usenix
.’ THE ADVANCED
COMPUTING SYSTEMS

ASSOCIATION

One Key to Sign Them All Considered Vulnerable:

Evaluation of DNSSEC in the Internet

Haya Shulman and Michael Waidner,
Fraunhofer Institute for Secure Information Technology SIT

https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/shulman

This paper is included in the Proceedings of the
14th USENIX Symposium on Networked Systems
Design and Implementation (NSDI "17).
March 27-29, 2017 - Boston, MA, USA
ISBN 978-1-931971-37-9

Open access to the Proceedings of the
14th USENIX Symposium on Networked
Systems Design and Implementation
is sponsored by USENIX.

One Key to Sign Them All Considered Vulnerable:
Evaluation of DNSSEC in the Internet

Haya Shulman and Michael Waidner
Fraunhofer Institute for Secure Information Technology SIT

Abstract

We perform the first Internet study of the crypto-
graphic security of DNSSEC-signed domains. To that
end, we collected 2.1M DNSSEC keys for popular
signed domains out of these 1.9M are RSA keys. We
analyse the RSA keys and show that a large fraction
of signed domains are using vulnerable keys: 35% are
signed with RSA keys that share their moduli with some
other domain and 66% use keys that are too short (1024
bit or less) or keys which modulus has a GCD > 1 with
the modulus of some other domain. As we show, to a
large extent the vulnerabilities are due to poor key gener-
ation practices, but also due to potential faulty hardware
or software bugs.

The DNSSEC keys collection and analysis is per-
formed on a daily basis with the DNSSEC Keys Valida-
tion Engine which we developed. The statistics as well as
the DNSSEC Keys Validation Engine are made available
online, as a service for Internet users.

1 Introduction

Domain Name System (DNS), [RFC1034, RFC1035], is
one of the Internet’s key protocols, designed to locate re-
sources in the Internet. The correctness and availability
of DNS are critical to the security and functionality of the
Internet. Initially designed to translate domain names to
IP addresses, the DNS infrastructure has evolved into a
complex ecosystem, and the complexity of the DNS in-
frastructure is continuously growing with the expanding
range of purposes and client base. DNS is increasingly
utilised to facilitate a wide range of applications and con-
stitutes an important building block in the design of scal-
able network infrastructures.

There is a long history of attacks against DNS, most
notably, DNS cache poisoning, [41, 29, 23, 39, 38, 26,
25, 24]. DNS cache poisoning attacks are known to be
practiced by governments, e.g., for censorship [1] or for

surveillance [28], as well as by cyber criminals. In the
course of a DNS cache poisoning attack, the attacker pro-
vides spoofed records in DNS responses, in order to redi-
rect the victims to incorrect hosts for credentials theft,
malware distribution, censorship and more. To prevent
such attacks a number of non-cryptographic defences
were standardised [RFC5452].

A number of works developed techniques to bypass
the (non cryptographic) DNS defences against cache poi-
soning. For instance, [30, 25], showed how to predict
the source port and transaction identifier (TXID) val-
ues used by DNS resolver in DNS requests. The at-
tacker can also apply fragmentation [24] to circumvent
the challenge values that would remain in the first frag-
ment. These methods allow off-path attacker to inject
valid DNS responses into the communication between
a victim DNS resolver and a nameserver. Of course,
a man-in-the-middle (MitM) attacker does not need to
guess the challenge values: a MitM attacker sees the
DNS requests and hence can simply copy the challenge-
response authentication parameters from the request to
the response. Domains can also be hijacked by exploit-
ing misconfigurations in DNS records, for instance, via
manipulation of dangling DNS records (Dare), [34].

Recently, [31] performed a study of the DNS
caches, evaluating different approaches for injecting
DNS records into caches, and overwriting the “already
cached” values. In particular, [31] evaluated which
records could overwrite the already cached values in vic-
tim DNS caches, that would further provide them to the
clients. The model of caches was then applied to DNS
resolution platforms in the wild, and [31] found that
97% of open resolvers, almost 70% of DNS caches on
ISP networks and a bit more than 70% of DNS caches
on enterprise networks were vulnerable to at least one
type of DNS records injection attacks. The question
whether cache poisoing actually occurs in the Internet
motivated measurement works which evaluated the frac-
tion of spoofed DNS records in the wild [32, 36, 44].

USENIX Association

14th USENIX Symposium on Networked Systems Design and Implementation 131

To mitigate DNS cache poisoning attacks, the IETF
designed and standardised Domain Name System Secu-
rity Extensions (DNSSEC) [RFC4033-RFC4035]. Due
to the changes to the DNS infrastructure and to the
DNS protocol that DNSSEC requires, its adoption is
progressing slowly. Although proposed and standard-
ised already in 1997, DNSSEC is still not widely
deployed. Measurements show that currently about
25% of the DNS resolvers validate DNSSEC (e.g.,
see stats.labs.apnic.net/dnssec), which is an in-
crease since few years ago, where about 3% of the DNS
resolvers were measured to validate DNSSEC records,
[33, 14]. Although only a bit more than 1% of domains
are signed with DNSSEC, [47, 27], the situation is im-
proving. More domains are expected to get signed in the
near future. This is due to the fact that domains sign-
ing is turning into an easy task, as the procedures for
automated domains signing by the registrars and host-
ing providers are becoming widely supported. In partic-
ular, ICANN requires that all its accredited registrars and
DNS hosting providers support domains signing, encour-
aging adoption of automated signing procedures, where
the DNSSEC keys are generated for customers’ domains
by the provider and used to sign the DNS records. This
process assumes that the registrars and DNS hosting
providers are supporting secure and best practices for
keys generation.

In this work we perform a study of the vulnerabil-
ities of DNSSEC keys generation in signed domains.
We detect vulnerabilities and trace the problems to the
DNSSEC keys generation practices used by the regis-
trars and DNS hosting providers. The main cause for
the problems is twofold: saving on randomness or faults
during keys generation and lack of suitable key valida-
tion procedures. The vulnerabilities that we found are
not detectable by the online DNSSEC checkers, such
as dnssec—debugger of Verisign! or DNSViz of San-
dia National Laboratories?, or DNSSEC command line
validation procedures for zonefiles signing.

Our study shows that well established and popular
DNS hosting providers and registrars, including those
commended by ICANN?, generate ‘weak’ keys, for the
domains that they host.

Our work is related to a recent study of [22] which
showed vulnerabilities in TLS and SSH keys, generated
by headless or embedded systems, and server manage-
ment cards. Subsequently, [22] concluded that the prob-
lems are due to faulty implementations that generate keys
automatically on first boot without having collected suf-
ficient entropy, and that the problems would not occur

ldnssec—debugger .verisignlabs.com

’dnsviz.net

3https://www.icann.org/resources/pages/
deployment-2012-02-25-en

on traditional PCs. In contrast, we find vulnerabilities in
key generation procedures used by well established host-
ing providers and registrars (most of which are ICANN
accredited*), which have the necessary infrastructure to
produce the randomness needed for secure generation of
DNSSEC keys.

Ultimately our work provides yet another proof that
adoption of cryptography in the Internet is a challenging
task in practice.

Contributions

In this work we show that even DNSSEC, which is a rel-
atively straightforward application of digital signatures
over sets of DNS records, is incurring practical issues
in the implementation. This indicates that adoption of
cryptography in the Internet is a challenging and error
prone task, which requires careful designs and most im-
portantly automation.

We identified vulnerabilities in DNSSEC key genera-
tion mechanisms, which exposes signed domains to at-
tacks. To evaluate the scope of the vulnerabilities and
the status of DNSSEC adoption we design and imple-
ment a framework, we call DNSSEC keys validation en-
gine, which allows to collect DNSSEC keys from multi-
ple sources, analyse their security and process them into
reports. Our analysis focuses on RSA keys, which as
we show in Section 5, constitute a vast majority of the
deployed DNSSEC cryptographic algorithms. Our re-
ports quantify the following types of vulnerabilities in
signed domains: keys with shared modulus, shared keys
and weak keys. The former two categories are comprised
of all the signed domains which keys share RSA mod-
uli, either due to use of the same key pair (N,e,d) for
all domains or due use of a shared moduli N and differ-
ent (e,d). The latter category contains signed domains
whose keys moduli have a prime factor with ‘vulnera-
ble’ GCD, i.e., greater than 1 or even, or domains with
short (weak) RSA keys. We use our engine to perform
Internet-wide collection of 2.1M DNSSEC keys® used
by 900K signed domains. We focus on 1.9M RSA keys
and show that 35% share RSA moduli or are used to
sign multiple domains, and 66% fall in the category of
‘weak keys’, namely, are too short (1024 bit or less) with
0.4% keys being shorter than 768 bit, or have an even
GCD. In Section 6.1 we show how to recover the se-
cret signing keys for signed domains which share RSA
moduli. In Section 6.2 we apply the fast pairwise GCD
algorithm (implemented by [22] and available at http:
//factorable.net/) for all the RSA public keys col-

“http://www.internetsociety.org/deploy360/
resources/dnssec-registrars/

SIn this work, we report on analysis of keys we collected over a
period of March 2016 and September 2016.

132 14th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

lected in order to check whether any of the moduli share
a common factor.

We analyse our findings and trace the problems to
key generation practices by popular registrars and host-
ing providers. We discuss good and bad practices for
keys generation and derive recommendations based on
our study.

We created an online webpage with a list of vulnera-
ble signed domains and DNSSEC keys at www .dnssec.
sit.fraunhofer.de/ (the GitHub project with the
code and the data is linked to from the website). Our tool
enables the clients to identify secure registrars for sign-
ing their domains and alert in case of potential vulner-
abilities. We also created an online keys validation ser-
vice which allows to establish security of the keys during
the generation phase, before they are published in public
registries and used to sign DNS records.

Organisation

In Section 2 we compare our research to related work. In
Section 3 we provide background on DNS and DNSSEC,
recap RSA definition and describe two attacks, relevant
to our work. In Section 4 we present our DNSSEC-keys
validation engine, its components and the data collection
that we performed. In Section 5 we perform a measure-
ment of signed domains, then in Section 6 we validate
these domains for vulnerable keys, and characterise the
factors causing vulnerabilities. We provide countermea-
sures and describe implementation thereof in Section 7.
We conclude this work in Section 8.

2 Related Work

Our work is related to studies on measuring adoption
of DNSSEC in the Internet and evaluation of vulnerable
cryptography, most notably SSL/TLS. We first compare
our evaluation of vulnerable cryptography to the studies
conducted in prior work, and then review earlier mea-
surements of adoption of DNSSEC.

Security of cryptographic systems depends on the ran-
domness used in keys generation process. There is a long
history of attacks exploiting insufficient randomness in
current random number generators, e.g., [5, 7, 9, 12, 20,
21, 16]. There were also attacks applied against sys-
tems relying on sources of randomness, e.g., insufficient
randomness in pseudorandom number generator was ex-
ploited in [30] to predict the TXID values selected by
Bind implementations. In 2008, [46] observed that due to
an implementation bug the pseudorandom number gen-
erator of Debian OpenSSL was predictable.

Adoption of cryptography in the Internet is similarly a
challenging task. For instance, the most widely adopted
cryptographic mechanism SSL/TLS experienced many

attacks due to different implementation faults, e.g., [13,
2]. See [35] for a comprehensive review of vulnerabili-
ties in SSL/TLS.

Most related to our work, is Heninger et al. [22] that
performed an Internet-wide scan of TLS certificates and
SSH keys to analyse security of random number gener-
ators (RNGs), and found vulnerabilities in about 1% of
TLS certificates and SSH hosts. They showed that the
vast majority of the vulnerable hosts are headless and
embedded devices, which lack sufficient randomness. In
contrast, in our work, we study the registrars and DNS
hosting providers, which have the required infrastructure
to generate the necessary randomness, yet the fraction
of the vulnerable keys in DNSSEC-signed zones that we
find is significantly larger than that measured by [22] in
keys in TLS and SSH. The results of our work extend the
conclusion of [22], in particular, we show that the prob-
lem with randomness is not inherent to restricted embed-
ded devices, but is more significant — we show that even
large and popular DNS hosting providers and registrars
introduce vulnerabilities into multiple signed domains.
Our work provides evidence that the problem with the
randomness is not only due to resources limited devices
but is wider and applies to platforms which possess the
necessary means to produce the randomness required for
security.

[4] performed factorisation of 1024-bit RSA keys.
Some of the keys were vulnerable due to sharing of
primes which allowed efficient factorisation via batch
GCD computation, while others were factored by taking
advantage of randomness generation process.

Previous work on DNSSEC adoption in domains mea-
sured the fraction of the signed domains, [47, 27], or mis-
configurations in signed domains [10, 11], which result
in degraded availability. The client side of the DNS in-
frastructure was also studied, mainly measuring the frac-
tion of validating resolvers, [33, 19]. Zone enumeration
against NSEC3 was first performed by Bernstein [3] and
then Wander er al. [45]. Recently Goldberg et al. [18]
showed that suggestions to improve NSEC3 were also
vulnerable to zone enumeration, and proposed [17].

The challenge of performing large scale active mea-
surements of DNS were discussed in [43], which de-
signed and developed an infrastructure for collecting and
analysing DNS packets from multiple domains. Due
to the large traffic volume that the measurement infras-
tructure produced (e.g., 123M domains in com) and the
requirement for repeated data collection on a daily ba-
sis, [43] had different latency and storage considerations,
than we in our work. In particular, we only focus on
900K signed domains. In contrast to [43] we process the
results and display them in reports.

USENIX Association

14th USENIX Symposium on Networked Systems Design and Implementation 133

3 DNS Security with DNSSEC

In this section we review DNS, and DNSSEC, and then
describe the RSA cryptosystem used in DNSSEC and at-
tacks against it (that are relevant to our work).

3.1 Domain Name System (DNS)

Domain Name System (DNS), [RFC1034, RFC1035], is
a distributed database containing mappings for resources
(also called resource records (RRs)), from domain names
to different values. The most popular and widely used
mappings, [15], are for IP addresses, represented by A
type RRs, that map a domain name to its IPv4 address,
and name servers, represented by NS type RRs, that map
a name server to domain name. The resource records
in DNS correspond to the different services run by the
organisations and networks, e.g., hosts, servers, network
blocks.

The zones are structured hierarchically, with the root
zone at the first level, Top Level Domains (TLDs) at
the second level, and millions of Second Level Domains
(SLDs) at the third level. The IP addresses of the 13 root
servers are provided via the hints file, or compiled into
DNS resolvers software and when a resolver’s cache is
empty, every resolution process starts at the root. Ac-
cording to the query in the DNS request, the root name
server redirects the resolver, via a referral response
type, to a corresponding TLD, under which the requested
resource is located. There are a number of TLDs types,
most notably: country code TLD (ccTLD), which do-
mains are (typically) assigned to countries, e.g., us,
il, de, and generic TLD (gTLD), whose domains are
used by organisations, e.g., com, org, and also by US
government and military, e.g., gov, mil. Domains in
SLDs can also be used to further delegate subdomains to
other entities, or can be directly managed by the organi-
sations, e.g., as in the case of ibm.com, google.com.

3.2 DNS Security Extensions (DNSSEC)

Plain DNS requests and responses are not protected and
hence expose the DNS resolvers to DNS cache poisoning
attacks, whereby altered DNS records, served by mali-
cious entities, redirect the clients to incorrect hosts. Such
attacks can be launched by MitM or off-path attackers.
For example, a malicious wireless client can tap the com-
munication of other clients and can respond to their DNS
requests with maliciously crafted DNS responses, con-
taining a spoofed IP address, e.g., redirecting the clients
to a phishing site.

Domain Name System Security Extensions
(DNSSEC) standard [RFC4033-RFC4035] was de-
signed to prevent cache poisoning, by providing data

integrity and origin authenticity via cryptographic dig-
ital signatures over DNS resource records. The digital
signatures enable the receiving resolver, that supports
DNSSEC validation, to verify that the data in a DNS
response is the same as the data published in the zone
file of the target domain.

e New Resource Records (RRs). DNSSEC defines
new RRs in order to store signatures and keys which are
then used to authenticate the responses. For example, a
type RRSIG record contains a signature authenticating
an RR-set, i.e., all mappings of a specific type for a cer-
tain domain name. DNSKEY is the public-key of a zone,
which should be used to verify the signatures on resource
records for which the zone is authoritative. The signa-
tures are computed using the corresponding private sign-
ing key, and are then stored in RRSIG RRs. The private
signing key should be kept secret and is recommended
to be stored offline (to prevent exposure in case a name-
server is compromised).

To be able to verify that the DNSKEY is correct, a re-
solver also obtains a DS RR from the parent zone, which
contains a hash of the public key of the child; the re-
solver accepts the DNSKEY of the child as authentic if the
value in DNSKEY is the same as the (hashed) value in the
Delegation Signer DS record of the parent. Since the DS
record of the parent is signed, authenticity is guaranteed.

e Trust Anchor and Chain of Trust. In order to vali-
date keys of (possibly) millions of domains, the resolvers
should be preconfigured with the public verification key
of the root. For validation of keys of target domains, e.g.,
foo.bar, the resolvers need to establish a chain of trust
from the root to the keys of the target domain, by follow-
ing and validating the keys of the intermediate domains.

A sequence of DNSKEY and DS RRs form a chain of
signed data composed of links between each nodes on
the path from the target zone to the root. The DS RR
authenticates the child’s DNSKEY at the parent. The au-
thentication starts with a set of verified public keys for
the DNS root zone which is the trusted third party. This
allows the resolver to construct a chain from the root to
the target zone’s DNSKEY. The public key of the parent is
used to validate the signature (in RRSIG) on the DS RR,
which contains the public verification key of the child.
This way a link is constructed from the child zone to par-
ent zone. The resolver continues this way until a path
from the target zone to the root is established. If there is
no valid DS RR at the parent zone for the child’s DNSKEY,
then the chain of trust is broken and the resolution is not
secure.

e DNSSEC Cryptographic Building Blocks.
DNSSEC uses a fixed set of cryptographic algo-
rithms and hash functions® with the most used being:

Shttp://www.iana.org/assignments/dns-sec-alg-numbers/
dns-sec-alg-numbers.xhtml

134 14th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

RSA/MDS5, RSA/SHA-1, DSA/SHA-1 [RFC4034], and
RSA/SHA-256, RSA/SHA-512 [RFC5702]. As we
show in Section 5, the most widely supported algorithm
is RSA (with different variations). Hence, in the rest
of this section we recap RSA and explain two attacks
which we will be using in the following sections to
factor the vulnerable keys.

3.3 RSA Security and Attacks

In this section we recap the definition of RSA signatures.
We then provide two attacks: a shared modulus attack
and factorable modulus attack, that we use in this work.
The idea behind digital signatures is to allow the receiver
to verify that a transmitted message originated from the
sender and was not changed by an attacker. DNSSEC
uses RSA to ensure validity and authenticity of DNS
records.

3.3.1 Definition

The RSA encryption is the most popular scheme used in
DNSSEC. The RSA signatures scheme consists of three
procedures, key generation, signing and validation, that
are defined as follows:

Key Generation. Upon input 1", choose two random
prime numbers of length 5 and compute N = p- g (and
ged(p,q) =1). ForN = p-gwehave o(N) = (p—1)(g—
1). Choose e such that gcd(e,(N)) = 1, and select d
such that e-d =1 mod @(N). Output vk = (e¢,N) and
sk=(d,N).

Signing. Given sk and m, compute ¢ = m? mod N,
return (m, o).

Verification. Given vk = (e,N), a message m €
{1,...,N —1} and a signature o, returns 1, if the signature
o is the correct signature on m (i.e., if 6¢ mod N = m)
and returns O otherwise. return ¢ =m® mod N.

3.3.2 Shared Modulus Attack

Lemma 3.1 (Computing Factors of N) Given RSA
public and private keys (e,N) and (d,N) respectively,
there exists an efficient algorithm for computing the
prime factors of N.

We provide a proof for a simplified case of small e (e.g.,
assume e = 3) and refer an interested reader to the gen-
eral case shown in [6].

Proof 3.2 Givene-d =1 mod @(N) and ¢(N) = (p —
)(g—1), sete-d—1=c(p—1)(qg—1) for a constant c.
For1<e<3and1<d<(p—1)(q— 1) we obtain that
1 < ¢ < 3. To obtain the exact value of c, we can try each
of the three values. As a result, we obtain the following
equation: p+q=N+1— @. Sett=N+1— 1

c

and define the following polynomial: y(x) = (x — p)(x —
q) = x*> — tx+N. Since T and N are known and p and q
are roots of the polynomial, hence findings the roots also
gives the factors of N. O

Lemma 3.3 (Computing secret key d) Given RSA
public and private keys (e,N) and (d,N) respectively,
there exists an efficient algorithm that receives e and
factors p and q of N and computes d.

Proof 3.4 Given p and g compute (N)=(p—1)(g—1)
then calculate d = e~' mod @(N). O

We next consider a setting where a number of partic-
ipants share the same RSA modulus N = p - g, but ev-
ery participant uses a different public and private keys,
namely given Yy participants, each participant i (i €
{1,...,y¥}) uses (e;,N) as public key and (d;,N) as the
private key. Then, a malicious party A can recover the
private signing key of any party i and spoof signatures
with private signature key d;.

Given (es,N) and dy party A can compute p,q, and
@(N) and then d; = ¢; ' mod @(N).

Lemma 3.5 (Private Key Recovery) Assume (e;,N) is
an RSA public key of party i. There exists an efficient
algorithm that given e; and @(N) calculates d;.

First, given (e;,N) and (d;,N) party P; can factor N into
p and g. Then, given p and ¢ it can compute @(N),
and then d; for any participant j by computing d; = ejfl
mod ¢(N).

Proof 3.6 Given p.q compute (N) = (p—1)(¢—1)
and find d such thatd = e ' mod @(N). O

3.3.3 Factorable Modulus Attack

In order to explain this attack, we introduce the Greatest
Common Divisor (GCD). Let a,b > 0 be integers, the
GCD of a and b is the largest integer that divides both a
and b.

The importance of GCD with respect to RSA is the
following: for every prime number p, every number i
between 1 and p — 1, has a GCD of 1 with p, namely,
Vie{l,..,p—1}, ged(p,i) (hence has a multiplicative
inverse in modulo p).

If two (or more) different RSA keys share a prime
factor, then there are three primes p,q, k in two keys:
N1 =p-q, and N, = p- k. The reuse of a prime factor
allows to calculate all the primes: ged(Nj,N,) = p, and
obtain g and k as follows, g = % and Kk = % Then one
can compute the secret keys.

The GCD can be computed efficiently using Euclid al-
gorithm. Since RSA moduli are comprised of the product
of two prime numbers, they have a common factor with

USENIX Association

14th USENIX Symposium on Networked Systems Design and Implementation 135

another number if and only if they share a prime factor.
Therefore, knowing any prime factor of the public mod-
uli, results in complete breakage of the key, since the pri-
vate key can be directly computed using the factors of
the modulus and the public exponent.

4 DNSSEC Keys Validation Engine

In this section we present our framework for collect-
ing and processing DNSSEC keys, illustrated in Figure
1. The challenges of our framework are the following:
(1) support of dynamic and easy integration of new data
sources, (2) perform efficient and fast data collection
from the data sources on a daily basis, (3) updates of
keys at expiration, (4) enable online validation of keys,
domains and registrars.

In the rest of this section we describe the compo-
nents of our DNSSEC validation engine, including data
sources and data collection with DNSSEC keys crawler
(that we call DKrawler). We explain how we address the
challenges of our framework and briefly review the anal-
ysis of the data and its processing into reports, and their
presentation on an online web page.

4.1 Data Sources

Our dataset of signed zones uses the following ‘crawling
seeds’:

(1) the root and Top Level Domain (TLD) zone files
— we obtained the root and TLD zone files (e.g., for
com, net, org, info) from the Internet Corporation
for Assigned Names and Numbers (ICANN). From
the root zonefile we collected all the TLDs, which at
the time of our study contained 1301 distinct TLDs
((http://www.internic.net/domain/root.zone).
We used the Centralized Zone Data Service (CZDS
czds.icann.org) to obtain the records in the TLD
zonefiles.

(2) we scanned the top-1M popular domains according
to Alexa www.alexa.com. In this work we refer to Alexa
domains as SLDs, although many of the Alexa domains
also contain third level domains, they typically belong to
the same organisation, i.e., the same SLD.

(3) the sonar DNS project [37] — performs a daily
scan of IPv4 addresses for a range of Internet protocols
as well as a full scan of DNS resource records in all the
DNS zones.

4.2 DNSSEC Keys Crawler

The first challenge is how to find all the DNSSEC-signed
domains in order to collect the cryptographic material
from them. To that end, we developed a crawler,
which we call DKrawler (DNSSEC Keys crawler)

to collect and store DNSSEC-signed domains and
their keys. The DKrawler infrastructure is written in
Python. The DKrawler periodically (every 24 hours)
scans the DNS hierarchy using the seeds that it is
configured with. New data sources are continually made
available to the public, e.g., recently Cisco Umbrella

s3-us-west-1.amazonaws.com/umbrella-static/index.html

made available a repository of popular domains. To
support addition of new data sources we designed our
architecture in a modular way. This enables easy inclu-
sion of pluggable modules, which we call “scanners”.
During each scan key material is collected and inserted
into the database. Periodical scan ensures that we cover
all the new domains that are added.

The DKrawler collects daily 900K signed domains us-
ing the data sources in Section 4.1. The number of signed
domains slightly varies, as new domains are added while
some domains become unavailable. The set of 900K
signed domains result in 2.1M DNSKEY records (i.e.,
DNSSEC keys) out of which 1.9M RSA.

Another challenge is efficient traversal of all the data
sources. In particular, this includes two main bottle-
necks: (1) the waiting time between sending requests and
processing the arriving responses, and (2) crawling the
DNS servers asynchronously. Sending requests and pro-
cessing the responses concurrently would facilitate sig-
nificant reduction of scan time. To that end, we devel-
oped the scanners that operate in a non-blocking mode
using “greenlets”. Greenlets are a light weight version
of threads, that can operate concurrently, and in con-
trast to multi-processing approach, the greenlets are non-
preemptive. This allows sending requests and analysing
their responses concurrently.

Greenlets also allow to send multiple DNS requests
in parallel and to perform the scan much faster while
using significantly less resources (in comparison to the
multi-processing approach), reducing the memory re-
quirements from the server and the idle time (when wait-
ing for feedback) while speeding up keys collection by
more than 30%. We use up to 1024 greenlets, each scans
a domain at a given time point. Hence, we scan a to-
tal of 1024 domains in concurrently. The responses are
processed and analysed, and the statistics are stored in a
MongoDB document database, to facilitate fast insertion
and retrieval. The processing requires significant mem-
ory and storage resources, for instance, intermediate cal-
culations of the pairwise GCD for more than a million
keys.

We developed scripts for producing the following re-
ports: shared modulus keys, shared keys, weak keys and
DNSSEC adoption. We also measure and provide statis-
tics of key length, and popular cryptographic algorithms.
We describe the reports along with the collected statistics
in Sections 5 and 6. The reports are produced automati-

136 14th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

DNSSEC Collection and Processing

RAPIDIF)

& B
R ® Alexa

menia

PN

Data sources
in the Internet

Vulnerabilities
Reports

Repository of
DNSSEC Keys

A 4

Figure 1: DNSSEC-Keys security framework.

cally after every daily data collection.

The calculations are efficient, on a two core server,
computing the shared moduli report takes up to 3.5 min-
utes, and the weak keys up to 45 minutes, we describe
the implementations in Section 6.

The DKrawler (as well as the entire DNSSEC key val-
idation framework) is deployed on the Microsoft Azure
cloud, on a VM machine with 2 virtual (Intel Xeon E5-
2673 v3 CPU) cores and 14GB RAM memory, each
clocked at 2.40GHz.

We have developed an online webpage for reporting
the daily surveyed domains and the collected keys (more
details below).

4.3 Online Reporting of Vulnerable Keys

We provide access to our tool and the database reports via
a website at www.dnssec.sit.fraunhofer.de. The
code is hosted on GitHub (the link to the GitHub project
is on the website www.dnssec.sit.fraunhofer.de).
The web site is based on a lightweight python web frame-
work ‘Flask’ and MySQL.

The site contains the following tabs: home with basic
information on scan schedule, seeds and DNS records
count; seeds lists all the seeds’ sources used to collect
the data; DNS Keys — lists the collected keys and in-
formation, such as protocol, TTL and algorithm; scan
history — previous scans; key length report —
lists the different key sizes that we collected; shared
moduli report and factorable moduli report.

S Evaluating DNSSEC Adoption

In this section we provide our measurement of adoption
of DNSSEC among the domains in our dataset (Section

4.1): the Top Level Domains (TLDs) and popular do-
mains according to Alexa (these include second and third
level domains). We measure the fraction of signed do-
mains, the key sizes and the cryptographic algorithms.
As our measurement results indicate, the majority of do-
mains are signed with different variations of RSA algo-
rithms and almost 50% of the deployed RSA keys are
shorter than 1500 bit.

5.1 Quantifying Signed Domains

We define DNSSEC-signed domains as those with
DNSKEY and RRSIG records. To check for the fraction
of signed domains, we checked for existence of DNSKEY
and RRSIG records in our dataset. Our finding shows that
87.6% of the TLDs are signed, 1.6% of the Alexa do-
mains; we refer to Alexa domains as SLDs, since third
level domains are typically within the same SLDs.

In Figures 2 and 3 we plot the results we collected be-
tween March and September 2016. In that time interval
the number of new TLDs increased by 100 and we ob-
serve roughly the same increase in the number of signed
TLDs (see Figure 2). This is consistent with the con-
clusions of our study in the subsequent section, where
we show that most registrars and DNS hosting providers
perform automated signing of newly registered domains.

We observe a growth in a number of new Second-
Level Domains (SLD) domains, however, in contrast to
the steady increase in signed TLDs the results indicate
a negligible increase in newly signed domains, see plot
in Figure 3. The significant and constant growth in the
number of signed TLDs indicates that there is an in-
creased awareness to DNSSEC adoption. This increase
is also perhaps due to the automated signing adopted by
the registrars. In the rest of this work, we study the

USENIX Association

14th USENIX Symposium on Networked Systems Design and Implementation 137

1200 -

1250 -

1200 -

Number of Domains

N o

neo s

Ja5 s s L s L s
(g Rec] 01.04 0105 M o5 m o7 m.0s ., 1.0

Date

Figure 2: All TLDs and signed TLDs.

signed domains among TLDs and Alexa domains (i.e.,
SLDs).

250+08 - - T T

T
Al —
Signed ——

28408 L
I
=
@
E 1.50+08
o
=]
]
-
8 1o

1a+05 |
E
- §
=z

500000 |-

2 : e
03 01.04 05 o 06 0107 .08 0109 0110

Figure 3: All SLDs and signed SLDs.

5.2 Crypto-Algorithms in Signed Domains

The signed zones can wuse an arbitrary num-
ber of DNSSEC-standardised algorithms (see
overview of DNSSEC in Section 3.2). In addition,
[RFC4641,RFC6781] list mandatory support for RSA
and recommend avoiding large keys (specifying a range
of 512-2048 bits for (ZSK) key size and recommending
a default value of 1024 bits); in order to avoid frag-
mentation, communication and computation overhead
and other problems with large keys and signatures. In
particular, [RFC6781] states “it is estimated that most
zones can safely use 1024-bit keys for at least the next
ten years.”.

Our measurement of DNSSEC adoption among signed
domains shows that there is hardly any support for other
cryptographic algorithms, e.g., those that produce short
signatures, such as ECC, since the motivation to add

more overhead to the transmitted data is low. Our re-
sults show that RSA, with different digest implementa-
tions (SHA1, SHA256, SHAS512), dominates among the
signed TLDs, and that there is no support for other al-
gorithms among the TLDs, Figure 4. In contrast, there

900

800 |

700 |

600 |

500 |

400

Number of Domains

300 |
200 |

100

o L I

RSASHA1 RSASHATNSEC3SHA1

RSASHA256 RSASHA512

Figure 4: DNSSEC algorithms in signed TLDs.

is some, albeit still limited, attempt to adopt also other
cryptographic algorithms, such as DSA and EC in SLDs.
These constitute a bit more than 10% of the deployed
cryptographic algorithms in DNSSEC, see Figure 5.

10000

9000 -

8000

7000

6000 -

5000 -

Number of Domains

4000

3000

2000

1000

0

"
Rk s

= WSE g6 A2

gst"'\>A gsPsHbA gsPSHPl gsPS“P5

286
S
975 o
osh oo oS

Figure 5: DNSSEC algorithms in signed SLDs.

We measured the key sizes in use by the different vari-
ations of RSA algorithms, we plot our results in Fig-
ure 6. Almost 1.4M keys are below or equal to 1024
bits, and 10K keys are 512 bits long; [42] showed that
factoring 512 bit keys on a cloud is a practical task.
For updated statistics on keys and DNSSEC algorithms
see our webpage www.dnssec.sit.fraunhofer.de/
key_lengths.

In a recent work [8] also showed that there are 1%
of domains among TLDs and 20% among the SLDs to
which it is not possible to establish a chain of trust from
the root. The problems include wrong (or missing) DS

138 14th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

1

09

0.8 -

07

0.6 -

Ratio in All Signed Domains

05 -

04 -

03 L L L L L
1000 1500 2000 2500 3000 3500 4000 4500

Length of Keys.

Figure 6: Key sizes in TLDs and SLDs.

records in parent domain, incorrect (or missing) signa-
tures, expired keys, DNSKEY and DS do not match and
more. The most common case of broken chain of trust
is an existence of DNSKEY but no DS in parent. This may
happen when a domain owner wants to enable DNSSEC
but his registrar does not support DNSSEC, which is
common. Alternately, the same obstacle occurs when
the registrar does not support DNSSEC for a TLD un-
der which the domain is registered, e.g., GoDaddy sup-
ports DNSSEC only for 10 TLDs. Other common cause
is a faulty DS record. This may happen when the domain
operator transfers/updates the domain/key or changes the
name servers. Broken chain of trust can sometimes be an
indication of signed domains in test phase, experiments
and deployment in progress.

6 Vulnerable Signed Domains

In this section we describe our measurements of
DNSSEC keys generation practices supported by regis-
trars and DNS hosting providers and analysis of vulner-
abilities based on the data we collected. We discuss how
keys with shared moduli enable recovery of secret sign-
ing keys of one domain using the keys of attacker’s do-
main, we show attacks on keys with vulnerable GCD and
domains signed with the same keys.

6.1 Shared Keys and Shared Moduli

We differentiate between two cases of vulnerabilities in
signed domains: keys with shared moduli and identical
keys. In the former case the public validation key e is
different, while domains in the latter category have the
same N and (e,d). Both practices are vulnerable, in par-
ticular, recovering a key pair for one domain, exposes
all other domains signed with the same key or the same
modulus, to attacks.

The attack against domains that are signed using the
exact same key pair is straightforward. In particular,
once the attacker compromises the key pair, all the do-
mains signed with that key are vulnerable to hijacking.
The attacker can generate signatures that will be accepted
as valid. Since the records will be signed, the resolvers
will assign high trust level to them, allowing to overwrite
the previously cached values, [31].

Alternately, it may appear that ‘just’ reusing the mod-
ulus between signed domains does not introduce a vul-
nerability. We explain that given a key (N,e;,d;) the
attacker can recover d; that belongs to key (N, es,ds).
In order to calculate the secret signing keys the attacker
needs the knowledge of @(N) (see Section 3.3.2) which
it does not have and cannot obtain by querying the DNS
information from the domains. To that end, the attacker
needs to register and sign a domain under the registrar (or
DNS hosting provider), which is used by the (victim) do-
mains whose private key the attacker wishes to recover.
Registering domains under most registrars typically costs
up to 10$ per year. After the registrar or the hosting
provider signs the domain of the attacker, given the key
pair which was used to sign its own domain, the attacker
computes @(N) and uses the calculation in Section 3.3.2
in order to recover the private signing keys of other do-
mains signed by that registrar (resp. hosting provider).
Not all the registrars provide the key pair to the domain
owner. In Section 6.1.2 we discuss the countermeasure
of keeping the key secret from the domain owner.

Through collection and analysis of keys we found that
700K of the keys were used to sign domains in ways ex-
posing the domains to attacks above. We used whois to
retrieve registrars’ information for domains signed with
shared-moduli-keys. We collected the values of the fol-
lowing fields (consider for example reg-centrum regis-
trar):

registrar: REG-CENTRUM
address: Cz

IP location: Prague

ASN: AS43614

We grouped the domains according to registrars and
according to shared-moduli-keys. The resulting groups
were similar. Namely, the shared-moduli-keys were typ-
ically found within domains under the same registrar. On
the other hand, domains signed with shared-moduli-keys
are owned by different operators. This suggests that the
registrars, generating the DNSSEC keys, are reusing the
keys among the domains that they sign.

We registered and signed domains under selected reg-
istrars, which had a large fraction of shared-moduli-keys
among signed domains. The registrars typically gener-
ate the DNSSEC keys on their platforms, then use them
to sign the DNS records. The corresponding Delegation

USENIX Association

14th USENIX Symposium on Networked Systems Design and Implementation 139

Signer (DS) records are derived from the DNSSEC keys
and are updated in the parent domain (typically a TLD).

For example, in one large and popular registrar over
63K different domains are signed with two keys (51,000
domains are associated with one of the keys and 12,000
with the other).

We describe our approach for collecting signed do-
mains with shared-moduli-keys.

6.1.1 Finding Domains with Shared Moduli

Given a list of domains, our tool first collects all the
DNSKEY records for signed domains. Then, the tool
iterates over all the domains and creates a mapping be-
tween each modulus and domains that use that modu-
lus. The tool checks if the public verification keys of the
signed domains are different or the same. The domains
are signed with a single key when the public e are iden-
tical.

collect-keys(List):
For each domain D in List:
key = dns.request (DNSKEY)
store-in-DB(key)

map-modulus (List) :
d = new dictionary()
For each domain D in List:
modulus = D.modulus
d[modulus] . append (D)

At the completion, d contains a mapping between the
different moduli and domains that use that moduli. To
extract a list of domains that share a modulus we iterate
over d and collect domains with length greater than 1.
In Figure 7 we plot the results of our calculations of do-

—— —
0.65 —'—,—\

Fercentage of Total Domains
o
IS
u

0 20 40 60 80 100 120 140 160 180
Days

Figure 7: March-September 2016 measurements of frac-

tion of domains with shared moduli (count per day).

mains with shared-moduli-key over a period of March-
September 2016. The graph shows that the fraction of

signed domains with shared-moduli-keys is stable over
time, and slightly increases as new domains are signed.
The majority of moduli and keys are shared among few
domains (approximately 10,000). Alternately, few mod-
ulus values are shared among a large fraction of signed
domains (almost 14%). These moduli are associated with
signed domains operated by large registrars.

6.1.2 Hiding Secret Keys as a Countermeasure

If the registrars, supporting DNSSEC, allow domain
owners to obtain the keying material pertaining to their
signed domains, the attackers can use this to attack do-
mains signed with the same keys or signed with keys
that share modulus values. In what follows we consider
whether withholding the crpytographic material would
be a viable solution against the vulnerabilities.

The RSA modulus is advertised as part of the public
key, and is needed for verification of DNSSEC signa-
tures. According to the Lemmas in Section 3.3.2, given
a secret key of one domain, an attacker can recover a se-
cret signing key of another domain (that is signed under
the same RSA modulus). Hence it may appear that to
counter the vulnerabilities due to a shared RSA modu-
lus, a registrar should hide the secret signing keys from
the owners of signed domains.

As we next argue, a naive countermeasure of hiding
the RSA secret keys from the domain owner does not
constitute a good defence and, moreover, is often not
practical. First and foremost, using a single key for
singing multiple domains, while keeping it secret from
the domain owners, leads to an insecure practice. In par-
ticular, a compromise of the secret key, e.g., via compro-
mise of a registrar, would lead to compromise of the se-
curity of all the domains which were signed using that
key. Compromises of registrars are common, e.g., [48].

Hiding the keys could also limit the domain owners to
using only the nameservers of one specific registrar - the
one that performed the DNSSEC signing. This stands in
contrast to the best practices of DNS - which recommend
maintaining servers under at least two domains. For in-
stance, consider a scenario where a domain owner reg-
isters a domain, which gets signed by the registrar, and
decides to use the nameservers provided by that registrar.
When the operator adds its own nameserver, and config-
ures as master, he would need a secret signing key to sign
the zone file also on its own nameserver.

Our study of ICANN accredited registrars shows that
none of the registrars that support DNSSEC, enable it for
all TLDs. For instance, GoDaddy enables DNSSEC only
for ten TLDs. As a result, if the domain owner wishes
to follow best practices and place its domain under two
TLDs, it will often not be able to, if it does not have the
secret signing key used by one of the registrars.

140 14th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

6.2 Even Moduli & Keys w/Shared Primes

Distinct moduli that share a prime factor will result in
public keys that appear distinct but whose private keys
are efficiently computable by calculating the greatest
common divisor (GCD). For calculation of GCD of every
pair of keys we followed the approach in [22] and used
the fast pairwise GCD quasilinear-time algorithm for
factoring a collection of integers into coprimes; we com-
piled and used the source code (https://factorable.
net/resources.html) provided by [22].

The code implements an efficient (quasilinear time) al-
gorithm to compute the GCD of every pair of integers.

After calculating group-GCD on all the DNSKEY
records, we found that out of factorable moduli 16 RSA
moduli were even. Re-querying the nameservers mul-
tiple times for these moduli returned the same results
over the period of our measurement. Among the possible
causes for this could be either a faulty key generation or
bit-errors, e.g., due to heat, on the machines generating
and storing them. This situation also indicates no DNS
servers (nor the platforms operated by the registrars and
DNS hosting providers) validate the correctness of the
generated DNSKEY records.

The keys with even RSA moduli belonged to domains
hosted or registered by known registrars, such as Net-
work Solutions, GoDaddy, OnlineNic. In Figure 8 we
plot our measurements of factorable RSA keys, collected
over a period of March-September 2016.

30

25

20

Total Factorable Moduli

10

[} 20 40 60 80 100 120 140 160
Days

Figure 8: March-September 2016 measurements of frac-
tion of domains with factorable moduli (count per day)
as a function of the total number of keys.

6.3 Poisoning Signed DNS Records

We next describe steps for poisoning caches of
DNSSEC-validating victim resolvers with spoofed DNS
records for signed domains. Assume the attacker at
IP 6.6.6.6 wishes to hijack emails sent by clients

on network 1.2.3.0/24 to an email server in domain
vic.tim, and assume that the domain vic.timis signed
with DNSSEC. Further, assume that vic.tim is hosted
with registrar Reg that uses the same modulus N for all
its keys. In step (1) the attacker registers and signs a
domain att.ack with Reg. (2) the attacker uses the se-
cret signing key and the modulus (as in Section 6.1) to
calculate the secret signing key for vic.tim. (3) the
attacker creates a valid signature over a spoofed record
pointing an email server at vic.tim to IP 6.6.6.6. (4)
the attacker performs cache poisoning attack injecting a
signed record mail.vic.tim A 6.6.6.6. Notice that
DNSSEC signed DNS records are assigned the highest
trust level by the caches, and hence overwrite any other
previously cached value associated with the record.

6.4 Discussion

What are the causes for the phenomenon of shared keys
and moduli in DNSSEC keys? The answer is perhaps
related to the recent ICANN regulation, [40], requiring
that the registrars and DNS hosting providers support
DNSSEC for all domains they host or register. On the
one hand, the registrars and DNS hosting providers are
required to offer and support DNSSEC, and to automate
the signing and keys generation processes for the cus-
tomers. A notable example for this is Binero, which per-
forms the keys generation and signing by itself. Automa-
tion of DNSSEC certainly facilitates faster deployment
thereof among unsigned domains. The regulation is im-
portant as it quickly increased the fraction of domains
adopting DNSSEC. On the other hand, automating keys
generation requires integrating the necessary software,
support on the web interface, access to sources of ran-
domness and using suitable hardware and processes. The
registrars and DNS hosting providers may be tempted to
save on randomness, and to reuse keys among multiple
domains that they sign. As we showed, this practice is
vulnerable and can potentially lead to an illusion of secu-
rity, while rendering the signed domains exposed to key
recovery attacks, and their clients (i.e., DNSSEC validat-
ing resolvers) to DNS cache poisoning.

Automating adoption of cryptography is an important
goal, and a notable effort undertaken by ICANN [40],
however, to facilitate it, the registrars and DNS hosting
providers should be equipped with suitable procedures to
provide secure services to their customers.

7 Countermeasures and Defences

The community spent a considerable effort
to design and operate tools for wvalidation of
DNSSEC. For instance Verisign provides http:
//dnssec-debugger.verisignlabs.com/, Sandia

USENIX Association

14th USENIX Symposium on Networked Systems Design and Implementation 141

National Liboratories operate http://dnsviz.net/,
the French operator AFNIC operate the Zonemaster
http://zonemaster.net/. Upon input a domain
name, these tools perform analyses of the configuration
of the domain and deployment of DNSSEC, e.g.,
correctness of the signatures or ability to establish a path
to the trust anchor. Since these tools operate on each
domain in isolation they cannot detect keys or moduli
sharing.

Another set of tools validate correctness of zonefile
signing. In particular, they verify that the keys of a tar-
get domain sign the DNS records, and that all the re-
quired DNSSEC records (such as NSEC or NSEC3) are
present in the zonefile. These tools enable domain own-
ers to identify a broken chain of trust.

Unfortunately, these tools do not detect vulnerable
keys, such as those with a shared or factorable mod-
uli. Tools for detection of vulnerabilities in crypto-
graphic keys would enable the registrars and DNS host-
ing providers to identify the problems in the keys that
they generate, hence preventing the faulty keys from be-
ing stored and served by the DNS servers.

Our recommendation is to prohibit sharing of
DNSSEC keys across multiple domains. Such a reg-
ulation could be overseen by The Internet Corporation
for Assigned Names and Numbers ICANN (www.icann.
org) or Internet Assigned Numbers Authority IANA
(iana.org/). However, even if put forth, such poli-
cies cannot be validated without tools. In what follows
we describe two aspects of our DNSSEC-Keys validation
engine: one allows online validation of generated keys,
the other produces lists of vulnerable domains signed
with shared keys. Both validations are integrated into
our framework (Section 4). We explain the defences and
refer an interested reader to the online webpage of our
framework (www.dnssec.sit.fraunhofer.de/).

Online Keys Validation Service

Our DNSSEC-keys validation engine (Section 4) sup-
ports validation of keys and of signed domains. Given
a key in an input, we automatically perform the follow-
ing checks: (1) the RSA modulus is not even; (2) the new
modulus does not collide with the stored modulus values
of the scanned domains; (3) the new modulus does not
share prime factors with the stored moduli values of the
scanned domains. Performing such a validation requires
comparing each newly generated key to the keys of (mul-
tiple other) signed domains. By comparing a given key
to all other keys we verify that the key does not share a
modulus with other domains and that it is not composed
of prime factors shared with keys in other domains.

This service can be used by domain owners as well as
by registrars to ensure security of generated keys.

Listing Vulnerable Domains

We keep a dynamic list of vulnerable domains signed
with same keys or domains signed with keys sharing
modulus values. This enables customers to evaluate the
security offered by the different registrars and hosting
services.

Such lists can also be used by firewalls to trigger alerts
when clients access vulnerable domains, or by browsers
(via a simple browser extension) to alert web clients
about a potential security risk, since the domain is not
signed.

8 Conclusions

While SSL and TLS received a significant attention
from the research and operational communities, and
prior work measured vulnerabilities in crypto-algorithms
in the wild, the adoption of cryptography used by
DNSSEC-signed domains requires more attention. In
this work we perform an Internet-wide study of keys in
signed DNSSEC domains. To that end, we first mea-
sure adoption of DNSSEC and collect a dataset of RSA
signed domains. We then validate the security of the keys
in our collected set of signed domains. Our results indi-
cate that multiple domains are signed with shared keys.
The vulnerabilities stem from poor key generation prac-
tices used by registrars and DNS hosting operators.

We developed a DNSSEC keys validation engine, to
periodically collect, analyse and process the DNSSEC
keys used by TLDs and other popular domains. We set
up a website for online reporting of the analyses over the
collected data, as a service to the community. Our online
service supports validation of keys, enabling clients to
identify vulnerabilities in newly generated keys, before
the keys are used to sign the zone files and published in
online repositories.

9 Acknowledgements

We thank Gal Beniamini and Matan Ben Yosef for de-
veloping the tool for collection and processing of keys
and Stephane Bortzmeyer, Amit Klein and Roy Arends
for their helpful comments on our manuscript. We are
also grateful to the anonymous referees for their thought-
ful feedback on our work. The research reported in this
paper has been supported in part by the German Fed-
eral Ministry of Education and Research (BMBF) and
by the Hessian Ministry of Science and the Arts within
CRISP (www.crisp-da.de/). We are grateful to Microsoft
Azure Research Award, which provided hosting for our
research infrastructure.

142 14th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

References

(1]

(2]

(8]

[10]

[11]

[12]

D. Anderson. Splinternet behind the great firewall
of china. Queue, 10(11):40, 2012.

N. Aviram, S. Schinzel, J. Somorovsky,
N. Heninger, M. Dankel, J. Steube, L. Va-
lenta, D. Adrian, J. A. Halderman, V. Dukhovni,
et al. Drown: Breaking tls using sslv2.

D. J. Bernstein. Nsec3 Walker.
http://dnscurve.org/nsec3walker.html, 2011.

D. J. Bernstein, Y.-A. Chang, C.-M. Cheng, L.-P.
Chou, N. Heninger, T. Lange, and N. Van Someren.
Factoring rsa keys from certified smart cards: Cop-
persmith in the wild. In International Conference
on the Theory and Application of Cryptology and
Information Security, pages 341-360. Springer,
2013.

M. Blum and S. Micali. How to generate cryp-
tographically strong sequences of pseudorandom
bits. SIAM journal on Computing, 13(4):850-864,
1984.

D. Boneh et al. Twenty years of attacks on the rsa
cryptosystem. Notices of the AMS, 46(2):203-213,
1999.

B. Chor and O. Goldreich. Unbiased bits from
sources of weak randomness and probabilistic com-
munication complexity. SIAM Journal on Comput-
ing, 17(2):230-261, 1988.

T. Dai, H. Shulman, and M. Waidner. Dnssec mis-
configurations in popular domains. In International
Conference on Cryptology and Network Security,
pages 651-660. Springer, 2016.

D. Davis, R. Thaka, and P. Fenstermacher. Cryp-
tographic randomness from air turbulence in disk
drives. In Advances in CryptologyCRYPTO9%4,
pages 114-120. Springer, 1994.

C. Deccio, J. Sedayao, K. Kant, and P. Mohapatra.
A case for comprehensive dnssec monitoring and
analysis tools. Proceedings of SATIN, 2011.

C. Deccio, J. Sedayao, K. Kant, and P. Mohapa-
tra. Quantifying and improving dnssec availabil-
ity. In Computer Communications and Networks
(ICCCN), 2011 Proceedings of 20th International
Conference on, pages 1-7. IEEE, 2011.

L. Dorrendorf, Z. Gutterman, and B. Pinkas. Crypt-
analysis of the windows random number genera-

tor. In Proceedings of the 14th ACM conference
on Computer and communications security, pages

476-485. ACM, 2007.

[13]

[14]

[15]

[16]

(17]

(18]

[19]

(20]

(21]

(22]

(23]

Z. Durumeric, J. Kasten, D. Adrian, J. A. Hal-
derman, M. Bailey, F. Li, N. Weaver, J. Amann,
J. Beekman, M. Payer, et al. The Matter of Heart-
bleed. In Proceedings of the 2014 Conference on
Internet Measurement Conference, pages 475-488.
ACM, 2014.

K. Fukuda, S. Sato, and T. Mitamura. A technique
for counting dnssec validators. In INFOCOM, 2013
Proceedings IEEE, pages 80-84. IEEE, 2013.

H. Gao, V. Yegneswaran, Y. Chen, P. Porras,
S. Ghosh, J. Jiang, and H. Duan. An empirical re-
examination of global dns behavior. In Proceedings
of the ACM SIGCOMM 2013 conference on SIG-
COMM, pages 267-278. ACM, 2013.

I. Goldberg and D. Wagner. Randomness and the
netscape browser. Dr Dobb’s Journal-Software
Tools for the Professional Programmer, 21(1):66—
71, 1996.

S. Goldberg, M. Naor, D. Papadopoulos, L. Reyzin,
S. Vasant, and A. Ziv. Nsec5: Provably preventing
dnssec zone enumeration. IJACR Cryptology ePrint
Archive, 2014:582, 2014.

S. Goldberg, M. Naor, D. Papadopoulos, L. Reyzin,
S. Vasant, and A. Ziv. Stretching nsec3 to the limit:
Efficient zone enumeration attacks on nsec3 vari-
ants. 2015.

O. Gudmundsson and S. D. Crocker. Observing
DNSSEC Validation in the Wild. In SATIN, March
2011.

P. Gutmann. Software generation of random num-
bers for cryptographic purposes. In Proceedings of
the 1998 Usenix Security Symposium, pages 243—
257, 1998.

Z. Gutterman, B. Pinkas, and T. Reinman. Analysis
of the linux random number generator. In Security
and Privacy, 2006 IEEE Symposium on, pages 15—
pp- IEEE, 2006.

N. Heninger, Z. Durumeric, E. Wustrow, and J. A.
Halderman. Mining your ps and gs: Detection of
widespread weak keys in network devices. In Pre-
sented as part of the 21st USENIX Security Sympo-
sium (USENIX Security 12), pages 205-220, 2012.

A. Herzberg and H. Shulman. Security of patched
DNS. In Computer Security - ESORICS 2012 -
17th European Symposium on Research in Com-
puter Security, Pisa, Italy, September 10-12, 2012.
Proceedings, pages 271-288, 2012.

USENIX Association

14th USENIX Symposium on Networked Systems Design and Implementation

143

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

A. Herzberg and H. Shulman. Fragmentation Con-
sidered Poisonous: or one-domain-to-rule-them-
all.org. In IEEE CNS 2013. The Conference on
Communications and Network Security, Washing-

ton, D.C., U.S. IEEE, 2013.

A. Herzberg and H. Shulman. Socket Overloading
for Fun and Cache Poisoning. In C. N. P. Jr., editor,
ACM Annual Computer Security Applications Con-
ference (ACM ACSAC), New Orleans, Louisiana,
U.S., December 2013.

A. Herzberg and H. Shulman. Vulnerable delega-
tion of DNS resolution. In Computer Security - ES-
ORICS 2013 - 18th European Symposium on Re-
search in Computer Security, Egham, UK, Septem-
ber 9-13, 2013. Proceedings, pages 219-236, 2013.

A. Herzberg and H. Shulman. Retrofitting Security
into Network Protocols: The Case of DNSSEC. In-
ternet Computing, IEEE, 18(1):66-71, 2014.

M. Hu. Taxonomy of the snowden disclosures.
Wash & Lee L. Rev., 72:1679-1989, 2015.

D. Kaminsky. It’s the End of the Cache As We
Know It. In Black Hat conference, August 2008.
http://www.blackhat.com/presentations/
bh-jp-08/bh-jp-08-Kaminsky/

BlackHat-Japan-08-Kaminsky-DNSO8-BlackOps.

pdf.

A. Klein. BIND 9 DNS cache poisoning. Re-
port, Trusteer, Ltd., 3 Hayetzira Street, Ramat Gan
52521, Israel, 2007.

A. Klein, H. Shulman, and M. Waidner. Internet-
Wide Study of DNS Cache Injections. In INFO-
COM, 2017.

P. Levis. The collateral damage of internet censor-
ship by dns injection. ACM SIGCOMM Computer
Communication Review, 42(3), 2012.

W. Lian, E. Rescorla, H. Shacham, and S. Sav-
age. Measuring the Practical Impact of DNSSEC
Deployment. In Proceedings of USENIX Security,
2013.

D. Liu, S. Hao, and H. Wang. All your DNS records
point to us: Understanding the security threats of
dangling DNS records. In Proceedings of the 2016
ACM SIGSAC Conference on Computer and Com-
munications Security, Vienna, Austria, October 24-

28, 2016, pages 1414-1425, 2016.

C. Meyer and J. Schwenk. SoK: Lessons learned
from SSL/TLS attacks. In International Workshop

(36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[40]

[47]

(48]

on Information Security Applications, pages 189—
209. Springer, 2013.

K. Schomp, T. Callahan, M. Rabinovich, and
M. Allman. Assessing dns vulnerability to record
injection. In Passive and Active Measurement,
pages 214-223. Springer, 2014.

security research project by Rapid7. Project Sonar,
2013-2016.

H. Shulman and M. Waidner. Fragmentation Con-
sidered Leaking: Port Inference for DNS Poison-
ing. In Applied Cryptography and Network Security
(ACNS), Lausanne, Switzerland. Springer, 2014.

H. Shulman and M. Waidner. Towards security of
internet naming infrastructure. In European Sym-
posium on Research in Computer Security, pages
3-22. Springer, 2015.

I. Society. ICANNs 2013 RAA Requires Domain
Name Registrars To Support DNSSEC, 2013.

J. Stewart. Dns cache poisoning—the next genera-
tion, 2003.

L. Valenta, S. Cohney, A. Liao, J. Fried, S. Boddu-
luri, and N. Heninger. Factoring as a service.

R. van Rijswijk-Deij, M. Jonker, A. Sperotto, and
A. Pras. A high-performance, scalable infras-
tructure for large-scale active dns measurements.
IEEE Journal on Selected Areas in Communica-
tions, 34(6):1877-1888, 2016.

M. Wander, C. Boelmann, L. Schwittmann, and
T. Weis. Measurement of globally visible dns in-
jection. Access, IEEE, 2:526-536, 2014.

M. Wander, L. Schwittmann, C. Boelmann, and
T. Weis. Gpu-based nsec3 hash breaking. In
Network Computing and Applications (NCA), 2014
IEEE 13th International Symposium on, pages
137-144. 1IEEE, 2014.

F. Weimer. DSA-1571-1 openssl - Predictable Ran-
dom Number Generator, 2008.

H. Yang, E. Osterweil, D. Massey, S. Lu, and
L. Zhang. Deploying cryptography in internet-
scale systems: A case study on dnssec. Depend-

able and Secure Computing, IEEE Transactions on,
8(5):656-669, 2011.

Z. Zorz. Lenovo.com Hijacking Made Possible by
Compromise of Webnic Registrar, 2015.

144

14th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

