
This paper is included in the Proceedings of the
14th USENIX Symposium on Networked Systems

Design and Implementation (NSDI ’17).
March 27–29, 2017 • Boston, MA, USA

ISBN 978-1-931971-37-9

Open access to the Proceedings of the
14th USENIX Symposium on Networked

 Systems Design and Implementation
is sponsored by USENIX.

Evaluating the Power of Flexible Packet Processing
 for Network Resource Allocation

Naveen Kr. Sharma, Antoine Kaufmann, and Thomas Anderson, University of Washington;
Changhoon Kim, Barefoot Networks; Arvind Krishnamurthy, University of Washington;

Jacob Nelson, Microsoft Research; Simon Peter, The University of Texas at Austin

https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/sharma

Evaluating the Power of Flexible Packet Processing
for Network Resource Allocation

Naveen Kr. Sharma∗ Antoine Kaufmann∗ Thomas Anderson∗ Changhoon Kim†

Arvind Krishnamurthy∗ Jacob Nelson‡ Simon Peter§

Abstract

Recent hardware switch architectures make it feasible
to perform flexible packet processing inside the net-
work. This allows operators to configure switches to
parse and process custom packet headers using flexi-
ble match+action tables in order to exercise control over
how packets are processed and routed. However, flexible
switches have limited state, support limited types of op-
erations, and limit per-packet computation in order to be
able to operate at line rate.

Our work addresses these limitations by providing a
set of general building blocks that mask these limita-
tions using approximation techniques and thereby en-
abling the implementation of realistic network proto-
cols. In particular, we use these building blocks to tackle
the network resource allocation problem within datacen-
ters and realize approximate variants of congestion con-
trol and load balancing protocols, such as XCP, RCP,
and CONGA, that require explicit support from the net-
work. Our evaluations show that these approximations
are accurate and that they do not exceed the hardware
resource limits associated with these flexible switches.
We demonstrate their feasibility by implementing RCP
with the production Cavium CNX880xx switch. This
implementation provides significantly faster and lower-
variance flow completion times compared with TCP.

1 Introduction
Innovation in switch design now leads to not just
faster but more flexible packet processing architectures.
Whereas early generations of software-defined network-
ing switches could specify forwarding paths on a per-
flow basis, today’s latest switches support configurable
per-packet processing, including customizable packet
headers and the ability to maintain state inside the switch.
Examples include Intel FlexPipe [26], Texas Instru-
ments’s Reconfigurable Match Tables (RMTs) [13], the
Cavium XPliant switches [15], and Barefoot’s Tofino
switches [10]. We term these switches FlexSwitches.

FlexSwitches give greater control over the network
by exposing previously proprietary switching features.
They can be reprogrammed to recognize, modify, and
add new header fields, choose actions based on user-
defined match rules that examine arbitrary components

∗University of Washington
†Barefoot Networks
‡Microsoft Research
§University of Texas at Austin

of the packet header, perform simple computations on
values in packet headers, and maintain mutable state that
preserves the results of computations across packets. Im-
portantly, these advanced data-plane processing features
operate at line rate on every packet, addressing a ma-
jor limitation of earlier solutions such as OpenFlow [22]
which could only operate on a small fraction of packets,
e.g., for flow setup. FlexSwitches thus hold the promise
of ushering in the new paradigm of a software defined
dataplane that can provide datacenter applications with
greater control over the network’s datapaths.

Despite their promising new functionality, Flex-
Switches are not all-powerful. Per-packet processing ca-
pabilities are limited and so is stateful memory. There
has not yet been a focused study on how the new hard-
ware features can be used in practice. Consequently,
there is limited understanding of how to take advantage
of FlexSwitches, nor is there insight into how effective
are the hardware features. In other words, do Flex-
Switches have instruction sets that are sufficiently pow-
erful to support the realization of networking protocols
that require in-network processing?

This paper takes a first step towards addressing this
question by studying the use of FlexSwitches in the con-
text of a classic problem: network resource allocation.
We focus on resource allocation because it has a rich lit-
erature that advocates per-packet dataplane processing
in the network. Researchers have used dataplane pro-
cessing to provide rate adjustments to end-hosts (con-
gestion control), determine meaningful paths through
the network (load balancing), schedule or drop packets
(QoS, fairness), monitor flows to detect anomalies and
resource exhaustion attacks (IDS), and so on. Our goal
is to evaluate the feasibility of implementing these pro-
tocols on a concrete and realizable hardware model for
programmable data planes.

We begin our study with a functional analysis of the
set of issues that arise in realizing protocols such as the
RCP [17] congestion control protocol on a FlexSwitch.
At first sight, the packet processing capabilities of Flex-
Switches appear to be insufficient for RCP and associ-
ated protocols; today’s FlexSwitches provide a limited
number of data plane operators and also limit the num-
ber of operations performed per packet and the amount of
state maintained by the switch. While some of these lim-
its can be addressed through hardware redesigns that sup-
port an enhanced set of operators, the limits associated
with switch state and operation count are likely harder

USENIX Association 14th USENIX Symposium on Networked Systems Design and Implementation 67

to overcome if the switches are to operate at line rate.
We therefore develop a set of building blocks designed to
mask the absence of complex operators and to overcome
the switch resource limits through the use of approxima-
tion algorithms adapted from the literature on streaming
algorithms. We then demonstrate that it is possible to
implement approximate versions of classic resource al-
location protocols using two design principles. First, our
approximations only need to provide an appropriate level
of accuracy, taking advantage of known workload prop-
erties of datacenter networks. Second, we co-design the
network computation with end-host processing to reduce
the computational demand on the FlexSwitch.

Our work makes the following contributions:

• We identify and implement a set of building blocks
that mask the constraints associated with Flex-
Switches. We quantify the tradeoff between resource
use and accuracy under various realistic workloads.

• We show how to implement a variety of network re-
source allocation protocols using our building blocks.

• In many instances, our FlexSwitch realization is an ap-
proximate variant of the original protocol, so we eval-
uate the extent to which we are able to match the per-
formance of the unmodified protocol. Using ns-3 sim-
ulations, we show that our approximate variants emu-
late their precise counterparts with high accuracy.

• Using an implementation on a production FlexSwitch
and emulation on an additional production FlexSwitch
hardware model, we show that our protocol implemen-
tations are feasible on today’s hardware.

2 Resource Allocation Case Study
We begin by studying whether FlexSwitches are capable
of supporting RCP, a classic congestion control proto-
col that assumes switch dataplane operations. We first
describe an abstract FlexSwitch hardware model based
on existing and upcoming switches. We then exam-
ine whether we can implement RCP on the FlexSwitch
model. We identify a number of stumbling blocks that
would prevent a direct implementation.

FlexSwitch hardware model. Rather than support-
ing arbitrary per-packet computation, most FlexSwitches
provide a match+action (M+A) processing model:
match on arbitrary packet header fields and apply simple
packet processing actions [13]. To keep up with packets
arriving at line rate, switches need to operate under tight
real-time constraints. Programmers configure how Flex-
Switches process and forward packets using high-level
languages such as P4 [12].

We assume an abstract switch model as described
in [12] and depicted in Figure 1. On packet arrival, Flex-
Switches parse packet headers via a user-defined parse
graph. Relevant header fields along with packet meta-

Figure 1: Abstract Switch Model (from [12]).

data are passed to an ingress pipeline of user-defined
M+A tables. Each table matches on a subset of ex-
tracted fields and can apply simple processing primi-
tives to any field, ordered by a user-defined control pro-
gram. The ingress pipeline also chooses an output queue
for the packet, determining its forwarding destination.
Packets pass through an egress pipeline for destination-
dependent modifications before output. Legacy forward-
ing rules (e.g., IP longest prefix match) may also impact
packet forwarding and modification.

To support packet processing on the data path, Flex-
Switches provide several hardware features:

Computation primitives that perform a limited amount
of processing on header fields. This includes operations
such as addition, bit-shifts, hashing, and max/min.

M+A tables generalize the abstraction of
match+action provided by OpenFlow, allowing matches
and actions on any user-defined packet field. Actions
may add, modify, and remove fields.

A limited amount of stateful memory can maintain
state across packets, such as counters, meters, and reg-
isters, that can be used while processing.

Switch meta-data, such as queue lengths, congestion
status, and bytes transferred, augment stateful memory
and can also be used in processing.

Timers built into the hardware can invoke the switch-
local CPU to perform periodic computation such as up-
dating M+A table entries or exporting switch meta-data
off-switch to a central controller.

Queues with strict priority levels can be assigned
packets based on packet header contents and local state.
Common hardware implementations support multiple
queues per egress port with scheduling algorithms that
are fixed in hardware. However, the priority level of any
packet can be modified in the processing pipeline, and
packets can be placed into any of the queues.

Packets may be sent to a switch-local control plane
CPU for further processing, albeit at a greater cost. The
CPU is able to perform arbitrary computations, for ex-
ample on packets that do not match in the pipeline. It

68 14th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

cannot guarantee that forwarded packets are processed at
line rate; instead, it drops packets when overloaded.

RCP. Rate Control Protocol (RCP) [17] is a feedback-
based congestion control algorithm that relies on explicit
network feedback to reduce flow completion times. RCP
attempts to emulate processor sharing on every switch
and assigns a single maximum throughput rate to all
flows traversing each switch. In an ideal scenario, the
rate given out at time t is simply R(t) = C/N(t), where
C is the link capacity and N(t) is the number of ongoing
flows, and the rate of each flow is the minimum across
the path. Each switch computes R(t) every control in-
terval, which is typically set to be the average round-trip
time (RTT) of active flows.

In RCP, every packet header carries a rate field Rp,
initialized by the sender to its desired sending rate. Every
switch on the path to the destination updates the rate field
to its own R(t) if R(t) < Rp. The receiver returns Rp to
the source, which throttles its sending rate accordingly.

The packet header also carries the source’s current es-
timate of the flow RTT. This is used by each switch to
compute the control interval. For a precise calculation,
per-flow RTTs need to be kept1.

The original RCP algorithm computes the fair rate
R(t) using the equation

R(t) = R(t−d)+
α ·S−β · Q

d

N̂(t)
where d is the control interval, S is the spare bandwidth,
Q is the persistent queue size and α , β are stability con-
stants. N̂(t) is the estimated number of ongoing flows.
This congestion controller maximizes the link utilization
while minimizing queue depth (and drop rates). If there
is spare capacity available (i.e., S > 0), RCP increases
the traffic allocation. If queueing is persistent, RCP de-
creases rates until queues drain.

FlexSwitch constraints. Although FlexSwitches are
flexible and reconfigurable in several ways, they do im-
pose several restrictions and constraints. If these limits
are exceeded, then the packet processing code cannot be
compiled to the FlexSwitch target. We describe these
limits, providing typical values for them based on both
published data [13] and information obtained from man-
ufacturers, and note how they impact the implementation
of network resource allocation algorithms, like RCP.

Processing primitives are limited. Each switch
pipeline stage can execute only one ALU instruction per
packet field, and the instructions are limited to signed
addition and bitwise logic. Multiplication, division, and
floating point operations are not feasible. Hashing prim-
itives, however, are available; this exposes the hard-

1However, it is possible to approximate the average RTT and only
keep an aggregate of the number of flows.

ware that switches now use for ECMP and related load-
balancing protocols. Control flow mechanisms, such as
loops and pointers, are also unavailable, and entries in-
side M+A tables cannot be updated on the data path. This
precludes the complex floating-point computations often
employed by resource allocation algorithms from being
used directly on the data path. It also limits the num-
ber of sequential processing steps to the number of M+A
pipeline stages (generally around 10 to 20). Within a
pipeline stage, rules are processed in parallel.

Available stateful memory is constrained. Generally,
it is infeasible to maintain per-flow state across pack-
ets in both reconfigurable switches and their fixed func-
tion counterparts.2 For example, common switches sup-
port SRAM-based exact match tables of up to 12 Mb per
pipeline stage. The number of rules is limited by the
size of the TCAM-based ternary match tables provided
per pipeline stage (typically up to 1Mb). In contrast,
it is common for a datacenter switch to handle tens of
thousands to hundreds of thousands of connections. This
allows for a negligible amount of per-connection state,
which is likely not enough for most resource allocation
algorithms to perform customized flow processing (e.g.,
for RCP to compute a precise average RTT).

State carried across computational stages is limited.
The hardware often imposes a limit on the size of the
temporary packet header vector, used to communicate
data across pipeline stages. Common implementations
limit this to 512 bytes. Also, switch metadata may not
be available at all processing stages. For example, cut-
through switches may not have the packet length avail-
able when performing ingress processing. This pre-
cludes that information from being used on the data path,
severely crimping link utilization metering and flow set
size estimation as needed by RCP.

FlexSwitch evolution. It is likely that the precise re-
strictions given in this section will be improved with fu-
ture versions of FlexSwitch hardware. For example, ad-
ditional computational primitives might be introduced or
available stateful memory might increase. However, re-
strictions on the use of per-flow state, the amount of pro-
cessing that can be done, and the amount of state that can
be accessed per packet will have to remain to ensure that
the switch can function at line rate.

3 A Library of Building Blocks
To recap, realizing RCP requires additional operations
that are not directly supported by FlexSwitches. Specif-
ically, an implementation of RCP requires the following
basic features:

2The dramatic growth in link bandwidths coupled with a much
slower growth in switch state resources implies that this constraint will
likely hold in future generations of datacenter switches.

USENIX Association 14th USENIX Symposium on Networked Systems Design and Implementation 69

• Metering utilization and queueing: For every outgo-
ing port on a FlexSwitch, given a pre-specified control
interval, we need a metering mechanism that provides
the average utilization and the average queueing delay.

• Estimating the number of flows: For every outgoing
port and a pre-specified control interval, we need an
estimate of the number of flows that were transmit-
ted through the port in the previous control interval—
without keeping per-flow state.

• Division/multiplication: They are required to compute
R(t), but are not supported in today’s FlexSwitches.

We performed a similar functional analysis of a
broad class of resource allocation algorithms to iden-
tify their computational and storage requirements. Ta-
ble 6 presents our findings. We can see that the require-
ments of most network resource allocation protocols can
be distilled into a relatively small set of common build-
ing blocks that can enable the implementation of these
algorithms on a FlexSwitch.

We outline the design of these and other related build-
ing blocks in this section. The building blocks are de-
signed to overcome hardware limitations described in
Section 2. In particular, we facilitate the following types
of packet processing functionality: (a) flow-level mea-
surements such as approximate maintenance of per-flow
state and approximate aggregation of statistics across
flows, (b) approximate multiplication and division using
simpler FlexSwitch primitives, and (c) switch-level mea-
surements such as metering of port-level statistics and
approximate scans over port-level statistics.

A common theme across many of these building
blocks is the use of approximation to stay within the
limited hardware resource bounds. We apply techniques
adapted from the streaming algorithms literature within
the context of FlexSwitches. Streaming algorithms use
limited state to approximate digests as data is streamed
through. Often, there is a tradeoff between the accu-
racy of the measurement and the amount of hardware re-
sources devoted to implementing the measurement. We
draw attention to these tradeoffs and evaluate them em-
pirically. We do so by measuring the resource use of
faithful C/C++ implementations of the building blocks
under various configuration parameters. In later sections,
we use P4 specifications of these building blocks, eval-
uate performance using a production FlexSwitch, and
measure resource requirements in an emulator for an ad-
ditional production FlexSwitch.

3.1 Flow Statistics

Approximating Aggregate Flow Statistics: Many re-
source allocation algorithms require the computation of
aggregate values such as the total number of active flows,
the total number of sources and destinations commu-

nicating through a switch, and so on. Exact computa-
tion of these values would require large amounts of both
state and per-packet computation. We therefore design
a cardinality estimator building block that can approx-
imately calculate the number of unique elements (typi-
cally tuples of values associated with a subset of header
fields) in a stream of packets in a given time frame.

Our approach is adapted from streaming algo-
rithms [28]. We calculate a hash of each element and
count the number of leading zeros n in the binary rep-
resentation of the result using a TCAM. Using this ap-
proach, we compute and store the maximum number
max(n) of leading zeros over all elements to be counted.
2max(n) is then the expected number of unique elements.
To implement this calculation on FlexSwitches, we use a
ternary match table described by the string:

0n1xN−n−1 0≤ n < N

where N is the maximum number of bits in the hash re-
sult. A stateful memory cell maintains the maximum
number of leading zeros observed in the stream. This
approach allows us to both update and retrieve the count
n on the data plane.

This basic approach is space-efficient but exhibits high
variance for the estimate. The variance can be reduced by
using multiple independent hashes to derive independent
estimates of the cardinality. These independent estimates
are averaged to produce a final estimate. An alternative is
to divide the incoming stream into k disjoint buckets. For
example, we can use the last log(k) bits of the hash result
as a bucket index. We can estimate the cardinality of
each bucket separately and then combine them to derive
the final estimate by taking the harmonic mean [28].

Different traffic properties can be estimated by pro-
viding different header fields to the hash function. For
example, if the header fields are the 4-tuple of source
IP, destination IP, source port, and destination port, then
we can estimate the number of active flows traversing a
switch. Similarly, we can calculate the number of unique
end-hosts/VMs/tenants traversing the switch or collect
traffic statistics associated with anomalies.

The parameters are the number h of hash functions to
use, the maximum number N of bits in each hash result,
and the number k of hash buckets to use. Given these pa-
rameters, we can ask: how much switch state is required
to achieve a given level of accuracy and how does accu-
racy trade off with switch state?

Prior datacenter studies [4, 31], measure the number
of concurrent flows per host to be 100-1000. This means
a ToR switch can have 1,000-50,000 flows. Assuming
we use a single hash function with N = 32, and 1 byte
of memory for counting the number of leading zeroes in
each bucket, Figure 2 shows the tradeoff of accuracy ver-
sus memory usage for different flow set sizes. We vary

70 14th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

 0

 20

 40

 60

 80

 100

1B 4B 16B 64B 256B 1KiB 4KiB 16KiB

E
st

im
at

e
E

rr
or

 (%
)

Memory Used (bytes)

Flows = 1K
Flows = 10K

Flows = 100K

Figure 2: Average tradeoff between accuracy and memory used
by the cardinality estimating building block for different set
sizes of random flows over 1000 measurements (error bars
show standard deviation).

memory use, which equals h× k bytes, for k ∈ [1,216]
and h ∈ [1,8] and show the tradeoff for the best choice of
h and k for a particular memory size.

Accuracy improves with increased memory, but the
flow set size does not impact this tradeoff significantly.
Using less than 64 bytes produces error rates above 20%.
Memory between 64 bytes and 1 KB has average error
rates between 5% and 15%. Using more than 1 KB of
memory only improves average error rates marginally (to
4%), but it can improve worst-case error rates.

We do lose accuracy for very small (#Flows≈ k) and
very large (#Flows ≈ 2N) flow set sizes. For very small
flow sets, several buckets will remain empty. This intro-
duces distortions which can be corrected by calculating
the estimate as log(k/#emptyBuckets) instead.

In summary, the cardinality estimation building block
can work for a wide range of packet property sets with
low error and moderate resources, while providing a con-
figurable tradeoff between accuracy and resource use.

Approximating Per-Flow Statistics: Resource limits
prevent maintaining accurate per-flow state, so this class
of building blocks approximates flow statistics. We dis-
cuss two building blocks. The first building block pro-
vides per-flow counters. It can be used, for example, to
track the number of bytes transmitted by individual flows
to identify elephant flows. The second building block
tracks timestamp values for a particular flow, e.g. to de-
tect when a flow was last seen for flowlet detection.
Per-flow Counters: For this building block we use
a count-min sketch [16] to track element counts
in sub-linear space. It supports two operations:
update(e,n) adds n to the counter for element e and
read(e) reads the counter for element e. This building
block requires a table of r rows and c columns, and r in-
dependent hash functions. update(e,n) applies the r
hash functions to e to locate a separate cell in each row,
and then adds n to each of those r cells. read(e) in
turn uses the r hash functions to find the same r cells for
e and returns the minimum. The approximation of the

N False-positive r c r× c

10% 4 512 2,048
1,000 5% 3 1,024 3,072

1% 3 2,048 6,144

10% 2 8,192 16,384
10,000 5% 3 8,192 24,576

1% 4 16,384 65,536

10% 3 65,536 196,608
100,000 5% 2 131,072 262,144

1% 4 131,072 524,288

Table 1: Required count-min sketch size to achieve false-
positive rate below the specified threshold. The workload con-
sists of N flows that send a total of 10 M packets, 80% of which
belong to 20% of the flows—the heavy hitters (HH)— and the
HH-threshold is set based on the expected number of packets
sent from a HH in this scenario.

count returned by read is always greater than or equal
to the exact count. To keep the sketch from saturating,
we use the switch CPU to periodically multiply all val-
ues in the counter table by a factor < 1 (i.e., decay the
counts across multiple intervals), or reset the whole table
to 0, depending on the use-case.
Per-Flow Timestamps: To track the timestamp of the
last received packet along a flow, we slightly modify the
use of the count-min sketch to derive a min-timestamp
sketch. Instead of adding n (the current time) to the se-
lected cells, update(e,n) now just overwrites these
cells with n. read remains unmodified and as such re-
turns a conservative estimate for the last time an element
has been seen.

One use-case for this block is flowlet switching,
wherein packets of a live flowlet should all be routed
along the same route but new flowlets can be assigned
a new route. Flowlet switching requires two pieces of in-
formation per flow: the timestamp of the previous packet,
and the assigned route. Our timestamp building block
tracks flow timestamps, but storing the route information
requires an extension of the building block.

The extended building block supports the following
two operations: update(e,n,r) sets the timestamp
of element e to n and, if the flowlet timestamp had ex-
pired, sets the route to r; and read(e) returns both the
last timestamp and the route for element e. We assume
that the chosen route for a flow can be represented as a
small integer that represents its index in a deterministic
set of candidate routes for the flow. Both update and
read still use the same mechanism for finding r cells for
a particular e, but we extend those cells to store both the
timestamp and a route integer. read returns the mini-
mum of the timestamps and the sum of the route integers
from the cells. update still updates the timestamps in
all selected cells, but will only modify the route informa-
tion in cells where the timestamp is older than the con-

USENIX Association 14th USENIX Symposium on Networked Systems Design and Implementation 71

figured flowlet timeout. If no cell has a timestamp older
than the timeout, then the flowlet is considered live and
thus the route is not modified. Any non-live flowlet will
have at least one cell that has a timestamp older than the
timeout, thus the route values stored in these cells can be
modified so that the sum of all route values equals the
specified r. (The pseudocode for this building block is
shown in Figure 3.1 in the Appendix.) The key observa-
tion for correctness is that the route value in a cell with
a live timestamp will never be modified, which guaran-
tees that none of the route information for a live flowlet
is modified, because the flowlet’s cells will all have live
timestamps.

3.2 Approximating Arithmetic

We design a class of building blocks that provide an ex-
act implementation of complex arithmetic where possi-
ble and approximations for the general case. We can
exactly compute multiplication and division with a con-
stant operand using bit shifts and addition. We resort
to approximation only when operands cannot be repre-
sented as a short sequence of additions. Our approximate
arithmetic supports two variable operands and relies on
lookup tables and addition.
Bit shifts: Multiplication and division by powers of 2 can
be implemented as bit shifts. If the constant operand is
not a power of 2, adding or subtracting the results from
multiple bit shifts provides the correct result, e.g., A×6
can be rewritten as A×2+A×4. Division can be imple-
mented by rewriting as multiplication with the inverse.
Resource constraints (such as the number of pipeline
stages) limit the number of shifts and additions that can
be executed for a given packet.
Logarithm lookup tables: Where multiplication and divi-
sion cannot be carried out exactly (e.g., if both operand
are variables), we use the fact that A×B = exp(logA+
logB). Given log and exp, we can reduce multiplication
and division to addition and subtraction. Because Flex-
Switches do not provide log and exp natively, we approx-
imate them using lookup tables.

We use a ternary match table to implement logarithms.
For N-bit numbers and a window of calculation accuracy
of size m, with 1 ≤ m ≤ N, table entries match all bit-
strings of the form:

0n1(0|1)min(m−1,N−n−1)xmax(0,N−n−m) 0≤ n < N

where x is the wildcard symbol. These entries map to the
l-bit log value—represented as a fixed point integer—of
the average number covered by the match. For example,
for N = 3 and m = 1, the entries are {001,01x,1xx}, and
for m = 2 the table entries are {001,010,011,10x,11x}.
exp is calculated using an exact match table that maps
logarithms back to the corresponding integer value. The
parameters m and l control the space/accuracy tradeoff
for this building block. For N-bit operands, table size

N Error m l exp (SRAM) log (TCAM)

10% 3 6 64 59
16 5% 4 7 128 111

1% 6 9 512 383

10% 3 7 128 123
32 5% 4 8 256 239

1% 6 10 1024 895

10% 3 9 512 251
64 5% 4 9 512 495

1% 6 11 2048 1919

Table 2: Required number of lookup table entries for an
approximation of multiplication/division for different size
operands (N in bits) for the smallest configuration (m and l)
with a mean relative error below the specified threshold.

is approximately N× 2m for the log table and precisely
2l for the exp table. Table 2 shows the minimal values
of m and l to achieve a mean relative error below the
specified thresholds. Note that even for 64-bit numbers
a mean relative error below 1% can be achieved within
2048 exact match and ternary match table entries.

3.3 Switch Statistics

Metering queue lengths: Network protocols often re-
quire information about queue lengths. FlexSwitches
provide queue length information as part of the packet
metadata, but only in the egress pipeline and only for the
queue just traversed. This building block tracks queue
lengths and makes them available through the entire pro-
cessing pipeline. When a packet arrives in the egress
pipeline we record the length of queue traversed in a
register for that queue. Depending on the use-case, this
building block can be configured to track the minimal
queue length seen in a specified time interval, and using
a timer to reset the register at the end of every interval.
A variant of this building block is to calculate a contin-
uous exponentially weighted moving average (EWMA)
of queue lengths, and this utilizes the approximate arith-
metic building block to perform the weighting.

Metering Rates: Similarly, data rates are an important
metric in resource allocation schemes. FlexSwitches pro-
vide metering functionality in hardware, but the output
is generally limited to colors that are assigned based on
thresholds as described in the P4 language. This building
block is able to measure rates for arbitrary input events
in a more general fashion. We provide two configura-
tions: One measures within time intervals, the other mea-
sures continuously. We describe the latter as the former
is straightforward.

In order to support continuous measurement of the rate
during the last time interval T , we use two registers to
store the rate and the timestamp of the last update. When
updating the estimate, we first calculate the time passed

72 14th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

since the last update as t∆. Because there were no events
during the last t∆ ticks, we can calculate how many events
occurred during the last time interval T based on the pre-
vious rate R as Y =R×(T−t∆) (or 0 if t∆ > T). Based on
that and the number of events x to be added with the cur-
rent operation we update the rate to Y+x

T , and also update
the timestamp register with the current timestamp. The
multiplication with R for calculating Y is implemented
using the second method described in the approximate
multiplication building block, while the division by T
can be implemented using a right shift.
Approximate Port Balancing: A common task is to as-
sign packets to one of multiple destinations (e.g., links
or servers) to balance load between them. We provide a
class of building blocks that implement different balanc-
ing mechanisms. The building blocks in this class fall
in two separate categories, static balancing steers oblivi-
ously to the current load while dynamic balancing takes
load into account. We describe the latter.

Making a load balancing decision while taking into ac-
count the current load avoids the imbalances common
with static load balancing schemes. Computational lim-
itations on FlexSwitches make it infeasible to pick the
least loaded destination from a set of candidates larger
than 2-4. Previous work [8] has shown that picking the
least loaded destination from a small subset – even just
2 – of destinations chosen at random, significantly re-
duces load imbalances. Picking random candidates can
be implemented on FlexSwitches by calculating two or
more hashes on high-entropy inputs (timestamp, or other
metadata fields). Information about the load of differ-
ent destinations can be obtained from the metering queue
lengths or metering rates building blocks.

3.4 Discussion

We note that our building blocks address both short and
long-term limitations associated with FlexSwitches. For
example, some of our building blocks emulate complex
arithmetic using simpler primitives and help make the
case for supporting some of these complex operations in
future versions of FlexSwitches. The rest of the building
blocks address fundamental constraints associated with
switch state and operation count, thereby allowing the
realization of a broader class of protocols that are robust
to approximations (as we will see in the next section).

We provide the building blocks in a template form, pa-
rameterized by zero or more packet header fields. Each
block either rewrites the packet header or maintains state
variables that are available to subsequent building blocks
in the pipeline. For example, the cardinality estimator
can be parameterized by the 5-tuple or just the source ad-
dress and exposes a single variable called ‘cardinality’.
This variable can be re-used when blocks are chained
within a pipeline.

Tables 5 and 6 in Appendix A summarize our building
blocks and the different classes of protocols we are able
to support with them. We can realize a variety of schemes
ranging from classical congestion control and scheduling
to load balancing, QoS, and fairness. This shows our
blocks are general enough to be reused across multiple
protocols and sufficient to implement a broad class of
resource allocation protocols.

4 Realizing Network Resource Allocation
Protocols

In this section we describe and evaluate a number of net-
work resource allocation protocols that can be built using
the building blocks described in Section 3. The network
protocols that we target fall into the following broad cat-
egories: congestion control, load balancing, QoS/Fair-
ness, and IDS/Monitoring.

4.1 Evaluation Infrastructure

To show that we achieve our goal of implementing com-
plex network resource allocation problems on limited
hardware resources using only approximating building
blocks, we first implement RCP on top of a real Flex-
Switch. We use the Cavium Xpliant CNX880xx [14], a
fully flexible switch that provides several of the features
described in Section 2 while processing up to 3.2 Tb/s.
We then evaluate the accuracy of our implementations
versus the non-approximating originals using ns-3 sim-
ulations. Finally, we evaluate the resource usage of our
implementations and discuss whether they fit within the
limited resources that are expected of FlexSwitches.

To use the CNX880xx, we realize various building
blocks on the Cavium hardware. This involved: 1) pro-
gramming the parser to parse protocols, 2) creating ta-
bles for stateful memory, 3) configuring the pipeline to
perform packet processing operations, and 4) coding the
service CPU to perform periodic book-keeping.

To measure the performance of our RCP implemen-
tation against other protocols, we emulate a 2-level Fat-
Tree topology consisting of 8 servers, 4 ToRs and 2 core
switches by creating appropriate VLANs on the switch
and directly interconnect the corresponding switch ports.
This way, the same switch emulates all switches in the
topology. All links operate at 10Gbps. We generate flows
from all servers towards a designated target server with
Poisson arrivals such that the ToR links are 50-60% uti-
lized. The flows are Pareto distributed (α = 1.2), with a
mean size of 25 packets. We measure the flow comple-
tion times and compare it with the default Linux TCP-
cubic implementation.

To evaluate the accuracy of our use cases, we imple-
ment them within the ns-3 network simulator [25] ver-
sion 3.23. We simulate a datacenter network topology
consisting of 2560 servers and a total of 112 switches.

USENIX Association 14th USENIX Symposium on Networked Systems Design and Implementation 73

The switches are configured in a 3-level FatTree topol-
ogy with a total over-subscription ratio of 1:4. The
core and aggregation switches each have 16× 10Gbps
ports while the ToRs each have 4× 10Gbps ports and
40× 1Gbps ports. All servers follow an on-off traffic
pattern, sending every new flow to a random server in
the datacenter at a rate such that the core link utiliza-
tion is approximately 30%. Flows are generated using a
Pareto distribution (α = 1.2), and a mean flow size of 25
packets. Simulations are run for long enough that flow
properties can be evaluated.

To evaluate the resource use of our use cases on an ac-
tual FlexSwitch, we implement our use cases in the P4
programming language and compile them to a produc-
tion switch target. The compiler implements the func-
tionality proposed in [19] and compiles to the hardware
model described in Section 2. It reports the hardware re-
source usage for the entire use case, including memory
used for data and code.

Our compiler-based evaluation serves to quantify the
increased resource usage of our congestion control im-
plementations when added to a baseline switch imple-
mentation based upon [34] that provides common func-
tionality of today’s datacenter switches. The base-
line switch implementation provides basic L2 switching
(flooding, learning, and STP), basic L3 routing (IPv4,
IPv6, and VRF), link aggregation groups (LAGs), ECMP
routing, VXLAN, NVGRE, Geneve and GRE tunneling,
and basic statistics collection. We intentionally do not
add more functionality to the baseline to highlight the
additional resources consumed by our implementations.

4.2 Simple use-cases

The simple use-cases typically apply building blocks in a
direct way to achieve their goals. We provide here a few
examples to give insight into how our building blocks
apply to a wide variety of different network applications.

WCMP. Weighted Cost Multipath (WCMP) routing [39]
is an improvement over ECMP that can balance traffic
even when underlying network performance is not sym-
metric. WCMP uses weights to express path preferences
that consequently impact load balance. To implement
WCMP using FlexSwitches, we use the approximate port
balancing building block over a next-hop hash table and
replicate next-hop entries according to their weight. The
WCMP weight reduction algorithm [39] applies in the
same way to reduce table entries.
CoDel. This QoS mechanism [24] monitors the mini-
mum observed per-packet queueing delay during a time
interval and drops the very last packet in the interval if
this minimum observed delay is above a threshold. If
there is a packet drop, the scheme provides a formula
for calculating a shorter interval for the next time period.
This scheme can be easily implemented on a FlexSwitch

using metering, a small amount of state for maintaining
the time period, approximate arithmetic for computing
the next interval, and timers.
TCP port scan detection. To detect TCP port scans, we
filter packets for set SYN flags and use the cardinality
estimation building block to estimate the number of dis-
tinct port numbers observed. If this estimate exceeds a
set threshold, we report a scan event to the control plane.
NTP amplification attack detection. Similarly, to de-
tect NTP amplification attacks, we detect NTP packets
(UDP port 123) and use cardinality estimation of distinct
source IP addresses. If the number is high, we conclude
that a large number of senders is emitting NTP requests
over a small window of time and report an attack event.

4.3 RCP

We now illustrate how to orchestrate several of the build-
ing blocks described in Section 3 to implement RCP.
Staying true to our design principles, we employ ap-
proximation when necessary to make the implementation
possible within limited resource bounds. We recall: To
implement RCP we require a way of metering average
utilization and queueing delay over a specified control
interval. We also need to determine the number of active
flows for each outgoing port over the same interval.

First, we estimate the spare capacity and the persistent
queues built up inside the switch using the metering uti-
lization and queueing building block. We use the build-
ing block to maintain per-link meta-data for the number
of bytes received and the minimum queue length ob-
served during a control period. When a packet arrives,
we update Q by taking the minimum of the previous Q
value and the current queue occupancy size as measured
by our building block. Similarly, a counter B accumu-
lates the number of bytes sent over the link. A timer is
initialized to d, the expected steady state RTT of most
flows. When the timer expires, we calculate the spare
bandwidth as S =C−B/d, where C is the total capacity
of the link. d is rounded down to a power of two so that
the division operation can be replaced by a bit-shift oper-
ation. This use of a slightly smaller d is consistent with
RCP’s recommendation of using control periods that are
roughly comparable to the average RTT.

RCP approximates the number of flows using a circu-
lar definition: N̂(t) = C

R(t−d) . This essentially estimates
the number of flows using the rate computed in the previ-
ous control interval. We use a more direct approximation
of the number of unique flows by employing the cardi-
nality estimator building block.

Finally, with estimates of utilization, queueing, and
number of flows, we can use the RCP formula for cal-
culating R(t). Given that RCP is stable for a wide range
of α,β > 0, we pick fractional values that can be approx-
imated by bit shift operations. For the division by N(t), a

74 14th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8

C
D

F

Flow Completion Time (ms)

RCP
RCP-Approx

XCP
XCP-Approx

TCP

(a) Flows of size < 50 packets

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 4 8 12 16
Flow Completion Time (ms)

RCP
RCP-Approx

XCP
XCP-Approx

TCP

(b) Flows of size 50-500 packets

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 25 50 75 100
Flow Completion Time (ms)

RCP
RCP-Approx

XCP
XCP-Approx

TCP

(c) Flows of size > 500 packets

Figure 3: Cumulative distribution of FCTs of various flow sizes for TCP as well as both precise and approximate RCP and XCP.

general division is required because both sides are vari-
ables. We use the approximate divider building block to
perform the division with sufficient accuracy.

Our hardware implementation of RCP uses several
features of the XPliant CNX880xx switch. First, we use
the configurable counters to build the cardinality estima-
tor. An array of counters indexed by the packet hash is
incremented on each packet arrival. The counter val-
ues are read periodically to estimate the number of on-
going flows. Next, we use the metering block to maintain
port level statistics such as bytes transmitted and queue
lengths. For periodically computing RCP rates, we uti-
lize an on-switch service CPU to compute and store the
rates inside the pipeline lookup memory. Finally, we pro-
gram the reconfigurable pipeline to correctly identify and
parse an RCP packet, extract the rate and rewrite it with
the switch rate if it is lower.

We compared the performance of the above RCP im-
plementation against TCP on the Cavium testbed and
workload described in Section 4.1. We measure the flow
completion times for various flow sizes and report them
in Table 3. As expected, RCP benefits significantly from
the switch notifying the endhosts the precise rate to trans-
mit at. This avoids the need for slow-start and keeps the
queue occupancy low at the switches, leading to lower
flow completion times.

In order to measure the impact of approximation
on the accuracy of our FlexSwitch implementation of
RCP, we compare our implementation (RCP-Approx) to
an original implementation (RCP) using the simulated
workload described in Section 4.1. Figure 3 shows the
result as a number of CDFs of flow completion time
(FCT) for flows of various lengths. We can see that
RCP-Approx matches the performance of RCP closely,
for all three types of traffic flows. We also compare to
the performance of TCP to validate that our simulation
adequately models the performance of RCP. We see that
this is indeed the case as RCP performance exceeds TCP
performance for shorter flows, as shown in [17].

To measure the additional hardware resources used for
RCP-Approx, we integrate RCP-Approx into our base-
line switch implementation and compile using the com-
piler described in Section 4.1. Table 4 shows the addi-

Flow TCP RCP
Size Mean 50th% 95th% Mean 50th% 95th%

Short 10.32 0.85 2.92 0.85 0.73 2.05
Medium 67.97 5.33 216.99 5.07 3.18 14.85
Long 649.25 59.73 3559.85 50.42 36.85 137.26

Table 3: Flow completion times for short, medium, and long
flows (< 50, < 500, and ≥ 500 packets) in milli-seconds on a
two-tier topology running RCP on Cavium hardware.

Resource Baseline +RCP +XCP +CONGA

Pkt Hdr Vector 187 191 +2% 195 +4% 199 +6%
Pipeline Stages 9 10 +11% 9 +0% 11 +22%
Match Crossbar 462 473 +2% 471 +2% 478 +3%
Hash Bits 1050 1115 +6% 1058 +1% 1137 +8%
SRAM 165 175 +6% 172 +4% 213 +29%
TCAM 43 44 +2% 45 +5% 44 +2%
ALU Instruction 83 88 +6% 92 +11% 98 +18%

Table 4: Summary of resource usage for various use-cases.

tional hardware resources used compared to the base-
line switch. We can see that additional resource use is
small—not exceeding 6% for all resources but pipeline
stages and requiring an additional stage.

We conclude that RCP can indeed be implemented
with adequate accuracy and limited additional resource
usage. This gives us confidence that other resource al-
location algorithms might be implementable as well and
we do so in the following subsections.

4.4 XCP

Like RCP, the eXplicit Control Protocol (XCP) [20] is
a congestion control system that relies on explicit feed-
back from the network, but optimizes fairness and ef-
ficiency over high bandwidth-delay links. An XCP-
capable router maintains two control algorithms that are
executed periodically on each output port: a congestion
controller and a fairness controller. The congestion con-
troller is similar to RCP’s—it computes the desired in-
crease or decrease in the aggregate traffic (in bytes) over
the next control interval as φ = α ·d ·S−β ·Q, where S,
Q, and d are defined as before.

The fairness controller distributes the aggregate feed-
back φ among individual packets to achieve per-flow
fairness. It uses the same additive increase, multiplica-

USENIX Association 14th USENIX Symposium on Networked Systems Design and Implementation 75

tive decrease (AIMD) [7] principle as TCP. If φ > 0, it
increases the throughput of all flows by the same uniform
amount. If φ < 0, it decreases the throughput of a flow
by a value proportional to the flow’s current throughput.
XCP achieves AIMD control without requiring per-flow
state by sending feedback in terms of change in con-
gestion window, and through a formulation of the feed-
back values designed to normalize feedback to account
for variations in flow rates, packet sizes, and RTTs.

In particular, given a packet i of size si corresponding
to a flow with current congestion window cwndi and RTT
rtti, XCP computes the positive feedback pi (when φ >
0) and the negative feedback ni (when φ < 0) as:

pi = ξp ·
rtt2

i · si

cwndi
ni = ξn · rtti · si

where ξp and ξn are constants for a given control in-
terval. Observe that the negative feedback is simply
a uniform constant across packets if all flows have the
same RTT and send the same sized packets. As a conse-
quence, flows that send more packets (and hence operate
at a higher rate) will get a proportionally higher negative
feedback and will multiplicatively decrease their send-
ing rates in the next control interval. Similarly, the struc-
ture of pi results in an additive increase as the per-packet
feedback is inversely proportional to cwndi. Finally,
the per-interval constants ξp and ξn are computed such
that the aggregate feedback provided across all packets
equals φ , with L being the set of packets seen by the
router in the control interval:

ξp =
φ

d ·∑L
rtti·si
cwndi

ξn =
−φ

d ·∑L si

FlexSwitch Implementation

The core of the XCP protocol requires each switch to: (i)
calculate and store at every control interval the values φ ,
ξp, and ξn, and (ii) compute for every packet the positive
or negative feedback values (pi or ni). pi and ni are com-
municated back to the sender, while cwndi and rtti are
communicated to other routers to allow them to compute
ξp and ξn. Given the programmable parser in a Flex-
Switch, it is straightforward to extend the packet header
to include fields corresponding to cwndi, rtti, and either
pi or ni. However, the XCP equations described above
require complex calculations. We outline a sequence of
refinements designed to address this.

Approximate computations: As with RCP, we make
use of the metering utilization and queueing building
block and then suitably choose the stability constants and
the control interval period to simplify computations in
the processing pipeline. First, we set the stability con-
stants α,β to be negative powers of 2, such that φ can be
calculated using bit shifts. XCP is stable for 0<α < π

4
√

2
and β = α2

√
2, which makes this simplification feasible.

Original
 XCP

Approx.
 XCP

Time

d0 d1 d2 d3

φ
1

ξp

φ
2

φ
3

1
ξp2

ξp3

ξn1
ξn2

ξn3

φ
1

φ
2

φ
3

ξp1
ξp2

ξp3

ξn1
ξn2

ξn3

Figure 4: Staggered evaluation of XCP control parameters.

Next we approximate the control interval d to be a power
of two that approximates the average RTT in the datacen-
ter. We can then compute φ/d every d microseconds us-
ing integer counters and bit-shifts without incurring the
loss in precision associated with the approximate divi-
sion building block.

End-host computations: In XCP, end-hosts send rtti
and cwndi values with every packet and receive from the
switches a per-packet feedback pi,ni. In our FlexSwitch
implementation, we offload more of the computation to
the end-hosts. First, we require the end-host to send to
switches the computed value rtti·si

cwndi
. Second, instead of

calculating the per-packet feedback pi,ni at the switch,
we simply send the positive and negative feedback coef-
ficients ξp,ξn to the end-host. The end-host can then cal-
culate the necessary feedback by computing pi,ni based
on its local flow state. This results in a subtle approxima-
tion as we can no longer keep track of aggregate feedback
at the router. It is possible that we give out more aggre-
gate feedback than the target φ if a large burst of packets
arrives during a control interval. This can temporarily
cause a queue buildup inside the switch, but XCP’s neg-
ative feedback will quickly dissipate the queue. We did
not see large queue buildups in our simulations.

Approximate control intervals: Finally, instead of
computing the positive and negative feedback coeffi-
cients ξp,ξn along with φ at the end of every control
interval, we compute them whenever the denominator
reaches a value close to a power of 2. In our case, we
approximate ∑L

rtti·si
cwndi

or ∑L si to a power of 2 for posi-
tive and negative feedback coefficients respectively, both
of which are in the XCP congestion header and are ac-
cumulated in integer counters inside switch memory. As
a result, calculating ξp,ξn requires only a bit-shift oper-
ation. It also means that we are not calculating all XCP
parameters synchronously at every control interval, but
rather at staggered intervals as shown in Figure 4.

We again measure the impact of approximation on
the accuracy of our FlexSwitch implementation by com-
paring it (XCP-Approx) to an original implementation
of XCP using the simulated workload described in Sec-
tion 4.1. From Figure 3 we can see that XCP-Approx
also closely matches the performance of XCP, for all
three types of traffic flows. Both implementations out-

76 14th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

perform RCP for long flows and perform worse than RCP
for short flows. This validates our simulation as XCP
is optimized for long flows over high bandwidth-delay
links, while RCP is optimized for short flows.

Table 4 shows the additional hardware resources
used by XCP-Approx when integrated into the baseline
switch. XCP requires almost twice the computational re-
sources of RCP—both in terms of ALU instructions and
state carried among pipeline stages in the packet header
vector. This is expected, as XCP-Approx computes 2
counter values for every packet and 3 parameters every
control interval, while RCP carries out only 1 compu-
tation per interval and 1 per packet arrival. Conversely,
SRAM use is diminished versus RCP, as we can carry
out multiplication/division solely via bit-shifts, while we
require more TCAM entries to identify when a variable
is an approximate power of 2.

We conclude that XCP can also be implemented with
adequate accuracy and limited additional resource usage
using our building blocks. Given this experience, we
now turn to a slightly broader resource management al-
gorithm that combines some of the functionality required
for RCP and XCP with a load balancing element.

4.5 CONGA

CONGA [3] is a congestion-aware load balancing sys-
tem that splits TCP flows into flowlets and allocates
them to paths based on congestion feedback from remote
switches. Congestion is communicated among switches
with each payload packet by embedding congestion in-
formation within unused bits of the VXLAN [21] overlay
network header that is common in datacenters today.

CONGA operates primarily at leaf switches and does
load balancing based on per-uplink congestion. Each
leaf switch holds two tables that contain congestion in-
formation along all possible uplink choices from and to
other leaf switches and are updated by information from
these other leaf switches. To forward a packet, a leaf
switch picks an outgoing link and records its choice in
the packet header. Core switches record the maximum
congestion along the path to the packet’s destination by
updating a header field with the maximum of their local
congestion and that already in the field. Finally, the desti-
nation leaf switch updates its congestion-from-leaf table
according to the recorded congestion along the sender’s
uplink port choice. To relay congestion information back
to sender switches, each switch additionally chooses one
entry in its congestion-from-leaf table for that switch and
transmits it using another set of CONGA header fields
within each payload packet.

To estimate local link congestion, all switches use a
discounting rate estimator (DRE). DREs use a single reg-
ister X to keep track of bytes sent along a link over a win-
dow of time. For each sent packet, the register is incre-

mented by that packet’s size. The register is decremented
periodically with a multiplicative factor α between 0 and
1: X ← X× (1−α).

CONGA’s load-balancing algorithm is triggered for
each new flowlet. It first computes for each uplink the
maximum of the locally measured congestion of the up-
link and the congestion feedback received for the path
from the destination switch. It then chooses the uplink
with the minimum congestion for the flowlet.

To recognize TCP flowlets, leaf switches keep flowlet
tables. Each table entry contains an uplink number, a
valid bit, and an age bit. For each incoming packet, the
corresponding flowlet is determined via a hash on the
packet’s connection 5-tuple that indexes into the table.
If the flowlet is valid (valid bit set), we simply forward
the packet on the recorded port. If it is not valid, we set
the valid bit and determine the uplink port via the load-
balancing algorithm. Each incoming packet additionally
resets the age bit of its corresponding flowlet table en-
try. A timer periodically checks the age bit of all flowlets
before setting it. If a timer encounters an already set age
bit, then the flowlet is timed out by resetting the valid bit.
To accurately detect enough flowlets, CONGA switches
have on the order of 64K flowlet entries in a table.

FlexSwitch Implementation

Relaying CONGA congestion information is straight-
forward in FlexSwitches: We simply add the required
fields to the VXLAN headers. Since CONGA is intended
to scale only within 2-layer cluster sub-topologies, con-
gestion tables are also small enough to be stored entirely
within FlexSwitches. To implement the remaining bits
of CONGA, we need the following building blocks:

Measuring Sending Rates: We need to measure the rate
of bytes sent on a particular port, which CONGA imple-
ments with DREs. We use the timer-based rate measure-
ment building block for this task. We setup one block for
each egress port to track the number of transmitted bytes
along that port and set the timeout and multiplicative de-
crease factor to CONGA-specific values.

Maintaining congestion information: We can simply
fix the size of congestion tables to a power of 2 and use
precise multiplication via bit shifts and addition to index
into the 2-dimensional congestion tables.

Flowlet detection: To identify TCP flowlets and remem-
ber their associated paths we use the flow statistics build-
ing block. We mimic CONGA’s flowlet switching with-
out a need for valid or age bits.

CONGA flowlet switching: To remember the initially
chosen uplink for each flowlet, we store the uplink num-
ber as a tag inside the high-order bits of the flow’s associ-
ated counter. We use this tag directly for routing. At the
same time, we ensure that per-flow counters are reset fre-

USENIX Association 14th USENIX Symposium on Networked Systems Design and Implementation 77

quently enough so that the tag value will never be over-
written due to the flow packet counter growing too large.
To do so, we simply calculate the maximum number of
min-sized packets that can traverse an uplink within a
given time frame and ensure that this number stays be-
low the allocated counter size (32 bits), minus the space
reserved for the tag (2 bits in current ToR switches). For
100Gb/s uplinks, more than 5 seconds may pass sending
min-sized packets at line-rate before counter overflow.

CONGA’s load balancing requires a complex calcula-
tion of minimums and maximums—too many to be real-
ized efficiently on a FlexSwitch. Rather than faithfully
replicating the algorithm and determining the best up-
link port upon each new flowlet, we keep a running tally
of the minimally-congested uplink choice for each leaf
switch. Upon a new flowlet, we simply forward along
the corresponding minimally-congested uplink.

Our running tally needs to be updated each time a cor-
responding congestion metric is updated. If this results
in a new minimum, we simply update the running min-
imum. However, if an update causes our current mini-
mum to fall out of favor, we might need to find the new
current minimum. This would require re-computation of
the current congestion metric for all possibilities—an op-
eration we want to avoid. Instead, we simply update our
current “minimum” to the value we have at hand as a
best guess and wait for further congestion updates from
remote switches to tell us the true new minimum. In
our current implementation we also do not update our
tally when local rate measurements are updated. This
spares further resources at minimal accuracy loss. We
ran ns3 simulations comparing CONGA and approxi-
mated CONGA implemented using our building blocks
to confirm that our approximations don’t cause signifi-
cant deviation in performance (see Appendix B).

Table 4 shows the resources used when our CONGA
implementation is added to our baseline switch im-
plementation. We can see that an additional 29% of
SRAM to store the additional congestion and flowlet ta-
bles is the main contribution. Also, we require 2 extra
pipeline stages and 18% more ALU instructions to re-
alize CONGA computationally, for example to approxi-
mate multiplication and division. Other resource use is
increased minimally, below 10%.

We conclude that even complex load balancing pro-
tocols can be implemented on FlexSwitches using our
building blocks. The additional resource use is moder-
ate, taking up less than a third of the baseline amount of
stages, SRAM bytes, and ALU instructions and less than
10% of the baseline for the other switch resources.

5 Related Work
Our work demonstrates that many resource allocations
protocols can be implemented on a FlexSwitch using

various approximation techniques. To achieve our goal,
we leverage several algorithms from the streaming liter-
ature and apply them to a switch setting. For example,
we show how to implement the HyperLogLog [28] algo-
rithm and count-min sketch [16] on a FlexSwitch to ap-
proximate the number and frequency of distinct elements
in traffic flows. Our flow timestamps and flowlet detec-
tion building blocks are related to Approximate Concur-
rent State Machines [11], but we are able to design sim-
pler solutions given that we don’t need general state ma-
chines to implement the functionality. Other related ef-
forts are OpenSketch [38] and DREAM [23] that propose
software-defined measurement architectures. OpenS-
ketch uses sketches implemented on top of NetFPGA,
while DREAM centralizes the heavy-hitter detection
at a controller while distributing the flow monitoring
tasks over multiple traditional OpenFlow switches. Both
works trade off accuracy for resource conservation. We
build on these ideas to implement a broad set of building
blocks within the constraints of the hardware model and
implement resource allocation algorithms using them.

Other work has proposed building blocks to aid pro-
grammable packet scheduling [35] and switch queue
management [36]. While some of this work has been im-
plemented on NetFPGA, we believe their solutions are
likely to be applicable within a FlexSwitch model albeit
with some approximations. Complementary to our work
are proposals for enhancing the programmability of a re-
configurable pipeline [33].

6 Conclusion

As switching technology evolves to provide flexible
M+A processing for each forwarded packet, it holds the
promise of making a software-defined dataplane a reality.
This paper evaluates the power of flexible M+A process-
ing for in-network resource allocation. While hardware
constraints make the implementation of resource alloca-
tion algorithms difficult, we show that it is possible to
approximate several popular algorithms with acceptable
accuracy. We develop a number of building blocks that
are broadly applicable to a wide range of network allo-
cation and management applications. We use implemen-
tations on a production FlexSwitch, compilation statis-
tics regarding hardware resources allocated, and simu-
lation results to show that our protocol implementations
are feasible and effective.

Acknowledgments

We would like to thank the anonymous NSDI review-
ers and our shepherd Rodrigo Fonseca for their valu-
able feedback. This research was partially supported
by the National Science Foundation under Grants CNS-
1518702 and CNS-1616774.

78 14th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References
[1] AL-FARES, M., RADHAKRISHNAN, S., RAGHAVAN,

B., HUANG, N., AND VAHDAT, A. Hedera: Dynamic
Flow Scheduling for Data Center Networks. In Proceed-
ings of the 7th USENIX Conference on Networked Sys-
tems Design and Implementation (2010).

[2] ALIZADEH, M., ATIKOGLU, B., KABBANI, A., LAK-
SHMIKANTHA, A., PAN, R., PRABHAKAR, B., AND

SEAMAN, M. Data Center Transport Mechanisms: Con-
gestion Control Theory and IEEE standardization. In Pro-
ceedings of the 46th Annual Allerton Conference on Com-
munication, Control, and Computing (2008).

[3] ALIZADEH, M., EDSALL, T., DHARMAPURIKAR, S.,
VAIDYANATHAN, R., CHU, K., FINGERHUT, A., LAM,
V. T., MATUS, F., PAN, R., YADAV, N., AND VARGH-
ESE, G. CONGA: Distributed Congestion-aware Load
Balancing for Datacenters. In Proceedings of the ACM
SIGCOMM Conference (2014).

[4] ALIZADEH, M., GREENBERG, A., MALTZ, D. A.,
PADHYE, J., PATEL, P., PRABHAKAR, B., SENGUPTA,
S., AND SRIDHARAN, M. Data Center TCP (DCTCP). In
Proceedings of the ACM SIGCOMM Conference (2010).

[5] ALIZADEH, M., KABBANI, A., EDSALL, T., PRAB-
HAKAR, B., VAHDAT, A., AND YASUDA, M. Less Is
More: Trading a Little Bandwidth for ultra-Low Latency
in the Data Center. In Proceedings of the 9th USENIX
conference on Networked Systems Design and Implemen-
tation (2012).

[6] ALIZADEH, M., YANG, S., SHARIF, M., KATTI, S.,
MCKEOWN, N., PRABHAKAR, B., AND SHENKER, S.
pFabric: Minimal Near-optimal Datacenter Transport. In
Proceedings of the ACM SIGCOMM Conference (2013).

[7] ALLMAN, M., PAXSON, V., AND BLANTON, E. TCP
Congestion Control. RFC 5681, 2009.

[8] AZAR, Y., BRODER, A. Z., KARLIN, A. R., AND UP-
FAL, E. Balanced Allocations. SIAM Journal on Com-
puting 29, 1 (1999), 180–200.

[9] BAI, W., CHEN, L., CHEN, K., HAN, D., TIAN, C.,
AND WANG, H. Information-Agnostic Flow Scheduling
for Commodity Data Centers. In 12th USENIX Sympo-
sium on Networked Systems Design and Implementation
(2015).

[10] BAREFOOT NETWORKS. Tofino Programmable
Switch. https://www.barefootnetworks.
com/technology/.

[11] BONOMI, F., MITZENMACHER, M., PANIGRAH, R.,
SINGH, S., AND VARGHESE, G. Beyond Bloom Filters:
From Approximate Membership Checks to Approximate
State Machines. In Proceedings of the ACM SIGCOMM
Conference (2006).

[12] BOSSHART, P., DALY, D., GIBB, G., IZZARD, M.,
MCKEOWN, N., REXFORD, J., SCHLESINGER, C.,
TALAYCO, D., VAHDAT, A., VARGHESE, G., AND

WALKER, D. P4: Programming Protocol-independent

Packet Processors. SIGCOMM Computer Communica-
tion Review 44, 3 (July 2014), 87–95.

[13] BOSSHART, P., GIBB, G., KIM, H.-S., VARGHESE,
G., MCKEOWN, N., IZZARD, M., MUJICA, F., AND

HOROWITZ, M. Forwarding Metamorphosis: Fast Pro-
grammable Match-action Processing in Hardware for
SDN. In Proceedings of the ACM SIGCOMM Conference
(2013).

[14] CAVIUM. CNX880XX PB p1 Rev1 - Cav-
ium. http://www.cavium.com/pdfFiles/
CNX880XX_PB_Rev1.pdf.

[15] CAVIUM. XPliant Ethernet Switch Product Fam-
ily. http://www.cavium.com/XPliant-
Ethernet-Switch-Product-Family.html.

[16] CORMODE, G., AND MUTHUKRISHNAN, S. An Im-
proved Data Stream Summary: The Count-Min Sketch
and its Applications. Journal of Algorithms 55, 1 (2005),
58–75.

[17] DUKKIPATI, N. Rate Control Protocol (RCP): Conges-
tion control to make flows complete quickly. PhD the-
sis, Stanford University, Dept. of Electrical Engineering,
2007.

[18] HE, K., ROZNER, E., AGARWAL, K., FELTER, W.,
CARTER, J., AND AKELLA, A. Presto: Edge-based Load
Balancing for Fast Datacenter Networks. In Proceedings
of the ACM SIGCOMM Conference (2015).

[19] JOSE, L., YAN, L., VARGHESE, G., AND MCKE-
OWN, N. Compiling Packet Programs to Reconfigurable
Switches. In Proceedings of the 12th USENIX Confer-
ence on Networked Systems Design and Implementation
(2015).

[20] KATABI, D., HANDLEY, M., AND ROHRS, C. Con-
gestion Control for High Bandwidth-delay Product Net-
works. In Proceedings of the ACM SIGCOMM Confer-
ence (2002).

[21] MAHALINGAM, M., DUTT, D., DUDA, K., AGAR-
WAL, P., KREEGER, L., SRIDHAR, T., BURSELL, M.,
AND WRIGHT, C. Virtual eXtensible Local Area Net-
work (VXLAN): A Framework for Overlaying Virtual-
ized Layer 2 Networks over Layer 3 Networks. RFC
7348, 2014.

[22] MCKEOWN, N., ANDERSON, T., BALAKRISHNAN,
H., PARULKAR, G., PETERSON, L., REXFORD, J.,
SHENKER, S., AND TURNER, J. OpenFlow: Enabling
Innovation in Campus Networks. SIGCOMM Computer
Communication Review 38, 2 (Mar. 2008), 69–74.

[23] MOSHREF, M., YU, M., GOVINDAN, R., AND VAHDAT,
A. DREAM: Dynamic Resource Allocation for Software-
defined Measurement. In Proceedings of the ACM SIG-
COMM Conference (2014).

[24] NICHOLS, K., AND JACOBSON, V. Controlling Queue
Delay. Queue 10, 5 (May 2012).

[25] NS-3 CONSORTIUM. ns-3 Network Simulator. http:
//www.nsnam.org/.

USENIX Association 14th USENIX Symposium on Networked Systems Design and Implementation 79

https://www.barefootnetworks.com/technology/
https://www.barefootnetworks.com/technology/
http://www.cavium.com/pdfFiles/CNX880XX_PB_Rev1.pdf
http://www.cavium.com/pdfFiles/CNX880XX_PB_Rev1.pdf
http://www.cavium.com/XPliant-Ethernet-Switch-Product-Family.html
http://www.cavium.com/XPliant-Ethernet-Switch-Product-Family.html
http://www.nsnam.org/
http://www.nsnam.org/

[26] OZDAG, R. Intel R© Ethernet Switch FM6000 Series-
Software Defined Networking. http://www.
intel.com/content/dam/www/public/us/
en/documents/white-papers/ethernet-
switch-fm6000-sdn-paper.pdf.

[27] PATEL, P., BANSAL, D., YUAN, L., MURTHY, A.,
GREENBERG, A., MALTZ, D. A., KERN, R., KUMAR,
H., ZIKOS, M., WU, H., KIM, C., AND KARRI, N.
Ananta: Cloud Scale Load Balancing. In Proceedings
of the ACM SIGCOMM Conference (2013).

[28] PHILIPPE FLAJOLET AND ÉRIC FUSY AND OLIVIER

GANDOUET AND FRÉDÉRIC MEUNIER. HyperLogLog:
the analysis of a near-optimal cardinality estimation algo-
rithm. HAL CCSD; Discrete Mathematics and Theoreti-
cal Computer Science (June 2007), 137–156.

[29] POPA, L., KRISHNAMURTHY, A., RATNASAMY, S.,
AND STOICA, I. FairCloud: Sharing the Network in
Cloud Computing. In Proceedings of the 10th ACM Work-
shop on Hot Topics in Networks (2011).

[30] ROESCH, M. Snort - Lightweight Intrusion Detection for
Networks. In Proceedings of the 13th USENIX Confer-
ence on System Administration (1999).

[31] ROY, A., ZENG, H., BAGGA, J., PORTER, G., AND

SNOEREN, A. C. Inside the Social Network’s (Data-
center) Network. In Proceedings of the ACM SIGCOMM
Conference (2015).

[32] SHIEH, A., KANDULA, S., GREENBERG, A., KIM, C.,
AND SAHA, B. Sharing the Data Center Network. In Pro-
ceedings of the 8th USENIX Conference on Networked
Systems Design and Implementation (2011).

[33] SIVARAMAN, A., CHEUNG, A., BUDIU, M., KIM, C.,
ALIZADEH, M., BALAKRISHNAN, H., VARGHESE, G.,

MCKEOWN, N., AND LICKING, S. Packet Transactions:
High-Level Programming for Line-Rate Switches. In
Proceedings of the ACM SIGCOMM Conference (2016).

[34] SIVARAMAN, A., KIM, C., KRISHNAMOORTHY, R.,
DIXIT, A., AND BUDIU, M. DC.P4: Programming the
Forwarding Plane of a Data-center Switch. In Proceed-
ings of the ACM SIGCOMM Symposium on Software De-
fined Networking Research (2015).

[35] SIVARAMAN, A., SUBRAMANIAN, S., ALIZADEH, M.,
CHOLE, S., CHUANG, S.-T., AGRAWAL, A., BALAKR-
ISHNAN, H., EDSALL, T., KATTI, S., AND MCKEOWN,
N. Programmable Packet Scheduling at Line Rate. In
Proceedings of the ACM SIGCOMM Conference (2016).

[36] SIVARAMAN, A., WINSTEIN, K., SUBRAMANIAN, S.,
AND BALAKRISHNAN, H. No Silver Bullet: Extending
SDN to the Data Plane. In Proceedings of the Twelfth
ACM Workshop on Hot Topics in Networks (2013).

[37] WILSON, C., BALLANI, H., KARAGIANNIS, T., AND

ROWTRON, A. Better Never Than Late: Meeting Dead-
lines in Datacenter Networks. In Proceedings of the ACM
SIGCOMM Conference (2011).

[38] YU, M., JOSE, L., AND MIAO, R. Software Defined
Traffic Measurement with OpenSketch. In Proceedings
of the 10th USENIX Conference on Networked Systems
Design and Implementation (2013).

[39] ZHOU, J., TEWARI, M., ZHU, M., KABBANI, A.,
POUTIEVSKI, L., SINGH, A., AND VAHDAT, A.
WCMP: Weighted Cost Multipathing for Improved Fair-
ness in Data Centers. In Proceedings of the Ninth Euro-
pean Conference on Computer Systems (2014).

80 14th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ethernet-switch-fm6000-sdn-paper.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ethernet-switch-fm6000-sdn-paper.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ethernet-switch-fm6000-sdn-paper.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ethernet-switch-fm6000-sdn-paper.pdf

A Building Blocks and their Use in Various Protocols

Building Block Functionality Techniques

Cardinality Estimator Estimate #unique elements in a stream Linear Counting, Hyperloglog
Flow Counters Estimate per-flow bytes/packets Count-min sketch
Flow Timestamps Last packet sent timestamp Sketch with timestamps

Metering queues/utilization Estimate rates EWMA
Port Balancing Pick a port based on some metric Power-of-2 choices

Approx Arithmetic Division/Multiplication Logarithm tables, Bit-shits

Table 5: Summary of the proposed building blocks and techniques we use to implement them.

Functionality Protocol Building Blocks Required Implementation

Congestion
Control,
Scheduling

RCP [17] Arithmetic, Cardinality, Metering Section 4.3.
XCP [20] Arithmetic, Metering Section 4.4.
QCN [2] Arithmetic, Metering Meter queue sizes and calculate feedback value from

switch queue length based on sampling probability.
HULL [5] Arithmetic, Metering Implement Phantom queues by metering and mark pack-

ets based on utilization levels.
D3 [37] Flow Statistics, Metering RCP like feedback, but prioritizes near-deadline flows.
PIAS [9] Flow Statistics, Balancing Emulates shortest job next scheduling by dynamically

lowering priority based on packets sent.

Load Balancing

CONGA [3] Arithmetic, Flow Timestamps, Metering Section 4.5.
WCMP [39] Balancing Section 4.2.
Ananta [27] Flow Counters, Metering, Balancing Use flow counters to realize VIP map and flow table. Use

metering and balancing for packet rate fairness and to
detect heavy hitters.

Hedera [1] Flow Counters, Balancing Detect heavy hitters and balance them.
Presto [18] Flow Statistics, Balancing Create flowlets and balance them

QoS & Fairness

Seawall [32] Arithmetic, Cardinality, Metering Collect traffic statistics and provide RCP-like feedback
to determine the per-link, per-entity share.

FairCloud [29] Arithmetic, Flow Counters Meter number of source/destination flows and queue
them into approximately prioritized queues.

CoDel [24] Arithmetic, Metering Section 4.2.
pFabric [6] Arithmetic, Flow Counters Queue packets into approximately prioritized queues us-

ing remaining flow length value in the header.

Access Control
Snort IDS [30] Flow Counters, Cardinality Section 4.2.
OpenSketch [38] Flow Counters, Metering Our approximate flow statistics are based on the same

underlying count-min sketch.

Table 6: Network functions that can be supported using FlexSwitch building blocks. A deeper discussion of several of the algorithms
is given in Section 4.

sketch = {ts, route_id}[2][N]

elements(five_tuple):
h1, h2 = hashes(five_tuple)
e1 = sketch[0][h1 % N]
e2 = sketch[1][h2 % N]

read(five_tuple):
e1, e2 = elements(five_tuple)
ts = min(e1.ts, e2.ts)
route = e1.route_id + e2.route_id
return (ts, route)

update(five_tuple, ts, route_id):
e1, e2 = elements(five_tuple)
cutoff = ts - TIMEOUT
if (e1.ts < cutoff && e2.ts < cutoff)
e1.route_id = rand()
e2.route_id = route_id - e1.route_id

else if (e1.ts < cutoff)
e1.route_id = route_id - e2.route_id

else if (e2.ts < cutoff)
e2.route_id = route_id - e1.route_id

e1.ts = e2.ts = ts

Figure 5: Pseudocode for the flowlet switching building block presented in Section 3.1. This particular sketch uses two hash
functions and two rows of N counters each, but generalizes to multiple hash functions in a straightforward manner.

USENIX Association 14th USENIX Symposium on Networked Systems Design and Implementation 81

B Approximate CONGA ns3 simulation

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500

10% 20% 30% 40% 50% 60%

M
ea

n
FC

T
 in

 µ
s

Load (% of bisection bandwidth)

CONGA
CONGA-Approx

(a) Average FCT with increasing network load.

 0

 0.2

 0.4

 0.6

 0.8

 1

102 103 104 105 106

C
D

F

FCT in µs

CONGA
CONGA-Approx

(b) CDF of FCT with network load at 60%.

Figure 6: Performance comparison between CONGA and approximate CONGA using ns3 simulations.

We compare the performance of approximate CONGA
implemented using our building blocks to the original
version of CONGA. We simulate the same 4-switch (2
leaves, 2 spines), 64 server topology in [3] with 50µs link
latency and the default CONGA parameters: Q = 3,τ =
160µs, and flowlet gap Tf l = 500µs. We run the enter-
prise workload described in the same paper, and vary the
arrival rate to achieve a target network load, which we
measure as a percentage of the total bisection bandwidth.

First, we measure the change in average flow com-
pletion time as we increase the load in the network.
Figure 6a shows that our approximate implementation
closely follows the original protocol. We sometimes see
a slightly higher FCT primarily because we perform an

approximate minimum over the ports when we have to as-
sign a new flowlet. Current restrictions on FlexSwitches
don’t allow us to scan all ports to pick the least loaded
one, so we keep a running approximate minimum. This
results in some flowlets not getting placed optimally to
the least loaded link. In all other cases, we implement
CONGA’s protocols accurately.

Figure 6b shows the CDF of flow completion times for
all flows when the network is loaded at 60%. Again, the
approximate implementation of CONGA matches very
closely to that of original CONGA. A majority of the
flows are short and hence are not affected by the approx-
imate minimum selection of ports.

82 14th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

