Additionally, for
every leaf table that is marked sensitive in a query plan,
sensitivity propagates on the path from the leaf to the root,
and Opaque runs all the operators on this path obliviously.

6.3.2 Join reordering
Queries involving both sensitive and non-sensitive tables
may contain a mix of oblivious and non-oblivious opera-
tors. Due to sensitivity propagation on operators, some
logical plans may involve more oblivious operators than
others. For example, a three-way join query where one
table is sensitive may involve two oblivious joins if the
sensitive table is joined first, or only one oblivious join if
it is joined last (i.e., the non-sensitive tables are pushed
down in the join order).
Join reordering in a traditional SQL optimizer centers

on performing the most selective joins first, reducing
the number of tuples that need to be processed. The
statistics regarding selectivity can be collected by running
oblivious Opaque queries. In Opaque, mixed sensitivity
introduces another dimension to query optimization be-
cause of operator-level sensitivity propagation and the fact
that oblivious operators are much more costly than their
non-oblivious counterparts. Therefore, a join ordering
that minimizes the number of oblivious operators may in
some cases be more efficient than one that only optimizes
based on selectivity.
Consider the following query to find the least costly

medication for each patient, using the schema in Fig. 8:
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Figure 9: Join reordering in mixed sensitivity mode.

SELECT p_name, d_name, med_cost
FROM patient, disease,

(SELECT d_id, min(cost) AS med_cost
FROM medication
GROUP BY d_id) AS med

WHERE disease.d_id = patient.d_id
AND disease.d_id = med.d_id

We assume that the Patient table is the smallest, followed
by Disease, then Medication (|P | < |D | < |M |), as might
occur when considering only currently hospitalized pa-
tients and assuming there are multiple medications for
each disease. The aggregation query reduces the cardi-
nality of Medication to that of Disease and ensures a
one-to-one relationship between the two tables.
Figure 9 shows two join orders for this query. A tradi-

tional SQL optimizer will execute the most selective join
first, joining Patient with Disease, then with Medication.
The optimal ordering for Opaque will instead delay joining
Patient to reduce the number of oblivious joins. To see
this, we now analyze the costs for both join orders.
Let CSQL be the cost of this query using the SQL join

order, COpaque the cost using the Opaque join order, and R
the padded row size for all input tables. Note that the size
of the Medication aggregate table is |D |.

CSQL = 2Co-join(|P |+ |D | ,R)
COpaque = Cjoin(2 |D | ,R)+Co-join( |P |+ |D | ,R)

Assuming Cjoin � Co-join,

CSQL

COpaque
≤

2Co-join(|P |+ |D | ,R)
Co-join( |P |+ |D | ,R)

= 2

Thus, this query will see at most 2x speedup from
join reordering. However, other queries can benefit still
further from this optimization. Consider a three-way join
of Patient, Disease, and Gene to extract the gene mutation
affecting each patient. We assume Gene is a very large
public dataset, so that |P | < |D | < |G |. Because Disease
contains a foreign key into Gene, the three-way join occurs
only on primary-foreign key constraints with no need for
aggregation. As before, a traditional SQL optimizer would
execute (P 1 D) 1G while Opaque will run (G 1 D) 1 P.
The costs are as follows:

CSQL = Co-join(|P |+ |D | ,R)+Co-join(|P |+ |G | ,R)
COpaque = Cjoin(|G |+ |D | ,R)+Co-join(|D |+ |P | ,R)

Assuming Cjoin � Co-join and |P | < |D | � |G |,

CSQL

COpaque
=

Co-join( |P |+ |G | ,R)
Cjoin(|G |+ |D | ,R)

≈
Co-join(|G | ,R)
Cjoin(|G | ,R)

The maximum theoretical performance gain for this
query therefore approaches the performance difference
between the Opaque and non-oblivious join operators. We
demonstrate this empirically in Fig. 12b.

Limitations. Note that sensitivity propagation optimizes
efficiently when the large tables in a database are not
sensitive. This makes intuitive sense because computation
on larger tables contributes more to the query runtime. If
the larger tables are sensitive, then join reordering cannot
help because any join with these tables must always be
made oblivious. Therefore, the underlying schema will
have a large impact on the effectiveness of our cost-based
query optimizations.

6.4 Query planning for oblivious pad mode
As discussed in §3.3, the fact that the planner chose a
query plan over another plan leaks some information
about the selectivity of some operators. For example,
generalized inner joins’ costs depend on join selectivity
information. This is not a problem for primary-foreign
key joins because these costs can be estimated using only
the size of each table: the output size of such a join is
always the size of the foreign key table.

Oblivious pad mode does not leak such statistics infor-
mation. All filters are pushed up and combined together at
the end of the query. The optimizer does not need to use
selectivity information because the overall size will not
be reduced until the very end. Thus, our query planning
stage only needs to use publicly-known information such
as the size of each table.

7 Implementation
Opaque is implemented on top of Spark SQL, a big data
analytics framework. Our implementation consists of
7000 lines of C++ enclave code and 3600 lines of Scala.

We implemented the Opaque operators and query op-
timization rules from §6 by extending Catalyst using its
developer APIs with minimal modifications to Spark. Our
operators are written in Scala and execute in the untrusted
domain, making trusted calls to the enclave when neces-
sary through JNI. For example, the SORT operator performs
inter-machine sorting using an RDD-based implementa-
tion of distributed column sort in the untrusted domain
(§5.1.2). Within each partition, the SORT operator seri-
alizes the encrypted rows and passes them using JNI to
the worker node’s enclave, which then performs the local
sort in the trusted domain (§5.1.1). Our implementation
currently does not support arbitrary user-defined functions
(UDFs) due to the difficulty in making them oblivious.
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Figure 10: Sort microbenchmarks. (a) Non-oblivious sort in
SGX. Exceeding EPC size causes a dramatic slowdown. (b)
Oblivious sort in SGX. Larger blocks improve performance until
the EPC limit in HW mode, or indefinitely in simulation mode.

Opaque encrypts and integrity-protects data on a block-
level basis using AES in GCMmode, which provides data
confidentiality as well as integrity. We pad all rows within
a table to the same upper bound before encrypting. This
is essential for tables with variable-length attributes as it
prevents an attacker from distinguishing between different
rows as they move through the system.

8 Evaluation
In this section, we demonstrate that Opaque represents
a significant performance improvement over the state of
the art in oblivious computation, quantify its overhead
compared to an insecure baseline, and measure the gains
from our query planning techniques.

8.1 Experimental setup
Single-machine experiments were run using SGX hard-
ware on a machine with Intel Xeon E3-1280 v5 (4 cores
@ 3.70GHz, 8MiB cache) with 64GiB of RAM. This is
the maximum number of cores available on processors
supporting SGX at the time of writing.
Distributed experiments were run on a cluster of 5

SGX machines with Intel Xeon E3-1230 v5 (4 cores @
3.40GHz, 8MiB cache) with 64GiB of RAM.

8.2 Impact of oblivious memory size
We begin by studying the impact of the secure enclave
memory size and show that Opaque will benefit signif-
icantly from future enclave implementations with more
memory. SGX maintains an encrypted cache of memory
pages called the Enclave Page Cache, which is small com-
pared to the size of main memory. Once a page is evicted
from the EPC, it is decrypted if it was not entirely in CPU
cache, re-encrypted under a different key, and stored in
main memory. When an encrypted page in main memory
is accessed, it needs to be decrypted again. This paging in
and out of the EPC introduces a large overhead. Current
implementations of SGX have a maximum effective EPC
size of 93.5MiB, but this will be significantly increased
in upcoming versions of SGX.

Sorting is the core operation in Opaque, so we studied
how SGX affected its performance. In Fig. 10a, we
benchmark non-oblivious sorting (introsort) in SGX by
sorting arrays of 64-bit integers of various sizes using
EPCs of various sizes. We also measure the overhead
incurred by decrypting input data and encrypting output
data before and after sorting using AES-GCM-128. We
see that exceeding the EPC size even by just a little incurs
a 50 ∼ 60% overhead. When below the EPC limit, the
overhead of encryption for I/O is just 7.46% on average.
The overhead of the entire operation versus the insecure
baseline is 31.7% on average.
Having a part of EPC that is oblivious radically im-

proves performance. In §3.2, we discussed existing and
upcoming designs for such an EPC. In Fig. 10b, we call
this an oblivious block size, and we benchmarked the
performance of oblivious sort with varying block sizes
(§5.1.1). Within a block, regular quicksort can happen
which speeds up performance. The case when only the
registers are oblivious (namely an oblivious block of the
same size as the available registers) did not fit in the graph:
the overhead was 30x versus when the L3 cache (8MB) is
oblivious. We see that in hardware mode, more oblivious
memory improves performance until a sort block size
of 40 MB, when the working set (two blocks for merg-
ing) exceeds the hardware EPC size, causing thrashing,
as occurred in Fig. 10a near EPC limits. In simulation
mode, no thrashing occurs. In sum, Opaque’s performance
will improve significantly when run with more oblivious
memory as a cache.

8.3 System comparisons
8.3.1 Comparison with Spark SQL
We evaluated Opaque against vanilla Spark SQL, which
provides no security guarantees, on three different work-
loads: SQL, machine learning, and graph analytics.

For the SQL workload, we benchmarked both systems
on three out of four queries of Big Data Benchmark [1], a
popular benchmark for big data SQL engines. The fourth
query is an external script query and is not supported by
our system. The three queries cover filter, aggregation
(high cardinality), and join. For the machine learning
workload, we chose least squares regression on 2D data;
this query uses projection and global aggregation. Finally,
we chose to benchmark PageRank for the graph analytics
workload; this query uses projection and aggregation.

We show our results in two graphs, Figure 11a and
Figure 11b. Figure 11a shows the performance of each
of Opaque’s security modes on the Big Data Benchmark
in the distributed setting. Higher security naturally adds
more overhead. Encryption mode is competitive with
Spark SQL (between 52% improvement and 2.4x slow-
down). The performance gain comes from the fact that
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Figure 11: (a) Encryption mode is competitive with Spark SQL. Obliviousness (including network and memory obliviousness) adds
up to 46x overhead. (b) Comparison across a wide range of queries. Hatched areas represent time spent sorting. (c) Single iteration
of PageRank for various graph sizes.

Opaque runs C++ in the enclave, while Spark SQL incurs
overhead from the JVM. Opaque’s oblivious mode adds
20–46x overhead.

Figure 11b showsOpaque’s performance on five queries.
Hatched areas show the time spent in oblivious sort, the
dominant cost. The left side of Figure 11b shows Opaque
running on a single machine using SGX hardware com-
pared to Spark SQL, while the right side shows the dis-
tributed setting. In the single-machine setting, Opaque’s
encryption mode performance varies from 58% perfor-
mance gain to 2.5x performance loss when compared with
the Spark SQL baseline. The oblivious mode (both net-
work and memory oblivious) slows down the baseline by
1.6–62x. The right side shows Opaque’s performance on a
distributed SGX cluster. Encryption mode’s performance
ranges from a 52% performance improvement to a 3.3x
slowdown, while oblivious mode adds 1.2–46x overhead.
In these experiments, Opaque was configured with oblivi-
ous memory being the L3 cache and not the bulk of EPC.
As discussed in §8.2, more oblivious memory would give
better performance, and such hardware proposals already
exist (see §3.2).

8.3.2 Comparison with GraphSC
We use the same PageRank benchmark to compare with
the existing state-of-the-art graph computation platform,
GraphSC [27]. While Opaque is more general than graph
computation, we compared Opaque with GraphSC instead
of its more generic counterpart ObliVM [22], because
ObliVM is about ten times slower than GraphSC.
We used data from GraphSC and ran the same experi-

ment on both systems on our single node machine, with
Opaque running in hardware mode with obliviousness.
Figure 11c shows that Opaque is faster than GraphSC for
all data sizes. For 8K graph size, Opaque is 2300x faster
than GraphSC. This is consistent with the ObliVM and
GraphSC papers: ObliVM reports a 9.3×106x slowdown,
and GraphSC [27] a slowdown of 2× 105x to 5× 105x.
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Figure 12: Query planning benchmarks. (a) Our cost model
closely approximates the empirical results for oblivious joins
across a range of input sizes. (b) Join reordering provides up to
5x speedup for some queries.

Though GraphSC and Opaque share the high-level threat
model of an untrusted service provider, they relax the threat
model in different ways, explaining the performance gap.
Opaque relies on trusted hardware, while GraphSC relies
on two servers that must not collude and are semi-honest
(do not cheat in the protocol) and so must use garbled cir-
cuits and secure two-party computation, which are much
slower for generic computation than trusted hardware.

8.4 Query planning
We next evaluate the query planning techniques proposed
in §6. First, we evaluate the cost model presented in
§6.1 using a single-machine microbenchmark. We run an
oblivious join and vary the input cardinality. We then fit
the equation from §6.1 to the empirical results. Figure 12a
shows that our theoretical cost model closely approximates
the actual join costs.
Second, to evaluate the performance gain from join

reordering, we run the two queries from §6.3.2. Fig-
ure 12b shows the speedup from reordering each query
with varying sizes of the sensitive patient table. The
medication query sees just under 2x performance gain
because two equal-sized oblivious joins are replaced by
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one oblivious and one non-oblivious join. The gene query
sees a 5x performance gain when the sensitive table is
small because the larger oblivious join is replaced with
a non-oblivious join. As the sensitive table increases in
size, the benefit of join reordering approaches the same
level as for the medication query.

9 Related work

9.1 Relevant cryptographic protocols
ORAM. Oblivious RAM [13, 37, 38, 36] is a crypto-
graphic construct for protecting against access pattern
leakage. However, ORAM does not fit in Opaque’s set-
ting because it has an intrinsically different computation
model: serving key-value pairs. We show this problem by
devising a simple strawman design using ORAM: put all
data items in an in-memory ORAM in Spark.

How can ORAM be utilized if we attempt to sort data,
which is an essential operation in SQL? One way to
implement sorting on top of ORAM is to simply treat a
sorting algorithm’s compare-and-swap operation as two
ORAM reads and two ORAM writes. This is not viable
for three reasons. First, making an ORAM access for each
data item is very slow. Second, current ORAMdesigns are
not parallel and distributed, which means that the ORAM
accesses will be serialized. Third, we cannot use a regular
sorting algorithm because the number of comparisons may
be different when run on different underlying data values.
This could leak something about the encrypted data and
would not provide obliviousness. Therefore, we must
use a sorting network anyway, which means that adding
ORAM will add an extra polylog(n) factor of accesses.

Other protocols. Fully homomorphic encryption [11, 12]
permits computing any function on encrypted data, but
is prohibitively slow. Oblivious protocols such as sorting
and routing networks [7] are more relevant to Opaque,
and Opaque builds on these as discussed in §5.1.

9.2 Non-oblivious systems
A set of database systems encrypt the data so that the ser-
vice provider cannot see it. These databases can be classi-
fied into two types. The first type are encrypted databases,
such as CryptDB [33], BlindSeer [31], Monomi [39],
AlwaysEncrypted [26], and Seabed [30], that rely on cryp-
tographic techniques for computation. The second type
are databases, such as Haven [6], VC3 [34], TrustedDB [5],
TDB [23] and GnatDb [40], that require trusted hardware
to execute computation.

The main drawback of these systems is that they do
not hide access patterns (both in memory and over the
network) and hence leak data [41, 28]. Additionally, most
of these systems do not fit the distributed analytics setting.

9.3 Oblivious systems
Non-distributed systems. Cipherbase [2] uses trusted
hardware to achieve generic functionality for encrypted
databases. The base Cipherbase design is not oblivious,
but Arasu and Kaushik [3] have proposed oblivious pro-
tocols for SQL queries. However, unlike Opaque, their
work does not consider the distributed setting. In partic-
ular, the proposed oblivious operators are not designed
for a parallel setting resulting in sequential execution in
Opaque, and do not consider boundary conditions. In
addition, Cipherbase’s contribution is a design proposal,
while Opaque also provides a system and an evaluation.

Ohrimenko et al. [29] provide oblivious algorithms for
common ML protocols such as matrix factorization or
neural networks, but do not support oblivious relational
operators or query optimization. Their focus is not on
the distributed setting, and parts of the design (e.g., the
choice of a sorting network) and the evaluation focus on
single machine performance.
Distributed systems. ObliVM [22] is a platform for
generic oblivious computation, and GraphSC [27] is a
platform specialized to distributed graph computations
built on ObliVM. As we show in §8.3, these systems
are three orders of magnitude slower than Opaque. As
explained there, they have a different threat model and use
different techniques resulting in this higher overhead.
Ohrimenko et al. [28] and M2R [10] provide mecha-

nisms for reducing network traffic analysis leakage for
MapReduce jobs. Their solutions do not suffice for
Opaque’s setting because they do not protect in-memory
access patterns. Moreover, they are designed for the sim-
pler setting of a MapReduce job and do not suffice for
Opaque’s relational operators; further, they do not provide
global query optimization of oblivious operators.

10 Conclusion
In this paper, we proposed Opaque, a distributed data
analytics platform providing encryption, oblivious com-
putation, and integrity. Opaque contributes a set of
distributed oblivious relational operators as well as an
oblivious query optimizer. Finally, we show that Opaque
is three orders of magnitude faster than state-of-the-art
specialized oblivious protocols.
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