
This paper is included in the Proceedings of the
14th USENIX Symposium on Networked Systems

Design and Implementation (NSDI ’17).
March 27–29, 2017 • Boston, MA, USA

ISBN 978-1-931971-37-9

Open access to the Proceedings of the
14th USENIX Symposium on Networked

 Systems Design and Implementation
is sponsored by USENIX.

Correct by Construction Networks
Using Stepwise Refinement

Leonid Ryzhyk, VMware Research; Nikolaj Bjørner, Microsoft Research;
Marco Canini, King Abdullah University of Science and Technology (KAUST);

Jean-Baptiste Jeannin, Samsung Research America; Cole Schlesinger, Barefoot Networks;
Douglas B. Terry, Amazon; George Varghese, University of California, Los Angeles

https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/ryzhyk

Correct by Construction Networks using Stepwise Refinement

Leonid Ryzhyk∗

VMware Research
Nikolaj Bjørner

Microsoft Research
Marco Canini

KAUST
Jean-Baptiste Jeannin

Samsung Research America

Cole Schlesinger∗

Barefoot Networks
Douglas B. Terry∗

Amazon
George Varghese

UCLA

Abstract
Building software-defined network controllers is an

exercise in software development and, as such, likely to
introduce bugs. We present Cocoon, a framework for
SDN development that facilitates both the design and
verification of complex networks using stepwise refine-
ment to move from a high-level specification to the final
network implementation.

A Cocoon user specifies intermediate design levels in
a hierarchical design process that delineates the modu-
larity in complicated network forwarding and makes ver-
ification extremely efficient. For example, an enterprise
network, equipped with VLANs, ACLs, and Level 2 and
Level 3 Routing, can be decomposed cleanly into ab-
stractions for each mechanism, and the resulting step-
wise verification is over 200x faster than verifying the fi-
nal implementation. Cocoon further separates static net-
work design from its dynamically changing configura-
tion. The former is verified at design time, while the lat-
ter is checked at run time using statically defined invari-
ants. We present six different SDN use cases including
B4 and F10. Our performance evaluation demonstrates
that Cocoon is not only faster than existing verification
tools but can also find many bugs statically before the
network design has been fully specified.

1 Introduction
Software-defined networks (SDNs) are a popular and

flexible means of implementing network control. In an
SDN, a logically-centralized controller governs network
behavior by emitting a stream of data-plane configura-
tions in response to network events such as changing traf-
fic patterns, new access control rules, intrusion detection,
and so on. But decades of research and industry expe-
rience in software engineering have shown that writing
bug-free software is far from trivial. By shifting to soft-
ware, SDNs trade one form of complexity for another.

∗Work performed at Samsung Research America.

Data-plane verification has risen in popularity with
SDNs. As the controller generates new forwarding con-
figurations, tools like Header Space Analysis (HSA) and
Veriflow [16, 17] verify that safety properties hold for
each configuration in real time. Network operators can
rest assured that access control violations, routing loops,
and other common misconfiguration errors will be de-
tected before being deployed.

This style of verification is an important safeguard, but
falls short in several ways.
Design. Applying verification techniques early in the de-
velopment cycle saves effort by catching bugs as soon as
they are introduced. But correctness properties often de-
pend on many mechanisms spanning many different lev-
els of abstraction and time scales. Thus the entire con-
troller must be implemented before data-plane verifica-
tion can be utilized. Furthermore, data-plane verification
catches bugs once the controller has been deployed in a
live network, making it hard to fix the bug without dis-
rupting network operation.
Debugging. Verifying detailed, whole-network configu-
rations makes debugging difficult: It is difficult to pin-
point which part of the controller caused a particular
property violation in the final configuration [35].
Scalability. Although existing tools verify one property
for a realistic network in under a second, the number of
checks can scale non-linearly with network size. For ex-
ample, checking connectivity between all pairs requires a
quadratic number of verifier invocations [27]. Thus prac-
tical verification at scale remains elusive.

Ideally, the controller software itself might be stati-
cally verified to guarantee it never produces configura-
tions that violate safety properties. But proving arbitrary
software programs correct is a frontier problem. Recent
work has proposed full controller verification, but only
for controllers with limited functionality [3].

We propose a middle ground—a correct-by-
construction SDN design framework that combines
static verification with runtime checks to efficiently

USENIX Association 14th USENIX Symposium on Networked Systems Design and Implementation 683

verify complex SDNs, detecting most bugs at design
time. Our framework, called Cocoon, for Correct by
Construction Networking, consists of an SDN pro-
gramming language, a verifier for this language, and a
compiler from the language to data-plane languages:
NetKAT [2] and P4 [4].

Cocoon is based on two principles. First, it enables
SDN design by stepwise refinement. A network program-
mer begins by specifying a high-level view which cap-
tures the network’s behavior from an end host perspec-
tive. Such a specification might say: “A packet is deliv-
ered to the destination host if and only if its sender is not
blacklisted by the network security policy”, while elid-
ing details such as forwarding or access control mecha-
nisms. In essence, this high-level view specifies correct
network behavior. The network engineer continues by
refining the underspecified parts of the design, filling in
pieces until sufficient detail exists to deploy the network.
A refined specification may state: “End hosts are con-
nected via Ethernet switches to zone routers, which for-
ward packets between zones via the core network, while
dropping packets that violate security policy.”

Cocoon automatically verifies that each refinement
preserves the behavior of the higher-level view of the net-
work by reducing each refinement to a Boogie program
and using the Corral verifier to check this program for re-
finement violations [19]. Bugs are immediately detected
and localized to the step in which they are introduced.
The refinement relation is transitive, and so Cocoon guar-
antees that the lowest-level implementation refines the
highest-level specification.

Second, Cocoon separates static network design from
its run-time configuration. While refinements specify
static invariants on network behavior, dynamic config-
uration is captured by runtime-defined functions (RDFs).
In the above example the hosts and exact security pol-
icy are not known at design time and serve as design
parameters. They are specified as RDFs, i.e., functions
that are declared but not assigned a concrete definition
at design time. RDFs are generated and updated at run
time by multiple sources: the SDN controller reporting
a new host joining, the network operator updating the
security policy, an external load balancer redistributing
traffic among redundant links, etc. Upon receiving an
updated RDF definition, the Cocoon compiler generates
a new data plane configuration.

To statically verify the design without knowing the ex-
act configuration, Cocoon relies on static assumptions.
At design time, RDFs can be annotated with assumptions
that constrain their definitions. For example, the topol-
ogy of the network may be updated as links come up and
down, but each refinement may only need to know that
the topology remains connected. At run time, Cocoon
checks that RDF definitions meet their assumptions. This

verifier

compiler

assumption
checker

Cocoon spec

OpenFlow/P4

Cocoon runtimeexternal apps

SDN controller

R
D

F
d

e
fi
n
it

io
n
s

Figure 1: Cocoon architecture.

separation minimizes real-time verification cost: most of
the effort has been done up-front at design time.

Hence, Cocoon decomposes verification into two
parts, as shown in Figure 1. Static verification guaran-
tees correctness of all refinements; this verification is
done once, before network deployment. Dynamic ver-
ification checks that behaviors supplied at run time (by
updating RDFs) meet the assumptions each refinement
makes about run-time behaviors.
Contributions. The main contribution of this paper
is a new network design and verification methodology
based on stepwise refinement and separation of static and
dynamic behavior, and the Cocoon language and run-
time, which support this methodology. Cocoon is a lan-
guage carefully designed to be both amenable to stepwise
refinement-based verification and also able to capture a
wide variety of networking behavior. Its design enables:

• Writing complex specifications easily by phrasing
them as high-level network implementations.
• Faster verification of functional correctness, with

stepwise refinement naturally helping to localize the
source of errors.
• Natural composition with other verification tools,

like HSA [16], NetPlumber [15] and Veriflow [17],
improving the speed at which they can verify net-
work properties.

We evaluate Cocoon by using it to design and verify six
realistic network architectures. Our performance eval-
uation demonstrates that Cocoon is faster than existing
data-plane verification tools, while also being able to find
many defects statically, even before the network design
has been fully specified.

2 Cocoon by example
In this section, we introduce features of Cocoon by

implementing and verifying a variant of the enterprise

684 14th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

subnet 1

subnet 2

subnet 1 gateway router

subnet 2 gateway router

switch router (not assigned to
a subnet)

zone 1

zone 2

zone 3

core

Figure 2: Example enterprise network.

network design described by Sung et al. [32], simpli-
fied for the sake of presentation. Figure 2 shows the in-
tended network design. Hosts are physically partitioned
into operational zones, such as administrative buildings,
and grouped by owner into IP subnets symbolized by
colors—hosts in each zone are often in the same subnet,
but not always. Intra-subnet traffic is unrestricted and
isolated by VLAN, but traffic between subnets is subject
to an access control policy.

Each operational zone is equipped with a gateway
router, which can also be assigned to implement access
control for a subnet: Inter-subnet traffic must first tra-
verse the gateway tied to its source subnet followed by
the gateway associated with its destination subnet. The
details of access control may change as the network runs,
but all inter-subnet traffic must always traverse the gate-
ways that implement access control. The path high-
lighted with a dashed blue line in Figure 2 illustrates traf-
fic from a host in subnet 2 to one in subnet 1.

At a high level, the goals of the network are sim-
ple: Group hosts by subnet, allow intra-subnet traffic,
and subject inter-subnet traffic to an access control pol-
icy (Figure 3a). Our refinement strategy, illustrated in
Figure 3, follows the hierarchical struture of the net-
work: the first refinement (Figure 3b) splits the net-
work into operational zones connected via the core net-
work, and distributes access control checks across gate-
way routers. The second and third refinements detail L2
switching inside zones and the core respectively (Fig-
ure 3c and d). We formalize these refinements in the
Cocoon language, introducing language features along
the way. Figure 4 shows the high-level specification that
matches Figure 3a.

Roles The main building blocks of Cocoon specifica-
tions are roles, which specify arbitrary network entities:
hosts, switches, routers, etc. A role accepts a packet,
possibly modifies it and forwards to zero or more other
roles. Roles are parameterized, so a single role can spec-
ify a set of similar entities, allowing a large network to
be modeled with a few roles. An instance of the role cor-
responds to a concrete parameter assignment. A role has
an associated characteristic function, which determines
the set of its instances: Given a parameter assignment,

core

subnet 1 subnet 2

zone 1

zone 2

zone 3

vid=
vid=0

vid=

security
policy

(a) High-level specification

(b) Refinement 1

(c) Refinement 2

(d) Refinement 3

1

2
3

4
5

Figure 3: Refinement plan for the running example.
1typedef uint<32> IP4
2typedef uint<12> vid_t
3typedef struct {
4 vid_t vid,
5 IP4 srcIP,
6 IP4 dstIP
7} Packet
8

9function cHost(IP4 addr): bool
10function cSubnet(vid_t vid): bool
11function acl(Packet p): bool
12function ip2subnet(IP4 ip): vid_t
13assume(IP4 addr) cHost(addr)=>cSubnet(ip2subnet(addr))
14function sameSubnet(vid_t svid, vid_t dvid): bool =
15 svid == dvid;
16

17role HostOut[IP4 addr] | cHost(addr) =
18 let vid_t svid = ip2subnet(pkt.srcIP);
19 let vid_t dvid = ip2subnet(pkt.dstIP);
20 filter addr == pkt.srcIP;
21 filter sameSubnet(svid, dvid) or acl(pkt);
22 filter cHost(pkt.dstIP);
23 send HostIn[pkt.dstIP]
24

25role HostIn[IP4 addr] | cHost(addr) = filter false

Figure 4: High-level specification of the running example.

the characteristic function returns true if and only if the
corresponding instance of the role exists in the network.

We use separate roles to model input and output ports
of hosts and switches. The input port specifies how the
host or switch modifies and forwards packets. The output
port specifies how the network handles packets gener-
ated by the host. Our high-level specification introduces
HostIn and HostOut roles, which model the input and
output ports of end hosts. Both roles are parameterized
by the IP address of the host (parameters are given in
square brackets in lines 17 and 26), with the character-
istic function cHost (expression after the vertical bar),
declared in line 9.

Policies A role’s policy specifies how its instances
modify and forward packets. Cocoon’s policy language
is inspired by the Frenetic family of languages [12]:
complex policies are built out of primitive policies using
sequential and parallel composition. Primitive policies
include filtering packets based on header values, updat-
ing header fields, and sending packets to other roles.

The HostOut policy in lines 18–23 first computes sub-

USENIX Association 14th USENIX Symposium on Networked Systems Design and Implementation 685

net IDs of the source and destination hosts and stores
them in local variables, explained below. Next, it per-
forms two security checks: (1) filter out packets whose
source IP does not match the IP address of the sending
host (the filter operator drops packets that do not sat-
isfy the filter condition) (line 21), and (2) drop packets
sent across subnets that violate the network’s security
policy (line 21). Line 22 drops packets whose destination
IP does not exist on the network. All other packets are
sent to the input port of their destination host in line 23.

The send policy on line 23 is a key abstraction mech-
anism of Cocoon. It can forward the packet to any in-
stance of any role. While a send may correspond to
a single hop in the network’s data plane, e.g., sending
from an input to an output port of the same switch or be-
tween two connected ports of different switches, it can
also forward to instances without a direct connection to
the sender, thus abstracting multiple hops through net-
work nodes not yet introduced at the current refinement
level. Cocoon’s final specification may only contain the
former kind of send’s, which can be compiled directly
to switch flow tables.

The HostIn policy in line 25 acts as a packet sink,
dropping all packets delivered to it. Any packets sent by
the host in response to previously-received packets are
interpreted as new packets entering the network.
Variables The HostOut role illustrates three kinds of
variables available to a policy: (1) the pkt variable,
representing the packet processed by the role, which is
passed as an implicit argument to each role and can be
both read and modified by the policy; (2) read-only role
parameters; and (3) local variables that store intermedi-
ate values while the role is processing the packet.
Functions Functions are pure (side-effect free) com-
putations used in specifying the set of role instances and
defining policies. Function declarations can provide an
explicit definition with their body (e.g., sameSubnet in
Figure 4), or only a signature (e.g., cHost, cSubnet,
acl and ip2subnet) without a definition. In the latter
case, the body of the function can be defined by subse-
quent refinements, or the body can be dynamically de-
fined and updated at run time, making the function a
runtime-defined function (RDF).

Our top-level specification introduces four RDFs:
cHost (discussed above); cSubnet, a characteristic
function of the set of IP subnets (each subnet is given a
unique identifier); ip2subnet, which maps end hosts to
subnet IDs based on the IP prefix; and acl, the network
security policy, which filters packets by header fields.

RDFs are a crucial part of Cocoon’s programming
model. They separate static network design from its
runtime configuration. In our example, explicit defi-
nitions of RDFs are immaterial to the overall logic of
the network operation—making those functions runtime-

defined enables specifying the network design along with
all possible runtime configurations it can produce.

At run time, RDFs serve as the network configuration
interface. For example, by redefining RDFs in Figure 4,
the operator can introduce new hosts and subnets, update
the security policy, etc. However, not all possible defini-
tions correspond to well-formed network configurations.
In order to eliminate inconsistent definitions, Cocoon re-
lies on assumptions.
Assumptions Assumptions constrain the range of pos-
sible instantiations of functions—both explicit instantia-
tions in a later refinement and runtime instantiations in
the case of RDFs—without fixing a concrete instantia-
tion. Consider the ip2subnet() function, which maps
end hosts to subnets. We would like to restrict possible
definitions of this function to map valid end host IP ad-
dresses to valid subnet IDs. Formally,
∀addr.cHost(addr)⇒ cSubnet(ip2subnet(addr))

Line 13 states this assumption in the Cocoon language.
In general, Cocoon assumptions are in the fragment of

first-order logic of the form ∀x1 . . .xi.F(x1 . . .xi), where
F is a quantifier-free formula using variables x. This frag-
ment has been sufficiently expressive for the systems we
examine and allows for efficient verification.

Until a function is given a concrete definition, Cocoon
assumes that it can have any definition that satisfies all
its assumptions. Refinements are verified with respect
to these assumptions. When the function is defined in
a later refinement step, Cocoon statically verifies that the
definition satisfies its assumptions. Cocoon performs this
verification at run time for RDFs.
Refinements A refinement replaces one or more roles
with a more detailed implementation. It provides a new
definition of the refined role and, typically, introduces
additional roles, so that the composition of the refined
role with the new roles behaves according to the original
definition of the role.

Consider Refinement 1 in Figure 3b, which introduces
zone routers. It refines the HostOut role to send packets
to the local zone router, which sends them via the two
gateway routers to the destination zone router and finally
the destination host. The routers are modeled by four
new roles, which model the two router ports facing core
and zone networks (Figure 5).

Figure 7 illustrates this refinement, focusing on roles.
Blue arrows show the packet path that matches the path
in Figure 3b. Solid arrows correspond to hops between
different network nodes (routers or hosts); dashed arrows
show packet forwarding between incoming and outgo-
ing ports of the same router. Both types of hops are
expressed using the send operation in Figure 6, which
shows the Cocoon specification of this refinement.

Line 55 in Figure 6 shows the refined specification of
HostOut, which sends the packet directly to the destina-

686 14th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

corezone

RouterZoneIn

RouterZoneOut

RouterCoreOut

RouterCoreIn

Figure 5: Router ports and corresponding roles.

tion only if it is on the same IP subnet and inside the same
zone (line 62); otherwise it sends to the local zone router
(line 65). Router roles forward the packet based on its
source and destination addresses. They encode the cur-
rent path segment in the VLAN ID field of the packet,
setting it to the source subnet ID when traveling to the
source gateway (segments 1 and 2), 0 when traveling be-
tween source and destination gateways (segment 3), and
destination subnet ID in segments 4 and 5. The security
check is now split into two: The aclSrc() check per-
formed by the outgoing gateway (lines 19 and 42) and
the aclDst() check performed by the incoming gateway
of the destination subnet (line 31). The assumption in
line 10 guarantees that a conjunction of these two checks
is equivalent to the global security policy expressed by
the acl() function. This assumption enables Cocoon to
establish correctness of the refinement without getting
into the details of the network security policy, which may
change at run time.

Subsequent refinements detail the internal structure of
core and zone networks. We only show the core network
refinement (Figure 3c). For simplicity, Figure 8 specifies
the core switching fabric as a single Ethernet switch with
switch port number i connnected to zone i router. This
simplification is localized to a single refinement: As the
network outgrows the single-switch design, the network
programmer can later revise this refinement without af-
fecting the high-level specification or other refinements.

The refined RouterCoreOut role (Figure 8, line 2)
forwards packets to the core switch rather than directly to
the destination router. The core switch input port (line 4)
determines the destination router based on the VLAN ID
and destination IP address (as one final simplification,
we avoid reasoning about IP to MAC address mapping
by assuming that switches forward packets based on IP
addresses) and forwards the packet via the corresponding
output port.

Putting it all together Figure 9 shows the final step
in specifying our example network: adding the physi-
cal network elements (hosts, switches, and routers). Re-
call that a role can model any network entity, from an
individual interface to an entire network segment. For
the Cocoon compiler to generate flow tables, it needs to
know how roles combine to form each data-plane ele-
ment. This is achieved using declarations in lines 1–5,
which introduce parameterized hosts and switches (Co-
coon currently models routers as switches), specified in
terms or their input/output port pairs. A port pair can
represent multiple physical ports of the switch. We omit

a detailed description of host and switch constructs, as
these are incidental to the main ideas of this work.
Other language features Cocoon supports multicast
forwarding using the fork construct. For example,
fork(uint<16> port|port>0 and port<n())
send SwitchOut[port]

spawns a parallel copy of the send statement for each
assignment to the port variable satisfying the fork con-
dition (expression after the vertical bar). Each parallel
thread operates on a private copy of the packet. Note that
n() can be an RDF, in which case the number forked is
determined at run time.

Underspecified behaviors can be expressed using non-
determinism. In the following snippet
havoc pkt.dstIP; assume pkt.dstIP != pkt.srcIP

the havoc statement non-deterministically picks a value
for the dstIP field of the packet; the assume statement
constrains the possible choices. Non-determinism is only
allowed in high-level specifications and cannot occur in
the final, most detailed, definition of any role.

3 Refinement-based verification
We informally present the semantics of Cocoon spec-

ifications, the kinds of correctness guarantees that can
be established through refinement-based verification, and
the design of Cocoon verification tools. See Appendix A
for a more formal presentation.
Semantics We start with assigning semantics to roles.
Let Pkt be the set of all possible packets, and Loc be the
set of locations, where each location identifies a unique
role instance in a Cocoon specification. We define the set
of located packets LPkt= {(p,l) | p ∈ Pkt,l ∈ Loc}.

We define semantics of a role R as a partial function
JRK : LPkt 7→ 22

LPkt
from a located packet to a set of sets

of located packets. If Cocoon were deterministic, JRK
would just return the set of packets produced by role R

on a given located packet. To model nondeterminism in
the semantics, JRK returns all possibilities of such sets of
packets, thus forming a set of sets of packets.

We define refinement relation v over roles:
Definition 1 (Role refinement). Role R̂ refines role R

(R̂v R) iff R̂ and R have identical parameter lists and char-
acteristic functions and

∀p ∈ Domain(JRK).JR̂K(p)⊆ JRK(p). (1)
A Cocoon program defines a sequence of specifica-

tions, where a specification consists of a set of roles.
Each refine{. . .} block introduces a new specification
obtained from the previous specification by providing
new implementations for some of the roles and introduc-
ing new roles.

Next, we informally introduce the inline() opera-
tion, which takes a role R and a set of roles {P1 . . .Pk}
and recursively inlines the implementation of Pi in R

USENIX Association 14th USENIX Symposium on Networked Systems Design and Implementation 687

1refine HostOut {
2 typedef uint<16> zid_t
3 function cZone(zid_t zid): bool
4 function zone(IP4 addr): zid_t
5 assume (IP4 addr) cHost(addr) => cZone(zone(addr))
6 function gwZone(vid_t vid): zid_t
7 assume (vid_t vid) cSubnet(vid) => cZone(gwZone(vid))
8 function aclSrc(Packet p): bool
9 function aclDst(Packet p): bool

10 assume (Packet p) acl(p) == (aclSrc(p) and aclDst(p))
11 assume (vid_t vid) cSubnet(vid) => (vid != 0)
12

13 role RouterZoneIn[zid_t zid] | cZone(zid) =
14 let vid_t dvid = ip2subnet(pkt.dstIP);
15 let vid_t svid = pkt.vid;
16 filter cSubnet(dvid);
17 if dvid != svid and gwZone(svid) == zid then {
18 pkt.vid := 0;
19 filter aclSrc(pkt)
20 };
21 send RouterCoreOut[zid]
22

23 role RouterZoneOut[zid_t zid] | cZone(zid) =
24 filter cHost(pkt.dstIP) and zone(pkt.dstIP) == zid;
25 pkt.vid := 0;
26 send HostIn[pkt.dstIP]
27

28 role RouterCoreIn[zid_t zid] | cZone(zid) =
29 let vid_t dvid = ip2subnet(pkt.dstIP);
30 if pkt.vid == 0 then {
31 filter aclDst(pkt);
32 pkt.vid := dvid;
33 if zone(pkt.dstIP) == zid then
34 send RouterZoneOut[zid]

35 else
36 send RouterCoreOut[zid]
37 } else if pkt.vid == dvid then {
38 send RouterZoneOut[zid]
39 } else {
40 let vid_t svid = pkt.vid;
41 pkt.vid := 0;
42 filter aclSrc(pkt);
43 send RouterCoreOut[zid]
44 }
45 role RouterCoreOut[zid_t zid]|cZone(zid)=
46 if pkt.vid == 0 then {
47 filter cSubnet(ip2subnet(pkt.dstIP));
48 send RouterCoreIn[gwZone(ip2subnet(pkt.dstIP))]
49 } else if pkt.vid != ip2subnet(pkt.dstIP) then {
50 send RouterCoreIn[gwZone(ip2subnet(pkt.srcIP))]
51 } else {
52 filter cZone(zone(pkt.dstIP));
53 send RouterCoreIn[zone(pkt.dstIP)]
54 }
55 role HostOut[IP4 addr] | cHost(addr) =
56 let vid_t svid = ip2subnet(pkt.srcIP);
57 let vid_t dvid = ip2subnet(pkt.dstIP);
58 filter addr == pkt.srcIP;
59 filter pkt.vid == 0;
60 if svid==dvid and zone(pkt.dstIP)==zone(addr)then
61 { filter cHost(pkt.dstIP);
62 send HostIn[pkt.dstIP]
63 } else {
64 pkt.vid := ip2subnet(addr);
65 send RouterZoneIn[zone(addr)]
66 }
67}

Figure 6: Refinement 1.

HostOut RouterZoneIn RouterCoreOut

RouterCoreInRouterZoneOutHostIn

1

2 3 4

5

HostOut

HostIn

Refinement 1

Figure 7: Refinement 1: the HostOut role is refined by
introducing four router roles. The path from HostOut to
HostIn is decomposed into up to 5 segments.

1refine RouterCoreOut {
2 role RouterCoreOut[zid_t zid] |cZone(zid) =
3 send CoreSwitchIn[zid]
4 role CoreSwitchIn[uint<16> port] | cZone(port) =
5 if pkt.vid == 0 then {
6 filter cSubnet(ip2subnet(pkt.dstIP));
7 send CoreSwitchOut[gwZone(ip2subnet(pkt.dstIP))]
8 } else if pkt.vid != ip2subnet(pkt.dstIP) then {
9 send CoreSwitchOut[gwZone(ip2subnet(pkt.srcIP))]

10 } else {
11 filter cZone(zone(pkt.dstIP));
12 send CoreSwitchOut[zone(pkt.dstIP)]
13 }
14 role CoreSwitchOut[uint<16> port] | cZone(port) =
15 send RouterCoreIn[port]
16}

Figure 8: Refinement 2.

whenever R sends to Pi. Consider the refinement in Fig-
ure 7. When verifying this refinement, we would like to
prove that the refined HostOut role combined with the
newly introduced router roles is equivalent to the origi-
nal HostOut role on the left. This combined role, indi-
cated with the dashed line in Figure 7, is computed as
inline(HostOut,{RouterZoneIn, . . .}).

We extend the refinement relation to specifications:

Definition 2 (Specification refinement). Let S =
{R1, . . . ,Rn} and Ŝ= {R′1, . . . ,R′n,P1, . . . ,Pk} be two spec-

1host Host[IP4 addr]((HostIn, HostOut))
2switch ZoneRouter[zid_t zid](
3 (RouterZoneIn,RouterZoneOut),
4 (RouterCoreIn,RouterCoreOut))
5switch CoreSwitch[]((CoreSwitchIn, CoreSwitchOut))

Figure 9: Declaring physical network elements: hosts and
switches.

ifications, such that roles Ri and R′i have identical names,
parameter lists and characteristic functions. Ŝ refines S
(Ŝv S) iff ∀i ∈ [1..n]. inline(R′i,{P1, . . . ,Pk})v Ri.

The following proposition is the foundation of Co-
coon’s compositional verification procedure:
Proposition 1. The v relation is transitive.

Hence, we can prove that the final specification is a
refinement of the top-level specification by proving step-
wise refinements within a chain of intermediate specifi-
cations.

We encode the problem of checking the refinement re-
lation between roles into a model checking problem and
use the Corral model checker [19] to solve it. We chose
Corral over other state-of-the-art model checkers due to
its expressive input language, called Boogie [20], which
enables a straightforward encoding of Cocoon specifi-
cations. Given roles R and R̂, we would like to check
property (1) or, equivalently, ¬(∃p,p′.p′ ∈ JR̂K(p) ∧ p′ 6∈
JRK(p)) (to simplify presentation, we assume that roles
are unicast, i.e., output exactly one packet). We encode
this property as a Boogie program:

p′ := procR̂(p); assert(procR(p,p′))
Here, procR̂(p) is a Boogie procedure that takes a lo-
cated packet p and non-deterministically returns one of

688 14th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

possible outputs of R̂ on this packet; procR(p,p′) returns
true iff p′ ∈ R(p). We use Boogie’s havoc construct
to encode nondeterminism. We encode Cocoon assump-
tions as Boogie axioms, and characteristic functions of
roles as procedure preconditions [20]. Violation of prop-
erty (1) triggers an assertion violation in this program.

Corral is a bounded model checker, i.e., it only detects
assertion violations that occur within a bounded number
of program steps. We sidestep this limitation by bound-
ing the maximal number of network hops introduced by
each refinement. This is a natural restriction in network
verification, as any practical network design must bound
the number of hops through the network. We introduce a
counter incremented by every send and generate an error
when it exceeds a user-defined bound, which is also used
as a bound on the number of program steps explored by
Corral. Coincidentally, this check guarantees that refine-
ments do not introduce forwarding loops.
Verifying path properties Cocoon’s refinement-based
verification operates on a single role at a time and, after
the initial refinement, does not consider global forward-
ing behavior of the network. Importantly, however, it
guarantees that all such behaviors are preserved by re-
finements, specifically, a valid refinement can only mod-
ify a network path by introducing intermediate hops into
it; however, it cannot modify paths in any other way, add
or remove paths.

This invariant can be exploited to dramatically speed
up conventional property-based data plane verification.
Consider, for example, the problem of checking pairwise
reachability between all end hosts. Cocoon guarantees
that this property holds for the network implementation
if and only if it holds for its high-level specification. Of-
ten, the high-level specification is simple enough that
the desired property obviously holds for it. If, however,
the user does not trust the high-level specification, they
can apply an existing network verification tool such as
NetKAT, HSA, or Veriflow to it. In Section 6.3, we show
that such verification can be performed much more effi-
ciently than checking an equivalent property directly on
the detailed low-level implementation.
Limitations Because Cocoon specifications describe
how individual packets are forwarded, it cannot verify
properties related to multiple packets such as stateful net-
work behaviors induced by say stateful firewalls. This
limitation is shared by virtually all current network veri-
fication tools, which verify data plane snapshots.

However, stateful networks can be built on top of Co-
coon by encapsulating dynamic state inside RDFs. For
example, a stateful firewall specification may include
a function that determines whether a packet must be
blocked by the firewall. This function is computed by an
external program, potentially based on observed packet
history. Cocoon can enforce statically defined invariants

over such functions. For example, with multiple fire-
walls, it can enforce rule set consistency and ensure that
each entering packet is inspected by one firewall.

Assumption checker Cocoon’s dynamic assumption
checker encodes all function definitions and assumptions
into an SMT formula and uses the Z3 SMT solver [7] to
check the validity of this formula.

4 Compiler
The Cocoon compiler proactively compiles specifica-

tions into switch flow tables; it currently supports Open-
Flow and P4 backends. Due to space limitations, we only
describe the OpenFlow backend.

The OpenFlow backend uses NetKAT as an interme-
diate representation and leverages the NetKAT compiler
to generate OpenFlow tables during the final compilation
step. Compilation proceeds in several phases. The first
phase computes the set of instances of each role by find-
ing all parameter assignments satisfying the characteris-
tic function of the role with the help of an SMT solver.
During the second phase, we specialize the implemen-
tation of each role for each instance by inlining function
calls and substituting concrete values for role parameters.

The third phase constructs a network topology graph,
where vertices correspond to hosts and switches, while
edges model physical links. To this end, the compiler
statically evaluates all instances whose roles are listed as
outgoing ports in host and switch specifications and
creates an edge between the outgoing port and the in-
coming port it sends to. The resulting network graph is
used in an emulator (Section 6).

During the fourth phase, instances that model input
ports of switches are compiled to a NetKAT program.
This is a straightforward syntactic transformation, since
NetKAT is syntactically and semantically close to the
subset of the Cocoon language obtained after function
inlining and parameter substitution. During the final
compilation phase, the NetKAT compiler converts the
NetKAT program into OpenFlow tables to be installed
on network switches.

The resulting switch configuration handles all packets
inline, without ever forwarding them to the controller.
An alternative compilation strategy would be to forward
some of the packets to the controller, which would enable
more complex forms of packet processing that are not
supported by the switch.

At run time, the Cocoon compiler translates network
configuration updates into updates to switch flow tables.
Recompiling the entire data plane on every reconfigura-
tion is both inefficient and unnecessary, since most up-
dates only affect a fraction of switches. For instance, a
change in the network security policy related to a specific
subnet in our running example requires reconfiguring the
router assigned to this subnet only. While our current

USENIX Association 14th USENIX Symposium on Networked Systems Design and Implementation 689

Internet
Data center 1

Data center 2switch
WAN router

WAN link
local link

DC3

1

23

Figure 10: Case study 1: Software-defined WAN. Arrows
show an example path between end hosts in different sites.

prototype does not support incremental compilation, it
can be implemented as a straightforward extension.

5 Case studies
We show that real-world SDNs can benefit from

refinement-based design by implementing and verifying
six network architectures using Cocoon. Our case stud-
ies cover both mainstream SDN applications such as net-
work virtualization and emerging ones such as software-
defined WANs and IXPs. The case studies have multiple
sources of complexity including non-trivial routing logic,
security constraints, fault recovery; they are hard to im-
plement correctly using conventional tools. We present
two studies in detail and briefly outline the remainder.

5.1 Case study 1: Software-defined WAN
We design and verify a software-defined WAN in-

spired by Google’s B4 [14] comprising geographically
distributed datacenters connected by wide-area links
(Figure 10). It achieves optimal link utilization by send-
ing traffic across multi-hop tunnels dynamically config-
ured by a centralized controller. In Figure 10, some traf-
fic between datacenters 1 and 2 is sent via a tunnel con-
sisting of underutilized links 1 and 2 instead of congested
link 3. Cocoon cannot reason about quality-of-service
and relies on an external optimizer to choose tunnel con-
figuration; however it can formalize the WAN architec-
ture and enforce routing invariants, which ensure that op-
timizer configurations deliver packets correctly.

We specify end-to-end routing between end hosts in
the WAN, including inter- and intra-datacenter routing.
Local and global routing can be specified by different
teams and integrated in a common Cocoon specification.
Our high-level specification (Figure 11) is trivial: it de-
fines a set of hosts and requires that each packet be de-
livered to its destination, if it exists:
role HostOut[IP4 addr] | cHost(addr) =

if cHost(pkt.dstIP) then send HostIn[pkt.dstIP]

We refine the specification following the natural hier-
archical structure of the network: we first decompose the
WAN into datacenters (Refinement 1); these are further
decomposed into pods (Refinement 2), which are in turn
decomposed into three layers of switches (Refinements 3
and 4).

In more detail, Refinement 1 defines global routing

addr1

addr2

dst=
addr2

Data center 1 Data center 3

Data center 2

(a) High-level
specification

(b) Refinement 1

(d) Refinement 3

(c) Refinement 2

(e) Refinement 4

Pod 1 Pod 2 Pod 3 Pod 4
1

2

3

Figure 11: Refinement strategy for case study 1.

and topology. It partitions hosts into subnets, localized
within datacenters, and introduces WAN links across dat-
acenters. It formalizes tunnel-based routing using two
functions:
function tunnel(dcid_t src,dcid_t dst,Packet p): tid_t
function nexthop(tid_t tun,dcid_t dc): dcid_t

The former maps a packet to be sent from datacen-
ter src to dst to ID of the tunnel to forward the packet
through. The latter specifies the shape of each tunnel as
a chain of datacenters. We define a recursive function
distance(src,dst,tun), which computes the number
of hops between two datacenters via tunnel tun. Cor-
rectness of global routing relies on an assumption that
tunnels returned by the tunnel() function deliver pack-
ets to the destination in k hops or less:
function distance(dcid_t src,dcid_t dst,tid_t tid):u8=
case {
src == dst: 8’d0;
default: distance(nexthop(tid,src),dst,tid) + 1;}

assume(dcid_t src, dcid_t dst, Packet p)
cDC(src) and cDC(dst)
=> distance(src,dst,tunnel(p)) <= k()

where k is a user-defined bound on the length of a tun-
nel and cDC() is the characteristic function of the set of
datacenters.

Subsequent refinements detail intra-datacenter topol-
ogy and routing. Specifically, we instantiate a fat-tree
topology [1] within each datacenter: other topologies
can be specified equally easily. Refinement 2 introduces
groups of switches, called pods, within the datacenter
fabric: each host is connected to a downstream port of
a pod, which forwards packets to an upstream port of
the same pod, which, in turn, forwards to the destination
pod. Pod behavior is underspecified by this refinement:
the pod non-deterministically picks one of the upstream
ports to send each packet through, giving rise to multi-
ple paths, shown by blue and green arrows. This non-
determinism is resolved by Refinement 3, which decom-
poses pods into two layers of switches. A bottom-layer

690 14th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

(a) High-level specification

vm1 vm2 vm3

vnet 1

vrouter

vnet 2

vm4 vm5

unicast
broadcast
ARP suppression

server 1 server 2 server 3

OVS OVS OVS

pkt.vni=vnet1
physical
network

pkt.vni=vnet2

(b) Refinement 1

Figure 12: Refinement strategy for case study 2.

switch picks a top-level switch to send to based on the
hash of the packet’s destination address. Refinement 3
also takes advantage of path redundancy to route packets
around failed links. The blue arrow in Figure 11d shows
the normal path between top and bottom-layer switches
within a pod; red arrows show the backup path taken in
case of link failure. Finally, Refinement 4 details packet
forwarding between pods via the core layer of switches.

5.2 Case study 2: Network virtualization
Network virtualization for multi-tenant datacenters is

arguably the most important SDN application today [18].
It combines CPU and network virtualization to offer each
client the illusion of running within its own private dat-
acenter. Figure 12a shows the clients’ view of the dat-
acenter as a collection of isolated LANs connected only
by router nodes that have interfaces on multiple LANs.
In reality, client workloads run inside virtual machines
(VMs) hosted within physical servers connected by a
shared network fabric (Figure 12b). Each server runs
an instance of a software SDN switch, OpenVSwitch
(OVS) [26], which isolates traffic from different tenants.
Packets sent to VMs hosted on remote physical nodes are
encapsulated and forwarded to remote OVS instances.

While the basic virtualization scheme is simple,
industrial virtualization platforms, such as VMWare
NSX [18], have evolved into complex systems, due to
numerous configuration options and feature extensions
which are hard to understand and use correctly.

In this case study we untangle network virtualization
with the help of refinement-based programming. We im-
plement a basic virtualization scheme and a number of
extensions in Cocoon. Below we present two example
extensions and show how Cocoon separates the speci-
fication of various features from their implementation,
thus helping users and developers of the framework to
understand its operation, while also bringing the benefits
of verification to network virtualization.

Service chaining Service chaining modifies the virtual
forwarding to redirect packets through a chain of virtual

middleboxes. Middlebox chains are formalized by the
following RDF, which, based on packet headers and cur-
rent packet location computes the virtual port to forward
the packet to (the destination port or the next middlebox
in the chain):
function chain(Packet p, VPortId port): VPortId

Service chaining required only a minor modification
to the high-level specification: instead of forwarding the
packet directly to its destination MAC address, we now
forward it down the service chain:
role VHostOut[VPortId vport] | cVPort(vport) =
...
(*send VHostIn[mac2VPort(vnet, pkt.dstMAC)]*)
send VHostIn[chain(p, vport)]

The implementation of this feature in the refined spec-
ification is, however, more complex: upon receiving a
packet from a virtual host, OVS uses the chain() func-
tion to establish its next-hop destination. It then attaches
a label to the packet encoding its last virtual location and
sends the packet via a tunnel to the physical node that
hosts the next-hop destination. OVS on the other end of
the tunnel uses the label to determine which virtual host
to deliver it to.
Broadcast and ARP suppression Broadcast packets
must be delivered to all VMs on the virtual network:
role VHostOut[VPortId vport] | cVPort(vport) =
...
if pkt.dstMAC == hffffffffffff(*bcast address*) then
fork (VPortId vport | vPortVNet(vport) == vnet)
send VHostIn[vhport.vhost, vhport.vport]

This behavior is implemented via two cascading mul-
ticasts shown with dashed green arrown in Figure 12b.
First, the OVS at the source multicasts the packet to all
physical servers that host one or more VMs on the same
virtual network. Second, the destination OVS delivers a
copy of the packet to each local VM.

The ARP suppression extension takes advantage of the
fact that most broadcast traffic consists of Address Reso-
lution Protocol (ARP) requests. When ARP suppression
is enabled for a virtual network, Cocoon configures all
OVS instances with a local table of IP-to-MAC address
mappings, used to respond to ARP requests, locally.

Other extensions we have implemented include a de-
centralized information flow control model for networks
and virtual-to-physical port forwarding.

5.3 Other case studies
Our third case study is a realistic version of the enter-

prise network, a simplified version of which was used in
Section 2 [32]. In addition to features described in Sec-
tion 2, we accurately model both MAC-based forward-
ing (within a VLAN) and IP-based forwarding across
VLANs, implement support for arbitrary IP topologies
that do not assume a central core network, and arbitrary
level-2 topologies within each zone. We replace the stan-
dard decentralized routing protocols used in the original

USENIX Association 14th USENIX Symposium on Networked Systems Design and Implementation 691

design with a SDN controller computing a centralized
routing policy. This policy is expressed via RDFs, which
are compiled to OpenFlow and installed on all switches.

The fourth case study implements the F10 fault-
tolerant datacenter network design. F10 uses a variant of
fat tree, extending it with the ability to globally reconfig-
ure the network to reduce performance degradation due
to link failures. In a traditional fat tree, a link failure
may force the packet to take a longer path through the
network, as shown in Figure 11d. F10 avoids this by re-
configuring all potentially affected switches to steer the
traffic away from the affected region of the switching
fabric. We implement and SDN version of F10, where
the reconfiguration is performed by the central controller
rather than a decentralized routing protocol.

Case study 5 implements a protocol called sTag [21]—
a version of fat tree with source-based routing. The edge
router attaches two tags to each packet: an mTag, which
identifies switch ports to send the packet through at every
hop, and a security tag that identifies the sender of the
packet. The latter is validated by the last switch in the
path, before delivering the packet to the destination.

Our final case study implements the iSDX software-
defined Internet exchange point (IXP) architecture [13].
In iSDX, each autonomous system (AS) connected to
IXP can define its own routing preferences. These pref-
erences are encoded in the MAC address field of each
packet sent from the AS to the IXP. The IXP decodes
the MAC address and ensures that AS preferences do not
conflict with the BGP routing database.

5.4 Experience with the Cocoon language
We briefly report on our experience with the Cocoon

language. We found the language to be expressive, as
witnessed by the wide range of network designs covered
by our case studies, concise (see Section 6), and effective
at capturing the modularity inherent in any non-trivial
network. Thus, the language achieves its primary de-
sign goal of enabling refinement-based design and veri-
fication of a large class of networks. At the same time,
we found that by far the hardest part of programming
in Cocoon is defining assumptions on RDFs necessary
for static verification and runtime checking. Writing and
debugging assumptions, such as the one shown in Sec-
tion 5.1, may be challenging for engineers who are not
accustomed to working with formal logic. Therefore, in
our ongoing work we explore higher-level language con-
structs that will offer a more programmer-friendly way
to specify assumptions.

6 Implementation and evaluation
We implemented Cocoon in 4,700 lines of Haskell.

We implemented, verified, and tested the six case studies
described in Section 5 using the Mininet network emu-
lator. Cocoon, along with all case studies, is available

case study LOC #refines verification time (s)
total high-level compositional monolithic

WAN 305 18 6 10 >3600
virtualization 678 97 1 6 6
enterprise 342 50 4 16 >3600
F10 262 52 2 19 57
sTag 283 47 1 2 2
iSDX 190 21 2 3 3

Table 1: Summary of case studies. >3600 in the last column
denotes experiments interrupted after one hour timeout.

under the open source Apache 2.0 license [6].
All experiments in this section were performed on a

machine with a 2.6 GHz processor and 128 GB of RAM.
We measured single-threaded performance.

Table 1 summarizes our case studies, showing (1) total
lines of Cocoon code (LOC) excluding runtime-defined
function definitions, (2) lines of code in the high-level
specification, (3) number of refinements, (4) time taken
by the Cocoon static verifier to verify all refinements in
the case study, and (5) time taken to verify the entire de-
sign in one iteration. The last column measures the im-
pact of compositional verification: We combine all re-
finements and verify the combined specification against
the high-level specification in one single step.

6.1 Static verification
The results show that Cocoon verifies the static design

of complex networks in a matter of seconds with com-
positional verification being much faster than monolithic
verification:1 a refinement that focuses on a single role
has an exponentially smaller state space than the com-
plete specification and is potentially exponentially faster
to verify. As we move through the refinement hierarchy,
the low-level details of network behavior are partitioned
across multiple roles and can be efficiently verified in
isolation, while compositionality of refinements guaran-
tees end-to-end correctness of the Cocoon program.
Bug finding We choose 3 (of many) examples from the
case studies to show how Cocoon detected subtle bugs
early in our designs.

1. Enterprise network: When sending a packet be-
tween hosts on different subnets in the same zone, the
zone router skipped access control checks at gateway
routers (skipping path segments 2-3-4 in Figure 3b).
Since this bug only manifests for some topologies and
security policies, it is difficult to detect using testing or
snapshot verification. The bug was detected early (in re-
finement 1), before L2 forwarding was introduced.

2. WAN: Consider the packet path in Figure 11d. Our
implementation incorrectly sent the packet back to the
core after hops 1 and 2, instead of sending it down via
hop 3, causing a loop. This bug only manifests in re-

1The virtualization and sTag case studies only had one refinement;
hence compositional and monolithic verification are equivalent in these
examples.

692 14th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Scale Hosts Switches NetKAT Policy Flowtable Rules
2 8 11 1,559 830
5 17 23 5,149 3,299

15 47 63 46,094 31,462
25 77 103 151,014 89,216
40 122 163 496,268 212,925

Table 2: Number of hosts, switches, size of NetKAT policy
and flowtable rules as a function of network scale.

sponse to a link failure, making it hard to catch by snap-
shot verification. It was detected only when verifying
refinement 3, but the verifier localized the bug in space
to the pod component.

3. Virtualization: This bug, discovered when verifying
the sole refinement in this case study, is caused by the in-
terplay between routing and security. The specification
requires that neither unicast nor multicast packets can be
exchanged by blacklisted hosts. The implementation fil-
ters out unicast packets at the source OVS; however, mul-
ticast packets were filtered at the destination and hence
packets delivered to VMs hosted by the same server as
the sender bypassed the security check.

For each detected bug, Corral generated two witness
traces, which showed how the problematic packet was
handled by the abstract and refined implementations re-
spectively. The two traces would differ in either how they
modify the packet or in where they forward it.

Our encoding of refinements into Boogie guarantees
the absence of false negatives, i.e., Corral does not miss
any bugs (modulo defects in Corral itself). However, we
have encountered three instances where Corral reported
a non-existing bug. In all three cases this was caused by
a performance optimization in Corral: by default, it runs
the underlying Z3 SMT solver with a heuristic, incom-
plete, quantifier instantiation strategy. We eliminated
these false positives by reformulating some of our as-
sumptions, namely, breaking boolean equivalences into
pairs of implications.

6.2 Cocoon vs. NetKAT
The NetKAT decision procedure for program equiva-

lence [11] is the closest alternative to refinement verifica-
tion. We compare Cocoon against NetKAT on a parame-
terized model of the enterprise network case study [32]—
we configure the network with three operational zones
and scale the number of hosts and switches per zone. For
an access control policy, we randomly blacklist commu-
nication between pairs of hosts. The topology of the op-
erational zones and the router-to-router fabric are built
from Waxman graphs. Table 2 summarizes the dimen-
sions of our test network for a sample of scales.

We measure the full verification run time of Cocoon,
including the cost of static refinement verification and
the cost of checking the assumptions of RDFs. We
then perform an equivalent experiment using NetKAT.
To this end, we translate each level of Cocoon specifica-

0

1000

2000

3000

0 10 20 30 40
Network Scale

T
im

e
[s

]

Cocoon

NetKAT

Figure 13: Comparison between Cocoon refinement verifi-
cation vs. equivalence decision in NetKAT.

0

5000

10000

15000

20000

0 10 20 30 40
Network Scale

T
im

e
[s

] Cocoon + HSA (Spec)

HSA (Snapshot)

HSA (Spec)

Figure 14: Comparison of high-level specification verifica-
tion via HSA and Cocoon verification vs. snapshot data-
plane verification via HSA.

tion, along with definitions for the RDFs, into NetKAT,
and use the NetKAT decision procedure to determine
whether the lower-level specification exhibits a subset of
the behaviors of the higher-level specification.

Figure 13 shows the verification run time in seconds
as we increase the network scale. Cocoon verification
scales beyond that of NetKAT. Cocoon performs much
of the heavy lifting during static verification, taking ad-
vantage of all available design-time information captured
in refinements, assumptions, and parameterized roles.

6.3 Cocoon + HSA

At present, the easiest way to verify an arbitrary con-
troller application is to verify reachability properties for
each of the data-plane configurations it generates. As
described in Section 3, Cocoon can accelerate property-
based verification: instead of checking path properties
on the low-level data-plane configuration, one can check
them more efficiently on the top-level Cocoon specifica-
tion, taking advantage of the fact that such properties are
preserved by refinement.

We evaluate this using the Header Space Analysis
(HSA) [16] network verifier. Using the same network
scenarios as above, we use Frenetic to compile the
NetKAT policy (translated from Cocoon specification)
into a set of OpenFlow flowtables. We produce the
flowtables of the highest- and lowest-level specifications,
shown below as Spec and Snapshot, respectively. We
then apply HSA by creating the corresponding transfer
functions and checking the all-pair reachability property
on Spec and Snapshot, and measure the total run time.
As can be seen in Figure 14, performing the verification
on Spec and leveraging Cocoon’s refinement verification
results in dramatic improvement in verification perfor-
mance, so that the cost of Cocoon verification (red line)
dominates the cost of HSA applied to the high-level spec-
ification (blue line).

USENIX Association 14th USENIX Symposium on Networked Systems Design and Implementation 693

7 Related work
SDN controllers often use two-tier design: a con-

troller emits a stream of data-plane configurations. There
are many languages and verification techniques for both
tiers, and some approaches that abandon the two tiers.

Language design OpenFlow [25] is a data-plane con-
figuration language: Controller frameworks like Open-
Daylight [24], Floodlight [9], and Ryu [28] emit Open-
Flow commands to update SDN-capable switches. The
Frenetic family [2, 10, 22, 29] introduces modular lan-
guage design; they allow writing controller applications
in a general purpose language and compiling to Open-
Flow. VeriCon [3], FlowLog [23], and Maple [33] es-
chew the tiered structure entirely using custom languages
that describe network behavior over time.

Cocoon is a data-plane configuration language that in-
herits its sequential and parallel composition operators
from NetKAT [2] while adding roles, refinements, RDFs,
and assumptions. These features enable modular verifi-
cation in addition to the modular program composition
of NetKAT and other Frenetic languages.

Data-plane verification SDN verification takes two
forms: data-plane verification and controller verifica-
tion. The former checks that a given set of safety prop-
erties (e.g, no black holes or forwarding loops) hold on a
given data-plane configuration [15–17]. Hence it must be
reapplied to each configuration the controller produces.
Further, checking reachability between host pairs scales
quadratically with the number of hosts. Verification can
be sped up by leveraging symmetries but the problem
remains [27]. SymNet [31] is a network modeling lan-
guage to perform efficient static analysis via symbolic
execution of a range of network devices from switches to
middleboxes.

Cocoon does not verify network properties directly.
Rather, it guarantees that refinements are functionally
equivalent, provided dynamically checked assumptions
holds on RDF definitions. Often, reachability properties
are “obvious” in high-level specifications: They hold by
design and are preserved by functional equivalence, and
so hold across refinements. If the design is not “obvi-
ous”, data-plane verification can be applied to the highest
level Cocoon specification, which is often dramatically
simpler, enabling much faster property verification.

NetKAT [2] is a language with a decision procedure
for program equivalence. This enables property verifi-
cation but can also verify whether one NetKAT program
is a correct refinement of another. However, NetKAT
verification is not yet suitable for verifying the equiva-
lence of large networks in near-real time. NetKAT lacks
the abstractions—namely RDFs and assumptions—that
allow some verification to be done statically. NetKAT
also lacks other language features that Cocoon provides

for stepwise refinement, including parameterized roles,
in part because NetKAT is intended as a synthesis target
emitted by the Frenetic controller. Cocoon refinements,
on the other hand, are human readable, even at scale.
Controller verification VeriCon [3] and FlowLog [23]
prove statically that a controller application always pro-
duces correct data-plane configurations. VeriCon re-
duces verification to SMT solving, while Flowlog uses
bounded model checking. In both cases, scalability is
a limiting factor. FlowLog also restricts expressivity to
enable verification. NICE [5] uses model checking and
symbolic execution to find bugs in Python controller pro-
grams but focuses on testing rather than verification.

In contrast, Cocoon statically verifies that refinements
are functionally equivalent, but the refinement language
is less expressive than either VeriCon or FlowLog—
dynamic behavior is excluded, hidden behind RDFs.
However, this combination of static and dynamic veri-
fication enables much greater scalability (see Section 6),
while still providing strong guarantees about arbitrarily
complex dynamic behavior hidden in RDFs.
Stepwise refinement Stepwise refinement for pro-
gramming dates back to Dijkstra [8] and Wirth [34]. In
the networking domain, Shankar and Lam [30] proposed
an approach to network protocol design via stepwise re-
finement. Despite its promise, refinement-based pro-
gramming has had limited success in mainstream soft-
ware engineering because: (1) developing formal speci-
fications for non-trivial software systems is hard, (2) for-
malizing module boundaries for compositional verifica-
tion is equally hard; even well designed software systems
modules make implicit assumptions, and (3) verifying
even simple software modules automatically is hard.

8 Conclusions
Our key discovery is that the factors that impede re-

finement based software engineering are not roadblocks
to refinement-based network programming. First, even
complex networks admit relatively simple high-level
specifications. Second, boundaries between different
network components admit much cleaner specifications
than software interfaces. Finally, once formally speci-
fied, network designs can be efficiently verified.

Cocoon can be seen as both a design assistant and a
proof assistant: by imposing the refinement-based pro-
gramming discipline on the network designer, it enforces
more comprehensible designs that are also amenable to
efficient automatic verification.

Although we apply our techniques to SDNs, we expect
them to be equally applicable to traditional networks. In
particular, stepwise refinement may help find bugs in po-
tentially complex interactions between mechanisms such
as VLANs and ACLs, and check that forwarding state
matches the assumptions made in the specifications.

694 14th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References
[1] M. Al-Fares, A. Loukissas, and A. Vahdat. A Scal-

able, Commodity Data Center Network Architec-
ture. In SIGCOMM, 2008.

[2] C. J. Anderson, N. Foster, A. Guha, J.-B. Jeannin,
D. Kozen, C. Schlesinger, and D. Walker. NetKAT:
Semantic Foundations for Networks. In POPL,
2014.

[3] T. Ball, N. Bjørner, A. Gember, S. Itzhaky, A. Kar-
byshev, M. Sagiv, M. Schapira, and A. Valadarsky.
VeriCon: Towards Verifying Controller Programs
in Software-Defined Networks. In PLDI, 2014.

[4] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McK-
eown, J. Rexford, C. Schlesinger, D. Talayco,
A. Vahdat, G. Varghese, and D. Walker. P4:
Programming Protocol-Independent Packet Proces-
sors. SIGCOMM Comput. Commun. Rev., 44(3),
July 2014.

[5] M. Canini, D. Venzano, P. Perešı́ni, D. Kostić, and
J. Rexford. A NICE Way to Test OpenFlow Appli-
cations. In NSDI, 2012.

[6] Cocoon website. https://github.com/
ryzhyk/cocoon.

[7] L. de Moura and N. Bjørner. Z3: An Efficient SMT
Solver. In TACAS/ETAPS, 2008.

[8] E. W. Dijkstra. A constructive approach to the prob-
lem of program correctness. BIT Numerical Math-
ematics, 8(3), Sept. 1968.

[9] Floodlight. http://www.
projectfloodlight.org/.

[10] N. Foster, R. Harrison, M. J. Freedman, C. Mon-
santo, J. Rexford, A. Story, and D. Walker. Fre-
netic: A Network Programming Language. In
ICFP, 2011.

[11] N. Foster, D. Kozen, M. Milano, A. Silva, and
L. Thompson. A Coalgebraic Decision Procedure
for NetKAT. In POPL, 2015.

[12] Frenetic. http://frenetic-lang.org/.

[13] A. Gupta, R. MacDavid, R. Birkner, M. Canini,
N. Feamster, J. Rexford, and L. Vanbever. An
Industrial-scale Software Defined Internet Ex-
change Point. In NSDI, 2016.

[14] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski,
A. Singh, S. Venkata, J. Wanderer, J. Zhou, M. Zhu,
J. Zolla, U. Hölzle, S. Stuart, and A. Vahdat.
B4: Experience with a Globally-Deployed Soft-
ware Defined WAN. In SIGCOMM, 2013.

[15] P. Kazemian, M. Chang, H. Zeng, G. Varghese,
N. McKeown, and S. Whyte. Real Time Network
Policy Checking Using Header Space Analysis. In
NSDI, 2013.

[16] P. Kazemian, G. Varghese, and N. McKeown.
Header Space Analysis: Static Checking for Net-
works. In NSDI, 2012.

[17] A. Khurshid, X. Zou, W. Zhou, M. Caesar, and P. B.
Godfrey. VeriFlow: Verifying Network-Wide In-
variants in Real Time. In NSDI, 2013.

[18] T. Koponen, K. Amidon, P. Balland, M. Casado,
A. Chanda, B. Fulton, I. Ganichev, J. Gross,
N. Gude, P. Ingram, E. Jackson, A. Lambeth,
R. Lenglet, S.-H. Li, A. Padmanabhan, J. Pettit,
B. Pfaff, R. Ramanathan, S. Shenker, A. Shieh,
J. Stribling, P. Thakkar, D. Wendlandt, A. Yip, and
R. Zhang. Network Virtualization in Multi-tenant
Datacenters. In NSDI, 2014.

[19] A. Lal, S. Qadeer, and S. K. Lahiri. A Solver for
Reachability Modulo Theories. In CAV, 2012.

[20] K. R. M. Leino. This is Boogie 2, June 2008.
Manuscript KRML 178 http://research.
microsoft.com/en-us/um/people/
leino/papers/krml178.pdf.

[21] N. Lopes, N. Bjørner, N. McKeown, A. Ry-
balchenko, D. Talayco, and G. Varghese. Automati-
cally verifying reachability and well-formedness in
P4 Networks. Technical Report MSR-TR-2016-65,
Microsoft Research, Sept. 2016.

[22] C. Monsanto, N. Foster, R. Harrison, and
D. Walker. A Compiler and Run-time System for
Network Programming Languages. In POPL, 2012.

[23] T. Nelson, A. D. Ferguson, M. J. G. Scheer, and
S. Krishnamurthi. Tierless Programming and Rea-
soning for Software-Defined Networks. In NSDI,
2014.

[24] OpenDaylight. https://www.
opendaylight.org/.

[25] The OpenFlow protocol. https://www.
opennetworking.org/sdn-resources/
openflow.

[26] B. Pfaff, J. Pettit, T. Koponen, E. J. Jackson,
A. Zhou, J. Rajahalme, J. Gross, A. Wang,
J. Stringer, P. Shelar, K. Amidon, and M. Casado.
The Design and Implementation of Open vSwitch.
In NSDI, 2015.

USENIX Association 14th USENIX Symposium on Networked Systems Design and Implementation 695

https://github.com/ryzhyk/cocoon
https://github.com/ryzhyk/cocoon
http://www.projectfloodlight.org/
http://www.projectfloodlight.org/
http://frenetic-lang.org/
http://research.microsoft.com/en-us/um/people/leino/papers/krml178.pdf
http://research.microsoft.com/en-us/um/people/leino/papers/krml178.pdf
http://research.microsoft.com/en-us/um/people/leino/papers/krml178.pdf
https://www.opendaylight.org/
https://www.opendaylight.org/
https://www.opennetworking.org/sdn-resources/openflow
https://www.opennetworking.org/sdn-resources/openflow
https://www.opennetworking.org/sdn-resources/openflow

[27] G. D. Plotkin, N. Bjørner, N. P. Lopes, A. Ry-
balchenko, and G. Varghese. Scaling Network Ver-
ification Using Symmetry and Surgery. In POPL,
2016.

[28] Ryu. https://osrg.github.io/ryu/.

[29] C. Schlesinger, M. Greenberg, and D. Walker. Con-
current NetCore: From Policies to Pipelines. In
ICFP, 2014.

[30] A. U. Shankar and S. S. Lam. Construction of Net-
work Protocols by Stepwise Refinement. In Step-
wise Refinement of Distributed Systems: Models,
Formalisms, Correctness, 1990.

[31] R. Stoenescu, M. Popovici, L. Negreanu, and
C. Raiciu. SymNet: scalable symbolic execution
for modern networks. In SIGCOMM, 2016.

[32] Y.-W. E. Sung, S. G. Rao, G. G. Xie, and D. A.
Maltz. Towards Systematic Design of Enterprise
Networks. In CoNEXT, 2008.

[33] A. Voellmy, J. Wang, Y. R. Yang, B. Ford, and
P. Hudak. Maple: Simplifying SDN Programming
Using Algorithmic Policies. In SIGCOMM, 2013.

[34] N. Wirth. Program Development by Stepwise Re-
finement. Commun. ACM, 14(4), Apr. 1971.

[35] Y. Wu, A. Haeberlen, W. Zhou, and B. T. Loo.
Answering Why-Not Queries in Software-Defined
Networks with Negative Provenance. In HotNets,
2013.

A Syntax and semantics of Cocoon
A.1 Syntax

The syntax of the Cocoon system is given in Fig. 15.
Let Id be the set of identifiers, Pkt the set of packets
and Val the set of values.

We suppose the existence of a countable set of iden-
tifiers, or variable names. Values comprise booleans
true and false, integers, tuples, and records of type
id, written id{v}. Expressions comprise standard nega-
tion, binary operators ⊗, projection of fields e.id, con-
struction of records id{e}, function call id(e), built-in
function calls id!(e), variable call id, tuple construction
(e, . . . ,e), and call to the current packet being processed
pkt. The semantics of a built-in function id! is given by
Jid!K ∈ Val→ Val.

Statements allow filtering, which stops the computa-
tion if e does not evaluate to true. Assumptions are
slightly different in that they are not executable, but can
be refined only if e evaluates to true. Packet fields can
be assigned explicitly with the := construct, or assigned

integers n
identifier id

ids = id | id, ids

arguments args = τ id | τ id,args

case body cbod = · | e1 : e2; cbod
value v = true | false | n | id{v}

(v, . . . ,v)
expression e = not e | e1⊗ e2 | e.id

| id(e) | id!(e) | id{e}
| pkt | id
| case {cbod; default:e;}
| (e, . . . ,e)

type specs τ = uint <n> | bool | id | [τ;n]
| struct {args}

statement a = filter e | assume e
| pkt.id:=e | havoc pkt.id
| if e then a1
| if e then a1 else a2
| let τ id = e
| send id[e]
| fork (args | e) as

as = f | a,as
role constraints cs = · | |e | /e | |e/e
declaration d = typedef τ id

| function id(args) : τ

| function id(args) : τ = e
| role id[args] cs = as
| assume (args) e

ds = d | d,ds
refinement r = refine ids ds
spec spec = r | r,spec

Figure 15: Cocoon Syntax.

to a nondeterministic value using havoc. Statements
allow standard conditionals and let-bindings. Finally, a
statement can send a packet to another role id[e], or fork
to multicast a packet across all variables args satisfying
condition e.

Declarations contain function definitions, both with-
out a body to be refined later on or become user-defined
functions, and with a body when defined explicitly. Dec-
larations also contain role definitions: a role is param-
eterized by some arguments, and is only valid if some
constraints on those arguments (| e) and on the incom-
ing packets (/ e) are true. Finally, assumptions allow re-
stricting the future definitions of declared functions, both
in future refinements and as user-defined functions.

Note that although types are part of the syntax, we
drop them in the semantics to simplify notations.

A.2 Semantics

We give a denotational semantics of Cocoon. The se-
mantics of expressions, statements and declarations is

696 14th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://osrg.github.io/ryu/

given in terms of:

• a packet p ∈ Pkt, a record of type Pkt;

• a local environment σ ∈ (Id ⇀ Val), a par-
tial function from identifiers to values, comprising
let-defined variables; let Env be the set of local
environments;

• a set of possible environments of functions φ . Func-
tions take one argument (which can be a tuple).
Each function’s denotational semantics is a (math-
ematical) function from a pair (v,p) to a value v.
Each possible environment of functions is a par-
tial function from identifiers to such denotational
semantics. The set φ is a set of such possible en-
vironments, representing all the possible function
definitions. If Φ represents the set of all the sets
of possible environments of functions, we thus have

Φ = P(Id⇀ (Val×Pkt)→ Val)

This enables the modelling of the nondeterminism
introduced by functions defined only as signatures,
and possibly restrained by assumptions;

• an environment of roles ρ , a partial function from
identifiers to role semantics, where each role se-
mantics is a (mathematical) function from a pair
(v,p) to a set of sets of pairs (p,σ). Each set of
pairs (p,σ) represents one possible execution, pos-
sibly returning multiple packets in the case of mul-
ticasting. We model nondeterminism by having the
semantics return a set of those possible executions.
Thus sets of sets enable the modeling of both non-
determinism and multicasting. If P represents the
possible environments of roles, we thus have
P = (Id⇀ Val×Pkt→P(P(Pkt×Env)))

A.2.1 Semantics of expressions

The semantics of expressions is given in Figure 16, in
terms of a triple (p,σ ,φ). Expressions are nondetermin-
istic, and thus their semantics is a set of possible output
values.

Most of the semantics is standard. Note that the only
nondeterminism is introduced by a function call id(e).
Functions are defined in the environment φ , while built-
in functions id! have their own semantics. The call pkt
just returns the current packet p in all cases.

A.2.2 Semantics of statements

The semantics of statements is given in Figure 17, in
terms of a quadruplet (ρ,σ ,φ ,ρ), and returns a set of
sets of pairs (p,σ) to model both nondeterminism and
multicasting.

JeK(p,σ ,φ) ∈P(Val)
JvK(p,σ ,φ) = {v}

Jnot eK(p,σ ,φ) = {¬ v | v ∈ JeK}
Je1⊗ e2K(p,σ ,φ) = {v1⊗ v2 | v1 ∈ Je1K,v2 ∈ Je2K}

Je.idK(p,σ ,φ) = {v.id | v ∈ JeK}
Jid(e)K(p,σ ,φ) = {f (id)(v,p,φ) | v ∈ JeK, f ∈ φ}

Jid!(e)K(p,σ ,φ) = {Jid!K(v) | v ∈ JeK}
where Jid!K ∈ Val→ Val

Jid{e}K(p,σ ,φ) = {id{v} | v ∈ JeK}
JpktK(p,σ ,φ) = {p}

JidK(p,σ ,φ) = σ(id)
Jcase {·;default:e;}K(p,σ ,φ) = JeK(p,σ ,φ)
Jcase {e1 : e2;cbod; }K(p,σ ,φ) =
{v2 | (true,v2) ∈ J(e1,e2)K(p,σ ,φ)}∪
{v2 | false ∈ Je1K(p,σ ,φ),v2 ∈ Jcase {cbod;}K}

J(e1, . . . ,en)K(p,σ ,φ) = {(v1, . . . ,vn) | vi ∈ JeiK}
Figure 16: Semantics of expressions

The semantics of filter and assume only differ
when {{(p,σ) | true ∈ JeK(p,σ ,φ)}} = {∅}. In that
case filter drops all packets (its semantics is {∅}),
whereas assume disallows refinements by denoting ∅.
The semantics of packet field updates (explicit or using
havoc), conditionals, and let-bindings is standard.

The statement send is treated as a function call to the
new role we are sending to, putting together all the non-
deterministic behaviors of that role with a union. Finally,
fork makes a cross-product on all the possibilities of
each of the statements, generating all possible combina-
tions of multicasts by picking one in each statement of
as. Composition of statements a,as is defined using a
similar cross-product to correctly handle both multicast-
ing and nondeterminism.

A.2.3 Semantics of declarations

The semantics of declarations is given in Figure 18. A
declaration updates the environments of functions φ and
roles ρ . Constraints | e and / e on roles are considered
true when unspecified.

A role declaration updates the role environment with a
function r. This function first checks whether the condi-
tions e3 and e4 are fulfilled (first two lines); then, in the
case where this definition is a refinement of an existing
role, it checks whether the new role’s body is a valid re-
finement (third line); when those checks pass, r returns
the semantics of the body as of the role.

A function declaration without an explicit body cre-
ates a possible function environment for any possible
value of this function. When provided a body, those envi-
ronments are restricted if a prior declaration existed (first
line), otherwise an explicit definition is added (second
line). Assumptions select the definitions of functions in
φ that agree with the assumption that is being considered.

USENIX Association 14th USENIX Symposium on Networked Systems Design and Implementation 697

JaK(p,σ ,φ ,ρ) ∈P(P(Pkt×Env))
Jfilter eK(p,σ ,φ ,ρ) = {{(p,σ) | true ∈ JeK(p,σ ,φ)}} can be {∅} but not ∅
Jassume eK(p,σ ,φ ,ρ) = {{(p,σ) | true ∈ JeK(p,σ ,φ)}} only if 6= {∅}
Jassume eK(p,σ ,φ ,ρ) =∅ otherwise

Jpkt.id := eK(p,σ ,φ ,ρ) = {{(p[id 7→ v],σ)} | v ∈ JeK(p,σ ,φ)}
Jhavoc pkt.idK(p,σ ,φ ,ρ) = {{(p[id 7→ v],σ)} | v ∈ Val}
Jif e then a1K(p,σ ,φ ,ρ) = {(p′,σ ′) ∈ Ja1K(p,σ ,φ ,ρ) | true ∈ JeK(p,σ ,φ)}∪

{(p,σ) | false ∈ JeK(p,σ ,φ)}
Jif e then a1 else a2K(p,σ ,φ ,ρ) = {(p′,σ ′) ∈ Ja1K(p,σ ,φ ,ρ) | true ∈ JeK(p,σ ,φ)}∪

{(p′,σ ′) ∈ Ja2K(p,σ ,φ ,ρ) | false ∈ JeK(p,σ ,φ)}
Jlet id = eK(p,σ ,φ ,ρ) = {{(p,σ [id 7→ v])} | v ∈ JeK(p,σ ,φ)}
Jsend id[e]K(p,σ ,φ ,ρ) =

⋃
{ρ(id)(v,p) | v ∈ JeK(p,σ ,φ)}

Jfork(id | e) asK(p,σ ,φ ,ρ) =
⊗
{JasK(p,σ [id 7→ v],φ ,ρ) | true ∈ JeK(p,σ [id 7→ v],φ),v ∈ Val}

where
⊗
{A1, . . . ,An}= {a1∪ . . .∪an | a1 ∈ A1, . . . ,an ∈ An},ai ∈P(Pkt×Env)

JasK(p,σ ,φ ,ρ) ∈P(P(Pkt×Env))
Ja,asK(p,σ ,φ ,ρ) =

⋃{⊗
{JasK(p′,σ ′,φ ,ρ) | (p′,σ ′) ∈ A} | A ∈ JaK(p,σ ,φ ,ρ)

}
Figure 17: Semantics of statements

JdK(φ ,ρ) ∈Φ×P
Jrole id1 [id2]K = Jrole id1 [id2] | true / trueK

Jrole id1 [id2] | eK = Jrole id1 [id2] | e / trueK
Jrole id1 [id2] / eK = Jrole id1 [id2] | true / eK

Jrole id1 [id2] | e3 / e4 = asK(φ ,ρ) = (φ ,ρ [id1 7→ r])

where r = λ (p,v2).

∅ if true 6∈ Je3[v2/id2]K(p, [],φ)
∅ if true 6∈ Je4[v2/id2]K(p, [],φ)
∅ if id1 ∈ dom(ρ) and Jas[v2/id2]K(p, [],φ ,ρ) 6⊆ ρ(id1)
Jas[v2/id2]K(p, [],φ ,ρ) otherwise

Jfunction id1(id2)K(φ ,ρ) = ({ψ[id1 7→ f] | ψ ∈ φ , f ∈ (Val×Pkt→ Val), id1 6∈ dom(ψ)} ,ρ)
Jfunction id1(id2) = eK(φ ,ρ) = ({ψ ∈ φ | ∀p,v2.ψ(id1)(v2,p) ∈ Je[v2/id2]K(p, [],φ), id1 ∈ dom(ψ)}∪

{ψ[id1 7→ f] | ψ ∈ φ ,∀p,v2.f (v2,p) ∈ Je[v2/id2]K(p, [],φ), id1 6∈ dom(ψ)}
,ρ)

Jassume args eK(φ ,ρ) = ({ψ | ψ ∈ φ ,∀args.true ∈ JeK({ }, [args],{ψ})},ρ)

Jd,dsK(φ ,ρ) = JdsK(JdK(φ ,ρ))

Jrefine ids dsK(φ ,ρ) = JdsK(φ ,ρ)

Jr,specK = JspecK(JrK(φ ,ρ))

Figure 18: Semantics of declarations
The semantics of several declarations, refinements and

finally whole specifications chains through the semantics
of role declarations.

698 14th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

	Introduction
	Cocoon by example
	Refinement-based verification
	Compiler
	Case studies
	Case study 1: Software-defined WAN
	Case study 2: Network virtualization
	Other case studies
	Experience with the Cocoon language

	Implementation and evaluation
	Static verification
	Cocoon vs. NetKAT
	Cocoon + HSA

	Related work
	Conclusions
	Syntax and semantics of Cocoon
	Syntax
	Semantics
	Semantics of expressions
	Semantics of statements
	Semantics of declarations

